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Dissipation in equations of motion of scalar fields

Ian D. Lawrie*
Department of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT, England

~Received 7 October 2002; published 21 February 2003!

The methods of nonequilibrium quantum field theory are used to investigate the possibility of representing
dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is
commonly included in phenomenological inflaton equations of motion. A sequence of approximations is
exhibited which reduces the nonequilibrium theory to a set of local evolution equations. However, the adiabatic
solution to these evolution equations which is needed to obtain a local equation of motion for the expectation
value is not well defined; nor, therefore, is the friction coefficient. Thus, a nonequilibrium treatment is essen-
tial, even for a system that remains close to thermal equilibrium, and the formalism developed here provides
one means of achieving this numerically.
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I. INTRODUCTION

Inflationary universe scenarios frequently refer to an
flaton equation of motion of the form

f̈13Hḟ1h~f!ḟ1Veff~f!50. ~1.1!

The friction termh(f)ḟ represents one mechanism throu
which the inflationary universe might be reheated, conv
ing the inflaton energy into particles@1–3#, although the pro-
cess of parametric amplification@4–6# is in some cases a
more important effect. Moreover, it was pointed out long a
by Moss@7# that a frictional effect large enough to mainta
a thermal bath of particles during the inflationary era wo
have a significant effect both on the inflaton evolution and
the primordial perturbation spectrum, alleviating the fin
tuning problems that afflict many inflationary models. Mo
recently, and independently, a similar idea has been ex
sively investigated by Berera and co-workers@8–10#.

While some frictional effect is to be expected in any i
teracting field theory, it is by no means clear at a fundam
tal level that this effect can properly be represented b
local equation of motion such as~1.1!, and the purpose of the
present paper is to study this question in some detail.~A brief
account of our findings has been given in Ref.@11#.! To be
fairly generic, we may consider a scalar fieldF, which
couples to other scalar fields and to fermions, denoted
lectively byj andc respectively. In Minkowski spacetime,
schematic Lagrangian density for this collection of fields

L5
1

2
]mF]mF2

1

2
mF

2 F22
1

4!
lF42

1

2
g1F2j22g2Fc̄c

1DL~j,c! ~1.2!

whereDL is that part of the Lagrangian that does not depe
on F. ~The considerations developed here can probably
extended with little difficulty to a theory in whichF also
couples to gauge fields. They are essentially unchanged
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Robertson-Walker spacetime, as we discuss in Sec. IX.! On
splitting F(t,x) into its expectation valuef(t), which we
take to be spatially homogeneous, and a fluctuation fi
w(t,x) with ^w(t,x)&50, we find that the equation of mo
tion for f(t) is

f̈1mF
2 f1

1

6
lf31

1

2
lf^w2&1g1f^j2&1g2^c̄c&

1
1

6
l^w3&50, ~1.3!

while at the tree level, the quantum fieldsw, j, andc ac-
quire effective masses

mw
2~ t !5mF

2 1
1

2
lf2~ t !, mj

2~ t !5mj
21g1f2~ t !,

mc~ t !5mc1g2f~ t ! ~1.4!

which depend on time throughf(t). Dissipative effects in
the equation of motion~1.3! can arise from the final term
1
6 l^w3&, but we concentrate here on those arising from
other expectation values, which are quadratic in the quan
fields. Generically, the equation of motion is

f̈~ t !1mF
2 f~ t !1g^x~ t,x!2&f~ t !1•••50 ~1.5!

where x may stand forw, the fluctuating part ofF, for
another scalar fieldj or for a fermionic fieldc, and has a
f(t)-dependent mass of the form~1.4!. In general, there will
be a sum of such contributions from the fields appearing
specific model, but our considerations are substanti
model independent.

Superficially, it is quite plausible that a system which r
mains fairly close to equilibrium can be treated by usi
equilibrium statistical mechanics. In Sec. II, we review t
relevant dissipative mechanisms and the results for the
tion coefficienth(f) which have been obtained on this b
sis; we also indicate why this approach might be question
when applied to a system that is not maintained in ex
thermal equilibrium. Sections III–V develop a strategy f
©2003 The American Physical Society06-1
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tackling the problem in nonequilibrium scalar field theo
exhibiting the sequence of approximations necessary to
tain a local equation of motion of the form~1.1!. We find that
this local equation of motion contains coefficients whose v
ues must be found from the solution of auxiliary kine
equations. The resulting set of local evolution equations
suitable for a numerical solution. However, we investigate
Sec. VI whether an adiabatic treatment of these evolu
equations leads to a well defined friction coefficienth(f).
We find that it does not, and Sec. VII exhibits numeric
evidence that nonequilibrium effects may be quantitativ
quite significant. Section VIII briefly discusses frictional e
fects due to fermions, showing that the formal situation
quite similar to that developed in detail for scalar fields.
nally, our principal conclusions are summarized in Sec.
where we also discuss the extent to which they depend on
methods of approximation we have utilized.

II. MECHANISMS OF ENERGY TRANSFER
AND DISSIPATION

Roughly speaking, we can identify two mechanism
through which energy may be transferred between the c
sical field f and the system ofx particles. One is the cre
ation of new particles, which we will refer to as type I. Th
other, to which we refer as type II, involves changing t
energies of particles that are already present. In the follow
subsections, we review the arguments which purport to
rive from these two mechanisms friction terms in the eq
tion of motion forf.

A. Particle creation

A crude argument given by Morikawa and Sasaki@12#
takesx in the first instance to be a free field, except that
interaction withf leads to a time-dependent effective ma
Thus, the energy of a singlex particle is vk(t)
5Ak21m21gf2(t). According to standard arguments, th
field can be represented as

x~ t,x!5E d3k

~2p!3
@eik•xf k~ t; t̂ !ak~ t̂ !1e2 ik•xf k* ~ t; t̂ !ak

†~ t̂ !#

~2.1!

where the mode functionsf k(t; t̂ ) are solutions of the equa
tion

@] t
21vk

2~ t !# f k~ t; t̂ !50 ~2.2!

obeying the boundary conditions

f k~ t̂ ; t̂ !5@2vk~ t̂ !#21/2, ] t f k~ t; t̂ !u t5 t̂52 i @vk~ t̂ !/2#1/2

~2.3!

imposed at the reference timet̂ . In principle, t̂ is quite arbi-
trary, but we shall eventually choose it to be the instan
which we wish to evaluate the equation of motion~1.5!.
These mode functions satisfy the Wronskian condition
04500
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f k~ t; t̂ ! ḟ k* ~ t; t̂ !2 ḟ k~ t; t̂ ! f k* ~ t; t̂ !5 i , ~2.4!

where the overdot indicates differentiation with respect to
first argument,t. They can be expressed as

f k~ t; t̂ !5@2Vk~ t; t̂ !#21/2expF2 i E
t̂

t

Vk~ t8; t̂ !dt8G ~2.5!

where the frequencyVk(t; t̂ ) is the solution of

1

2

V̈k

Vk
2

3

4

V̇k
2

Vk
2

1Vk
25vk

2 ~2.6!

subject to the boundary conditionsVk( t̂ ; t̂ )5vk( t̂ ) and
V̇k( t̂ ; t̂ )5V̈k( t̂ ; t̂ )50. At times close tot̂ , therefore,f k(t; t̂ )
is the positive-energy solution,

f k~ t; t̂ !'@2vk~ t̂ !#21/2exp@2 ivk~ t̂ !~ t2 t̂ !#, ~2.7!

but at other times the frequencyVk(t; t̂ ) does not necessarily
correspond to a single-particle energy. Mode functions
ferred to different reference times are related by a Bogo
bov transformation. To be concrete, letf k

0(t)5 f k(t;0). Then

f k(t; t̂ ) is a linear combination off k
0(t) and f k

0* (t), say

f k(t; t̂ )5A( t̂ ) f k
0(t)1B( t̂ ) f k

0* (t). It is a simple exercise us
ing Eqs.~2.4! and ~2.3! to find the Bogoliubov coefficients
A( t̂ ) and B( t̂ ) and thus the dependence ont̂ of f k(t; t̂ ),
which is

] t̂ f k~ t; t̂ !5 ivk~ t̂ ! f k~ t; t̂ !2
1

2

v̇k~ t̂ !

vk~ t̂ !
f k* ~ t; t̂ !. ~2.8!

The creation and annihilation operators in Eq.~2.1! have
the commutation relation@ak( t̂ ),ak8

† ( t̂ )#5(2p)3d(k2k8).

Their dependence on the reference timet̂ follows from the
fact thatx(t,x) itself is independent oft̂ ; using the fact that
f k(t; t̂ ) depends only onk5uku, we find

] t̂ak~ t̂ !52 ivk~ t̂ !ak~ t̂ !1
1

2

v̇k~ t̂ !

vk~ t̂ !
a2k

† ~ t̂ !. ~2.9!

With this formalism in hand, we evaluate the expectati
value in Eq.~1.5! by choosing the reference timet̂ to be t.
For a spatially homogeneous state, the result is

^x~ t,x!2&5E d3k

~2p!32vk~ t !
@112nk~ t !12 Renk~ t !#,

~2.10!

where the functionsnk(t) andnk(t) are defined by

^ak
†~ t !ak8~ t !&5~2p!3d~k2k8!nk~ t !, ~2.11!

^ak~ t !ak8~ t !&5~2p!3d~k1k8!nk~ t !. ~2.12!
6-2
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The functionsnk(t) can be interpreted as occupation nu
bers for the single-particle modesf k(t; t̂ ) when t is close to
t̂ , while nk(t) measures the off-diagonality of the dens
matrix in the representation defined by these modes.
time dependence of these functions is easily established
~2.9!, and we find

] tnk~ t !5
v̇k~ t !

vk~ t !
Renk~ t !, ~2.13!

] tnk~ t !522ivk~ t !nk~ t !1
v̇k~ t !

2vk~ t !
@112nk~ t !#. ~2.14!

These evolution equations are valid only in the appro
mation thatx(t,x) is a free field. It is argued in@12# that
interactions will give rise to an imaginary part of thex self-
energy, which can be taken into account by replacingvk(t)
with vk(t)2 iGk(t). With the further assumption thatvk(t),
Gk(t), andnk(t) change negligibly on a time scale of ord
Gk(t)

21, integration of Eq.~2.14! yields

Renk~ t !'
v̇k~ t !Gk~ t !vk~ t !

2@vk
2~ t !1Gk

2~ t !#2
@112nk~ t !# ~2.15!

if Ġk is negligible by comparison withv̇k . Since v̇k

5gfḟ/vk , we identify a contribution of the formh I(f)ḟ
in the equation of motion~1.5!, with

h I~f!5
g2f2~ t !

2 E d3k

~2p!3

Gk~ t !

vk~ t !@vk
2~ t !1Gk

2~ t !#2

3@112nk~ t !#. ~2.16!

B. Changing particle energies

To the extent that thex particles can be considered a
free, the energy of this system of particles can be estima
as

E~ t !'E d3k

~2p!3
vk~ t !nk~ t !. ~2.17!

Clearly, this energy is altered by a change in the class
field f(t), which causes a change in the single-particle
ergiesvk(t), and this provides a mechanism whereby ene
may be exchanged. However, a frictional term in the eq
tion of motion forf arises only from an irreversible transfe
of energy. This is a secondary effect, brought about by
fact that a change invk(t) alters the scattering and deca
rates ofx particles, and hence affects the evolution of t
occupation numbersnk(t). A crude argument for estimatin
the friction coefficient that arises from this mechanism w
given by Hosoya and Sakagami@13#, who take the time evo-
lution of nk(t) to be governed by a phenomenological kine
equation of the form

] tnk~ t !522Gk@nk~ t !2nk
eq~ t !#, ~2.18!
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which is sometimes referred to as the relaxation-time
proximation to the Boltzmann equation. It is implied that t
system of particles is always close to an equilibrium st
characterized by a fixed temperatureb21, with the distribu-
tion function

nk
eq~ t !51/@exp~bvk~ t !!21#. ~2.19!

If we once more assume thatnk
eq(t) changes slowly on a time

scaleGk
21 , then Eq.~2.18! can be approximately integrate

to yield nk(t)5nk
eq(t)1dnk(t), with

dnk~ t !'2~2Gk!
21] tn

eq~ t !

'b~2Gk!
21v̇k~ t !neq~ t !@11neq~ t !#, ~2.20!

and we obtain a contribution to the equation of motion~1.5!
of the formh II(f)ḟ, with

h II~f!5
bg2f2~ t !

2 E d3k

~2p!3

neq~ t !@11neq~ t !#

Gkvk
2~ t !

.

~2.21!

C. Linear response theory

The crude arguments given above can in some respec
improved by restricting attention to a situation in which t
system ofx particles is in thermal equilibrium, apart from
small time-dependent perturbation which is treated to lin
order. Different versions of this treatment have been given
Hosoya and Sakagami@13#, by Morikawa and Sasaki@12,14#
and more recently by Berera, Gleiser and Ramos@15–17#. It
is necessary to suppose that over a sufficiently long perio
time, the classical fieldf(t) can be decomposed asf(t)
5f01df(t), wheref0 is constant anddf(t) is small. Cor-
respondingly, the Hamiltonian forx will be decomposed as

H~x,t !5H0~x!1gf0df~ t !E d3xx2~ t,x!1O~df2!,

~2.22!

the second term being treated as a perturbation. To lin
order in this perturbation, the standard Kubo formalism th
yields

^x2~ t,x!&'^x2~ t,x!&eq1 igf0E
2`

t

dt8df~ t8!

3E d3x8^@x2~ t8,x8!,x2~ t,x!#&eq ~2.23!

where ‘‘eq’’ denotes the thermal average in the equilibriu
ensemble determined byH0(x). AlthoughH0(x) has no ex-
plicit time dependence, it still contains interactions, and
remaining thermal averages can be computed systemati
in perturbation theory. To obtain a well-defined answer
the linear response term in Eq.~2.23!, it proves necessary to
effect a partial resummation of thex propagator, in particular
identifying the thermal widthGk as the imaginary part of a
suitable self-energy~as discussed in more detail below!. As
6-3
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first pointed out in Ref.@14#, the net result is a contribution

to the equation of motion~1.5! of the form h(f)ḟ, with
h(f)'h I(f0)1h II(f0), provided thatGk!vk and that
nk(t) in Eq. ~2.16! andneq(t) in Eq. ~2.21! are identified as
the constant equilibrium distribution associated withH0(x).
As in the previous calculations, it is also necessary to ass
that df(t8) varies slowly on a time scale of orderGk

21 and

can be approximated asdf(t8)'ḟ(t)(t82t).

D. Open questions

Each of the calculations outlined above has its own d
ciencies. The type-I analysis of Sec. II A is valid arbitrar
far from equilibrium, but treats interactions in an incomple
and ad hocmanner. The type-II analysis of Sec. II B is e
plicitly restricted to states very close to local equilibrium a
rests on a kinetic equation which is little more than a gue
The linear response treatment of Sec. II C is much more
tematic, insofar as the expectation value in Eq.~2.23! can in
principle be evaluated at any desired order of equilibri
perturbation theory. However, this calculation depends in
essential way on analytic properties of thermal Green’s fu
tions that are meaningful only in a state of exact therm
equilibrium. Specifically, the Wightman functionsG.(t
2t8;x2x8)5^x(t,x)x(t8,x8)&eq and G,(t2t8;x2x8)
5^x(t8,x8)x(t,x)&eq have Fourier transforms which satis
the Kubo-Martin-Schwinger~KMS! condition G.(k0 ,k)
5exp(bk0)G

,(k0,k) ~see, for example, Ref.@18#!. In a state
which departs even slightly from thermal equilibrium, ne
ther the temporal Fourier transform nor the KMS conditi
has any meaning.

The primary question addressed in the remainder of
paper is whether the apparently plausible result of linear
sponse theory is recovered, for a nonequilibrium system
the limit of slow time evolution. This will be possible, a
best, only if we have a local approximation to expectat
values such aŝx2(t,x)&, which are inherently nonlocal in
time @as evidenced by Eq.~2.23! even in the linear respons
approximation#, and devising such an approximation is t
key feature of the analysis that follows.

An important issue that is not addressed in this pa
arises from the expression~2.21!. This contribution to the
friction coefficient depends inversely on the thermal wid
Gk , which is typically of the order of the square of a co
pling constant, and appears to call into question the relia
ity of perturbation theory as applied to this problem. In fa
this is typical of expressions obtained in the application
linear response theory to the estimation of transport coe
cients, and it is known that infinite classes of diagrams c
tribute at each order of perturbation theory@19–21#. How the
requisite resummation might be effected for a nonequi
rium system is beyond the scope of this paper.

III. LOCAL APPROXIMATION FOR SELF-ENERGIES

The exact two-point functions for the quantum fie
x(t,x) will be denoted in a standard notation by
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Gab~ t,t8;k!5E d3xeik•xGab~ t,x;t8,0! ~3.1!

~for a,b51,2) where

G~ t,x;t8,x8!

5S ^T@x~ t,x!x~ t8,x8!#& ^x~ t8,x8!x~ t,x!&

^x~ t,x!x~ t8,x8!& ^T̄@x~ t,x!x~ t8,x8!#&
D .

~3.2!

The self-energiesSab(t,t8;k) can be defined by the Dyson
Schwinger equations

Gab~ t,t8;k!5gab
(F)~ t,t8;k!2 i E dt9dt-gac

(F)~ t,t9;k!

3Scd~ t9,t-;k!Gdb~ t-,t8;k!, ~3.3!

in which the free-field propagatorsgab
(F)(t,t8;k) are solutions

of the equations

D ac
(F)~ t,] t ;k!gcb

(F)~ t,t8;k!5gac
(F)~ t,t8;k!DQ cb

(F)~ t8,] t8 ;k!

52 idabd~ t2t8!, ~3.4!

where the differential operatorD (F)(t,] t ;k) is given by

D (F)5S ] t
21k21m2~ t ! 0

0 2] t
22k22m2~ t !

D ~3.5!

with m2(t)5m21gf2(t). The form of the self-energy ma
trix Sab is constrained by some general considerations. F
the full propagatorsGab(t,t8;k) defined by Eqs.~3.1! and
~3.2! have the properties

Gab~ t,t8;k!5Gba~ t8,t;k!, ~3.6!

G11* ~ t,t8;k!5G22~ t,t8;k!, G12* ~ t,t8;k!5G21~ t,t8;k!.
~3.7!

Second, causality requires the integrand in Eq.~3.3! to van-
ish ~after summing over the closed-time-path indicesc and
d) if either t9 or t- is larger than botht and t8. From these
observations, it is not hard to show that the self-energy m
trix has the general form

S~ t,t8;k!5SL~ t;k!d~ t2t8!1S.~ t,t8;k!u~ t2t8!

1S,~ t,t8;k!u~ t82t ! ~3.8!

with

SL~ t;k!5S bk~ t !2 iak~ t ! iak~ t !

iak~ t ! 2bk~ t !2 iak~ t !
D , ~3.9!

S.~ t,t8;k!5S Ak~ t,t8! Ak* ~ t,t8!

2Ak~ t,t8! 2Ak* ~ t,t8!
D , ~3.10!
6-4
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S,~ t,t8;k!5S Ak~ t8,t ! 2Ak~ t8,t !

Ak* ~ t8,t ! 2Ak* ~ t8,t !
D . ~3.11!

In the local partSL, the functionsak(t) andbk(t) are real. If
x has, for example, a quartic self-couplingx4, or a biqua-
dratic couplingx2j2 to another scalar fieldj, then these
couplings generate Feynman diagrams@for example, diagram
~a! in Fig. 1# that are manifestly local; such diagrams co
tribute tobk(t), but not toak(t). More generally, it will be
advantageous to extract local contributions from non-lo
diagrams, and it is easily seen that a contribution toAk(t,t8)
of the form @bk(t)2 iak(t)#d(t2t8) is equivalent to Eq.
~3.9!, provided that we identifyu(0)5 1

2 . We take ak(t)
50 for now, but will later useak(t) to denote a local con
tribution to the imaginary part ofAk(t,t8).

In fact, the goal of this section is to develop a plausib
Ansatzfor approximating the whole self-energy matrix as
local quantity, containing terms proportional only tod(t
2t8) and ] td(t2t8). To this end, it is convenient to dea
with the commutator and anticommutator~or correlation!
functions

r~ t,t8;k!5 i E d3xeik•x^@x~ t,x!,x~ t8,0!#&

5 i @G21~ t,t8;k!2G12~ t,t8;k!#, ~3.12!

C~ t,t8;k!5
1

2E d3xeik•x^$x~ t,x!,x~ t8,0!%&

5
1

2
@G21~ t,t8;k!1G12~ t,t8;k!# ~3.13!

from which all theGab can be constructed. For these fun
tions, the Dyson-Schwinger equations~3.3! together with Eq.
~3.4! imply the equations of motion~see, for example, Ref
@22#!

@] t
21vk

2~ t !#r~ t,t8;k!52E
t8

t

dt9 Sr~ t,t9;k!r~ t9,t8;k!,

~3.14!

@] t
21vk

2~ t !#C~ t,t8;k!52E
0

t

dt9Sr~ t,t9;k!C~ t9,t8;k!

1E
0

t8
dt9SC~ t,t9;k!r~ t9,t;k!,

~3.15!

with

FIG. 1. Diagrams contributing to the 2-point function oflF4

theory. Diagram~a! gives a local contribution to the self-energ
diagram~c! gives rise to the principal dissipative effects; diagra
~d! represents the contribution ofMab .
04500
-

l

vk
2~ t !5k21m2~ t !1bk~ t !, ~3.16!

Sr~ t,t8;k!5@Ak~ t,t8!1Ak* ~ t,t8!#u~ t2t8!2@Ak~ t8,t !

1Ak* ~ t8,t !#u~ t82t !, ~3.17!

SC~ t,t8;k!52
1

2
i @Ak~ t,t8!2Ak* ~ t,t8!#u~ t2t8!

2
1

2
i @Ak~ t8,t !2Ak* ~ t8,t !#u~ t82t !.

~3.18!

In a state of thermal equilibrium, for whichr(t,t8;k)
5req(t2t8;k), one can define the spectral density

req~v,k!52 i E dt eivtreq~ t;k!. ~3.19!

A strategy frequently adopted in the context of linear
sponse theory is to assume that this spectral density ca
approximated by the Breit-Wigner form

req~v,k!'
4Gkv

~v22Vk
22Gk

2!214Gk
2v2

~3.20!

whereVk andGk are a quasiparticle energy and width to
abstracted from the real and imaginary parts of the s
energies. The numerical calculations of Ref.@22# for a one-
dimensional scalar field theory suggest that such an appr
mation is reasonable~though certainly not exact! for a
nonequilibrium state also. To realize this approximation
the present context, observe that the real-time commut
function is given by the Breit-Wigner approximation as

req~ t2t8;k!'
i

2Vk
@e2 iVk(t2t8)2eiVk(t2t8)#e2Gkut2t8u.

~3.21!

For the non-equilibrium state, we adopt anAnsatzwhich is a
natural generalization of this expression, namelyr(t,t8;k)
'r (0)(t,t8;k), where

r (0)~ t,t8;k!5 i @ f k~ t; t̂ ! f k* ~ t8; t̂ !2 f k* ~ t; t̂ ! f k~ t8, t̂ !#@Qk~ t,t8!

1Qk~ t8,t !#, ~3.22!

Qk~ t,t8!5expF2E
t8

t

dt9Gk~ t9!Gu~ t2t8!, ~3.23!

and f k(t; t̂ ) are the mode functions introduced in Sec. II
except that the quasiparticle energiesvk(t) may include loop
corrections. It is easily checked thatr (0)(t,t8;k) is real and
antisymmetric in its time arguments, as it should be. It a
has the property] tr

(0)(t,t8;k)u t85t51 as required by the
canonical commutator. Finally, as can be verified from E
~2.8!, it is independent of the reference timet̂ , provided that
6-5
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Gk(t) is. The approximate version of the equation of moti
~3.14! obeyed byr (0)(t,t8;k) is conveniently expressed b
writing

r (0)~ t,t8;k!5r (0).~ t,t8;k!u~ t2t8!1r (0),~ t,t8;k!u~ t82t !,
~3.24!

with r (0),(t,t8;k)52r (0).(t8,t;k). By differentiating Eq.
~3.22!, we find

@] t
212Gk~ t !] t1vk

2~ t !1Gk
2~ t !1Ġk~ t !#r (0).~ t,t8;k!50,

~3.25a!

@] t
222Gk~ t !] t1vk

2~ t !1Gk
2~ t !2Ġk~ t !#r (0),~ t,t8;k!50,

~3.25b!

together with the equal-time conditions

] tr
(0).~ t,t8;k!u t85t5] tr

(0),~ t,t8;k!u t85t51. ~3.26!

Comparing these equations with Eq.~3.14!, we see that they
imply a correspondingAnsatzfor the self-energy~3.17!, or
for the real part ofAk(t,t8). It is

ReAk
(0)~ t,t8!5@Gk~ t !Gk~ t8!#1/2] td~ t2t82e!,

~3.27!

where the positive infinitesimale is included to ensure tha
the delta function is satisfied inside the range of integrat
in Eq. ~3.14!.

Given a nonzero quasiparticle widthGk(t), the non-local
self-energies may be expected to decay roughly expon
tially with ut2t8u. For SC(t,t8;k), which is symmetric in its
time arguments, or, equivalently, for the imaginary part
Ak(t,t8), a suitable localAnsatzis

Im Ak
(0)~ t,t8!52ak~ t !d~ t2t8!. ~3.28!

With this approximation, the equation of motion~3.15! for
the correlation function becomes

@] t
212Gk~ t !] t1vk

2~ t !1Gk
2~ t !1Ġk~ t !#C(0)~ t,t8;k!

52ak~ t !r (0)~ t,t8;k!u~ t82t !. ~3.29!

Alternatively, defining

C(0)~ t,t8;k!5C(0).~ t,t8;k!u~ t2t8!

1C(0),~ t,t8;k!u~ t82t !, ~3.30!

with C(0),(t,t8;k)5C(0).(t8,t;k), this may be written as

@] t
212Gk~ t !] t1vk

2~ t !1Gk
2~ t !1Ġk~ t !#C(0).~ t,t8;k!

50, ~3.31a!

@] t
212Gk~ t !] t1vk

2~ t !1Gk
2~ t !1Ġk~ t !#C(0),~ t,t8;k!

52ak~ t !r (0),~ t,t8;k!, ~3.31b!

together with the equal-time condition
04500
n

n-

f

] tC
(0).~ t,t8;k!u t85t5] tC

(0),~ t,t8;k!u t85t . ~3.32!

Finally, we assemble the approximate correlation a
commutator functions into a single complex function,

C(0).~ t,t8,k!2
1

2
ir (0).~ t,t8;k!5hk~ t,t8!, ~3.33a!

C(0),~ t,t8,k!1
1

2
ir (0),~ t,t8;k!5hk~ t8,t !. ~3.33b!

Then, denoting bygab(t,t8;k) the approximation to the
propagator matrix~3.1! that embodies theAnsätze~3.27! and
~3.28!, this matrix can be summarized by

gab~ t,t8;k!5hb~ t,t8;k!u~ t2t8!1ha~ t8,t;k!u~ t82t !,
~3.34!

with h1(t,t8;k)5hk(t,t8) andh2(t,t8;k)5hk* (t,t8). The ap-
proximate equations of motion~3.25! and ~3.31! are

@] t
212Gk~ t !] t1vk

2~ t !1Gk
2~ t !1Ġk~ t !#hk~ t,t8!50,

~3.35!

@] t
21vk

2~ t !1Gk
2~ t !2 iak~ t !#hk~ t8,t !1@2Gk~ t !] t1Ġk~ t !

1 iak~ t !#hk* ~ t8,t !50, ~3.36!

while the equal-time conditions~3.26! and ~3.32! become

] t@hk~ t,t8!2hk~ t8,t !#u t85t52 i ,

] t@hk* ~ t,t8!2hk~ t8,t !#u t85t50. ~3.37!

At this point, theAnsätze ~3.27! and ~3.28! have yielded
local equations of motion for the approximate two-po
functions, but the functionsak(t) and Gk(t) that appear in
these equations and the functionbk(t) that appears in the
single-particle energy~3.16! are unknown. Given a specifi
Lagrangian, approximations to the self-energiesSab can be
obtained—for example, from some version of perturbat
theory. The functionbk(t) can be identified from the loca
part ofSab , but a prescription is needed for extracting fro
the calculatedSr and SC local contributions of the kind
indicated in Eqs.~3.27! and~3.28! so as to identifyGk(t) and
ak(t). This issue will be addressed in Sec. V.

IV. LOCAL KINETIC EQUATIONS

The approximation summarized by Eqs.~3.34!–~3.37! is
equivalent to that obtained from somewhat different cons
erations in Ref.@23#. There it was shown that the gener
solution to the local equations of motion can be expresse
the form

hk~ t,t8!5
1

2
expF2E t

dt9Gk~ t9!G h̃k~ t,t8!, ~4.1!

t8

6-6
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h̃k~ t,t8!5@11Qk~ t8; t̂ !# f k~ t; t̂ ! f k* ~ t8; t̂ !

1@211Qk* ~ t8; t̂ !# f k* ~ t; t̂ ! f k~ t8; t̂ !. ~4.2!

The functionQk(t; t̂ ) is a solution of the equation

F ] t12Gk~ t !12
ḟ k* ~ t; t̂ !

f k* ~ t; t̂ !
G @] t12Gk~ t !#Qk~ t; t̂ !52iak~ t !

~4.3!

subject to the constraint

~] t12Gk!~Qk1Qk* !1 i ~ f kf k* !21~Qk2Qk* !50, ~4.4!

which is preserved by Eq.~4.3!. For our present purpose, it i
useful to observe thatQk(t; t̂ ) can be decomposed as

Qk~ t; t̂ !5Qk
(1)~ t; t̂ !1

f k~ t; t̂ !

f k* ~ t; t̂ !
Qk

(2)~ t; t̂ ! ~4.5!

whereQk
(1)(t; t̂ ) is real. If Qk

(1) and Qk
(2) are taken to obey

the first-order equations

@] t12Gk~ t !#Qk
(1)~ t; t̂ !52 f k~ t; t̂ ! f k* ~ t; t̂ !ak~ t !, ~4.6!

@] t12Gk~ t !#Qk
(2)~ t; t̂ !522 f k*

2~ t; t̂ !ak~ t !, ~4.7!

then both Eqs.~4.3! and~4.4! are satisfied and the decomp
sition ~4.5! is unique.

The propagator functionh̃k(t,t8) is now given by

h̃k~ t,t8!5@11Qk
(1)~ t8; t̂ !# f k~ t; t̂ ! f k* ~ t8; t̂ !

1@211Qk
(1)~ t8; t̂ !# f k* ~ t; t̂ ! f k~ t8; t̂ !

1Qk
(2)~ t8; t̂ ! f k~ t; t̂ ! f k~ t8; t̂ !

1Qk
(2)* ~ t8; t̂ ! f k* ~ t; t̂ ! f k* ~ t8; t̂ !. ~4.8!

It must be independent of the reference timet̂ , and this de-
termines the dependence ont̂ of the functionsQk

( i )(t; t̂ ). We
find

] t̂Qk
(1)~ t; t̂ !5

v̇k~ t̂ !

vk~ t̂ !
ReQk

(2)~ t; t̂ !, ~4.9!

] t̂Qk
(2)~ t; t̂ !522ivk~ t̂ !Qk

(2)~ t; t̂ !

1
v̇k~ t̂ !

vk~ t̂ !
Qk

(1)~ t; t̂ !. ~4.10!

In the equation of motion~1.5!, our approximation to
^x2(t,x)& is

^x2~ t,x!&'E d3k

~2p!3
hk~ t,t ! ~4.11!
04500
and this is conveniently evaluated by choosing the refere
time t̂ to be the timet of interest:

hk~ t,t !5Qk
(1)~ t;t !1ReQk

(2)~ t;t !. ~4.12!

In fact, let us define

nk~ t !5
1

2
@Qk

(1)~ t;t !21#, ~4.13!

nk~ t !5
1

2
Qk

(2)~ t;t !. ~4.14!

We have

hk~ t,t !5@2vk~ t !#21@112nk~ t !12 Renk~ t !# ~4.15!

and will loosely identify the functionsnk(t) andnk(t) with
the quantities denoted by the same symbols in Sec. II.
combining Eqs.~4.6! and~4.7! with Eq. ~4.9! and~4.10!, we
obtain the evolution equations

] tnk~ t !5
ak~ t !

2vk~ t !
2Gk~ t !@112nk~ t !#1

v̇k~ t !

vk~ t !
Renk~ t !,

~4.16!

] tnk~ t !522i @vk~ t !2 iGk~ t !#nk~ t !2
ak~ t !

2vk~ t !

1
v̇k~ t !

2vk~ t !
@112nk~ t !#. ~4.17!

These are clearly generalizations of the free-field equati
~2.13! and ~2.14!, the extra terms involving the function
ak(t) andGk(t) whose exact meanings are explored furth
below. On the other hand, the tentative identification

ak~ t !'2vk~ t !Gk~ t !@112nk
eq~ t !# ~4.18!

~which we will later find to be too naive! brings Eq.~4.16!
into the form

] tnk~ t !'22Gk~ t !@nk~ t !2nk
eq~ t !#1

v̇k~ t !

vk~ t !
Renk~ t !,

~4.19!

which is a generalization of the kinetic equation~2.18! in-
cluding a source term to account for particle creation.

V. DETERMINATION OF LOCAL SELF-ENERGIES

To give substance to the kinetic equations~4.16! and
~4.17!, we need a concrete method of determining the fu
tions bk(t) @which appears in the quasiparticle ener
~3.16!#, ak(t) and Gk(t). A prescription for doing this was
given in @23#; here we describe a refinement of that prescr
tion which is convenient for the problem at hand. The a
proximate two-point functions~3.34! which solve~3.35! and
~3.36! are the exact propagators of an approximate the
defined by the closed-time-path action
6-7
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SCTP
(0) ~x1 ,x2!52

1

2E dtE d3x xa~ t,x!Dab~ t,] t ,“ !xb~ t,x!, ~5.1!

where the differential operatorD is given, after a spatial Fourier transformation, by

D5S ] t
21vk

2~ t !1Gk
2~ t !2 iak~ t ! 2Gk~ t !] t1Ġk~ t !1 iak~ t !

22Gk~ t !] t2Ġk~ t !1 iak~ t ! 2] t
22vk

2~ t !2Gk
2~ t !2 iak~ t !

D . ~5.2!

~An effective action having essentially this structure also describes an open system, coupled to environmental de
freedom, which can be integrated out by the Feynman-Vernon influence functional method@24–26#. Here, one may think of
a single field mode having an environment that consists of all the other modes, but this environment is treated in
consistent manner, rather than being integrated out.! If the complete theory has the actionS(x), and the corresponding
closed-time-path actionSCTP(x1 ,x2)5S(x1)2S(x2), then a partly resummed perturbation expansion can be define
writing

SCTP~x1 ,x2!5SCTP
(0) ~x1 ,x2!1DSCTP~x1 ,x2! ~5.3!

and treatingDSCTP as the perturbation. Included inDSCTP is the counterterm1
2 *dtd3xxaMabxb , with

M~ t,] t ;k!5D~ t,] t ;k!2D (F)~ t,] t ;k!5S bk~ t !1Gk
2~ t !2 iak~ t ! 2Gk~ t !] t1Ġk~ t !1 iak~ t !

22Gk~ t !] t2Ġk~ t !1 iak~ t ! 2bk~ t !2Gk
2~ t !2 iak~ t !

D , ~5.4!
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which accounts for the difference betweengab andgab
(F) . In

the context of this expansion, self-energies are defined
replacinggab

(F) in the Dyson-Schwinger equation~3.3! with
gab . They have the form

Sab~ t,t8;k!5Sab
loop~ t,t8;k!2Mab~ t,] t ;k!d~ t2t8!,

~5.5!

whereS loop consists of loop diagrams in which the propag
tors aregab .

We would like to chooseak(t), bk(t), andGk(t) in such
a way that the propagatorsgab(t,t8;k) approximate the exac
two-point functions as closely as possible. Loosely speak
this means making the self-energies~5.5! as small as pos
sible. More precisely, it is necessary to obtain a local
proximation toSab

loop, which can be cancelled by an appr
priate choice ofMab . To this end, suppose thatt and t8 are
both close to the reference timet̂ . We define time-
translation-invariant propagators which approxima
gab(t,t8;k) in this region by introducing the function

h̄k~ t̂ ,t!5
e2Ĝkt

2v̂k

$@11nk~ t̂ !1nk~ t̂ !#e2 i v̂kt

1@nk~ t̂ !1nk* ~ t̂ !#ei v̂kt%, ~5.6!

wheret5t2t8, v̂k5vk( t̂ ), andĜk5Gk( t̂ ). This function is
obtained from the one defined in~4.1! by taking h̄k( t̂ ,t)
5hk( t̂1t, t̂ ), using the approximation~2.7! for f k(t; t̂ ), and

replacingGk(t9) with Ĝk in the prefactor. The approximat
propagators are then given by
04500
y

-

g,

-

ḡab~ t̂ ,t;k!5h̄b~ t̂ ,t;k!u~t!1h̄a~ t̂ ,2t;k!u~2t!,
~5.7!

where, as in Eq.~3.34!, we use the notationh̄1( t̂ ,t;k)
5h̄k( t̂ ,t) and h̄2( t̂ ,t;k)5h̄k* ( t̂ ,t).

By replacinggab with ḡab in the diagrams that constitut
Sab

loop, we obtain a time-translation invariant approximatio

to these self-energies,S̄ab
loop( t̂ ,t;k), valid whent and t8 are

both close tot̂ , which can be used to determine the functio
ak( t̂ ), bk( t̂ ), andGk( t̂ ). After a Fourier transform ont, our
approximation to the right-hand side of Eq.~5.5! is

E dv

2p
@S̄ab

loop~ t̂ ;v,k!2Mab~ t̂ ,2 iv;k!#e2 ivt. ~5.8!

Although S̄ loop( t̂ ,t;k) is time-translation invariant, it is not
in general, a distribution concentrated att50. In Fourier

transformed language,S̄ loop( t̂ ;v,k) is a non-linear function
of v, while Mab( t̂ ,2 iv;k) @which results from replacing] t
in Eq. ~5.4! with 2 iv] is linear in v. Therefore, the inte-
grand in Eq.~5.8! cannot be made to vanish for all values
v. A reasonable prescription for determiningak( t̂ ), bk( t̂ ),
andGk( t̂ ) is to demand that

Mab~ t̂ ,6 i v̂k ;k!5S̄ab
loop~ t̂ ;7v̂k ,k!. ~5.9!

To the extent that the considerations of Sec. III are valid, t
ensures thatgab(t,t8;k) are the propagators for free quas
particles whose energies and widths are approximately th
determined by the peaks of the true nonequilibrium spec
density. Explicitly, the prescription implied by Eq.~5.9! is
6-8
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ak~ t̂ !52
i

2
@S̄21

loop~ t̂ ;v̂k ,k!1S̄21
loop~ t̂ ;2v̂k ,k!#,

~5.10!

Gk~ t̂ !52
i

4v̂k

@S̄21
loop~ t̂ ;v̂k ,k!2S̄21

loop~ t̂ ;2v̂k ,k!#,

~5.11!

bk~ t̂ !5ReS̄11
loop~ t̂ ;v̂k ,k!2Gk

2~ t̂ !. ~5.12!

VI. FRICTION TERMS IN THE EQUATION OF MOTION

The nature and purpose of the approximations we h
introduced so far can usefully be summarized as follows.
partitioning the closed-time-path action as in Eq.~5.3!, we
obtain a reorganized perturbation theory in which the unp
turbed propagators are thegab defined by Eqs.~3.34!–~3.37!.
Summed to all orders, this perturbation theory would~pre-
sumably! be equivalent to the usual expansion based on
free-particle propagatorsgab

(F) , and this assertion is esse
tially independent of how we choose the functionsak(t),
bk(t), andGk(t) that enter the definition ofgab . However,
the reorganized perturbation theory cannot in practice
summed to all orders. Its utility rests on the possibility
makinggab a better approximation thangab

(F) to the full two-
point functions; in particular, we wish to estimate the exp
tation value ^x2(t,x)& by retaining only the lowest-orde
term as indicated in Eq.~4.11!. To do this, we chooseak(t),
bk(t), and Gk(t) to be local contributions to the true sel
energies, which are thereby resummed in the reorgan
perturbation expansion. For the purpose of extracting th
local contributions~andonly for this purpose! we introduced
the time-translation-invariant propagatorsḡab in Eq. ~5.7!,
which enabled us to formulate the prescription recorded
Eqs.~5.10!–~5.12!. Of course, this prescription can be impl

mented only approximately, by evaluatingS̄ loop to some fi-
nite order of perturbation theory.

In principle, we are now in a position to evaluate t
right-hand sides of the evolution equations~4.16! and~4.17!,
to solve these equations fornk(t) and nk(t) and hence to
estimate the expectation value~4.11! in which we are prin-
cipally interested. There is, however, a practical difficulty.
is that the self-energy on the right-hand side of Eq.~5.11! is
itself a function ofGk , and this equation cannot be solve
analytically to obtain a concrete expression forGk . A nu-
merical solution is feasible, and this is no doubt the best w
of estimating the time evolution, given a specific mod
Here, though, we wish to investigate the circumstances un
which dissipation might be represented by the friction
terms in the equation of motion exhibited in Sec. II. To th
end, we now introduce two further approximations. First,
take the limitGk→0 in the propagatorsḡab used to calculate

S̄ab in Eqs.~5.10!–~5.12!. This is reasonably well justified in
a weakly coupled theory, whereGk is of orderg2, say, and

S̄ab itself contains an overall factor ofg2. Second, we will
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also setnk50 in ḡab . A justification for this step will appear
below @see Eq.~6.7!#.

With these approximations, the propagatorsḡab assume
the form familiar from the equilibrium theory~see, for ex-
ample, Ref.@18#!. In particular, the temporal Fourier trans
form of ḡ12 is

ḡ21~ t̂ ;v,k!5
p

v̂k

$@11nk~ t̂ !#d~v2v̂k!1nk~ t̂ !d~v1v̂k!%.

~6.1!

As a standard example, we consider in what follows thelF4

theory, whose Lagrangian density consists of the first th
terms of Eq.~1.2!, identifyingx as the fluctuation fieldw and
the couplingg asg5l/2. The 2-point functions forx con-
tain, among others, the diagrams shown in Fig. 1. At 2-lo
order, with ḡ21 given by Eq.~6.1!, the only contribution to

S̄21 comes from diagram~c!. @The 1-loop diagram~b! con-
tains products ofd functions which cannot be simultaneous
satisfied. It would give an off-shell contribution if we were
retain a non-zero widthGk in ḡ21.] Evaluating this diagram,
we find from Eqs.~5.10! and ~5.11!

ak~ t̂ !5
l2

32~2p!5E d3k1d3k2d3k3

3
d~v̂k1

1v̂k2
2v̂k3

2v̂k!d~k11k22k32k!

v̂k1
v̂k2

v̂k3

3@~11n̂k1
!~11n̂k2

!n̂k3
1n̂k1

n̂k2
~11n̂k3

!#,

~6.2!

Gk~ t̂ !5
l2

64~2p!5E d3k1d3k2d3k3

3
d~v̂k1

1v̂k2
2v̂k3

2v̂k!d~k11k22k32k!

v̂kv̂k1
v̂k2

v̂k3

3@~11n̂k1
!~11n̂k2

!n̂k3
2n̂k1

n̂k2
~11n̂k3

!#

~6.3!

wheren̂ki
5nki

( t̂ ). In particular, the quantity

Sk~ t̂ !5
ak~ t̂ !

2v̂k

2Gk~ t̂ !@112nk~ t̂ !#

5
l2

32~2p!5E d3k1d3k2d3k3

3
d~v̂k1

1v̂k2
2v̂k3

2v̂k!d~k11k22k32k!

v̂kv̂k1
v̂k2

v̂k3

3@ n̂k1
n̂k2

~11n̂k3
!~11n̂k!2~11n̂k1

!

3~11n̂k2
!n̂k3

n̂k# ~6.4!
6-9
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which appears in the kinetic equation~4.16! is precisely the
2-particle elastic scattering integral that ought to appear
genuine Boltzmann equation.~More generally, since thelF4

theory has no conserved particle number, inelastic contr
tions should also be expected, and these will indeed appe
we extend the evaluation of the self-energies beyond 2-l
order.!

With these explicit expressions forak(t) and Gk(t), we
now have concrete forms for the evolution equations~4.16!
and ~4.17!. These evolution equations are local in time, b
their solutions will be non-local. To extract contributions

^x2(t,x)& which are proportional toḟ(t), we must resort to
some adiabatic approximation of the kind considered in S
II. To do this systematically, we rewrite the evolution equ
tions as

e] tnk~ t !5āk~ t !2Gk~ t !@112nk~ t !#1e
v̇k~ t !

vk~ t !
Renk~ t !,

~6.5!

e] tnk~ t !522i @vk~ t !2 iGk~ t !#nk~ t !2āk~ t !

1e
v̇k~ t !

2vk~ t !
@112nk~ t !#, ~6.6!

whereāk(t)5ak(t)/2vk(t) and we have introduced a forma
expansion parametere multiplying terms with time deriva-
tives. By expanding in powers ofe and finally settinge
51, we generate expansions ofnk(t) andnk(t) in powers of
the time derivatives off(t). On substituting these expan
sions in the expression~4.11! for ^x2(t,x)&, the next-to-
leading terms, proportional toḟ, yield an estimate of the
friction coefficienth(f).

At leading order, Eq.~6.5! reduces to the equationSk(t)
50 whose solution is well-known to be the Bose-Einste
distributionnk(t)5nk

eq(t) for some temperatureb21. @We do
not allow for a non-zero chemical potential, because the
elastic contributions toSk(t) expected at higher orders o
perturbation theory would constrain the equilibrium chem
cal potential to vanish.# The corresponding solution of Eq
~6.6! is

nk
eq~ t !5 i āk

eq/2@vk~ t !2 iGk
eq~ t !# ~6.7!

whereāeq andGk
eq are obtained from Eqs.~6.2! and~6.3! by

settingnk5nk
eq. We see that, near equilibrium,nk is smaller

thannk by a factor of orderGk /vk , so settingnk50 in the
calculation of the self-energies should be a fair approxim
tion.

At next-to-leading order, we setnk'nk
eq1ednk and nk

'nk
eq1ednk . The linear-response approximation toh(f)

@the sum of Eqs.~2.16! and~2.21!# can be recovered only a
the expense of further approximations. The first is to repl
Gk(n) with Gk

eq5Gk(n
eq) and similarly forāk(n): that is, to

ignore the fluctuations in these quantities brought about
fluctuations innk(t). The second~when calculating] tn

eq) is
to take the time dependence ofGk

eq(t) to be Gk
eq
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5const/vk(t). These approximations amount to replaci
the self-energies on the right-hand sides of Eqs.~5.10! and
~5.11! with constant equilibrium values. With the addition
approximation thatGk!vk , we find

2~dnk1dnk!'2
] tnk

eq

Gk
eq

1
v̇kGk

eq~112neq!

vk
3

, ~6.8!

which reproduces the sum of Eqs.~2.15! and ~2.20!.
It is not surprising that the above strategy agrees w

linear response theory only whenGk!vk . This indicates
only that the methods available for resumming self-energ
in the equilibrium and nonequilibrium theories differ beyon
the leading order inGk /vk . The fact that we can recover th
linear response result only by ignoring the fluctuations
self-energies induced by those in thenk is, however, rather
more significant, as we discover by attempting to solve
next-to-leading order equations without this extra appro
mation. To simplify matters, we continue to retain only t
leading terms inGk /vk , in which case the ordere equations
are

Rednk'
1

2vk
2 F2vk] t~ Im nk

eq!1
v̇kGk

eq~112nk
eq!

2vk
G ,

~6.9!

E
0

`

dk8K~k,k8!dnk85] tnk
eq2

v̇k

vk
Renk

eq, ~6.10!

where

K~k,k8!5
dSk

dnk8
U

n5neq

. ~6.11!

While the first of these givesdnk explicitly, the second is an
integral equation to be solved fordnk . It turns out thatthis
equation has no solution. The reason is that the scatterin
processes described bySk conserve both particle number an
energy. One easily finds that this implies the two sum ru

E
0

`

dkk2K~k,k8!5E
0

`

dkk2vkK~k,k8!50 ~6.12!

valid for all k8. The source terms on the right-hand side
Eq. ~6.10! do not respect these sum rules, so the equatio
not self-consistent and has, in principle, no solution.
higher orders of perturbation theory, particle number is
conserved; only the energy sum rule remains, but tha
sufficient to invalidate Eq.~6.10!.

It is important to emphasize that the evolution equat
~6.5! with e51 is perfectly sound: it is a Boltzmann equatio
with a source term, which presumably has a satisfactory
lution for nk(t). What we have found is that this solutio
does not have a time-derivative expansion. That is, it can
be expressed asnk(t)5nk

(0)(f)1nk
(1)(f)ḟ1 . . . . Nor,

therefore, can the equation of motion~1.5!. Our principal
conclusion, then, is thatthe friction coefficienth(f) does
6-10
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not exist. As it stands, this conclusion rests on an appro
mate treatment of a particular model, thelF4 theory. It is
likely, however, to be quite generic, as we discuss in Sec.

VII. NUMERICAL INVESTIGATION

Although we have just reached the conclusion that
friction coefficienth(f) does not exist, we have also se
that the linear-response result forh(f) can be recovered by
ignoring fluctuations in the self-energies—an approximat
that, at first sight, would seem not to be severe for a sys
reasonably close to equilibrium. Thus, althoughh(f) for-
mally does not exist, the local equation of motion~1.1! with
h(f) as given by linear response theory might be a reas
able approximation to the true equation of motion. We ha
obtained numerical results that may bear on this question
taking advantage of the following circumstance. A d
cretized and truncated version of Eq.~6.10! that one might
attempt to solve numerically is

(
k850

kmax

Kk,k8dnk85bk , ~7.1!

wherebk stands for the source terms on the right-hand s
Because the kernelKk,k8 now involves only values ofk and
k8 up to the cutoff valuekmax, it does not exactly obey the
sum-rule constraints~6.12! and the truncated equation ma
have a solution.

In fact, we find that it has a very well defined solution,
illustrated in Fig. 2, where the quantity plotted isdx

5(4m3c/lfḟ)dn and we define the naturally occurring co
pling constantc5l2p2/64(2p)5. The example shown in
Fig. 2 is forbmw5c51. The kernelKk,k8 decays rapidly for
k@k8, but is not small whenk&k8. Thus, when bothk and
k8 are bounded by the cutoffkmax, the sum rules may be
verified for k8!kmax, but they fail for larger values ofk8.
Figure 3 illustrates this for the energy sum rule, withbmw

51 and a cutoffkmax530mw . The circles in this figure
represent the integral*0

kmaxdk k2vkK(k,k8), while the
squares show, for comparison, the quant
0.1*0

kmaxdk k2vkuK(k,k8)u. The sourcebk in Eq. ~7.1! be-

FIG. 2. The solution of Eq.~7.1! for bmw51 andc51.
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comes very small whenk is greater than a few timesmw , and
Fig. 2 shows that the same is true of the solutiondnk . In
effect, we see that, regardless of the cutoff, only a ‘‘se
truncated’’ kernel, withk andk8 restricted to values smalle
than a few timesmw , contributes significantly to the solutio
of Eq. ~7.1!. The fact that this ‘‘self-truncated’’ kernel doe
not in itself respect the sum rules accounts for the existe
of a well defined solution and, because of the self-truncat
we are able to verify that this solution converges to a cuto
independent form askmax is increased.

Formally, we can use this numerical solution in Eq.~4.11!
to obtain an estimate for the friction coefficienth. The result
of doing this for a range of coupling strengths is shown
Fig. 4, where the quantity plotted iss5hmw /(128pf2).
Figure 5 shows the ratioh/hLR , wherehLR is the friction
coefficient calculated in linear response theory from E
~2.16! and ~2.21! in the limit Gk!vk . ~The haphazard ap
pearance of this figure results from the different depend
cies ofh I andh II on temperature and coupling strength.! The
formal quantity shown in Fig. 4 has negative values at we
coupling~where our perturbative methods are most likely
make sense!, and clearly cannot be interpreted as a genu
friction coefficient. This, of course, is consistent with o
earlier argument that the friction coefficient is not well d

FIG. 3. Illustration of the energy sum rule~6.12!; the quantities
plotted are explained in the text.

FIG. 4. Friction coefficient calculated from the solution
Eq. ~7.1!.
6-11
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fined. The conclusion is that nonequilibrium methods
needed to investigate the real effect of dissipation in
equation of motion~1.3!, even for a system that may be qui
close to equilibrium. One approximate method of doing t
is to integrate this equation of motion simultaneously w
the evolution equations~4.16! and ~4.17! and we plan to
report on such calculations in future work. The large discr
ancies apparent in Fig. 5 suggest that quantitatively sign
cant deviations from the predictions of linear response the
may be expected.

VIII. FRICTION ARISING FROM FERMIONS

We comment briefly on the frictional effect of a Yukaw
coupling to fermions. Non-equilibrium perturbation theo
for fermions is discussed in Ref.@27#, to which we refer the
reader for the somewhat cumbersome details. With appr
mations analogous to those described above for scalar fi
we find for the relevant term in Eq.~1.3!

^c̄~ t,x!c~ t,x!&54E d3k

~2p!32vk
(c) @mc~2nk

(c)21!

12ukuRenk
(c)# ~8.1!

wherenk
(c)(t) andnk

(c)(t) are the fermionic analogues of th
functions nk(t) and nk(t). If the fermions have a mas
mc(t), 1

2 mw(t), then the on-shell processesw
c̄c are ki-
nematically allowed. We then obtain kinetic equations of
form

] tnk
(c)52Gk

(c)~2nk
(c)21!1

vk
(c)

uku
ak

(c)1
v̇k

(c)

vk
(c)

uku
mc

Renk
(c) ,

~8.2!

] tnk
(c)522i ~vk

(c)2 iGk
(c)!nk

(c)2S vk
(c)2mc

vk
(c) D ak

(c)

2
v̇k

(c)

2vk
(c)

uku
mc

~2nk
(c)21! ~8.3!

FIG. 5. Ratio of the formal friction coefficient of Fig. 4 to tha
calculated from linear response theory.
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where ak
(c) and Gk

(c) are extracted as in Eqs.~5.10! and
~5.11! from the fermion self-energy. Naturally, the scal
self-energy now acquires a contribution from a fermion loo
Taking this into account, the kinetic equations~4.16! and
~8.2! are a consistent pair of Boltzmann equations, in wh
the scattering integrals preserve the particle number 2Nw

1Nc @we have derived Eqs.~8.2! and ~8.3! only for zero
chemical potential, in which case fermions and antifermio
are equally abundant andNc means the total number of thes
particles# and the total energy of scalar and fermionic pa
ticles. These conservation laws~or, at higher orders, just en
ergy conservation! again imply that neither the solution o
the Boltzmann equations nor the equation of motion forf
has a time-derivative expansion.

IX. DISCUSSION

The equation of motion~1.3! is inherently non-local in
time; it represents a non-Markovian process in which evo
tion depends on the historyf(t8) at all times prior to the
time t of interest. When the state of the system is not too
from thermal equilibrium, it is tempting to suppose that
local equation of motion~1.1! might be approximately valid,
the friction coefficient being estimated from equilibrium st
tistical mechanics. In this paper, we have examined the
proximations needed to extract a local equation of mot
from the non-local one, and concluded that this cannot in f
be done. Under suitable conditions@the principal require-
ment is the existence of a relaxation timeGk

21 short enough
to ensure that correlations decay rapidly compared with
characteristic time scale on whichf(t) changes# the expec-
tation values in Eq.~1.3! can be approximated by local ex
pressions of the form~4.11! or ~8.1!, in which the auxiliary
functions nk(t) and nk(t) themselves obey local kineti
equations, such as Eqs.~4.16!, ~4.17!, ~8.2!, and~8.3!. How-
ever, this set of local evolution equations can be redu
further to a single local equation forf(t) only if the kinetic
equations admit a solution in the form of a time-derivati
expansion—and we find that they do not. The obstruct
arises from fluctuations in self-energies, of which the eq
librium theory takes no account.

Although our explicit computations focussed on the si
plest example of a single, self-coupled scalar field, we h
indicated in Secs. I and VIII that the situation is quite g
neric. The above conclusion emerges from an approxim
treatment of nonequilibrium dynamics, which can hardly
regarded as a rigorous proof. It would seem that some
proximation more or less equivalent to the localAnsätze
~3.27! and ~3.28! for self-energies is an inevitable step t
ward the derivation of a local equation of motion; witho
some such approximation, the expectation values in Eq.~1.3!
remain non-Markovian and,a fortiori, cannot be represente
by a local friction term. A subsidiary approximation made
Sec. VI was to set the quasiparticle widthGk to zero for the
purposes of estimating self-energies. Although this appro
mation greatly simplified our analytical analysis, it can a
should be avoided in a comprehensive numerical study.
effect of this approximation is to restrict the scattering p
cesses in Boltzmann equations to on-shell processes. N
6-12
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the inclusion of off-shell processes might well invalidate t
sum rules~6.12! from which we concluded that the frictio
coefficient h does not exist. Formally, then, by includin
off-shell processes, we might after all be able to obtain
time-derivative expansion of the equation of motion. Ho
ever, the friction coefficient implied by this expansion wou
be quantitatively similar to that obtained in Sec. VII. At we
coupling, it is negative~and thus physically unacceptabl!
and quite different from the one yielded by linear respon
theory. At strong coupling, the perturbative methods e
ployed both here and in linear response theory are quan
tively, and perhaps also qualitatively, unreliable. Our pra
cal conclusion, then, is that even for a system quite clos
thermal equilibrium the local equation of motion~1.1! does
not furnish a reliable account of dissipation, whether or
off-shell processes serve to recover a formal time-deriva
expansion. A thorough numerical investigation of the no
equilibrium evolution is therefore essential. At weak co
pling, a numerical implementation of the evolution equatio
developed here is quite widely applicable, and may well
quantitatively adequate, though recently developed meth
based on the 2PI-1/N formalism@22,28# are probably more
powerful in situations where they can be applied.

Finally, we observe that the analysis given here applie
k

v.

D

04500
a
-

e
-
a-
i-
to

t
e
-
-
s
e
ds

to

quantum field theory in an expanding spacetime with o
minor modifications. In a spatially homogeneous Roberts
Walker spacetime, the field redefinitionsF→a21F and c
→a23/2c, wherea(t) is the scale factor, serve to cast th
theories we deal with in the form of a Minkowski-spac
theory with time-dependent masses, provided thatt is taken
as the conformal time coordinate. In the case of a spinor fi
or a conformally coupled scalar field, these masses are g
simply by m(t)5a(t)m. Consequently, the formalism w
have constructed changes only insofar as the masses in
~1.4! depend ont through bothf(t) and a(t). This addi-
tional time dependence modifies evolution equations in
way that may be cosmologically important. However, its n
effect on, say, Eqs.~6.9! and~6.10! is just that the right-hand
sides of these equation contain terms proportional toȧ in
addition to those proportional toḟ. These induce additiona
contributions todnk anddnk , but do not affect our conclu-
sions concerning the terms proportional toḟ.
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