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Index theorem for domain walls in supersymmetric gauge theories
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The supersymmetric Abelian Higgs model withscalar fields admits multiple domain wall solutions. We
perform a Callias-type index calculation to determine the number of zero modes of this soliton. We confirm
that the most general domain wall hasN2{ 1) zero modes, which can be interpreted as the positions and
phases of l—1) constituent domain walls. This implies the existence of moduli fBr-gtring interpolating
betweenN D5-branes in type 1IB string theory.
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I. INTRODUCTION string theory in the presence of a background Neveu-
Schwarz—Neveu-SchwaftkS-N9S B field. The domain wall
There exists an intimate connection between supersyndescribes a D-string interpolating between separated
metry and soliton§1]. In many supersymmetric theories, the D5-braneg19,20. The index theorem presented here con-
second-order equations of motion collapse to a first-ordefirms that theD-string has moduli.
Bogomol'nyi equation, with a moduli space of solutions. The We shall calculate the index by the introduction of a regu-
physical interpretation of this moduli space is that the comJator scaleM. As can be seen from EQ9), the final answer
peting forces between solitons cancel. is dependent oM. This is in contrast to the index for instan-
However, in the case of domain walls, supersymmetrytons and vortices, but also occurs for monop¢RH. In the
does not guarantee the absence of fof@ésin fact, there is  latter case, thé dependence is related to both the quantum
something of a conflict between having domain walls andnass renormalization of monopolg2?] in four dimensions,
maximizing supersymmetry. While the former requires iso-and the noncancellation of determinants in three-dimensional
lated vacua, the latter typically implies an extended modulinstanton calculationg23]. In the present case, our calcula-
space of vacua. Recently there has been much interest fion also contains similar information regarding the mass
models in which the forces do can¢8+7]. In this regard, it  renormalization of kinks in (% 1)-dimensional field theo-
is interesting to study the unique class of maximally super+ies, and the one-loop effects in the background of instantons
symmetric theories admitting multiple domain wall solu- in supersymmetric quantum mechanics.
tions. This isA/=2 supersymmetric QED, in which the in-  The rest of the paper is organized as follows. In Sec. I,
troduction of a Fayet-llliopoulogFl) parameter lifts the we review the gauge theory under consideration and its do-
Coulomb branch, while nonzero masses lift the Higgsmain wall solutions, and in Sec. lll, we calculate the dimen-

branch. sion of the moduli space.
Domain walls in this theory have been discussed8h
where it is conjectured that the most general domain wall Il. GAUGE THEORY DOMAIN WALLS
solution admits 2{l—1) collective coordinates with the in-
terpretation of the positions and phases Nf{(1) constitu- The theory under considerationds=3+1, N'=2 super-

ent domain walls. In the strong coupling limi#?—o, the =~ SymmetricU(1) gauge theory coupled td hypermultiplets.
model reduces to a massive nonlinear sigma model on th&he bosonic part of the Lagrangian is given by

Higgs branch of the theor}9], and has a surprisingly rich

spectrum of soliton§8,10—14. In this case, the theory con- , 1 ) N ) ~ 5

tains only scalar fields, and so one can use Morse theory to £~ 4_e2F + 2_e2|l9¢| +i21 (IDai|*+|Da;|*)
determine the number of moduli of the domain wdll¥].

This calculation was performed {i5], where it was found N
that there are indeed no forces and a moduli space of solu- —E [&—mil2(|ail?+[qi]?)
tions exists. =1
However, for finite gauge coupling constant, the presence g2/ N 2 2| N 2
of the gauge field means that Morge theory .technlques_are _ ?(2 |CIi|2—|Qi|2—§) -5 2 90 1)
not applicable. The purpose of this paper is to examine i=1 =1

whether domain wall zero modes remain in the general case.
We adapt index theorems of Weinbgrgho followed a pro-  The scalar fieldy; (g;) has charge- 1 (—1) under the gauge
cedure developed by Calli4$8]), and confirm that the sys- group and complex mass;, whereas¢ is a neutral com-
tem retains all 2)l—1) zero modes. plex scalar field. The FI parametémust be nonzero to lift
This theory finds application in th®1-D5 system of the Coulomb branch and can be taken to be positive, without
loss of generality.
As in [8], we consider the case of nonzero, distinct
*Electronic address: ksml@mit.edu massesm;#m; for i #j. We take these to be real and con-
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sequently can choose the orderimg, ;<m; for all i. There . ) N . L

are thenN isolated vacua, given by dp=e .21 (gi0; +0ia;) )
Vacuumi:d):mi, |qj|2:£5ljv|aj|220 (2)

Furthermore, certain fields do not appear in the domain wall Dai=iAgi=(o=m)qi+ ¢a;, ©®)

solutions and so are set to zero now: EQ =F=0.

Thus, the fieldg is real. in which dots represent small fluctuations in the fields, i.e.,

We choose the domain walls to be oriented in ttfe ¢=05¢. These must be supplemented with a gauge-fixing
—x3 plane, in which casel,=3d;=0. By completing the condition. A convenient choice which is compatible with su-
square in the Hamiltonian, one finds that the Bogomol'nyipersymmetry is provided by Gauss’ law Ap=0 gauge:
equations that minimize the potential energy are given by

N

N
a¢=e2(21 |qi|2—§) @3) oA=ie’2, (qia/-ala). (7)
“ =
Pai=(¢—m)q;. @ Then Eqgs.(5) and(7) can be combined into
Here 9=0, and D=9—iA, where A=A, is the gauge po-
tential. N
In what follows, we shall concentrate upon domain walls aE)=2e2>, d,—qu, (8)
=1

interpolating between the first aridth vacua. It is conjec-
tured that these kinks will decompose into many kinks, each
interpolating between vacuuimand vacuuni +1. We wish o0 e have defineg= ¢+ iA.

to investigate this. Writing Egs. (8) and (6) in matrix form, we have
I1l. THE DIMENSION OF THE DOMAIN WALL
MODULI SPACE b¥ =0, ©)
From Egs.(3) and (4), the linearized Bogomol'nyi equa- o )
tions are whereW = (£,0;,0,, ... gy) " and
|
g —2€%q} —-2e%qy - —2e%q]
—0; d—(E—my) 0 0
D=| —0 0 d—(§—my) , (10
—0an 0 d=(§—my)

2 2

in which only entries in the first column, first row and main
diagonal are nonzero. I(M2)=Tr
Our task, then, is to determine the dimension of the kernel
of D, which we do by means of an index theorem. Previ-
ously, Weinberg has used index theorems to count paransince ker)=ker(D'D) and kerD") =ker(DD"), each zero
eters of multivortex solutions in Ginzburg-Landau theorymode ofDD contributes 1 to the index, while each zero mode
[24] and multimonopole solutions, first iISU(2) gauge of D' contributes—1. If the continuum parts of the spectra
theory and later generalizing to an arbitrary compact simplextend to zero, then there is potentially a contribution from
gauge group21,25. The index ofD is given by this source: this complication does not arise here because the
theory has a mass gap. Hence, if there are no zero modes of
) ) D', then the index equals the number of collective coordi-
I= lim Z(M?), 1D nates. We now show that this is indeed the case. Consider the
M2-0 kernel of D, If

—Tr

) . (12

DD+ M2 DDT+M?2

where DT =0, (13)
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then Eq.(10) implies that the components &f satisfy 1
o(X=y)=[I'dy+K(x)+ M]<X|®+—Mw>

N
f7%+§1 qlyi= L
=(Xl g IV~ AT +K(y)+M].
260+ (9+ (' =m))g;=0, j=1.2,... N(. ) 21
14
Using this and the relationdI's,K}={I'5,['}={I'5,0}
Thus, _ ; o
=0, we obtain the following:
N
=1

M
N =—2t(X[Ts5——=[y)
O+M
+121 |292q1'¢o+(0+(§T—mj))¢j|2> "

1
N +tr| [K(x)— K(y)]F5<x|®+M ly)|. (22)
:J dx( 2%l +2€2 2, |qi|?|ys|?
i=1

=dJ(X,X,M)
N N M2
+4et > [al? ol 2+ 2 I(&+(§*—m;))¢j|2>, (15) = — 2 t(X|Ts—————|x). (23)

=1 =1 -02+M?
where we have used integration by parts and the seconplhus
Bogomol'nyi equatlon(4) to show that the cross terms dis-
appear. Hence};=0,i=0,1, ... N, and the kernel oD' is M) = — 1[I0, M)]Z (24)

1Ny X=—0o"

trivial.
Note that ifZ(M?) were independent df, thenM could e shall find it more convenient to evalualgx,x,M) from

be chosen to bé&/—« to simplify calculations. However,

this is the case only if physical fields fall sufficiently rapidly 1

at spatial infinity. Yang-Mills instantons and vortices are in J(X%,%,M) = —tr(X|T'sI'® —————x), (29

this category, whereas monopoles are (see[21] [Appen- —0°+M

dix A] for further discussion Like monopoles, the kink so-

R _ M2 2
lutions under consideration have Ehdependent index. which follows from the fact that 'sI"M/(=©"+M?))

) : =0.
Following the method of26], let us define We now proceed to calculate ER4). From Eq.(10),
0o -pt lengthy but straightforward calculations yieldD andDD'.
:( ‘ ) (16 These turn out to be somewhat messy matrices. For example,
D 0 in D™D the entries(+ 1, +1), (1j+1) and {+1,j+1), for
Also define 1si,jsl\l, ja&i,2 arTe giTven by 6&2+4e4|qi|2;k|§T—mi|2
+0¢—£'3), (2€%99] —q/[a—(¢—m)]) and (%*qq)), re-
0o 1 I O spectively.
r= | ol I's= 0o -1/ (17) Since
S 2y-1
Finally, define the matriX (x) via rre—+  _ D(D'D+M*?) 0
> 024 M2 0 DYDDT+M2) ")
O=Td+K(x). (18) (26)
Now, Z(M?) can be rewritten as we wish to be able to invert the matriceB'D+M?) and
) (DDT+M?). Recall, though, that all that we require are the
(M2 =TrT f dxtr(x|T values ofJ at + (corresponding to th&lth and 1st vacua,
(M9 > (X > |\/|2| ) respectively. In theith vacuum, the fields have values given
(190 by Eq.(2) and
Let us define the nonlocal current: aq;=(£—m;)qg;=iAq; d;; (27)
1 which follows from Eq.(4). Applying these boundary condi-
IOy, M) =tr(x [Tl g 1) (200 tions greatly simplifies these matrices, each of which then
has only two nonzero entries off the main diagonal. Never-
From Eg.(18) we have theless, even matrices of this sparse form cannot be inverted
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if their entries do not commute. In our case, the problem N-1

1 m,—m
arises from the presence of the differential operator. How- I(M?)= 5l ' ZN 5
ever, we can seA=0, after which Eqs(2) and(27) imply =1 \(mi—my)+M
that 9q;=9£=0 at spatial infinity. Thus, we are able to ob- N
tain expressions forl{'D+M?) ! and OD"+M?) ! in the Y m,—m; . (29
first andNth vacua. =2 J(m;—m))*+M?
Finally, putting these calculations into Eq24)—(26), and _ .
using Hence, due to the ordering; . ;<m; for all i,
" m—m, " Z=N-1. (30)
X X
— 9+ (m—m;)?+M? Therefore, we conclude that'=2 SQED withN hyper-
multiplets admits multidomain wall solutions havimg— 1
B mi—m,f dk complex collective coordinates.
2m K2+ (m—m;)?+M?2
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