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Dissipation in equations of motion of scalar fields
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The methods of nonequilibrium quantum field theory are used to investigate the possibility of representing
dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is
commonly included in phenomenological inflaton equations of motion. A sequence of approximations is
exhibited which reduces the nonequilibrium theory to a set of local evolution equations. However, the adiabatic
solution to these evolution equations which is needed to obtain a local equation of motion for the expectation
value is not well defined; nor, therefore, is the friction coefficient. Thus, a nonequilibrium treatment is essen-
tial, even for a system that remains close to thermal equilibrium, and the formalism developed here provides
one means of achieving this numerically.
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[. INTRODUCTION Robertson-Walker spacetime, as we discuss in Se¢.OX.
splitting ®(t,x) into its expectation values(t), which we
Inflationary universe scenarios frequently refer to an in-take to be spatially homogeneous, and a fluctuation field
flaton equation of motion of the form o(t,x) with {(¢(t,x))=0, we find that the equation of mo-
_ _ tion for ¢(t) is
¢+ 3Hop+ n(P)dp+Ven($)=0. (1.9) . .
y 2 3 2 2 m
The friction termz($) ¢ represents one mechanism through P My dt 6)\¢ " 2)\¢<‘P )T 91669+ 0o )
which the inflationary universe might be reheated, convert- 1
ing the inflaton energy into particl¢4—3], although the pro- + 2N g3 =0, (1.3
cess of parametric amplificatio —6] is in some cases a 6
more important effect. Moreover, it was pointed out long ago . i
by Moss[7] that a frictional effect large enough to maintain While at the tree level, the quantum fielgs £, and ¢ ac-
a thermal bath of particles during the inflationary era wouldduire effective masses
have a significant effect both on the inflaton evolution and on
the_ primordial perturbati_on spectrum, alleviating the fine- mi(t)=mé+ E)\géz(t), mé(t)=m§+gl¢2(t),
tuning problems that afflict many inflationary models. More 2
recently, and independently, a similar idea has been exten-
sively investigated by Berera and co-workg8s-10). m,(t)=m,+g,(1) (1.9
While some frictional effect is to be expected in any in-
teracting field theory, it is by no means clear at a fundamenwhich depend on time througi(t). Dissipative effects in
tal level that this effect can properly be represented by dhe equation of motior{1.3) can arise from the final term
local equation of motion such &t.1), and the purpose of the s\{(¢>), but we concentrate here on those arising from the
present paper is to study this question in some déalbrief ~ other expectation values, which are quadratic in the quantum
account of our findings has been given in Réfl].) To be fields. Generically, the equation of motion is
fairly generic, we may consider a scalar fiede, which )
couples to other scalar fields and to fermions, denoted col- d)+mG () +g(x(t,x)2)p()+---=0 (1.5
lectively by & and ¢ respectively. In Minkowski spacetime, a
schematic Lagrangian density for this collection of fields is where y may stand fore, the fluctuating part ofb, for
another scalar field or for a fermionic fieldy, and has a
B " 1., . 1 5. — ¢(t)-dependent mass of the forfh.4). In general, there will
L=50,P0—Zmud"— 77 ADT—59,07°¢"~0,PY¥  pe a sum of such contributions from the fields appearing in a
specific model, but our considerations are substantially
+AL(E ) (1.2 model independent.

Superficially, it is quite plausible that a system which re-
whereA L is that part of the Lagrangian that does not dependnains fairly close to equilibrium can be treated by using
on ®. (The considerations developed here can probably bequilibrium statistical mechanics. In Sec. I, we review the
extended with little difficulty to a theory in whiclb also  relevant dissipative mechanisms and the results for the fric-
couples to gauge fields. They are essentially unchanged intin coefficientn(¢) which have been obtained on this ba-

sis; we also indicate why this approach might be questioned,
when applied to a system that is not maintained in exact
*Electronic address: i.d.lawrie@leeds.ac.uk thermal equilibrium. Sections Il1-V develop a strategy for

0556-2821/2003/64)/04500613)/$20.00 67 045006-1 ©2003 The American Physical Society



IAN D. LAWRIE PHYSICAL REVIEW D 67, 045006 (2003

tackling the problem in nonequilibrium scalar field theory, fk(t:f)f’k’(t;f)—fk(t;f)f’k’(t;f)=i, (2.4
exhibiting the sequence of approximations necessary to ob-

tain a local equation of motion of the for(@.1). We find that  \yhere the overdot indicates differentiation with respect to the
this local equation of motion contains coefficients whose valtirst argumentt. They can be expressed as

ues must be found from the solution of auxiliary kinetic

equations. The resulting set of local evolution equations is R .

suitable for a numerical solution. However, we investigate in fk(t:t)=[Zﬂk(t;t)]_mexl{ —i f
Sec. VI whether an adiabatic treatment of these evolution !
equations leads to a well defined friction coefficies(ip).
We find that it does not, and Sec. VIl exhibits numerical

t

Qk(t’;f)dt’} (2.5

where the frequencf,(t;t) is the solution of

evidence that nonequilibrium effects may be quantitatively i -
quite significant. Section VIII briefly discusses frictional ef- } & _ E ﬂ 02= o2 (2.6)
fects due to fermions, showing that the formal situation is 20, 402 ko Tk '

quite similar to that developed in detail for scalar fields. Fi-

nally, our prmmp_al conclusions are sur_nmarlzed in Sec. Ix'subject to the boundary condition®,(t:t)=w,(t) and

where we also discuss the extent to which they depend on th T = i) =0. ALt lose td. therefore f.(t-1

methods of approximation we have utilized. (1) =0, (t;1) =0. At times close td, thereforefi(t;t)
is the positive-energy solution,

Il. MECHANISMS OF ENERGY TRANSFER 3 Fyq-12 =1
fl(t; ) ~[2w(t exf—io (D) (t-1)], (2
AND DISSIPATION (D =[2wy(1)] H-lo(t(t=1], (27

Roughly speaking, we can identify two mechanismsbut at other times the frequen€y,(t;t) does not necessarily
through which energy may be transferred between the clagorrespond to a single-particle energy. Mode functions re-
sical field ¢ and the system of particles. One is the cre- ferred to different reference times are related by a Bogoliu-
ation of new particles, which we will refer to as type I. The bov transformation. To be concrete, f(t) = f,(t;0). Then

other, to which we refer as type I, involves changing thef,(t;t) is a linear combination off(k)(t) and f(k)*(t), say

energies of particles that are already present. In the fOHOWingk(t;f)=A(f)fﬁ(t)+B(f)fﬁ*(t). It is a simple exercise us-

subsections, we review the arguments which purport to delhg Egs.(2.4) and (2.3 to find the Bogoliubov coefficients
rive from these two mechanisms friction terms in the equa-

tion of motion for . A(t) and B(t) and thus the dependence onof f,(t;t),

which is
A. Particle creation 1 ('uk(f)
A crude argument given by Morikawa and Sasgk?] &Efk(tit):iwk(t)fk(m)_§w—(;[)f:(t?t)- (2.8
takesy in the first instance to be a free field, except that the K

interaction with¢ leads to a time-dependent effective mass. 114 reation and annihilation operators in E2,1) have
Thus, the energy of a singley particle is wy(t)

. . ~ T .2 _ 3 L
=Vk“+m°+g¢“(t). According to standard arguments, this the commutation relat|0|ﬁak(t),ak,(t)]A—(277) o(k=k).
field can be represented as Their dependence on the reference timmllows from the

fact thaty(t,x) itself is independent of; using the fact that

d®k - N . A . .2 — :
X(t,X)=f 5 )3[e'k'xfk(t;t)ak(t)+e"k"‘f’k‘(t;t)al(t)] f.(t;t) depends only ok=|k|, we find
a

(2.1 . R R A
dad)=—loa(t)+ 3 oD a(t). (29
where the mode functionk(t;t) are solutions of the equa- s
tion With this formalism in hand, we evaluate the expectation
. value in Eq.(1.5) by choosing the reference tinteto bet.
[97+ wg()]f(t;1)=0 (2.2 For a spatially homogeneous state, the result is

obeying the boundary conditions d3k
<X(t,X)2>:f o [1+2n () +2 Repy(t)],
22 N1-172 2 : 2\ o172 (2m)°2w(t)
f(tD)=[20 ()] af(tit)]i=i= —I[wk(t)/Z](2 5 (2.10
A A where the functions,(t) and v, (t) are defined by
imposed at the reference timbe In principle,t is quite arbi-

trary, but we shall eventually choose it to be the instant at (af(haw ()= (2m)38(k—k )ni(t), (2.1
which we wish to evaluate the equation of motigh5).
These mode functions satisfy the Wronskian condition (ag(Day (1))=(2m)38(k+K' ) p(t). (2.12
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The functionsn,(t) can be interpreted as occupation num-which is sometimes referred to as the relaxation-time ap-

bers for the Sing'e_partic'e modéﬁ(t,’f) Whent is C|ose to prOXimation to the B.Oltzmann equation. It iS Implled that the
t, while v (t) measures the off-diagonality of the density sKstemt OT pzrgclesf_ls 3I¥vays clcise_tlo a_r:het?]u'“db_”t’fg state
matrix in the representation defined by these modes. Thgharacterized by a fixed tempera e, wi € distribu-

time dependence of these functions is easily established frofP" function
(2.9, and we find

Nt =1 exp( Bey(1) — 1]. (2.19
dn(t) = w(t )Revk(t) (2.13 If we orlcle more assume thaf{t) changes_ slowly ona time
w(t) scalel’, ~, then Eq.(2.18 can be approximately integrated
to yield n(t) = ng{(t) + on(t), with
. wy(t)
G == 2o () + 5 (t)[1+ 2n(H)].  (2.14 Sny(t)~—(2T,) ~1o,neqt)
These evolution equations are valid only in the approxi- ~B(2T) ta(Hn*(D[1+n°(D)], (220

mation thaty(t,x) is a free field. It is argued if12] that
interactions will give rise to an imaginary part of tlyeself-
energy, which can be taken into account by replacingt)
with o, (t) =il (t). With the further assumption that,(t), 2,2
I'(t), andn,(t) change negligibly on a time scale of order ()= BY°¢ (t)f
I'(t) "%, integration of Eq(2.14 yields

and we obtain a contribution to the equation of mot{trb)
of the form 7, () ¢, with

d3k n®q(t)[1+ ne"(t)]
(2m)3 I'yog(t)

) (2.2
o (D (t) o (1)

R~ o TA

[1+2n ()] (2.19

C. Linear response theory

L o _ . _ _ The crude arguments given above can in some respects be
if T is negligible by comparison withw. Since wy  improved by restricting attention to a situation in which the
=go¢lwy, we identify a contribution of the formy,(¢)¢  system ofy particles is in thermal equilibrium, apart from a

in the equation of motioiil.5), with small time-dependent perturbation which is treated to linear
order. Different versions of this treatment have been given by
() g2¢2(t)f d3k (1) Hosoya and Sakaganii3], by Morikawa and Sasakil2,14
()= (2m)° o D[@2(0) + T2O]? and more recently by Berera, Gleiser and Rafdds-17. It

is necessary to suppose that over a sufficiently long period of
X[1+2n,(t)]. (2.16 time, the classical fieldp(t) can be decomposed a(t)

= ¢o+ 0¢(t), whereg, is constant and¢(t) is small. Cor-

B. Changing particle energies respondingly, the Hamiltonian foy will be decomposed as

To the extent that they particles can be considered as

_ 3,2 2
free, the energy of this system of particles can be estimated HOxY HO(XHgd)O&b(t)j dHX LX) +O(5¢,

as (2.22
d3k the second term being treated as a perturbation. To linear
(t)~f )3wk(t)nk(t). (2.17  order in this perturbation, the standard Kubo formalism then
yields

Clearly, this energy is altered by a change in the classical t

field ¢(t), which causes a change in the single-particle en{x*(t,x))~(x*(t X)>eq+|9¢of dt’ d¢(t’)

ergiesw(t), and this provides a mechanism whereby energy ”

may be exchanged. However, a frictional term in the equa-

tion of motion for ¢ arises only from an irreversible transfer Xf A3/ ([x*(t',x"), x*(t,x)])% (2.23

of energy. This is a secondary effect, brought about by the

fact that a change i, (t) alters the scattering and decay where “eq” denotes the thermal average in the equilibrium
rates of y particles, and hence affects the evolution of theensemble determined By,(x). AlthoughHo(x) has no ex-
occupation numbers,(t). A crude argument for estimating plicit time dependence, it still contains interactions, and the
the friction coefficient that arises from this mechanism wasremaining thermal averages can be computed systematically
given by Hosoya and Sakagafii3], who take the time evo- in perturbation theory. To obtain a well-defined answer for
lution of ny(t) to be governed by a phenomenological kineticthe linear response term in E.23, it proves necessary to

equation of the form effect a partial resummation of thepropagator, in particular
identifying the thermal widtH" as the imaginary part of a
ani(t) = — 20 [ (1) —m A ], (218  suitable self-energyas discussed in more detail belouhs
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first pointed out in Ref[14], the net result is a contribution

to the equation of motiorf1.5) of the form 7(¢) ¢, with
n(d)=~n(do) + nu(do), provided thatl',<w, and that
ne(t) in Eq. (2.16 andn®Yt) in Eq. (2.21) are identified as  (for a,b=1,2) where

the constant equilibrium distribution associated Wath( x).

As in the previous calculations, it is also necessary to assume ~ S(t.Xt",x")

that 5¢(t') varies slowly on a time scale of ord&f ! and ((T[X(t,x)x(t’,x’)]) (et XD x(6,%)

can be approximated asp(t’)~ ¢(t)(t' —t). (63X (X)) <ﬁx(t Ox(t' )]
(3.2

Gwaitm:fd&é“&%gLKVp) (3.1

D. Open questions

Each of the calculations outlined above has its own deﬁ-The self-energieS.,(,t";k) can be defined by the Dyson-

L . . . I hwinger ion
ciencies. The type-l analysis of Sec. Il A is valid arbitrarily Sc ger equations
far from equilibrium, but treats interactions in an incomplete

andad hocmanner. The type-Il analysis of Sec. Il B is ex- Gab(t,t’;k)=gg?(t,t’;k)—if dt"dt”g{(t,t";k)
plicitly restricted to states very close to local equilibrium and
rests on a kinetic equation which is little more than a guess. X3 eq(t" 1" K) Gyp(t”,t";k), (3.3

The linear response treatment of Sec. Il C is much more sys-

tematic, insofar as the expectation value in Bf23 can in  in which the free-field propagato ?(t,t’;k) are solutions
principle be evaluated at any desired order of equilibriumof the equations

perturbation theory. However, this calculation depends in an -

essential way on analytic properties of thermal Green’s func- D 42(t,d¢:K)gl (1,1 k) =g{(t,t ;K Dt a0 1K)
tions that are meaningful only in a state of exact thermal i, St 3.4
equilibrium. Specifically, the Wightman function&~ (t ab ' '
—t"x=x)={x(t,x)x(t',x'))¢? and G (t—t';x—x’)
=(x(t',x")x(t,x))*9 have Fourier transforms which satisfy
the Kubo-Martin-Schwinger(KMS) condition G~ (kg,k) 92+ K2+ m?(t) 0
=exp(Bky)G=(ko.k) (see, for example, Ref18]). In a state D= 2 o o
which departs even slightly from thermal equilibrium, nei- 0 —ar—kT-mi(Y)
ther the temporal Fourier transform nor the KMS condmonWith m2(t) = m2+ g$2(t). The form of the self-energy ma-

has any meaning. , . ; . . :
y 9 trix X ., is constrained by some general considerations. First,

The primary question addressed in the remainder of thi e .
paper is whether the apparently plausible result of linear re%']e full propagatorsG(t,t';k) defined by Eqs(3.1) and

2 h h i
sponse theory is recovered, for a nonequilibrium system, irg3 ) have the properties
the limit of slow time evolution. This will be possible, at Gap(t,t":K) =Gpa(t',t:K), (3.6
best, only if we have a local approximation to expectation
values such agx“(t,x)), which are inherently nonlocal in GX(t,t:K) =Gyl t,t';K), (LK) =Goy(t,t 1K),

where the differential operatdp (7(t, 4, ;k) is given by

(3.5

time [as evidenced by Eq2.23 even in the linear response (3.7)
approximatior}, and devising such an approximation is the
key feature of the analysis that follows. Second, causality requires the integrand in &3 to van-

An important issue that is not addressed in this papeish (after summing over the closed-time-path indiceand
arises from the expressiaf2.21). This contribution to the d) if eithert” or t” is larger than both andt’. From these
friction coefficient depends inversely on the thermal widthobservations, it is not hard to show that the self-energy ma-
Iy, which is typically of the order of the square of a cou- trix has the general form
pling constant, and appears to call into question the reliabil-
ity of perturbation theory as applied to this problem. In fact, Sttt k) =3SHt k) S(t—t")+27(t,t" k) o(t—t")
this is typical of expressions obtained in the application of

linear response theory to the estimation of transport coeffi- IR O~ 1) 3.8
cients, and it is known that infinite classes of diagrams con- .
tribute at each order of perturbation thept@—21. How the ~ With
requisite resummation might be effected for a nonequilib- O — i au(t Lot
rium system is beyond the scope of this paper. Loty — Bi(t) —iay(t) Ta(t)
25tk : , , (39
Pay(t) = Bi(t) —iay(t)

Ill. LOCAL APPROXIMATION FOR SELF-ENERGIES

The exact two-point functions for the quantum field 3>t t";k)=
x(t,x) will be denoted in a standard notation by

(3.10

Ak(trt,) E(t,t,) )
—A(tt) ARt

045006-4
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— 4+ Q + —O— + —@— + —x— wi(H) =K>+m*(t) + By(t), (3.16

@ ® © @ (6K =[ALE) F AL (L) ]O(t—t") —[A(t',1)

FIG. 1. Diagrams contributing to the 2-point function of{* +AL (U, D)]6(t" —1), (3.17
theory. Diagram(a) gives a local contribution to the self-energy;
diagram(c) gives rise to the principal dissipative effects; diagram 1
(d) represents the contribution o1, . Sttt k)=— Ei[Ak(t,t’)—A’k‘(t,t’)]a(t—t’)

St k)= A0 = AED (3.11) LAt D= A (10100t —t
(1 ) )_ E(t’,t) _Aikc(t/’t) . . EI[ k( !) k( 5)] ( )

In the local par, the functionsx,(t) andB(t) are real. If (3.18

x has, for example, a quartic self-coupling, or a biqua-
dratic couplingx?&? to another scalar field, then these
couplings generate Feynman diagrdifies example, diagram
(@ in Fig. 1] that are manifestly local; such diagrams con-
tribute to By(t), but not tow,(t). More generally, it will be 4 w,k)= —if dt e peqt;k). (3.19
advantageous to extract local contributions from non-local
diagrams, and it is easily seen that a contributioAg(t,t’)
of the form [ B (t) —ia(t)]8(t—t") is equivalent to Eq.
(3.9), provided that we identifyd(0)=3. We take a,(t)
=0 for now, but will later usex,(t) to denote a local con-
tribution to the imaginary part of(t,t"). AT
In fact, the goal of this section is to develop a plausible P w,k)~ k®
Ansatzfor approximating the whole self-energy matrix as a (02— QE-T3)?+4I'2w?
local quantity, containing terms proportional only &t
—t') and ¢;6(t—t’). To this end, it is convenient to deal where(), andI'y are a quasiparticle energy and width to be
with the commutator and anticommutattr correlation  abstracted from the real and imaginary parts of the self-

In a state of thermal equilibrium, for whicp(t,t’;k)
=p®*q{t—t’;k), one can define the spectral density

A strategy frequently adopted in the context of linear re-
sponse theory is to assume that this spectral density can be
approximated by the Breit-Wigner form

(3.20

functions energies. The numerical calculations of Ref2] for a one-
dimensional scalar field theory suggest that such an approxi-
ttk :if d3xelkx t.x),x(t'.0 mation is reasonabléthough certf';unly .not exa):.tfor a
P ) {Dx(t2),x (.00 nonequilibrium state also. To realize this approximation in

the present context, observe that the real-time commutator

=[Gt k) =Gt 5k, G122 function is given by the Breit-Wigner approximation as
1 . .
C(t,t’;k)zzJ' dgxelk'x<{X(t,X)1X(t',O)}> pe"(t—t"k)~—l [e*iﬂk(tft')_eiQk(tft')]e*l"kltftﬂ
720, :
1 (3.21)
=5 [Ga(t,t"; k) + Gyt 1" K)] (3.13

For the non-equilibrium state, we adopt Ansatzwhich is a
natural generalization of this expression, name(y,t’;k)

from which all theG,, can be constructed. For these func-
ab ~pO(t,t":k), where

tions, the Dyson-Schwinger equatiaf3s3) together with Eq.

(3.4) imply the equations of motiofsee, for example, Ref. ) R . A -
[22]) POt k) =i[f (DT (D) — X (GD (DI Ok(t,t)

o t LB, (3.22
[+ RO == | dE'S, (L KIp(t 3K

(3.1 @k(t,t’)=exr{—ftdt’Tk(t”)
t/

o(t—t’"), (3.23

t
P2+ wi(1)]C(t,t":k =—f dt’S (t,t":k)C(t",t";k .
Lo+ wi(B]CC ) 0 ol )l ) and f(t;t) are the mode functions introduced in Sec. Il A,

, except that the quasiparticle energiggt) may include loop
n J" S o(6,1":K) p(1" 1K) corrections. It is easily checked thef®)(t,t’;k) is real and
0 antisymmetric in its time arguments, as it should be. It also
(315 has the property,p®(t,t";k)|;—=1 as required by the
' canonical commutator. Finally, as can be verified from Eq.
with (2.9), it is independent of the reference tirheprovided that
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I' () is. The approximate version of the equation of motion
(3.14) obeyed byp'©(t,t";k) is conveniently expressed by

writing

pO(t,t":k)=p@=(t,t"; k) a(t—t") + pO=(t,t";k) (" —1),
(3.24

with p@=(t,t";k)=—p@> (1’ t;k). By differentiating Eq.
(3.22, we find

[92+ 2T (D) + w() + TE) +T(1)1pO7 (1,t";k) =0,
(3.253

[07—2T (1) g+ wZ() +TE(1) —TW()1pO=(t,t";k) =0,
(3.25h

together with the equal-time conditions
atp(0)>(t,t/ ; k)|t':t: ﬂtp(0)<(t,t’ ; k)|t’ =1 (3.2

Comparing these equations with E§.14), we see that they
imply a correspondindinsatzfor the self-energy3.17), or
for the real part ofA(t,t'). Itis

ReAL(t,t")=[T(t)[(t') 25,8t —t' —€),
(3.27)

where the positive infinitesimad is included to ensure that
the delta function is satisfied inside the range of integration

in Eq. (3.14).
Given a nonzero quasiparticle width(t), the non-local

PHYSICAL REVIEW D 67, 045006 (2003

COZ (Lt K) | == aCO=(t,t; k)| —.  (3.32

Finally, we assemble the approximate correlation and
commutator functions into a single complex function,

1
COZ(tt" k) = SipO7 (Lt ) =hy(t,t"), (3.333

1
CO=(t,t" k) + Eip(o)<(t,t’ k) =hy(t',1). (3.33b

Then, denoting byg,,(t,t’;k) the approximation to the
propagator matrix3.1) that embodies thénsaze(3.27) and
(3.28), this matrix can be summarized by

Gan(t,t" K)=hp(t,t";K) O(t—t") +ha(t',t k) O(t" —1),
(3.39

with hy(t,t";K) =h,(t,t") andh,(t,t";k)=hg (t,t"). The ap-
proximate equations of motiof8.25 and(3.31) are

[924 2T (1) g+ wl(t) + TE(t) + (1) Th(t,t') =0,
(3.35
[924 w2(t) +T2(t) —ia (1) Ty (', ) +[ 2T (1) d+ T (1)

+ia(t)]hg(t',t)=0, (3.39

self-energies may be expected to decay roughly exponenvhile the equal-time condition.26) and(3.32 become

tially with [t—t’|. ForX(t,t’;k), which is symmetric in its

time arguments, or, equivalently, for the imaginary part of

Ay(t,t"), a suitable locaAnsatzis
IMAL (1) = — ay(t) S(t—t). (3.29

With this approximation, the equation of motid8.15 for
the correlation function becomes

[F+ 2T (1) 3+ wi(t) + TR + Ty () ]CO(tt k)

= —a (O)pO(t,tK) ot —1). (3.29
Alternatively, defining
CO(t,t":k)=CO>(t,t":k) 6(t—t")
+CO=(t,t":k)6o(t'—t),  (3.30

with CO=(t,t";k)=C©@>(t",t;k), this may be written as

[02+2T (1) &+ wi() +TE() + T (1)]1CO (t,t;k)

=0, (3.313
[32+ 2T (1) 3+ 02(t) + T2(t) + Ty () ICO=<(t,t';k)
=—a () p O (t,t';k), (3.31h

together with the equal-time condition

ﬁt[hk(tt')_hk(t’,t)]|t'=t= —i,

aLhi (1) —hy(t",1)]] = =0. (3.37)

At this point, theAnsdze (3.27 and(3.28 have yielded
local equations of motion for the approximate two-point
functions, but the functions,(t) andI',(t) that appear in
these equations and the functigh(t) that appears in the
single-particle energy3.16 are unknown. Given a specific
Lagrangian, approximations to the self-energigg can be
obtained—for example, from some version of perturbation
theory. The functionB,(t) can be identified from the local
part of X ,,,, but a prescription is needed for extracting from
the calculated, and ¢ local contributions of the kind
indicated in Eqs(3.27) and(3.28 so as to identifyl",(t) and
ai(t). This issue will be addressed in Sec. V.

IV. LOCAL KINETIC EQUATIONS

The approximation summarized by Ed8.34—(3.37) is
equivalent to that obtained from somewhat different consid-
erations in Ref[23]. There it was shown that the general
solution to the local equations of motion can be expressed in
the form

1 t -
hk(t,t’)=Eex;{—ft,dt”Fk(t”)}hk(t,t’), 4.0
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Rt t)=[1+Qu(t"; D If (LD fE (t';D)
+[—1+QF (5 DIfFF (KD f(t'51). (4.2

The functionQ,(t;t) is a solution of the equation

g+2r t+2f*(t'f)
i+ 20 (1) e

[+ 2T () ]Qu(t; 1) = 2i ey (1)
4.3
subject to the constraint

(9+ 2T Qi+ Q) +i(Fif) "M Q= Q) =0, (4.9

which is preserved by E@4.3). For our present purpose, it is
useful to observe tha(Dk(t;f) can be decomposed as

' ftb)
2ol
QD= + e

k

QP(t;1) (4.5

whereQM(t;1) is real. If QY andQ{?) are taken to obey
the first-order equations

[+ 2T (D) 1QM (1) = 2f (£, D ¥ (t;D) (1), (4.6

(4.7

then both Eqs(4.3) and(4.4) are satisfied and the decompo-
sition (4.5) is unique.
The propagator functioh,(t,t’) is now given by

[0+ 2T (D)]1QP(t:1) = — 2f £ 2(t; D) (),

h(t,t)=[1+ Q" ;D If(LD i (t';1)
+H[ -1+ QP DI (Dt D)
+QA DRt D (1)
+QPF (DR (D (). (4.8

It must be independent of the reference titneand this de-

termines the dependence bif the functionsQ{(t;t). We
find

azQE)(t;E)=“’k(f)ReQ<k2)(t;E>, (4.9
C!)k t)
#QP(t1) = —2i 0 (1) QP(1; 1)
o )Q(l)(t 1. (4.10
wk( )

In the equation of motion(1.5), our approximation to
(X*(t.x) is

(x hi(t,t) (4.11)

PHYSICAL REVIEW D 67, 045006 (2003

and this is conveniently evaluated by choosing the reference
time t to be the timet of interest:

h(t,t)=QM(t;t) + ReQP(t;1). (4.12
In fact, let us define
1 (1)
ne(t) = 5[Q(t:H) — 11, (4.13
1
n(t)=5QP(t1). (4.14

We have
hk(t,t)=[2wk(t)]‘1[1+2nk(t)+2 Rey(t)] (4.195

and will loosely identify the functions,(t) and v, (t) with

the quantities denoted by the same symbols in Sec. Il. By
combining Eqs(4.6) and(4.7) with Eq. (4.9 and(4.10), we
obtain the evolution equations

(1) )
atnka)—% TW(D[1+2n,(1)]+ Et)Re”k((‘i .
L . ay(t)
A= =2il (O~ T(O (0= 5,
wy(t)
St )[1—|—2nk(t)] (4.17)

These are clearly generalizations of the free-field equations
(2.13 and (2.14), the extra terms involving the functions
a(t) andI',(t) whose exact meanings are explored further
below. On the other hand, the tentative identification

(4.18

(which we will later find to be too naiyebrings Eq.(4.16
into the form

a(H) =20 (O (H[1+2ng{1)]

(1)

(1)~ )

= 2T (D[N (t) —ngqt) ]+

Re Vk(t)
(4.19

which is a generalization of the kinetic equati@18 in-
cluding a source term to account for particle creation.

V. DETERMINATION OF LOCAL SELF-ENERGIES

To give substance to the kinetic equatio#%16 and
(4.17, we need a concrete method of determining the func-
tions By (t) [which appears in the quasiparticle energy
(3.18], a(t) and 'y (t). A prescription for doing this was
given in[23]; here we describe a refinement of that prescrip-
tion which is convenient for the problem at hand. The ap-
proximate two-point function3.34) which solve(3.35 and
(3.36 are the exact propagators of an approximate theory
defined by the closed-time-path action
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1
St~ 5| 0| Xt Dl 151,V el 1.0, (5.1

where the differential operatd? is given, after a spatial Fourier transformation, by

B ( B+ odO)+TE O~ () 2T (1) d+ T (D) +i (1) 5

— 2T (V)3 =Ty () +ia(t) —dF—wg(t) —TE(t) —iay(t)

(An effective action having essentially this structure also describes an open system, coupled to environmental degrees of
freedom, which can be integrated out by the Feynman-Vernon influence functional nj2the2d. Here, one may think of

a single field mode having an environment that consists of all the other modes, but this environment is treated in a self-
consistent manner, rather than being integrated) duithe complete theory has the acti®{y), and the corresponding
closed-time-path actio®ctp( x1:x2) =S(x1) —S(x»), then a partly resummed perturbation expansion can be defined by
writing

Scrr(X1:X2) = S X1, x2) + AScre( X1, X2) (5.3

and treatingA Scrp as the perturbation. Included Scqrp is the counterternd fdtd®xy,Mapxp, With

Bi(D)+TE(t) —ian(t) 20 (1) 3+ T (1) +i (1)
M(t,;;K) =D(t,d;;k) — DO (t,d;; k) = : o , (5.4
=2 (1) =T () +Hia(t) =Bt = Ti(t) —iay(t)

which accounts for the difference betwegy), andg}) . | Gun(1, 7K =g (1, 7:K) 6(7) + D, — 7:K) 6(— 7).

the context of this expansion, self-energies are deflned by (5.7)
replacingg}) in the Dyson-Schwinger equatiai8.3) with B

Jap- They have the form where, as in Eq.3.34, we use the notatiorh,(t,7;k)

=h(t,7) andhy(t, k) =h (t,7).
By replacingg,, with g,;, in the diagrams that constitute
(59 Eg’gr’, we obtain a time-translation invariant approximation

where3°°P consists of loop diagrams in which the propaga- to these self- energ'e§;loop(t 7K), valid whent andt’ are

tors aregyp,. bott\ cIoseAtd, WhlchAcan be used to determine the functions
We would like to chooser,(t), Bi(t), andl',(t) in such  «a(t), B(t), andl'\(t). After a Fourier transform om, our

a way that the propagatogg,(t,t’;k) approximate the exact approximation to the right-hand side of E&.5) is

two-point functions as closely as possible. Loosely speaking,

this means making the self-energigs5 as small as pos-

sible. More precisely, it is necessary to obtain a local ap-

proximation toE'ﬂ)’p, which can be cancelled by an appro-

priate choice ofM,p,. To this end, suppose thaandt’ are  Although s loon(§, k) is time-translation invariant, it is not,
both close to the reference timé. We define time- in general, a distribution concentrated &t 0. In Fourier

translation-invariant  propagators  which  approximategransformed language,'°°(t; w,k) is a non-linear function

Gap(t,t";K) in this region by introducing the function of w, while Mab(t, i w;K) [which results from replacing;
in Eq. (5.4 with —iw] is linear in w. Therefore, the inte-

S ap(t, U3 K) =St 1K) — Mgy(t, 0,3 K) S(t—t"),

f [§‘°°P(twk) Mt —iw;k) e 7. (5.8

Y e 1 o grand in Eq.5.8) cannot be made to vanish for all values of
)= @ {[L+nd®+vgd)le” w. A reasonable prescription for determining(t), Bi(1),
- - andI',(t) is to demand that
+n (1) + v () ]e'x7}, (5.6)

M1, i wp k) =S920(F: T @y k). (5.9

wherer=t—t’, o= wy(t), andFk— «(t). This function is , , . ,
obtained from the one defined i.1) by taking h, .7 To the extent that the considerations of Sec. Il are valid, thls
y 9 Nk ensures thag,p(t,t’;k) are the propagators for free quasi-
=hy(t+7,1), using the approximatiof®.7) for fi(t;1), and particles whose energies and widths are approximately those
replacingI’ (t”) with I", in the prefactor. The approximate determined by the peaks of the true nonequilibrium spectral
propagators are then given by density. Explicitly, the prescription implied by E¢.9) is
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- I = . —ona A also setr,=0 inE . A justification for this step will appear
ay(t)=— E[Elzofp(tiwk K)+ S5~ oK), below [seke Eq.(G.%)b].
(5.10 With these approximations, the propagatgeg assume
the form familiar from the equilibrium theorysee, for ex-
ample, Ref[18]). In particular, the temporal Fourier trans-

MU= (S G- S50 -a), oM ofgis
w
‘ 51) — o T S X -
921(t,w,k)—(:)—{[1+nk(t)]5(w wi) T Ni(1) 8w+ wy) }.
K

Bu(D)=ReS(E; oy k) —T2(). (512 ©3
As a standard example, we consider in what followsxtg
theory, whose Lagrangian density consists of the first three
VI. FRICTION TERMS IN THE EQUATION OF MOTION terms of Eq(1.2), identifying x as the fluctuation fielgp and
the couplingg asg=A\/2. The 2-point functions foy con-

The nature and purpose of the approximations we haveyin among others, the diagrams shown in Fig. 1. At 2-loop
introduced so far can usefully be summarized as follows. Byorder withEz given by Eq.(6.1), the only contribution to
partitioning the closed-time-path action as in E§.3, we — Le o .
obtain a reorganized perturbation theory in which the unpers-21 comes from diagranic). [The 1-loop diagranib) con-
turbed propagators are thg, defined by Eqs(3.34—(3.37). tains products of functions which cannot be simultaneously
Summed to all orders, this perturbation theory wo(pde- sat|§f|ed. It would give an .off-_shell contrlb-utlon .|f we were to
sumably be equivalent to the usual expansion based on th&etain a non-zero widt', in g,,.] Evaluating this diagram,

free-particle propagatorg{}), and this assertion is essen- V€ find from Egs(5.10 and (5.1

tially independent of how we choose the functiomgt), . 2
Bi(t), andT'(t) that enter the definition of,,. However, ay ()= c f d3k,d%k,0%k
the reorganized perturbation theory cannot in practice be 32(2)

summed to all orders. Its utility rests on the possibility of
makingg.,, a better approximation thagf}) to the full two-
point functions; in particular, we wish to estimate the expec- 0 Wy Ok

tation value(x?(t,x)) by retaining only the lowest-order s

term as indicated in Ed4.11). To do this, we choose,(t), X[(1+n ) (1+ N )N+ N Ny (1+0, )],
Bi(t), andT(t) to be local contributions to the true self- ' Zos e s
energies, which are thereby resummed in the reorganized (6.2
perturbation expansion. For the purpose of extracting these

local contributiongandonly for this purposgwe introduced ()=
the time-translation-invariant propagatayg, in Eq. (5.7), 64(2)°
which enabled us to formulate the prescription recorded in
Egs.(5.10—(5.12. Of course, this prescription can be imple-

Sy, + oy, — oy, — @) 8Ky +Kp—kg— k)

2

f d3k,d3k,d%Ks

Sy, + wy,— o, ~ @) S(Ky+ ko —kz—k)
X =

mented only approximately, by evaluatid® to some fi- WY@y, Dy Dk
nite order of perturbation theory. v
In principle, we are now in a position to evaluate the X[(1+n ) (1+n )N — N Ny (140 )]
right-hand sides of the evolution equatiqés16 and(4.17), ! Zos e 8
to solve these equations for(t) and »(t) and hence to (6.3

estimate the expectation val@é.11) in which we are prin-
cipally interested. There is, however, a practical difficulty. It
is that the self-energy on the right-hand side of Eqgll) is :

itself a function ofI'y, and this equation cannot be solved Sk(f):akf ) —T(D[1+2n(D)]

wheren, =n,(1). In particular, the quantity

analytically to obtain a concrete expression far. A nu- 2wy

merical solution is feasible, and this is no doubt the best way 5

of estimating the time evolution, given a specific model. _ A J'dg,k d3k.d3K

Here, though, we wish to investigate the circumstances under 32(2m)5 1= heE e

which dissipation might be represented by the frictional

terms in the equation of motion exhibited in Sec. II. To that Sy, + Wy, ~ o, ~ @) S(Ky+kp—kz—K)
end, we now introduce two further approximations. First, we X =

take the limitl',— 0 in the propagatorg,;, used to calculate Ok @ik Pk, Pk

2 ap N EQs.(5.10—(5.12. This is reasonably well justified in XN M (1+ N ) (1+n) — (141,

a weakly coupled theory, wheig, is of orderg?, say, and e 3 !

3 .p itself contains an overall factor @f?. Second, we will X(1+ ﬁkz)ﬁksﬁk] (6.4)
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which appears in the kinetic equati¢h.16) is precisely the =constiw,(t). These approximations amount to replacing
2-particle elastic scattering integral that ought to appear in ¢he self-energies on the right-hand sides of E§sl0 and
genuine Boltzmann equatiotMore generally, since the®*  (5.11) with constant equilibrium values. With the additional
theory has no conserved particle number, inelastic contribuapproximation thal',<w,, we find

tions should also be expected, and these will indeed appear if

we extend the evaluation of the self-energies beyond 2-loop NS @, N8y 1+ 2n°9)
order) 2(ong+ )~ — red + 3 , (69
k k

With these explicit expressions far(t) and ', (t), we
now have concrete forms for the evolution equati¢hd 6 which reproduces the sum of Eq.15 and (2.20.
and (4.17. These evolution equations are local in time, but It is not surprising that the above strategy agrees with
their solutions will be non-local. To extract contributions to linear response theory only wheP,<w,. This indicates
(x*(t,x)) which are proportional te(t), we must resort to only that the methods available for resumming self-energies
some adiabatic approximation of the kind considered in Seqn the equilibrium and nonequilibrium theories differ beyond
IIl. To do this systematically, we rewrite the evolution equa-the |eading order iff',/w . The fact that we can recover the

tions as linear response result only by ignoring the fluctuations in
, self-energies induced by those in thgis, however, rather
= wi(t) more significant, as we discover by attempting to solve the
eatnk(t)_ak(t)_Fk(t)[1+2nk(t)]+Ewk(t)Re”k(t)’ next-to-leading order equations without this extra approxi-
(6.5 mation. To simplify matters, we continue to retain only the
leading terms i,/ wy, in which case the order equations
€d (1) = = 2if w (1) = 1T (1) Jw(t) — ey (1) are
wi(t) 1 . o 81+ 2n8Y
~ —| — B ———
+ EZwk(t) [1+2n ()], (6.6 Redv, 207 i d(Im v P, ,
(6.9

whereq,(t) = a(t)/2w,(t) and we have introduced a formal

expansion parameter multiplying terms with time deriva- - ) . Wy .

tives. By expanding in powers of and finally settinge fo dk'K(k,k )5nk':‘9tnkq_w_kRevkqi (6.10

=1, we generate expansionsrgi(t) andv,(t) in powers of

the time derivatives ofp(t). On substituting these expan- where

sions in the expressiofd.11) for (x?(t,x)), the next-to-

leading terms, proportional te, yield an estimate of the 5Sy

friction coefficient7( ). K(k,k")=——
At leading order, Eq(6.5 reduces to the equatic®,(t) Ny

=0 whose solution is well-known to be the Bose-Einstein

distributionn,(t) = ng{t) for some temperaturg . [We do

not allow for a non-zero chemical potential, because the in

elastic contributions td&5,(t) expected at higher orders of

perturbation theory would constrain the equilibrium chemi-

cal potential to vanish.The corresponding solution of Eq.

(6.6) is

(6.11)

n=ned

While the first of these givedv, explicitly, the second is an
integral equation to be solved fdn. It turns out thathis
equation has no solutioriThe reason is that the scattering
processes described By conserve both particle number and
energy. One easily finds that this implies the two sum rules

. f dksz(k,k’)=J dkikPwK(k,k')=0 (6.12
) =i Y2 oy () =T )] (6.7 0 0

—eq eq ) valid for all k’. The source terms on the right-hand side of
wherea™andT'," are obtained from Eqg6.2) and(6.3 by E£q (6.10 do not respect these sum rules, so the equation is
settingn, = n?. We see that, near equilibriunay is smaller ot self-consistent and has, in principle, no solution. At
thann, by a factor of orde’y/wy, so settingry=0 inthe  higher orders of perturbation theory, particle number is not
c_alculation of the self-energies should be a fair approximaconserved; only the energy sum rule remains, but that is
tion. sufficient to invalidate Eq(6.10).

At next-to-leading order, we set,~ni™+ esn, and v It is important to emphasize that the evolution equation
~ v+ edv,. The linear-response approximation ig¢) (6.5 with e=1 is perfectly sound: it is a Boltzmann equation
[the sum of Eqs(2.16) and(2.21)] can be recovered only at with a source term, which presumably has a satisfactory so-
the expense of further approximations. The first is to replacéution for n,(t). What we have found is that this solution
T'(n) with T&%=T",(n®) and similarly for;k(n); that is, to  does not have a time-derivative expansion. That is, it cannot
ignore the fluctuations in these quantities brought about bye expressed as(t)=n(#)+n($)p+ .... Nor,
fluctuations inn,(t). The secondwhen calculating’,»®*% is  therefore, can the equation of motigh.5). Our principal
to take the time dependence dff{t) to be '} conclusion, then, is thahe friction coefficienty(¢) does
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FIG. 2. The solution of Eq(7.1) for Bm,=1 andc=1. FIG. 3. lllustration of the energy sum ru{6.12); the quantities

plotted are explained in the text.
not exist As it stands, this conclusion rests on an approxi-
mate treatment of a particular model, the* theory. Itis  comes very small whekis greater than a few timeg‘p’ and
likely, however, to be quite generic, as we discuss in Sec. IXFig. 2 shows that the same is true of the solut®m. In
effect, we see that, regardless of the cutoff, only a “self-
VII. NUMERICAL INVESTIGATION truncated” kernel, withk andk’ restricted to values smaller
) ) than a few timesn,,, contributes significantly to the solution
~Although we have just reached the conclusion that they £q. (7.1). The fact that this “self-truncated” kernel does
friction coefficient () does not exist, we have also seen not in jtself respect the sum rules accounts for the existence
that the linear-response result fg(¢) can be recovered by of 5 well defined solution and, because of the self-truncation,
ignoring fluctuations in the self-energies—an approximationye are able to verify that this solution converges to a cutoff-
that, at first sight, would seem not to be severe for a 5y3terﬁ1dependent form aka is increased.
reasonably close to equilibrium. Thus, althougt¢) for- Formally, we can use this numerical solution in E411)
mally does not exist, the local equation of motidn1) with {5 gptain an estimate for the friction coefficient The result
7(¢) as given by linear response theory might be a reasonyf doing this for a range of coupling strengths is shown in
able approximation to the true equation of motion. We havq:ig_ 4, where the quantity plotted is= 7m, /(128w ¢?).
obtained numerical results that may bear on this question bigure 5 shows the ratioy 7,5, Where n, g is the friction
taking advantage of the following circumstance. A dis-cqefficient calculated in linear response theory from Egs.
cretized and truncated version of E.10 that one might (2.16 and (2.21) in the limit T'y<wy. (The haphazard ap-
attempt to solve numerically is pearance of this figure results from the different dependen-
cies of , and ,, on temperature and coupling strengthhe

k X . . . .
§ Koo snu=b (7.2) formal quantity shown in Fig. 4 has negative values at weak
o kT e : coupling (where our perturbative methods are most likely to

make sense and clearly cannot be interpreted as a genuine

Because the kerné{, . now involves only values ok and  €arlier argument that the friction coefficient is not well de-
k' up to the cutoff valuek,,,y, it does not exactly obey the

sum-rule constraint$6.12 and the truncated equation may 7

have a solution. 200 / — — Bm =50
In fact, we find that it has a very well defined solution, as / — — pm*=1.0

illustrated in Fig. 2, where the quantity plotted i s / -—- mi = 8-?

=(4m*c/\ ) n and we define the naturally occurring cou- 190 / o

pling constantc=\272/64(2m)°. The example shown in / —

Fig. 2 is forBm,=c=1. The kerneKy ,, decays rapidly for 0 / e -

k>k’, but is not small whek=k'. Thus, when botlk and ) -7 02 94— —T6 0.8 1lo

k' are bounded by the cutoi,.,, the sum rules may be —— ¢

verified for k' <k, but they fail for larger values dk’. -100

Figure 3 illustrates this for the energy sum rule, wgm,

=1 and a cutoffk,=30m,. The circles in this figure - - - -

represent the integralfgmaydk KwK(k,k"), while the -200

Squa:res show, for comparison, the quantity  F|G. 4. Friction coefficient calculated from the solution of
0.1 y"dk Kw|K(k,k")|. The sourceby in Eq. (7.1) be-  Eq.(7.D.
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200 where a{”) and T'{") are extracted as in Eq$5.10 and
—————————————— (5.19) from the fermion self-energy. Naturally, the scalar
,° — self-energy now acquires a contribution from a fermion loop.
— Taking this into account, the kinetic equatiof%.16) and
nn g | A (8.2 are a consistent pair of Boltzmann equations, in which
4 ~ the scattering integrals preserve the particle numbgy, 2
200f ! 7 +N, [we have derived Eqg8.2) and (8.3) only for zero
__"/ — — = Bm =50 chemical potential, in which case fermions and antifermions
! _—— Bmi =10 are equally abundant amdl, means the total number of these
400 |4 —-==- gmwig'? particle§ and the total energy of scalar and fermionic par-
LR ticles. These conservation lasr, at higher orders, just en-
ergy conservationagain imply that neither the solution of
600 - the Boltzmann equations nor the equation of motion dor

0.2 04 ., 06 08 10 has a time-derivative expansion.

FIG. 5. Ratio of the formal friction coefficient of Fig. 4 to that
calculated from linear response theory. IX. DISCUSSION

The equation of motior{1.3) is inherently non-local in

fined. The conclusion is that nonequilibrium methods A&ime: it represents a non-Markovian process in which evolu-

needed to investigate the real effect of dissipation in thgion depends on the historg(t’) at all times prior to the

g%ﬁt't% neofur:;i%trlicl)ir::.%nivzn f%z;ﬁ;enrq;?h% dm;y d%?nqut':ﬁstimet of interest. When the state of the system is not too far
. . q . app . : 9 NS om thermal equilibrium, it is tempting to suppose that a
is to integrate this equation of motion simultaneously with

the evolution equation$4.16 and (4.17) and we plan to local equation of motiori1.1) might be approximately valid,

report on such calculations in future work. The large discrepthe friction coefficient being estimated from equilibrium sta-

ancies apparent in Fig. 5 suggest that quantitatively si nifi:—[iSticaI mechanics. In this paper, we have examined the ap-
PP 9- 99 q y si9 roximations needed to extract a local equation of motion

cant deviations from the predictions of linear response theor fom the non-local one. and concluded that this cannot in fact

may be expected. be done. Under suitable conditiofithe principal require-
ment is the existence of a relaxation tifig ! short enough
to ensure that correlations decay rapidly compared with the
We comment briefly on the frictional effect of a Yukawa Characteristic time scale on whiek(t) change$the expec-
coupling to fermions. Non-equilibrium perturbation theory tation values in Eq(1.3) can be approximated by local ex-
for fermions is discussed in R4R7], to which we refer the pressions of the forn4.11) or (8.1), in which the auxiliary
reader for the somewhat cumbersome details. With approxfunctions n,(t) and »,(t) themselves obey local kinetic
mations analogous to those described above for scalar fieldgguations, such as Eqg.16), (4.17), (8.2), and(8.3). How-

VIIl. FRICTION ARISING FROM FERMIONS

we find for the relevant term in Eq1.3) ever, this set of local evolution equations can be reduced
further to a single local equation f@b(t) only if the kinetic
_ d3k equations admit a solution in the form of a time-derivative
((t,x) l//(t,X)>=4f 3—(@[m¢(2n(k¢)—l) expansion—and we find that they do not. The obstruction
(2m) 2w arises from fluctuations in self-energies, of which the equi-
+2|K|Rer{!] (8.1 librium theory takes no account.

Although our explicit computations focussed on the sim-
wheren{”)(t) and »{"(t) are the fermionic analogues of the plest example of a single, self-coupled scalar field, we have
functions nk(t) and Vk(t). If the fermions have a mass indicated in Secs. | and VIII that the situation is quite ge-
my,(t)<%m‘p(t), then the on-shell processeyﬁp are ki-  heric. The above conclusion emerges from an approximate

nematically allowed. We then obtain kinetic equations of thelreatment of non_equmbrlum dynamics, which can hardly be
regarded as a rigorous proof. It would seem that some ap-

form L . .
proximation more or less equivalent to the lodahsdze
ol w® IK (3.27) and (3.29 for self-energies is an inevitable step to-
onN=-TW2n"-1)+ —a+ —— —Rer(”, ward the derivation of a local equation of motion; without
K w(kw) my, some such approximation, the expectation values i Eg)

(8.2 remain non-Markovian ana fortiori, cannot be represented
by a local friction term. A subsidiary approximation made in

) ) () () wﬁ‘/’)—mw ) Sec. VI was to set the quasiparticle widtl to zero for the
d’ =~ 2o —IDT) = ( o urposes of estimating self-energies. Although this approxi-
w® purp mating gies. gh this app
mation greatly simplified our analytical analysis, it can and
ol |K| should be avoided in a comprehensive numerical study. The
- —(2n(k"’)— 1) (8.3 effect of this approximation is to restrict the scattering pro-
20 m,, . .
k cesses in Boltzmann equations to on-shell processes. Now,
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the inclusion of off-shell processes might well invalidate thequantum field theory in an expanding spacetime with only
sum rules(6.12 from which we concluded that the friction minor modifications. In a spatially homogeneous Robertson-
coefficient » does not exist. Formally, then, by including Walker spacetime, the field redefinitiods—a *® and ¢
off-shell processes, we might after all be able to obtain a—a~ %2}, wherea(t) is the scale factor, serve to cast the
time-derivative expansion of the equation of motion. How-theories we deal with in the form of a Minkowski-space
ever, the friction coefficient implied by this expansion would theory with time-dependent masses, provided thattaken

be quantitatively similar to that obtained in Sec. VII. At weak as the conformal time coordinate. In the case of a spinor field
coupling, it is negativeland thus physically unacceptaple or a conformally coupled scalar field, these masses are given
and quite different from the one yielded by linear responsesimply by m(t)=a(t)m. Consequently, the formalism we
theory. At strong coupling, the perturbative methods em-have constructed changes only insofar as the masses in Eq.
ployed both here and in linear response theory are quantitd1.4) depend ont through both¢(t) and a(t). This addi-
tively, and perhaps also qualitatively, unreliable. Our practi-tional time dependence modifies evolution equations in a
cal conclusion, then, is that even for a system quite close tway that may be cosmologically important. However, its net
thermal equilibrium the local equation of moti¢h.1) does  effect on, say, Eq€6.9) and(6.10 is just that the right-hand

off—shel! processes serve to recover a formaj time'derivaﬂwf’;\ddition to those proportional t¢. These induce additional
expansion. A thorpugh numerical |nvest|gat|on of the 0N sntributions tosn, and s, , but do not affect our conclu-
equilibrium evolution is therefore essential. At weak cou- . k ko

pling, a numerical implementation of the evolution equationsSIONS concerning the terms proportionaldo
developed here is quite widely applicable, and may well be

guantitatively adequate, though recently developed methods ACKNOWLEDGMENT
based on the 2PI-1/N formalisi22,28 are probably more
powerful in situations where they can be applied. It is a pleasure to acknowledge informative discussions

Finally, we observe that the analysis given here applies tavith Arjun Berera, Rudnei Ramos, and Jim Morgan.
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