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Casimir effect on the light cone
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The Casimir effect is investigated in light-cone quantization. It is shown that for a spacelike separation of the
walls enclosing the system the standard result for the pressure exerted on the walls is obtained. For walls
separated in the light-cone space direction no regularization of the quantum fluctuations exists which would
yield a finite pressure. The origin of this failure and its implications for other vacuum properties are discussed
by analyzing the Casimir effect as seen from a moving observer approaching the speed of light. The possibility
for the calculation of thermodynamic quantities in light-cone quantization via the Casimir effect is pointed out.
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I. INTRODUCTION study we will establish the relation between the Casimir en-
ergy in ordinary coordinates and on the light cone within a
In the Casimir effecf1], the change in the quantum fluc- covariant formalism and prepare in this way the ground for
tuations of a field due to its interaction with a medium incor-the discussion of the relation to the finite temperature field
porated into boundary conditions is measured. The obsentheory on the light cone.
able is the pressure exerted by the quantum fluctuations on
walls which limit the system in one spatial direction. The | "¢\ ie EFFECT IN THE CANONICAL FORMALISM
Casimir effect is accessible to experiments only if the corre-
sponding quantum field possesses massless excitations. Mea-The forces acting on the boundaries of (@artially) en-
surement$2—4] of the change in the ground state energy ofclosed system are determined by the size dependence of the
the electromagnetic field in the presence of metallic boundenergy density. In this section we shall calculate this energy
aries have confirmed Casimir’s original prediction. In thedensity for periodic boundary conditions. Although not di-
standard treatment of the Casimir effect the appropriateectly relevant for the observation of the Casimir effect in
standing wave conditions of electromagnetism are used. lslectrodynamics, where standing wave boundary conditions
relativistically covariant theories, the Casimir effect with pe-describe appropriately the interaction of electromagnetic
riodic boundary conditions imposed and blackbody radiatiorwaves with metallic boundaries, from the theoretical point of
are related to each other. More precisely, covariance connecigew, periodic or antiperiodic boundary conditions are pref-
the energy-momentum tensor for a system at a finite spatigrable. Momentum conservation is preserved with this
extension with the energy-momentum tensor of the same syghoice and for relativistically covariant theories, the results
tem at finite temperaturkb,6]. can be connected to the corresponding thermodynamic quan-
This investigation of the Casimir effect is intended to tities at finite temperature. Here we discuss the Casimir ef-
clarify the description of the vacuum in light-cone guantiza-fect for a noninteracting, massless scalar field. In this section,
tion. Unlike other vacuum properties, such as condensategat-kernel regularization is used for dealing with the infini-
which have to appear for consistency of the underlyingties in the sum over the zero-point energies. For comparison
theory but cannot be measured directly, quantities related twe first give the result for the energy density using standard
the Casimir effect are experimental observables and thereoordinates. Enclosing the system between walls at a dis-
fore have to be correctly described within any formalism. Astance L and imposing periodic boundary conditions the
in other instances, one might expect that the infinite momeneigenenergies of the one particle states are
tum frame interpretation of light-cone results applies. In this
case the light-cone formulation of the Casimir effect should 5
correspond to the observation of the Casimir effect by an w(k, ,n)= k2+<2in)
observer moving with respect to the “walls” of the system L + L
and approaching the speed of light. Of particular interest
thereby is the situation in which the observer’s velocity is_ . . .
perpendicular to the walls. With this study of the Iight—coneWIth k. denoting the continuous momentum components or-

: ) . thogonal to the compact direction. As is well known, the
vacuum properties we will also address the issue of devempr’egularized sum over the zero-point energies
ing a viable approach to finite temperature field theory in
light-cone quantization.

Our investigation will start within the canonical formal- 1 d?k,
ism. In this standard framework for the discussion of the <H"°>:ZJ > >
Casimir effec{ 7] energy density and related observables are (2m)" n===
obtained by the(suitably regularized sum over the zero- 3 2
point energies of the normal modes of a massless noninter-

acting quantum field. As one of the central issues in our 272\% ooL?

3]
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contains a singular, size independent contribution and a fi- 1 d%k, B N
nite, size-dependent term. The observable pressure exerted <7—(,>=—f — > e 2miL-aTe
on the walls 2L) (2m)? =0
ALHyo) R S (L)
P==—3C = 302 82 (NTAT)2 24022 1204 |\

2.3
is therefore finite and itk dependence follows from dimen- 23

sional arguments. is obtained. No separation of regulator) and size(L)

~ We now calculate the energy density in light-cone quandependence occurs. It is difficult to assess the physical rel-
tization. We use the following notation for coordinates andevance of this result within the canonical formalism. In the

momenta: following sections we will recalculate the Casimir energy
density in a formalism in which th&esidual covariance is
L1 1 explicit
xT=—(x°+x%), k.=—=(ko*Kks), '
V2 T2
) ) ) IIl. ENERGY MOMENTUM TENSOR IN A PERIODIC
and refer tox™ k. as light-cone time and light-cone energy, VACUUM
respectively. The light-cone energies of the one particle o ) ) )
states are given by To make explicit the covariance in the calculation of the
Casimir energy we impose the boundary conditibo)
K2+ks _
k= oK with the constraint k_>0. e(x+1)=¢(x). (3.2

In light-cone quantization the system may be chosen to bdhe 4-vector| specifies orientation and distance of the
compact and periodic in a transverse directiorthogonal to ~Walls” enclosing the system. Imposing this boundary con-
the 3 direction or in the light-cone space™ direction. With dition singles out a Lorentz frame which we will refer to as
the transverse boundary condition the rest system. The generating functional in a frame con-
nected with the rest system by an elemantf the (prope)

o(xT X7 XML, x%) = o(x" ,x™,x%,x?), Lorentz group is given by

the energies of the one particle states are

ZA[J]=JbC d[;]eifd‘l)(ﬁ(;’(x))*'ij'd4XJ~;
A

2mn\?

2
k+L

1
wt(k, ,k,n)= K

with the Lorentz-transformed boundary conditions bc

To regularize the infinities the suppression of the contribu- ~ ~
tion from both large light-cone energies and large light-cone elA T (x+D]=¢[ A1
momenta requires two regulators. The resulting light-con
energy density

(3.2

%Ne perform a variable substitution corresponding to a
Lorentz-transformation back to the rest system

2wt e e()="p(A"1x).

0 2 7oc27T n=—c

1 fwdk = dk
(Ho=5

1 2 The LagrangiarC is invariant, the Jacobian of this variable
= B (2.2)  substitution is 1 and the fields satisfy the boundary condi-
8m2(N*AT)2 9oL? tions (3.1). The generating functional for a moving observer

can therefore be written as
coincides in the relevant, finite and size dependent term and

differs in the singular but size independent contribution. atetoon i | dxan e
Later we will make explicit the relation between the results. Z\[J]= fb dlele () (009,
With longitudinal boundary conditions ¢

(X X +L,xEx)) = o(xT x 7 xEx?) With the Lagrangian of a massless noninteracting scalar field

) ) 1
the energies of the one particle states are Llo]= E%‘PM‘P’
2
pr— l . B
wi(ky )= 7—-, the generating functional becomes
and the following result for the energy density: Z,[3]=e (27d*dlyIDIA - 1IY)
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with the scalar two-point function periodic in the direction of 1 * B./2im\""1
I D(z)=— —_—
4oLzt n=o NI\ L
d 1 - -
D(z)=>, ez _——— s(kl—2mn). (3.3 X[(z-+2)" 14 (28— 21 (4.2)
n (2m)° K’+ie

with the Bernoulli number®8,. The leading terms in the
For evaluation of the Casimir effect as seen from a moving ., g |imit are

observer we compute the energy-momentum tensor with the

help of the generating functional | - 3 H
D(2)~—|———— 72+ 471?)
) S P T
y 1 6°Z)
<J;w>_ ‘9 5= —g,w& 3P 8J(x)83(y) J=0x—y The singular term in this expansion is invariant under Lor-

entz transformations/) and independent of the periodic
structure of the vacuumL(. At the smallest scale, the
vacuum is identical for all observers and not affected by
periodicity on large scales. The singular contributions to the

] ) ) ) energy-momentum tensor is given by
We note that in this framework the ultraviolet divergences

appearing in the Casimir energy are regularized by point
splitting. The covariance of this regularization will turn out (JS'”g (a#&,,—
to be crucial for the following studies.

(3.9

1
—i(&uay— ngm> D(A2)

z—0

1
79007 |z

In the evaluation oD (z) we have to distinguish the cases 1 [a 1
of space- and lightlike 4-vectols We first consider space- I 42
’ ' 5 Ouo| 3 Him6(2) || (4.2
like separations of the walls 22| 28 z

By choosing the elements of the energy-momentum tensor to
vanish in a certain frame and for a certain size, e.g. the rest
system and_=o, the singular pieces will be absent in any
and define correspondingly the components of the 4-vector other frame and for any othér. It does not affect any ob-

0<—12=1L2, (3.5

which serves as regulator servable. For the regular, size- and frame-dependent part of
the energy-momentum tensor we obtain
zl
ZH:_, ZLZ\ZZ-l-Zz—iE. (36) < > 772 IPI(" (4 3)
- w) = oMty G4 '

Integration over the momenta and summing the resulting’he energy density in the rest system coincides, after the
geometrical series yields the final expression for the twoidentificationz,=i\qdy,, with the result of the canonical
point function calculation[Eq. (2.1)] up to thed(z) term which disappears
in the rotation to the Euclidean space.
1 1 1 The light-cone energy density in the transverse Casimir
- _ effect A=14*=6,,) is given b
D(2)= Al 7 1+eziw/L(zi+zH)_1+ ezm/L(zL—z“)_l : ( »1) 159 y
(3.7 1 0 3 a2
(34 )=5(00=99=- .

(4.9

The above expression displays the covariance of this ap-
proach. In general, the scalar two-point function is a functionWith the identificationz* =i\ *,z'=2z?=0 it agrees up to
of the scalars formed from the two 4-vectarand| charac- the & function with the canonical resulEq. (2.2)]. In this
terizing the system covariant formulation, the evaluation @(z) is trivially
identical for light-cone and ordinary coordinates. The differ-
ence in the singular piece arises from the differences in the
definition of J, = andJyg.
In the longitudinal Casimir effect the choice of light-cone
IV. CASIMIR EEEECT IN A MOVING ERAME coordinates is much more severe. Here, the 4-velttior
lightlike. A simple relation between the two-point functions
In this section we compute the components of the energyfor spacelike and lightlike separations of the compact direc-
momentum tensor in various systems. We expand the abou®mn does not exist. One, however, might expect the light-
expression foD(z) [Eq. (3.7)] aroundz=0 cone energy density in the longitudinal Casimir effect to be

D(z)=D(Z%,1%,zl). (3.9
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related with the energy density as seen from an observer iimcreases beyond any bound and becomes the largest charac-
the infinite momentum frame. We will investigate this possi-teristic length of the system

bility and assume in the following discussion the 3-direction

to be compact: || <L2<L?2. (4.10

1#=L&,3 In this limit the following expression for the 2-point func-

tion:
and A to describe a boost in the 3-direction

+D, (A2)+D_(Az)  (4.1)

472
The order in which the infinite momentum frame limit
B?—1 and the limit of vanishing regulatarare performed s obtained, with
has to be specified. If we first perform for givg@f<1 the
z—0 limit |(Az2)#|—0 we can expand as above the expo- 1 1
nentials in Eq(3.7) and the resulfcf. Eq. (4.3)] is given by D,(A2)~— AT T2 . (412
2 p{_] _
T
Hy=— 1+48%y?],
(H) oo 2L LT AE Y] 1 1
o P 2
<J33>:_W7 (3+89). (4.6) ex ia-rt—2 -1
In the subsequens®—1 limit, the elements of the energy- i 1 2 7
momentum tensor become infinite; the light cone ener ~ Tt gl —a-
density, however k v 4m’z? 8ml? 48" 2880°
(4.13
1 o0 3 m? .
(Jio)= E(J —J%)= @, (4.7) Note that the argument of the exponentialln becomes

infinite in the approach to the light cone. After a rotation to

by covariance, is independent gfand thus is not affected complexz the COﬂtI’ibL.Jti.Ol’] oD, to the energy-momentum .
by the approach to the infinite momentum frame. This resulf€NSOr beco_mes negligible. The argument of the expon_ent_lal
does not agree with the canonical re$@t. (2.3)]. It differs In D_, remains small and the result for the energy density in
in sign from the light-cone energy density in the transversdNe€ infinite momentum frame follows:
Casimir effect due to the extra momentum fl(pressurg i
along the compact direction induced by the walls contribut- _ g2 -
ing here but not in Eq(4.4). (Hie)=(J+)==5ViD(A2)

In the reversed order, first the approach to the light cone is
performed (for fixed regulatorz) and only then thez—0 1 5 L
limit is carried out. The transformed argumerts. Egs. Y 48O~_8(3Z —4z°77). (4.14
(3.6), (4.5)] appearing in the expressigB.7) for the two-

point function are to leading order in the— —1 limit given | the infinite momentum frame limit specified by E@4.8),

L 4777
2727 z2

252

by (4.10, the L~8 and the higher order contributions in the
P ey above formulas can be neglected. Identifying the regulators
A(Z-+28)~ 2 Z+_ZL 1+8 , in the canonical with those of the infinite momentum frame
V1+3 2z calculation
R 1+ 622 Z'=iINTAHP)Y2 7 =—in(1+B) Y2 z,=0
z -7~ —.
2z" makes the expressions in Eq8.3) and(4.14) for the longi-
, tudinal Casimir energy density coincide.
Keeping In performing first the limit32— 1 necessarily the regime
122|<L2, 7'2<|2 4.8 specified by[Eq. (4.10] is reached in which the Lorentz-
’ ' contracted length becomes much smaller than the regulator
fixed and approaching the light cong-& —1), the quantity ylL<|z'].
+
T2__~ L A regulator independent result for the physical observables
L (4.9 ) L
V1+pB cannot be expected in such a situation.
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V. LIGHTLIKE AND SPACELIKE COMPACTIFICATIONS 2
For lightlike orientation of the compact direction, (Je-)=- 90(sL)*’
_ L _ Thus a physically meaningful Casimir energy emerges for
l=—(1,0,0i-1) . . ) ) =
NA arbitrary choices of the compact spacelike direction exclud-

ing a region around thg~ direction with the opening angle

the two-point function3.3) can be evaluated with the result determined by the ratio of the components of the regulator
over the proper lengtbL.

1 The failure of the regularization to produce sensible re-
Dic(2)=— il 2 sults for a compact ™ direction is due to the peculiar infra-
Tz L g -1 red properties of the spectrum in light-cone quantization. It is

‘ the divergence of the one particle energies at small light-cone
Lo 1 2 ez momenta which is regularized k&~ and which makes the
—d(z )(277)2LJ’ d%k, K2—ie (5.3) final result dependent on this regulator. On the other hand,
+ after subtraction of the ultraviolet contribution, the Casimir

D,. contains a singular contribution arising from the zero-€fféct is a long wavelgn_gfrl phenomenon as the difference
mode[n=0 in Eq.(3.3]. Up to this zero-mode contribution between the characteristic * dependence for massless and

the light-cone two-point function agrees with the infinite mo- € €xponential suppression expL) for massive particles
mentum frame limit of the two-point functioD_ [Eq. demonstrates. Furthermore, the attraction, i.e., the decrease

(4.13] provided the light-cone extensidnis identified with in the energy density with the decrease in the separation of

the Lorentz-contracted extensiafl + AL in the infinite mo- the walls is a result of a delicate interplay between the repul-

mentum frame which becomes small on the scale of th§!On due to the increased zero-point energiesnfé_ro and
regulator. In the longitudinal Casimir effect, the compact gi.the increase in the relative weight of the states with small or

rection is specified by the lightlike vector given in light-cone vanishingn. As a consequence Of. these competing effectg, a
coordinates by change from attraction to repulsion occurs when changing

continously from periodic to antiperiodic boundary condi-
I=(0.L,0,0), 12=0. tions. The lightlike nature of the compact direction in com-
bination with this sensitivity of the observables to the infinite
and long wavelength properties makes the energy-
momentum tensor in the longitudinal Casimir effect ill de-
D\.=Dy.(2,2l) fined. Similar difficulties are most likely to be e_ncountered in
the attempt to calculate other vacuum properties such as con-
cannot contain a finite and regulator independent term. Alénsates which also are dominated by long wavelength prop-
meaningful definition of the energy density for the compactérties. Like in the Casimir effect these problems can be
direction coinciding with thex™ direction is not possible. avoided provided compact directions, if at all present, are

However, the compact direction can be arbitrary close to th€hosen to be spacelike. The choice of spacelike compact di-
x~ direction. This is easily seen when imposing boundary €Ctions, however, raises new technical issues. Compactifica-
conditions tion of thex™ direction is often the basis for significant sim-
plifications in the actual calculations. In gauge theories, for
o(x* x +Lx +sLxd)=o(x",x ,x},x?), (5.2 instance, the choice of light-cone gauge seems to be a
prerequisite for making use of the simplifications offered by

by which thex™ direction can be approached-¢0) from  light-cone quantization. On the other hand, implementation

Therefore the two-point function

orientations characterized by spacelike vectors of axial gauges is free of infrared problems only if the asso-
ciated direction—here the™ direction—is compactified.
|=(0L,sL,0), 12=—-s2L2 One therefore again may have to resort to approach the light-

like from spacelike compact directions which in turn would
By a Lorentz transformation consisting of a rotation aroundrequire an accompanying change in gauge. These problems
the x? axis by an angler=arcsin(t+2s%) Y2 followed by a have to be investigated if vacuum properties are to be deter-
boost along thex! direction with velocity 5=sina trans- ~ Mined within approaches to light-cone quantizations which

forms this boundary condition into a transverse boundarynake use of a compast™ direction such as discrete light
condition cone quantizatiofDLCQ) [8—11] or the transverse lattice

approacH12-15.
o(xT,x7 XX+ sLx?) = o(xT,x7,xL,x?). (5.3 Extensions to other forms of boundary conditions are pos-
sible. Quasiperiodic boundary conditions are important be-
The expansion oD(z) in Eq. (4.1) is controlled byz/(sL) cause of _their application to finite temperature field theory. If
which for givens can be made arbitrarily small in the  ON€ requires
—0 limit. In this limit, the light-cone energy density is ob- ,
tained from Eq.(4.3 o(x+)=eYp(x), 0=sy<2m, (5.9
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the analysis can be carried through as before. The expressidight-cone time direction is lightlike and not as in ordinary
(4.3 for the L-dependent part of the energy momentum ten-coordinates timelike. Compactification along tké direc-

sor gets modified by tion at inverse temperatuy defines the 4-vector with light-
cone coordinates
15)(2 p% 2 ,
<‘];LV>4)<‘],LLV> 1- 2772 1_5 . (55) |:(,8,0,0,0, =0
In the light-cone resulf4.14) for the longitudinal Casimir implying
effect, the relevant term ifiH,.) becomes D(z2)=D(Z%,z B).
1 1 3x 1 X 56 A finite regulator independent thermodynamic quantity can-
2414H o4 T w\T 2w (5:8 1ot be extracted frond(z). We, however, may use the gen-

eral equivalence between relativistic field theories at finite
Therefore the difference between our results for periodic antemperature and finite extensi,6]. By rotational invari-
quasiperiodic boundary conditions consists only of someance in the Euclidean, the value of the partition function of a
x-dependent factors which do not influence our conclusionsystem with finite extensioh in 1 direction andg in 0
with respect to light-cone physics. An extension to standingflirection is invariant under the exchange of these two exten-
wave boundary conditions like sions,

o(x, ,x3=0)=0, o(x, ,x3=L)=0 (5.7 Z(B,L)=Z(L,B), 6.1

introduce new elements in our discussion. First we remariprovided bosonidfermionic) fields satisfy periodigantipe-
that with the violation of translational invariance by the Di- riodic) boundary conditions in both time and 3 coordinate.
richlet boundary conditions, the energy momentum tensofhus relativistic covariance connects the thermodynamic
becomesx® dependent. Following the same procedure agroperties of a canonical ensemble with vacuum properties
above we find, e.g., for the energy density as seen from &f the same physical system but at finite extension. As a

moving observer consequence energy density and pressure are related by
2m_, e(BL)=—p(L.B). 6.2
2 , 2+co X
<H>:_Tr—[1+4,3272]_ . 5 T_hl_Js the energy-momentum tensor at finite temperature _is
90(2L)* 2414 trivially computed once the energy-momentum tensor at fi-

nite extension is known. As we have shown these elements
_ _ can be evaluated on the light-cone provided a spacelike com-
X[2438%7?]10(x3)O(L—X°%) (5.8 pact direction is chosen. The general relation between sys-
tems at finite temperature and finite extension not only con-
with x3= y(x3— Bx%). After integration ovex®, the second nects the Casimir effect of a noninteracting massless field
term in Eq.(5.8) becomed. independent and therefore does with blackbody radiation it also implies the possibility for
not contribute to the force between the walls. In comparisorphase transitions to occur with the variation in the extension
with periodic boundary conditions the well-knowrf 2up- L of, e.g., the compack® direction. Specifically in QCD,
pression of the force generated by standing waves is obwhen L decreases beyond 1.3 fm the phase transition to
tained. Once more the transverse Casimir effect on the lighthe quark-gluon plasma has to take place with a correspond-
cone yields the same result. Although the Casimir effect isng sudden change in energy density and pressure. Thus
well defined in the infinite momentum frame linfjg?—1 in  light-cone quantization provides an appropriate framework
Eq. (5.8)], no physically meaningful description for the lon- in which phase transitions at finite temperature can be de-
gitudinal Casimir effect in light-cone quantization exists. scribed. Nevertheless a detailed understanding of how such
Equal light-cone time standing wave conditions are not comphase transitions arise in the trivial light-cone vacuum re-
patible with the light-cone equations of motion which are mains to be achieved.
first order inx™.

VIl. SUMMARY

VI. THERMODYNAMICAL OBSERVABLES IN LIGHT- In thi K h di d the Casimir eff f
CONE QUANTIZATION n this work we have discussed the Casimir effect of a

noninteracting scalar field in light-cone quantization. We
The correct description of the Casimir effect for spacelikehave established that the Casimir effect can be reliably com-
compact directions offers the possibility to calculate thermojputed provided the separation of the walls enclosing the sys-
dynamic quantities in light-cone quantization. The straighttem is spacelike. This successful evaluation opens the possi-
forward generalization of the standard procedure to define hility to calculate thermodynamic quantities and in particular
partition function in light-cone quantization by compactify- to address the issue of phase transitions in finite temperature
ing the light-cone time is faced with the difficulties encoun-field theory in the framework of light-cone quantization. If
tered in the definition of the longitudinal Casimir effect. The the walls are separated along tke direction no regulator
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independent expression for the observable pressure can heantization has been proposed in the field-theoretic context
obtained. Based on the covariance of the theory this failurén [16,17] and in the context of M-theory ifl8—20. It has

in defining a proper energy momentum tensor has beeheen applied to a detailed analysis of vacuum properties of
shown to result from the lightlike separation along the  two-dimensional gauge theori¢47]. This limiting proce-
axis. Therefore the same problems will also occur for inter-dure also yields for the longitudinal Casimir effect the cor-
acting fields. Compact lightlike directions might be ap-rect resulf21]. Here we have not followed this path since in
proached in some limiting procedure from compact spacelikgeneral most of the simplifying features of light-cone quan-
directions. We have studied this possibility by the transitiontization are thereby lost. Beyond two dimensions this method
to the infinite momentum frame and by a rotation of a spaceis not mandatory. It is not the choice of the metric but rather
like orientation into the lightlike direction. In both cases thethe choice of a compact™ direction which is the origin of
final result has been demonstrated to depend on the order the difficulties in defining the Casimir effect.

which the approach to the light-like direction and the limit in

the regularlzathn of the quantum fluctuqtlpps are performeq. ACKNOWLEDGMENT
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