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Index theorem for domain walls in supersymmetric gauge theories
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The supersymmetric Abelian Higgs model withN scalar fields admits multiple domain wall solutions. We
perform a Callias-type index calculation to determine the number of zero modes of this soliton. We confirm
that the most general domain wall has 2(N21) zero modes, which can be interpreted as the positions and
phases of (N21) constituent domain walls. This implies the existence of moduli for aD-string interpolating
betweenN D5-branes in type IIB string theory.
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I. INTRODUCTION

There exists an intimate connection between supers
metry and solitons@1#. In many supersymmetric theories, th
second-order equations of motion collapse to a first-or
Bogomol’nyi equation, with a moduli space of solutions. T
physical interpretation of this moduli space is that the co
peting forces between solitons cancel.

However, in the case of domain walls, supersymme
does not guarantee the absence of forces@2#. In fact, there is
something of a conflict between having domain walls a
maximizing supersymmetry. While the former requires is
lated vacua, the latter typically implies an extended mod
space of vacua. Recently there has been much intere
models in which the forces do cancel@3–7#. In this regard, it
is interesting to study the unique class of maximally sup
symmetric theories admitting multiple domain wall sol
tions. This isN52 supersymmetric QED, in which the in
troduction of a Fayet-Illiopoulos~FI! parameter lifts the
Coulomb branch, while nonzero masses lift the Hig
branch.

Domain walls in this theory have been discussed in@8#,
where it is conjectured that the most general domain w
solution admits 2(N21) collective coordinates with the in
terpretation of the positions and phases of (N21) constitu-
ent domain walls. In the strong coupling limit,e2→`, the
model reduces to a massive nonlinear sigma model on
Higgs branch of the theory@9#, and has a surprisingly rich
spectrum of solitons@8,10–16#. In this case, the theory con
tains only scalar fields, and so one can use Morse theor
determine the number of moduli of the domain walls@17#.
This calculation was performed in@15#, where it was found
that there are indeed no forces and a moduli space of s
tions exists.

However, for finite gauge coupling constant, the prese
of the gauge field means that Morse theory techniques
not applicable. The purpose of this paper is to exam
whether domain wall zero modes remain in the general c
We adapt index theorems of Weinberg~who followed a pro-
cedure developed by Callias@18#!, and confirm that the sys
tem retains all 2(N21) zero modes.

This theory finds application in theD1-D5 system of
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string theory in the presence of a background Nev
Schwarz–Neveu-Schwarz~NS-NS! B field. The domain wall
describes a D-string interpolating between separate
D5-branes@19,20#. The index theorem presented here co
firms that theD-string has moduli.

We shall calculate the index by the introduction of a reg
lator scale,M. As can be seen from Eq.~29!, the final answer
is dependent onM. This is in contrast to the index for instan
tons and vortices, but also occurs for monopoles@21#. In the
latter case, theM dependence is related to both the quant
mass renormalization of monopoles@22# in four dimensions,
and the noncancellation of determinants in three-dimensio
instanton calculations@23#. In the present case, our calcul
tion also contains similar information regarding the ma
renormalization of kinks in (111)-dimensional field theo-
ries, and the one-loop effects in the background of instant
in supersymmetric quantum mechanics.

The rest of the paper is organized as follows. In Sec.
we review the gauge theory under consideration and its
main wall solutions, and in Sec. III, we calculate the dime
sion of the moduli space.

II. GAUGE THEORY DOMAIN WALLS

The theory under consideration isd5311, N52 super-
symmetricU(1) gauge theory coupled toN hypermultiplets.
The bosonic part of the Lagrangian is given by

L5
1

4e2
F21

1

2e2
u]fu21(

i 51

N

~ uDqi u21uDq̃i u2!

2(
i 51

N

uf2mi u2~ uqi u21uq̃i u2!

2
e2

2 S (
i 51

N

uqi u22uq̃i u22z D 2

2
e2

2 U(
i 51

N

q̃iqiU2

. ~1!

The scalar fieldqi (q̃i) has charge11 (21) under the gauge
group and complex massmi , whereasf is a neutral com-
plex scalar field. The FI parameterz must be nonzero to lift
the Coulomb branch and can be taken to be positive, with
loss of generality.

As in @8#, we consider the case of nonzero, distin
masses:miÞmj for iÞ j . We take these to be real and co
©2003 The American Physical Society09-1
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sequently can choose the orderingmi 11,mi for all i. There
are thenN isolated vacua, given by

Vacuum i :f5mi , uqj u25zd i j ,uq̃ j u250. ~2!

Furthermore, certain fields do not appear in the domain w
solutions and so are set to zero now: Im(f)5q̃i5F50.
Thus, the fieldf is real.

We choose the domain walls to be oriented in thex2

2x3 plane, in which case]25]3[0. By completing the
square in the Hamiltonian, one finds that the Bogomol’n
equations that minimize the potential energy are given b

]f5e2S (
i 51

N

uqi u22z D ~3!

Dqi5~f2mi !qi . ~4!

Here ][]1 and D5]2 iA, whereA[A1 is the gauge po-
tential.

In what follows, we shall concentrate upon domain wa
interpolating between the first andNth vacua. It is conjec-
tured that these kinks will decompose into many kinks, e
interpolating between vacuumi and vacuumi 11. We wish
to investigate this.

III. THE DIMENSION OF THE DOMAIN WALL
MODULI SPACE

From Eqs.~3! and ~4!, the linearized Bogomol’nyi equa
tions are
in

n
vi
am
ry

p

04500
ll

i

h

]ḟ5e2(
i 51

N

~ q̇iqi
†1qiq̇i

†! ~5!

Dq̇i2 iȦqi5~f2mi !q̇i1ḟqi , ~6!

in which dots represent small fluctuations in the fields, i
ḟ[df. These must be supplemented with a gauge-fix
condition. A convenient choice which is compatible with s
persymmetry is provided by Gauss’ law inA050 gauge:

]Ȧ5 ie2(
i 51

N

~qi q̇i
†2qi

†q̇i !. ~7!

Then Eqs.~5! and ~7! can be combined into

]~ j̇ !52e2(
j 51

N

q̇jqj
† , ~8!

where we have definedj5f1 iA.
Writing Eqs.~8! and ~6! in matrix form, we have

DC50, ~9!

whereC5( j̇,q̇1 ,q̇2 , . . . ,q̇N)T and
D5S ] 22e2q1
† 22e2q2

†
••• 22e2qN

†

2q1 ]2~j2m1! 0 ••• 0

2q2 0 ]2~j2m2!

A A �

2qN 0 ]2~j2mN!

D , ~10!
de
a
m
the
s of

di-
r the
in which only entries in the first column, first row and ma
diagonal are nonzero.

Our task, then, is to determine the dimension of the ker
of D, which we do by means of an index theorem. Pre
ously, Weinberg has used index theorems to count par
eters of multivortex solutions in Ginzburg-Landau theo
@24# and multimonopole solutions, first inSU(2) gauge
theory and later generalizing to an arbitrary compact sim
gauge group@21,25#. The index ofD is given by

I5 lim
M2→0

I~M2!, ~11!

where
el
-

-

le

I~M2!5TrS M2

D†D1M2D 2TrS M2

DD†1M2D . ~12!

Since ker(D)5ker(D†D) and ker(D†)5ker(DD†), each zero
mode ofD contributes 1 to the index, while each zero mo
of D† contributes21. If the continuum parts of the spectr
extend to zero, then there is potentially a contribution fro
this source: this complication does not arise here because
theory has a mass gap. Hence, if there are no zero mode
D†, then the index equals the number of collective coor
nates. We now show that this is indeed the case. Conside
kernel ofD†. If

D†C50, ~13!
9-2
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then Eq.~10! implies that the components ofC satisfy

]c01(
i 51

N

qi
†c i50

2e2qjc01„]1~j†2mj !…c j50, j 51,2, . . . ,N.
~14!

Thus,

05E dxS 2e2u]c01(
i 51

N

qi
†c i u2

1(
j 51

N

u2e2qjc01„]1~j†2mj !…c j u2D
5E dxS 2e2u]c0u212e2(

i 51

N

uqi u2uc i u2

14e4(
j 51

N

uqj u2uc0u21(
j 51

N

u„]1~j†2mj !…c j u2D , ~15!

where we have used integration by parts and the sec
Bogomol’nyi equation~4! to show that the cross terms di
appear. Hence,c i50, i 50,1, . . . ,N, and the kernel ofD† is
trivial.

Note that ifI(M2) were independent ofM, thenM could
be chosen to beM→` to simplify calculations. However
this is the case only if physical fields fall sufficiently rapid
at spatial infinity. Yang-Mills instantons and vortices are
this category, whereas monopoles are not~see@21# @Appen-
dix A# for further discussion!. Like monopoles, the kink so
lutions under consideration have anM-dependent index.

Following the method of@26#, let us define

Q5S 0 2D†

D 0 D . ~16!

Also define

G5S 0 I

I 0D , G55S I 0

0 2I D . ~17!

Finally, define the matrixK(x) via

Q5G]1K~x!. ~18!

Now, I(M2) can be rewritten as

I~M2!5Tr G5

M2

2Q21M2
5E dx tr^xuG5

M2

2Q21M2
ux&.

~19!

Let us define the nonlocal current:

J~x,y,M !5tr^xuG5G
1

Q1M
uy&. ~20!

From Eq.~18! we have
04500
nd

d~x2y!5@G]x1K~x!1M #^xu
1

Q1M
uy&

5^xu
1

Q1M
uy&@2]Q yG1K~y!1M #.

~21!

Using this and the relations$G5 ,K%5$G5 ,G%5$G5 ,Q%
50, we obtain the following:

~]x1]y!J~x,y,M !

522 tr̂ xuG5

M

Q1M
uy&

1trS @K~x!2K~y!#G5^xu
1

Q1M
uy& D . ~22!

⇒]J~x,x,M !

522 tr̂ xuG5

M2

2Q21M2
ux&. ~23!

Thus,

I~M2!52 1
2 @J~x,x,M !#x52`

` . ~24!

We shall find it more convenient to evaluateJ(x,x,M ) from

J~x,x,M !52tr^xuG5GQ
1

2Q21M2
ux&, ~25!

which follows from the fact that tr„G5GM /(2Q21M2)…
50.

We now proceed to calculate Eq.~24!. From Eq. ~10!,
lengthy but straightforward calculations yieldD†D andDD†.
These turn out to be somewhat messy matrices. For exam
in D†D the entries (i 11,i 11), (1,i 11) and (i 11,j 11), for
1< i , j <N, j Þ i , are given by (2]214e4uqi u21uj2mi u2

1]j2j†]), „2e2]qi
†2qi

†@]2(j2mi)#… and (4e4qiqj
†), re-

spectively.
Since

G5GQ
1

2Q21M2
5S D~D†D1M2!21 0

0 D†~DD†1M2!21D ,

~26!

we wish to be able to invert the matrices (D†D1M2) and
(DD†1M2). Recall, though, that all that we require are t
values ofJ at 6` ~corresponding to theNth and 1st vacua,
respectively!. In the i th vacuum, the fields have values give
by Eq. ~2! and

]qj5~j2mj !qj5 iAqid i j , ~27!

which follows from Eq.~4!. Applying these boundary condi
tions greatly simplifies these matrices, each of which th
has only two nonzero entries off the main diagonal. Nev
theless, even matrices of this sparse form cannot be inve
9-3
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if their entries do not commute. In our case, the probl
arises from the presence of the differential operator. Ho
ever, we can setA50, after which Eqs.~2! and ~27! imply
that ]qj5]j50 at spatial infinity. Thus, we are able to o
tain expressions for (D†D1M2)21 and (DD†1M2)21 in the
first andNth vacua.

Finally, putting these calculations into Eqs.~24!–~26!, and
using

^xu
mi2mj

2]21~mi2mj !
21M2

ux&

5
mi2mj

2p E dk

k21~mi2mj !
21M2

5
1

2

mi2mj

A~mi2mj !
21M2

, ~28!

we obtain
ui

04500
- I~M2!5
1

2 S (
i 51

N21
mi2mN

A~mi2mN!21M2

1(
j 52

N
m12mj

A~m12mj !
21M2D . ~29!

Hence, due to the orderingmi 11,mi for all i,

I5N21. ~30!

Therefore, we conclude thatN52 SQED withN hyper-
multiplets admits multidomain wall solutions havingN21
complex collective coordinates.
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