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Casimir effect on the light cone

Frieder Lenz and Daniela Steinbacher
Institut für Theoretische Physik III, Universita¨t Erlangen-Nu¨rnberg, Staudtstraße 7, D-91058 Erlangen, Germany

~Received 26 September 2002; published 26 February 2003!

The Casimir effect is investigated in light-cone quantization. It is shown that for a spacelike separation of the
walls enclosing the system the standard result for the pressure exerted on the walls is obtained. For walls
separated in the light-cone space direction no regularization of the quantum fluctuations exists which would
yield a finite pressure. The origin of this failure and its implications for other vacuum properties are discussed
by analyzing the Casimir effect as seen from a moving observer approaching the speed of light. The possibility
for the calculation of thermodynamic quantities in light-cone quantization via the Casimir effect is pointed out.
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I. INTRODUCTION

In the Casimir effect@1#, the change in the quantum fluc
tuations of a field due to its interaction with a medium inco
porated into boundary conditions is measured. The obs
able is the pressure exerted by the quantum fluctuation
walls which limit the system in one spatial direction. Th
Casimir effect is accessible to experiments only if the cor
sponding quantum field possesses massless excitations.
surements@2–4# of the change in the ground state energy
the electromagnetic field in the presence of metallic bou
aries have confirmed Casimir’s original prediction. In t
standard treatment of the Casimir effect the appropr
standing wave conditions of electromagnetism are used
relativistically covariant theories, the Casimir effect with p
riodic boundary conditions imposed and blackbody radiat
are related to each other. More precisely, covariance conn
the energy-momentum tensor for a system at a finite sp
extension with the energy-momentum tensor of the same
tem at finite temperature@5,6#.

This investigation of the Casimir effect is intended
clarify the description of the vacuum in light-cone quantiz
tion. Unlike other vacuum properties, such as condensa
which have to appear for consistency of the underly
theory but cannot be measured directly, quantities relate
the Casimir effect are experimental observables and th
fore have to be correctly described within any formalism.
in other instances, one might expect that the infinite mom
tum frame interpretation of light-cone results applies. In t
case the light-cone formulation of the Casimir effect sho
correspond to the observation of the Casimir effect by
observer moving with respect to the ‘‘walls’’ of the syste
and approaching the speed of light. Of particular inter
thereby is the situation in which the observer’s velocity
perpendicular to the walls. With this study of the light-co
vacuum properties we will also address the issue of deve
ing a viable approach to finite temperature field theory
light-cone quantization.

Our investigation will start within the canonical forma
ism. In this standard framework for the discussion of t
Casimir effect@7# energy density and related observables
obtained by the~suitably regularized! sum over the zero-
point energies of the normal modes of a massless nonin
acting quantum field. As one of the central issues in
0556-2821/2003/67~4!/045010~7!/$20.00 67 0450
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study we will establish the relation between the Casimir
ergy in ordinary coordinates and on the light cone within
covariant formalism and prepare in this way the ground
the discussion of the relation to the finite temperature fi
theory on the light cone.

II. CASIMIR EFFECT IN THE CANONICAL FORMALISM

The forces acting on the boundaries of an~partially! en-
closed system are determined by the size dependence o
energy density. In this section we shall calculate this ene
density for periodic boundary conditions. Although not d
rectly relevant for the observation of the Casimir effect
electrodynamics, where standing wave boundary conditi
describe appropriately the interaction of electromagne
waves with metallic boundaries, from the theoretical point
view, periodic or antiperiodic boundary conditions are pr
erable. Momentum conservation is preserved with t
choice and for relativistically covariant theories, the resu
can be connected to the corresponding thermodynamic q
tities at finite temperature. Here we discuss the Casimir
fect for a noninteracting, massless scalar field. In this sect
heat-kernel regularization is used for dealing with the infi
ties in the sum over the zero-point energies. For compari
we first give the result for the energy density using stand
coordinates. Enclosing the system between walls at a
tance L and imposing periodic boundary conditions th
eigenenergies of the one particle states are

v~k' ,n!5Ak'
2 1S 2pn

L D 2

with k' denoting the continuous momentum components
thogonal to the compact direction. As is well known, t
regularized sum over the zero-point energies

^H l0&5
1

2LE d2k'

~2p!2 (
n52`

`

ve2l0v

5
3

2p2l04
2

p2

90L4
~2.1!
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contains a singular, size independent contribution and a
nite, size-dependent term. The observable pressure ex
on the walls

P52
]^LH l0&

]L
52

p2

30L4

is therefore finite and itsL dependence follows from dimen
sional arguments.

We now calculate the energy density in light-cone qu
tization. We use the following notation for coordinates a
momenta:

x65
1

A2
~x06x3!, k65

1

A2
~k06k3!,

and refer tox1,k1 as light-cone time and light-cone energ
respectively. The light-cone energies of the one part
states are given by

k15
k1

21k2
2

2k2
with the constraint k2.0.

In light-cone quantization the system may be chosen to
compact and periodic in a transverse direction~orthogonal to
the 3 direction! or in the light-cone spacex2 direction. With
the transverse boundary condition

w~x1,x2,x11L,x2!5w~x1,x2,x1,x2!,

the energies of the one particle states are

v t~k2 ,k,n!5
1

2k2
Fk21S 2pn

L D 2G .
To regularize the infinities the suppression of the contri
tion from both large light-cone energies and large light-co
momenta requires two regulators. The resulting light-co
energy density

^Ht&5
1

2LE0

`dk2

2p E
2`

` dk

2p (
n52`

`

v te
2l2k22l1v t

5
1

8p2~l1l2!2
2

p2

90L4
~2.2!

coincides in the relevant, finite and size dependent term
differs in the singular but size independent contributio
Later we will make explicit the relation between the resu

With longitudinal boundary conditions

w~x1,x21L,x1,x2!5w~x1,x2,x1,x2!

the energies of the one particle states are

v l~k' ,n!5
k'

2

4pn/L
,

and the following result for the energy density:
04501
fi-
ted

-

e

e

-
e
e
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^Hl&5
1

2LE d2k'

~2p!2 (
n50

`

v le
2l22pn/L2l1v l

5
1

8p2~l1l2!2
2

1

24l12L2
1

p2

120L4 S l2

l1D 2

~2.3!

is obtained. No separation of regulator (l6) and size~L!
dependence occurs. It is difficult to assess the physical
evance of this result within the canonical formalism. In t
following sections we will recalculate the Casimir ener
density in a formalism in which the~residual! covariance is
explicit.

III. ENERGY MOMENTUM TENSOR IN A PERIODIC
VACUUM

To make explicit the covariance in the calculation of t
Casimir energy we impose the boundary condition~bc!

w~x1 l !5w~x!. ~3.1!

The 4-vector l specifies orientation and distance of th
‘‘walls’’ enclosing the system. Imposing this boundary co
dition singles out a Lorentz frame which we will refer to a
the rest system. The generating functional in a frame c
nected with the rest system by an elementL of the ~proper!
Lorentz group is given by

ZL@J#5E
bcL

d@w̃#ei *d4xL(w̃(x))1 iE d4xJ•w̃

with the Lorentz-transformed boundary conditions bcL :

w̃@L21~x1 l !#5w̃@L21~x!#. ~3.2!

We perform a variable substitution corresponding to
Lorentz-transformation back to the rest system

w~x!5w̃~L21x!.

The LagrangianL is invariant, the Jacobian of this variab
substitution is 1 and the fieldsw satisfy the boundary condi
tions ~3.1!. The generating functional for a moving observ
can therefore be written as

ZL@J#5E
bc

d@w#ei *d4xL„w(x)…1 iE d4xJ(L21x)w(x).

With the Lagrangian of a massless noninteracting scalar fi

L@w#5
1

2
]mw]mw,

the generating functional becomes

ZL@J#5e2( i /2)*d4xd4yJ(x)D[L(x2y)]J(y)
0-2



of

in
th

e
in

ut

s
-

or

tin
o

a
io

rg
o

or-
c

by
the

r to
rest
y

rt of

the
l

mir

r-
the

e

s
ec-
ht-
be

CASIMIR EFFECT ON THE LIGHT CONE PHYSICAL REVIEW D67, 045010 ~2003!
with the scalar two-point function periodic in the direction
l

D~z!5(
n
E d4k

~2p!3
eikz

1

k21 i e
d~kl22pn!. ~3.3!

For evaluation of the Casimir effect as seen from a mov
observer we compute the energy-momentum tensor with
help of the generating functional

^Jmn&52S ]m
x ]n

y2
1

2
gmn]r

x]yrD d2ZL

dJ~x!dJ~y!
UJ50,x→y

52 i S ]m]n2
1

2
gmnh DD~Lz!U

z→0

. ~3.4!

We note that in this framework the ultraviolet divergenc
appearing in the Casimir energy are regularized by po
splitting. The covariance of this regularization will turn o
to be crucial for the following studies.

In the evaluation ofD(z) we have to distinguish the case
of space- and lightlike 4-vectorsl. We first consider space
like separations of the walls

0,2 l 25L2, ~3.5!

and define correspondingly the components of the 4-vectz
which serves as regulator

zi5
zl

L
, z'5Az21zi22 i e. ~3.6!

Integration over the momenta and summing the resul
geometrical series yields the final expression for the tw
point function

D~z!52
1

4pLz' F11
1

e2ip/L(z'1zi)21
1

1

e2ip/L(z'2zi)21
G .

~3.7!

The above expression displays the covariance of this
proach. In general, the scalar two-point function is a funct
of the scalars formed from the two 4-vectorsz and l charac-
terizing the system

D~z!5D~z2,l 2,zl!. ~3.8!

IV. CASIMIR EFFECT IN A MOVING FRAME

In this section we compute the components of the ene
momentum tensor in various systems. We expand the ab
expression forD(z) @Eq. ~3.7!# aroundz50
04501
g
e

s
t

g
-

p-
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D~z!52
1

4pLz' H 11 (
n50

`
Bn

n! S 2ip

L D n21

3@~z'1zi!n211~z'2zi!n21#J ~4.1!

with the Bernoulli numbersBn . The leading terms in thez
→0 limit are

D~z!'
i

4p F 1

pz2
2

p

3L2
2

p3

45L4
~z214zi2!G .

The singular term in this expansion is invariant under L
entz transformations (L) and independent of the periodi
structure of the vacuum (L). At the smallest scale, the
vacuum is identical for all observers and not affected
periodicity on large scales. The singular contributions to
energy-momentum tensor is given by

^Jmn
sing&5S ]m]n2

1

2
gmn]r]rD 1

4p2z2

5
1

2p2 F4zmzn

z6
2gmnS 1

z4
1 ip2d~z!D G . ~4.2!

By choosing the elements of the energy-momentum tenso
vanish in a certain frame and for a certain size, e.g. the
system andL5`, the singular pieces will be absent in an
other frame and for any otherL. It does not affect any ob-
servable. For the regular, size- and frame-dependent pa
the energy-momentum tensor we obtain

^Jmn&52
p2

90L4
Lm

r Ln
sFgrs24

l rl s

l 2 G . ~4.3!

The energy density in the rest system coincides, after
identificationzm5 il0d0m , with the result of the canonica
calculation@Eq. ~2.1!# up to thed(z) term which disappears
in the rotation to the Euclidean space.

The light-cone energy density in the transverse Casi
effect (L51,ł m5dm,1) is given by

^J12&5
1

2
^J002J33&52

p2

90L4
. ~4.4!

With the identificationz65 il6,z15z250 it agrees up to
the d function with the canonical result@Eq. ~2.2!#. In this
covariant formulation, the evaluation ofD(z) is trivially
identical for light-cone and ordinary coordinates. The diffe
ence in the singular piece arises from the differences in
definition of J12 andJ00.

In the longitudinal Casimir effect the choice of light-con
coordinates is much more severe. Here, the 4-vectorl is
lightlike. A simple relation between the two-point function
for spacelike and lightlike separations of the compact dir
tion does not exist. One, however, might expect the lig
cone energy density in the longitudinal Casimir effect to
0-3
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related with the energy density as seen from an observe
the infinite momentum frame. We will investigate this pos
bility and assume in the following discussion the 3-directi
to be compact:

l m5Ldm3

andL to describe a boost in the 3-direction

Lm
3 5g~dm32bdm0!. ~4.5!

The order in which the infinite momentum frame lim
b2→1 and the limit of vanishing regulatorz are performed
has to be specified. If we first perform for givenb2,1 the
z→0 limit u(Lz)mu→0 we can expand as above the exp
nentials in Eq.~3.7! and the result@cf. Eq. ~4.3!# is given by

^H&52
p2

90L4
@114b2g2#,

^J33&52
p2

90L4
g2~31b2!. ~4.6!

In the subsequentb2→1 limit, the elements of the energy
momentum tensor become infinite; the light cone ene
density, however,

^J12&5
1

2
~J002J33!5

p2

90L4
, ~4.7!

by covariance, is independent ofb and thus is not affected
by the approach to the infinite momentum frame. This res
does not agree with the canonical result@Eq. ~2.3!#. It differs
in sign from the light-cone energy density in the transve
Casimir effect due to the extra momentum flux~pressure!
along the compact direction induced by the walls contrib
ing here but not in Eq.~4.4!.

In the reversed order, first the approach to the light con
performed~for fixed regulatorz) and only then thez→0
limit is carried out. The transformed arguments@cf. Eqs.
~3.6!, ~4.5!# appearing in the expression~3.7! for the two-
point function are to leading order in theb→21 limit given
by

L~z'1z3!'F 2

A11b
z12

z'
2 A11b

2z1 G ,

L~z'2z3!'
A11bz2

2z1
.

Keeping

uz2u!L2, z'2!L2 ~4.8!

fixed and approaching the light cone (b→21), the quantity

L̃25
z1L

A11b
~4.9!
04501
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-

-

y
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increases beyond any bound and becomes the largest ch
teristic length of the system

uz2u!L2!L̃2. ~4.10!

In this limit the following expression for the 2-point func
tion:

D~Lz!52
1

4pL̃2
1D1~Lz!1D2~Lz! ~4.11!

is obtained, with

D1~Lz!'2
1

4pL̃2

1

expH ip
4L̃2

L2 J 21

, ~4.12!

D2~Lz!'2
1

4pL̃2

1

expH ip
z2

L̃2J 21

'
i

4p2z2
1

1

8pL̃2
2 i

z2

48L̃4
2 i

p2z6

2880L̃8
.

~4.13!

Note that the argument of the exponential inD1 becomes
infinite in the approach to the light cone. After a rotation
complexz the contribution ofD1 to the energy-momentum
tensor becomes negligible. The argument of the exponen
in D2 remains small and the result for the energy density
the infinite momentum frame follows:

^Hlc&5^J12&52
i

2
“'

2 D~Lz!'2
1

2p2z4 S 12
4z1z2

z2 D
1

1

24L̃4
1

p2z2

480L̃8
~3z224z1z2!. ~4.14!

In the infinite momentum frame limit specified by Eqs.~4.8!,
~4.10!, the L̃28 and the higher order contributions in th
above formulas can be neglected. Identifying the regula
in the canonical with those of the infinite momentum fram
calculation

z15 il1~11b!1/2, z252 il2~11b!21/2, z'50

makes the expressions in Eqs.~2.3! and~4.14! for the longi-
tudinal Casimir energy density coincide.

In performing first the limitb2→1 necessarily the regime
specified by@Eq. ~4.10!# is reached in which the Lorentz
contracted length becomes much smaller than the regula

g21L!uz1u.

A regulator independent result for the physical observab
cannot be expected in such a situation.
0-4
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V. LIGHTLIKE AND SPACELIKE COMPACTIFICATIONS

For lightlike orientation of the compact direction,

l 5
L

A2
~1,0,0,21!

the two-point function~3.3! can be evaluated with the resu

Dlc~z!52
1

4pz1L

1

eip
z2

z1L21

2d~z1!
1

~2p!2L
E d2k'

e2 ik'z'

k'
2 2 i e

. ~5.1!

Dlc contains a singular contribution arising from the ze
mode@n50 in Eq. ~3.3!#. Up to this zero-mode contribution
the light-cone two-point function agrees with the infinite m
mentum frame limit of the two-point functionD2 @Eq.
~4.13!# provided the light-cone extensionL is identified with
the Lorentz-contracted extensionA11bL in the infinite mo-
mentum frame which becomes small on the scale of
regulator. In the longitudinal Casimir effect, the compact
rection is specified by the lightlike vector given in light-con
coordinates by

l 5~0,L,0,0!, l 250.

Therefore the two-point function

Dlc5Dlc~z2,zl!

cannot contain a finite and regulator independent term
meaningful definition of the energy density for the comp
direction coinciding with thex2 direction is not possible
However, the compact direction can be arbitrary close to
x2 direction. This is easily seen when imposing bound
conditions

w~x1,x21L,x11sL,x2!5w~x1,x2,x1,x2!, ~5.2!

by which thex2 direction can be approached (s→0) from
orientations characterized by spacelike vectors

l 5~0,L,sL,0!, l 252s2L2.

By a Lorentz transformation consisting of a rotation arou
the x2 axis by an anglea5arcsin(112s2)21/2 followed by a
boost along thex1 direction with velocityb5sina trans-
forms this boundary condition into a transverse bound
condition

w~x1,x2,x11sL,x2!5w~x1,x2,x1,x2!. ~5.3!

The expansion ofD(z) in Eq. ~4.1! is controlled byz/(sL)
which for given s can be made arbitrarily small in thez
→0 limit. In this limit, the light-cone energy density is ob
tained from Eq.~4.3!
04501
-

e
-

A
t

e
y

d

y

^J12&52
p2

90~sL!4
.

Thus a physically meaningful Casimir energy emerges
arbitrary choices of the compact spacelike direction excl
ing a region around thex2 direction with the opening angle
determined by the ratio of the components of the regulatoz
over the proper lengthsL.

The failure of the regularization to produce sensible
sults for a compactx2 direction is due to the peculiar infra
red properties of the spectrum in light-cone quantization. I
the divergence of the one particle energies at small light-c
momenta which is regularized byz1 and which makes the
final result dependent on this regulator. On the other ha
after subtraction of the ultraviolet contribution, the Casim
effect is a long wavelength phenomenon as the differe
between the characteristicL24 dependence for massless a
the exponential suppression exp(2mL) for massive particles
demonstrates. Furthermore, the attraction, i.e., the decr
in the energy density with the decrease in the separatio
the walls is a result of a delicate interplay between the rep
sion due to the increased zero-point energies forn5” 0 and
the increase in the relative weight of the states with smal
vanishingn. As a consequence of these competing effect
change from attraction to repulsion occurs when chang
continously from periodic to antiperiodic boundary cond
tions. The lightlike nature of the compact direction in com
bination with this sensitivity of the observables to the infin
and long wavelength properties makes the ener
momentum tensor in the longitudinal Casimir effect ill d
fined. Similar difficulties are most likely to be encountered
the attempt to calculate other vacuum properties such as
densates which also are dominated by long wavelength p
erties. Like in the Casimir effect these problems can
avoided provided compact directions, if at all present,
chosen to be spacelike. The choice of spacelike compac
rections, however, raises new technical issues. Compacti
tion of thex2 direction is often the basis for significant sim
plifications in the actual calculations. In gauge theories,
instance, the choice of light-cone gaugeA2 seems to be a
prerequisite for making use of the simplifications offered
light-cone quantization. On the other hand, implementat
of axial gauges is free of infrared problems only if the as
ciated direction—here thex2 direction—is compactified.
One therefore again may have to resort to approach the li
like from spacelike compact directions which in turn wou
require an accompanying change in gauge. These prob
have to be investigated if vacuum properties are to be de
mined within approaches to light-cone quantizations wh
make use of a compactx2 direction such as discrete ligh
cone quantization~DLCQ! @8–11# or the transverse lattice
approach@12–15#.

Extensions to other forms of boundary conditions are p
sible. Quasiperiodic boundary conditions are important
cause of their application to finite temperature field theory
one requires

w~x1 l !5eixw~x!, 0<x,2p, ~5.4!
0-5
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the analysis can be carried through as before. The expres
~4.3! for the L-dependent part of the energy momentum te
sor gets modified by

^Jmn&→^Jmn&•F12
15x2

2p2 S 12
x

2p D 2G . ~5.5!

In the light-cone result~4.14! for the longitudinal Casimir
effect, the relevant term in̂Hlc& becomes

1

24L̃4
→ 1

24L̃4
•F12

3x

p S 12
x

2p D G . ~5.6!

Therefore the difference between our results for periodic
quasiperiodic boundary conditions consists only of so
x-dependent factors which do not influence our conclusi
with respect to light-cone physics. An extension to stand
wave boundary conditions like

w~x' ,x350!50, w~x' ,x35L !50 ~5.7!

introduce new elements in our discussion. First we rem
that with the violation of translational invariance by the D
richlet boundary conditions, the energy momentum ten
becomesx3 dependent. Following the same procedure
above we find, e.g., for the energy density as seen fro
moving observer

^H&52
p2

90~2L !4
@114b2g2#2

p2

24L4

21cosS 2p

L
x̃3D

F12cosS 2p

L
x̃3D G2

3@213b2g2#Q~ x̃3!Q~L2 x̃3! ~5.8!

with x̃35g(x32bx0). After integration overx3, the second
term in Eq.~5.8! becomesL independent and therefore do
not contribute to the force between the walls. In comparis
with periodic boundary conditions the well-known 24 sup-
pression of the force generated by standing waves is
tained. Once more the transverse Casimir effect on the li
cone yields the same result. Although the Casimir effec
well defined in the infinite momentum frame limit@b2→1 in
Eq. ~5.8!#, no physically meaningful description for the lon
gitudinal Casimir effect in light-cone quantization exis
Equal light-cone time standing wave conditions are not co
patible with the light-cone equations of motion which a
first order inx2.

VI. THERMODYNAMICAL OBSERVABLES IN LIGHT-
CONE QUANTIZATION

The correct description of the Casimir effect for spacel
compact directions offers the possibility to calculate therm
dynamic quantities in light-cone quantization. The straig
forward generalization of the standard procedure to defin
partition function in light-cone quantization by compactif
ing the light-cone time is faced with the difficulties encou
tered in the definition of the longitudinal Casimir effect. Th
04501
ion
-

d
e
s
g

rk

r
s
a

n

b-
t-

is

.
-

-
-
a

light-cone time direction is lightlike and not as in ordina
coordinates timelike. Compactification along thex1 direc-
tion at inverse temperatureb defines the 4-vector with light-
cone coordinates

l 5~b,0,0,0!, l 250

implying

D~z!5D~z2,z2b!.

A finite regulator independent thermodynamic quantity ca
not be extracted fromD(z). We, however, may use the gen
eral equivalence between relativistic field theories at fin
temperature and finite extension@5,6#. By rotational invari-
ance in the Euclidean, the value of the partition function o
system with finite extensionL in 1 direction andb in 0
direction is invariant under the exchange of these two ext
sions,

Z~b,L !5Z~L,b!, ~6.1!

provided bosonic~fermionic! fields satisfy periodic~antipe-
riodic! boundary conditions in both time and 3 coordina
Thus relativistic covariance connects the thermodyna
properties of a canonical ensemble with vacuum proper
of the same physical system but at finite extension. A
consequence energy density and pressure are related by

e~b,L !52p~L,b!. ~6.2!

Thus the energy-momentum tensor at finite temperatur
trivially computed once the energy-momentum tensor at
nite extension is known. As we have shown these eleme
can be evaluated on the light-cone provided a spacelike c
pact direction is chosen. The general relation between
tems at finite temperature and finite extension not only c
nects the Casimir effect of a noninteracting massless fi
with blackbody radiation it also implies the possibility fo
phase transitions to occur with the variation in the extens
L of, e.g., the compactx1 direction. Specifically in QCD,
when L decreases beyond;1.3 fm the phase transition to
the quark-gluon plasma has to take place with a correspo
ing sudden change in energy density and pressure. T
light-cone quantization provides an appropriate framew
in which phase transitions at finite temperature can be
scribed. Nevertheless a detailed understanding of how s
phase transitions arise in the trivial light-cone vacuum
mains to be achieved.

VII. SUMMARY

In this work we have discussed the Casimir effect o
noninteracting scalar field in light-cone quantization. W
have established that the Casimir effect can be reliably c
puted provided the separation of the walls enclosing the s
tem is spacelike. This successful evaluation opens the po
bility to calculate thermodynamic quantities and in particu
to address the issue of phase transitions in finite tempera
field theory in the framework of light-cone quantization.
the walls are separated along thex2 direction no regulator
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independent expression for the observable pressure ca
obtained. Based on the covariance of the theory this fai
in defining a proper energy momentum tensor has b
shown to result from the lightlike separation along thex2

axis. Therefore the same problems will also occur for int
acting fields. Compact lightlike directions might be a
proached in some limiting procedure from compact space
directions. We have studied this possibility by the transit
to the infinite momentum frame and by a rotation of a spa
like orientation into the lightlike direction. In both cases t
final result has been demonstrated to depend on the ord
which the approach to the light-like direction and the limit
the regularization of the quantum fluctuations are perform
We have not discussed here the possibility to resolve
problem by approaching the light-cone metric from a me
with 3 spacelike coordinates. This approach to light-co
e
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c
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quantization has been proposed in the field-theoretic con
in @16,17# and in the context of M-theory in@18–20#. It has
been applied to a detailed analysis of vacuum propertie
two-dimensional gauge theories@17#. This limiting proce-
dure also yields for the longitudinal Casimir effect the co
rect result@21#. Here we have not followed this path since
general most of the simplifying features of light-cone qua
tization are thereby lost. Beyond two dimensions this meth
is not mandatory. It is not the choice of the metric but rath
the choice of a compactx2 direction which is the origin of
the difficulties in defining the Casimir effect.
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