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We calculate the full 1-loop corrections to the low energy coupling of a bulk gauge boson in a sliceof AdS
which are induced by generic 5-dimensional scalar, Dirac fermion, and vector fields with arZisrags,
orbifold boundary conditions. In the supersymmetric limit, our results correctly reproduce the results obtained
by an independent method based on 4-dimensional effective supergravity. This provides a nontrivial check of
our results and assures the regularization scheme independence of the results.
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[. INTRODUCTION It has been noted recentl2—7] that one can achieve the
gauge unification, while still solving the hierarchy problem,
Models with extra dimensions have provided new insightwithin the 5D effective field theory on AdSf the SM gauge
into the large scale hierarchy between the weak sbhjg  bosons propagate in 5D bulk spacetime. In such a case, the
~10% GeV and the Planck scaM p;~10'® GeV. In this re-  size of quantum corrections calculable within the model is
gard, the Randall-Sundrum mod&SY) is particularly inter-
esting as it explains the weak to Planck scale ratio using the

warped 5D geometrj/l]: A =0(1), 4

1 2 2

—g :O(an(MPI/MW)
ds?=GyndxMdxN=e 2Rvlg  dx*dx”+R2dy?, (1)
as in the case of conventional 4D grand unified theories
where—m<ys<m, ks the AdS curvature anRis the or-  (GUT). This allows that the observed differences of gauge
bifold radius. In this Spacetime background, a4-dimen5i0na&;0up|ings are exp|ained in terms of quantum corrections
(4D) graviton is localized near the UV braneyt 0 whose  which are calculable within the model.
cutoff mass scal®y, is of the order of the 5D Planck scale.  Calculation of the 1-loop corrections to gauge coupling in
On the other hand, in the original RS1 model, all the stanads; was first attempted if2] for a GUT model in which all
dard modelSM) fields are assumed to be confined on the IRgauge-charged matter fields are confined on the UV brane.
brane aty= whose cutoff scal g~e~ "™ Myy. Then,  The computation involves a Pauli-Villars regulator with
with a moderately large value &fR(~12), the model can regulator mass\ p,<k, which could catch only the correc-
generate the large scale hierarchyp /My ~Myy /Mg tions at scales significantly belok In [3], a momentum
~10' without any severe fine-tuning of the fundamentalcutoff depending on the position in the 5th dimension was
parameters. proposed to regulate the 1-loop corrections. Though intu-
An apparent drawback of the original RS1 model is thatitively sensible, it is difficult to isolate the regulator-

one has to abandon the attractive possibility that the SMndependent part from the regulator-dependent total correc-
gauge couplings\;ﬁ1 (a=1,2,3) are unified at a high energy tions in this regularization, which makes the interpretation of
scale througtthe quantum corrections calculable within the the results unclear. Ip,7], the 1-loop corrections have been
model Experimental data show thgﬁ1 at My differs from  computed for generic supersymmetric gauge theory onsAdS

each other by order unity: using the gauged (1)g symmetry and chiral anomaly in 5D
supergravity(SUGRA) and also the known properties of
1 1 gauge couplings in 4D effective SUGRA. In this approach,
5 - =0(1) (a#b). (20 one could obtain the 1-loop correctiormcluding those
ga(Mw)  Gp(Mw) from scales betweek and the 5D cutoff scale\>k) in

obviously regulator-independent manner. [I5,6], 1-loop
corrections in 5D scalar QED on Ag®ave been computed
(using dimensional regularization and also Pauli-Villars

regularization and the results are nicely interpreted in terms
=o( 2), 3

On the other hand, the size of quantum corrections ¢g 1/

which are calculable within the RS1 model is
A 1
gg In this paper, we present the full 1-loop corrections to the
low energy coupling of bulk gauge bosons in a slice of AdS
so the RS1 model does not give any insight on why the SMvhich are induced by generic 5D scalar, Dirac fermion and
gauge couplings dtly differ from each other by order unity. vector fields with arbitrary, x Z; orbifold boundary condi-
tions. To be explicit, we adopt dimensional regularization
[8], but the results should be independent of the used regu-
*Electronic address: kchoi@muon.kaist.ac.kr larization scheme as they correspond to the scheme-
"Electronic address: iwkim@muon.kaist.ac.kr independent corrections calculable within 5D effective field

of AdS and conformal field theor§CFT) correspondence.
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theory. When applied to the supersymmetric d&#&0], our ~ XZ} parity which are charged for the gauge fields with
results correctly reproduce the expressions which are ob= Z.=1. Note that the brane mass of the scalar field at
tained in a completely independent approach based on 4R g (y= 1) is relevant only wherZ ,=1 (Zy=1).

effective SUGRA. This provides a nontrivial check of our  the KK spectrum of bulk fields on a slice of Ag®as

results, and also assures the scheme independence of the figan discussed in detail ja0]. It is rather straightforward to
sults. We also note that the subtraction scales of log d'VergeneraIize the analysis 10] to the field with arbitranyZ,

gences at two orbifc_;ldk;ixed_pc_)ints, i.g=0 and, differ X Z5 parity. A generic 5D fieldb can be decomposed as
by the warp factore™ ™. This is physically expected, and

can be confirmed by comparing the results with those of
Pauli-Villars regularization as well as with the results of the CI)(x,y)=E d,(x)fL(y),
4D SUGRA calculation.

The organization of this paper is as follows. In Sec. I, we
set up the notations for 5D gauge theory on a slice of AdS
including the Kaluza-Klein(KK) analysis for generic 5D _ askRY| — skRy| 22812 16 — R2a2KRlY| w2
scalar, Dirac fermion, and vector fields with arbitrafy [—e (e )+ RKMG ], =R m”f”(g)
X Z5 orbifold boundary conditions. In Sec. Ill, we present
our main results, i.e., 1-loop gauge couplings in AdS  for the KK mass eigenvaluen,. Heres={2,4,1} and the
duced by generic 5D fields, obtained using the backgroungylk mass parameters
field method with dimensional regularization. In Sec. IV, we
consider the supersymmetric limit in order to confirm that M2 =10.a.c(c+1 for d={A e 2kRly|
our results correctly reproduce the results from the 4D {0.a.cc=1)} {Au.é, wL’R}'(g)
SUGRA calculation, and conclude in Sec. V.

where the KK wave functiori,, satisfies

This determined, to be
Il. GAUGE THEORY ON A SLICE OF AdS 5

The model we study is a 5D gauge theory defined on a fn(y):eskﬂy/Z[\]a(%eleyl
slice of AdS; with spacetime metri¢l), containing generic k

gauge-charged 5D scalar, fermion and vector fields with ar- (10
bitrary Z, X Z; boundary conditions. The Lagrangian is given

by

m
+ ba(mn)Ya(TnekRW)

where

1 1 a=(s/2)>+ M3, (12)
~ 7oz PN 2 DueDMé

Ysa To determine the corresponding KK mass spectrum, one
needs to impose the orbifold boundary condition. Parity-even
(5) conditions under the reflection gt=0 or 7 leads to

f d*xdyy—G

1 —
— 5 Mg =ig(y"Dy—m,)y

df,
whereD), is the covariant derivative containing the gauge d_y:rkan at y=0 or m, (12
connections as well as the spin connection of Ad®e pa-
rametrize the masses of scalar and fermion fields as for the brane mass parameter

2k — - — —2kR
G =ak>+ = [bo3(y) ~b,5(y—m)], m,=cke(y), r={0bo 0 by T} for (A, g By o)

©) (13
Then using Eqs(10) and(12), one finds

where e(y)=yl/|y|, by, andb, are the brane mass param-
eters aty=0 andy=, respectively, ana is the fermion s My o\ My o~ (M,
kink mass parameter. The 5D fields in the model can have ( r)Ja(TekRy + TekRyJ; TekRy)
arbitrary Z, X Z; orbifold boundary conditions, b,(m,)=— ,

E—r)Y M ery| 4 T g | M gy

d(=Y)=Zyd(y), S(—y+m)=Zyp(y+m), 2 | k k a| K

(14)
W=Y)=Zyysy), =y +m)=Z)ysi(y+m), 3
wherey=0 or 7. Parity-odd conditions under the reflection
AL(=Y)=ZA5(Y), AL(—y+m)=ZAL(y+m), (7) aty=0 or = leads to

with Zg==*1 andZy= =1 for ®={¢,¢,A};}. Though we f,=0 at y=0 or m, (15)
are interested in the low energy coupling /@1 having Z,
=Z/=1, there can be 5D vector fields having othgy yielding
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( N kR~> Ill. ONE LOOP EFFECTIVE COUPLINGS

Jo| Y

b o “\ k 16 In this section, we calculate the 1-loop effective coupling

o(Mn) = _ (16) of gauge field zero mode in AdSising the background field
Yo ?e Y method[11] with dimensional regularizatiof8]. Let us first

describe the calculation scheme. We split the gauge field as

With the above results, the KK spectrum of the 5D field
® can be determined by the so-calléd function N(q)
=N(—q) which has simple zeros agt= +m,#0:

A2 =A% +AZ (21)

WhereK‘,i,I denotes the background gauge field in the gauge

N(m,)=0. (17 A2=0 andAj is the quantum fluctuation. We choose the

. auge fixing term
If there exists a massless mode,has a double zero at gaug g

=0. For later use, here we summarize bhé&unctions for all 1 5
Z,XZ; boundary conditions of the corresponding 5D field. Ty d°x\/—G ez"R'y'g”“VDMA;‘}
Let ro denote the brane mass parameteyat andr . the 2054
brane mass parameter at=7. The N function for JKR 2
, . - e lyl -
(Zp,Z2¢)=(+,7+) is given by + = ay(e~ 2RYIA) (22)
N _J[S a) d.,(49 S v q -
s+ (@=) 57 To]dal 1 | i el 1 (1|27 Tw| Yol T whereD , is defined by the background gauge fialfj. The

corresponding ghost action is given by

f d°x\—G
R2
q
i) s 23
whereD2=g“”DMDy. It is then straightforward to find the

wher.e.T=k'e*”kR. As for the fields with other boundary fojiowing gauge-fixed actions which are quadratichf, A2
conditions, i.e., Z¢p,Zg)=(+,=),(=,+).(=, =), we find  gnqca.

2kRly|

gaay( e 2kR]y| ayga)

RN

SullEagiet

e2kR\y\EaD2§a+

a,,
+EYQ

z‘fo)Ya [

aj|(s a,9.,(9 ~ o~ ———
N (@) =Ye ?) (E_ro)‘]a(i +EJQ(E” f d°x ) — 2RAEDZA%H+ AR fop, F 2 APHACY
Os5a
aj|/s ay.9.,,(9
—JJ =5~ Sl T 2 ~ 2 o
J“(T> (2 rO)Y“(k kY“(k”’ — 2ALa, (e g A% — e KRYAIDZAZ
ajl(s a| . a., (4
=J [ =- B VAN 2 ~ ~
N—+(Q) Ja( k)|:(2 rW)Ya T +TY(1<T)} _%e_szlylAg(g)zl(e_szlwAg)
s
_Y“(E) (E_r”)‘]“ g +$J;($” 2k Zan2 1 2k
+e 2RYIR{ 3D £ty (e Rvg et |.
q a q q
=J,| = =|-3,| = = 24
NPT LT DT "

. . . The action of scalar and fermion fields can be written as
As we will see in the next section, one can choose an

appropriate gauge fixing to make sure that the KK spectrum B 1 1 B
of A; is determined by thal function of 5D scalar fieldp f d°x| e ZkRMR§¢ D?+ Qezm‘y“?ye KR,
with a specific mass:
4k — e 2kRlYIm2 | 4 — e~ 3KRYIR( U | v#
Na, =Ny for  ma=—ak2+ = (8(y)— (y—m)). e m¢)¢ e TR D i

(20 — _ — — .
+ YRiy*D ) —€ ARV (g i Y2 dyhrt el Yoy i)
In fact, one needs to know the asymtotic bahaviors of these

N functions at|q|—« to regulate the UV divergence and DA 4kRIYlm (7 o

. : . . —iRe YIm +

also the behaviors atj|—0 to find the 1-loop couplings in (it dri)
the IR limit. Some properties of thd functions including B
those asymptotic behaviors are summarized in Appendix ANote that the quadratic action £ has the same form as the

. (25

045005-3



K. CHOI AND I.-W. KIM PHYSICAL REVIEW D 67, 045005 (2003

action of 5D real scalag with mf/,z—4k2+4kR*l[ o(y) 1
— 8(y— )], justifying the relation(20). No= 54 Ta(@+ 1) T Ta( @)~ Ta(d-+) ~Tal¢p--)]
One-loop effective action of the gauge field zero mode

can be obtained by integrating out all quantum fluctuation 23
fields at 1-loop order. This procedure yields - ﬂ[Ta(AH)+Ta(A+—)_Ta(A—+)_Ta(A——)]'
7R 1
seff:f d'x| = = F2'F2 | +T A, ]+ T [A,] M=ol Ta( @)~ Ta(@r )+ Ta(@— 1) ~Ta($- )]
495, "
23
+UALALL (26) ~oal Ta(As ) = Ta(As )+ Ta(A-s) ~ Ta(A- )],
where the first term is obviously the tree level action, and (29)

ry, 'y, andI', represent the 1-loop corrections due to the

loops of ¢, ¢, and A% (and also the ghost field&?,&?),
respectively:

where Ta(<I>)=Tr(T§) for the gauge group representation
given by®, ¢,, (z,27==) is a 5D real scalar field with
Z,XZ; parity (z,z'), andA,, is a 5D real vector field.

With the UV divergences given by E¢28), the low en-

1 ergy effective gauge coupling can be written as
T 4= = 5TryIn(= D2+ M2(4)), & gauge cotping

! ! TRRLY g ! + !
= a
1 L gi(pkR) | gd(A) 87 6a(A)  gha(A)
iT,==Tr,In(=D*+M=(¢)+F ,, 40,
v e Ao+, 1.
o In A +FAa(p,k,R)+O(1/A)
T 7T
1
ifp=— ST In(=D?+M*(A,)+F,,J4"), (30)

1 wherep is the 4D momentum of the external gauge boson
= 5TragIn(= D2+M%(Ag))+TryzIn(—~D?+M?%(£)).  zero modegs,(A) andg?,(A) denote the bare brane gauge
couplings at the orbifold fixed pointg=0 andy=, re-
(27) spectively, andO(1/A) stands for the part suppressed by
1/A. Here the conventional momentum running and also the

Here we replace the background gauge fﬁiﬂby unbarred  finite KK thrgsholg correctiong are encodedz_ig. The bare
A2 andM%(®) is the mass-square operator whose eigenPran€é couplinggp,(A) andgz,(A) can be interpreted as

M 1 . . . . .
valuesmﬁ are determined by the zeros of the correspondin he Wilsonian brane couplings & in the metnp Ll Of.
vn [see Eqg.(1)]. However, when measured in the metric

. i : .
N function.J{*” is the 4D Lorentz spin generator normalized frame of 4D massless gravitmvzeZKR‘y|Gﬂv, they should

as  trQf"I77)=C(j)(9"’9""—~g"’g"") where C(j)  pe interpreted as the Wilsonian couplings at different scales:

=(0,1,2) for (=0,1/2,1). o _ g2.(A) at the scaleA and g2,(A) at the rescaled scale
The above 1-loop effective action is divergent, so it needg,~7kRA  One can then assume t%(l\) and92 (A) are
- ma

to be regulated. As in the case of a flat 5D orbifold, the UV ot order 872. under which
divergence structure of 5D gauge theory on Ai#Sgiven by ’
! TR L AL PKRINAN+O| —
- = =5 - 5 p1 H il n 5|
J=a| ApkR) g3 87 " 82
_j d5x -G 32;3AF§ANFaMN ga(p ) gSa ™ ™ (31)

where  162,=1/g2,+ y.A/87° and A,=A,+ (Ao
+\,)InA. Note that 1g2, represents the 5D bare coupling
which isnot calculable within 5D effective field theoryBut
(28) it would be determined by the UV dynamics at scales above
A.) On the other handA, represents the corrections from
where the coefficient of linear divergence,] is highly sen-  scales below\ which are unambiguously calculable within
sitive to the used regularization scheme, while those of logD effective field theory. In the following, we compute,
divergences at fixed points\§,) are scheme independent. induced by generic 5D scalar, Dirac fermion and vector
In dimensional regularizationy,=0, however this does not fields with arbitraryZ,x Z5 boundary conditions.
have any special physical meaning. As for the coefficients of Regularizing a field theory on compact space involves the
log divergences, it is straightforward to fifti2] regularization of the KK summation. It is then convenient to

T

InA o o(y—
( oy L, ay—m
32772 G55 G55

) Fa Fanr
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FIG. 1. Contour= in the complexg plane. Bold dots represent
the mass poles.

PHYSICAL REVIEW D 67, 045005 (2003
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FIG. 2. For the contribution fron®(q), the contour— can be
deformed to the contou€ represented by the bold line since the
contribution vanishes on the dotted infinite half circle. Hatched

convert the KK summation into an integral by introducing alines on the imaginary axis are logarithmic branch cuts. After inte-

pole functionP(q) [8] having the following properties(i)

grating by parts, the point where the branch cut starts becomes a

P(qg) has poles agj=m,, (ii) each pole has the residue 1; simple pole. Then the integral alo®@is given by the values of the

(iii) there exists5>0 such thatP— B for |Re(q)|—> and
Im(q)>48, while P——B for |Re(@)|—= and Im@Q)

integrand at the boundary & at infinity and the residue value at
the pointx. The integral along— can be similarly treated in the

< — &, whereB is animaginary constant. These conditions lower half plane.
uniquely determine the pole function. In our case, it is given

by

N'(q)

(q)= 2N(g)’ (32

for which

d
S [eptom)= | o[ dor@rpa, @3

d*p
(27

d—qP(Q)f

_ 2mi

d*k 1

where= denotes the contour depicted in Fig. 1.
To obtain the 1-loop effective action of gauge field zero
mode, one needs to compute

Trin(=D?+M*(®)+F ,,J*") (34)

which contains the following two-point amplitude:

1
gk 9 (pHK)2+a%) = S (p+2k)H(p+2k)"

AL PAYPITL)] i) f

(2m)* (K+a®)(p+k)*+a?)

—2C(j)(p*g"*— p“p”)f

where d(j)=(1,4,4) andC(j)=(0,1,2) for j=(0,1/2,1).

2m* R+ (prk2+ad)]

if d4p9’(p)Aa(—p)(ng“”—p“p”)Aa(p) (35
m* T e

where e(x)=x/|x| and A andiB are some real constants,

For the computation of the above integral, it is convenient towhich gives

split the pole function into two parts:
P(q)=P(a)+P.(a), (36)

whereP—O(q~?) at|g|—. ThenP., can be written as

A
P=(q)= =5 ~Be(m(a)), 37)

N'(q)
2N(q)

(38

- A
P(q)= +a+Be(Im(q)).

With the decompositior36), all UV divergences appear in
the contribution fromP., in a manner allowing simple di-
mensional regularization, while the contribution frabnis
finite.
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The 4D momentum integrad®p in Eq. (35) exhibits a
branch cut on the imaginary axis gf For the contribution

PHYSICAL REVIEW D 67, 045005 (2003

In order to get a physical result from EG0), we still
need to subtract the I —4) pole. When written in the

from P, one can change the contour as in Fig. 2 since th@osition space of 5th dimension, V(-4) term in Eq.(40)

contribution from the infinite half-circle vanishes. After inte- eventually

grating by parts, we find that the part 6f from P is given
by

Ta(®)
872

AG,= ( d(j)— ZC(J))f(q)Iqw

——J dx( d(j)(1—2x)%— ZC(j))

XF(Q)|q=i\fx(1—x)p§i (39)

where
1
Fq)= Eln N+Alng+Baqg.

The contribution fromP.,

leads to a term «<[AyS(y)+A, (Y
—w)]Fwaa‘”/(D—4) in the 1-loop effective actiofSee
Eqgs.(28) and(29) for the definition of\y and\ ,.] Then the
subtraction procedure should take into account that the cutoff
scales ay=0 and differ by the warp factoe™ "R, The
correct subtraction scheme is to add a counterterm

1 1 (y)
4
f d deaszwz AO((D—4) ln(A))JG_55
;_ — kR )M a auv
+N, R In(Ae ) N FL FY, (41

which gives an extrd&-dependent contributior A . 7kR to
the low energy gauge coupling. This can be considered in
principle as a different choice of the bare IR brane coupling

includes the log divergence from g2,(A). However if the 5D orbifold field theory is regulated

the pole term Xf. This can be regulated by the standardin an R-independent manner, which is the most natural

dimensional regularization of 4D momentum integrmtp

choice in view of the fact thaR is a dynamical field in 5D

—dPp, yielding a 1/0—4) pole. On the other hand, the theory, this extra piece should be considered as a part of a

step-function contribution frona(Im(q)) involves a 5D mo-

mentum integral which is linearly divergent, but it simply on

calculable correction. Also the strong coupling assumption
the bare brane coupling$13], g3,(A)=~g2,(A)

gives a finite result in dimensional regularization. Adding the= O(87?), applies for theR-independent part. As we will

divergent contribution fronf.. to the finite part fromP, we
obtain

Ga= To(® )[( d(j)— 2C(J)> Va(e)] P
872

1 1
_ - . _ 2 -
+j0dx( 2d(j)(l 2X) +2C(1))

X 1| N) Afld(—ld' 1-2x)2
5In 0x 5(1)( X)

q=iVx(1—x)p?

1
+ZC(1))(D ik

In fact, the values oA and F(q) at g—i~ depend only on
the Z,X Z, parity of the corresponding 5D fielaiot on the
spin of the field. We then find

(40

A=(-1/2,0,0,1/2
for Z,xZ; parity (Z¢,Zy)=(++,+—,—+,——) and
(2 okre ik, — Lakr Lok
ﬂqﬁiw— Z’7T —En ,—Z’ﬂ ,Z'JT .
! kR+1I k
—Zﬂ' En

for the sameZ, X Z; parity.

see in the next section, our subtraction scheme correctly re-
produces the results in the supersymmetric case which can be
obtained by a completely independent method based on 4D
effective SUGRA whose regulator mass Rsindependent.
We also explicitly show in Appendix B that our subtraction
scheme gives precisely the same result aRedependent
Pauli-Villars regularization for the case of 5D scalar QED.

With the prescription to compute the regularized one-loop
gauge coupling which has been discussed so far, it is now
straightforward to computd, induced by generic 5D fields
with arbitrary Z,X Z; boundary condition. The correction
due to 5D scalar fields is given by

70|l
12 Ta(d+4)iIn K

1 iu
_3f0du F(u)In N(,,H(?\/F)}

Aa(d’):

c

_3Ta(¢+,)JOldu F(u)InNg, ( JF)

I\>|

1

_3Ta(¢,+)JO du F(u)inN, (;JF)
A

_Ta(d’)(ln(?)

(42

3foldu F(u)ln Nd)(i?uﬁ)”
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where the part with coefficient,(¢,,) represents the con- Here Ny, Ny, Ny | andN,  are theN functions of

tribution from the loops of 5D scalar fiel@,,, and Egs.(18) and (19) for
F(u)=u(1-u?2
(Zg,Z§ ,S,1, @)
HereN, , (z==,z'=x) are theN functions of Eqs(18) (- - deom 1) (+— et 1/2)
and(19) for 1Tl (T, —,1,=C, ,
(=, +.1-clc+1/2),(=,—,1,—c,[c+1/2),

(Zg,Zg,S,T 0, f 7y)=(2,2",2g,b,, ,\4+a).

The 1-loop corrections due to 5D fermion and vector fieIdsWherer_:rOZrW’ andNa, \Na, ,Na_ andN,_ _are the
are similarly obtained to be N functions for

Ta(lﬂ++)k 2 |n(g) — kR (Zd) !Zt,I) ,S,I’,a)=(—,—,4,2,Q,(+,— 12!O|:Du
(-,+,2,0,9,(—,—,2,0,D.

1
Aa(‘/’): §

L .
+3f du G(u)In N¢++(%\/F)}
0 Note thatN,, andN,_ are given byN__ in Eg.(19), not

N, . in Eq.(18).
+ T 'f/’+—)[ —mkR For a practical application of the above results, one may
consider the low momentum limg<m,; wherem, denotes
1 iu the lowestmass eigenvalue determined by the corresponding
+3j0 du G(u)In N%(?\/?)] +Ta(y-+) N function. The results oA , in such a limit are summarized
in Table 1. We also provide in Table Il the expressions\qf
1 iU — induced by a scalar field with particular values of bulk and
o ”kR+3fo duG(uinN,_ E‘/p— brane mass parameters, iJg,=b, anda=|2—bg|, which
corresponds to the scalar field in supersymmetric theory.

k
+Ta(¢__)[ 2 In(—) — mkR
P IV. 4D SUPERGRAVITY CALCULATION

+3fldu ()N, (E\/Ez) } (43) In [4,7],.1-|oqp low energy gauge pouplings i.n AglBave
0 -\ 2 been obtained in the supersymmetric case using the gauged
U(1)g symmetry and chiral anomaf\L4] in 5D SUGRA in
1 p p AdS; [9,10] and also the known properties of gauge cou-
Aa(A)=15| Ta(A+ 1)) 23In| | +211n 1| +227kR plings in 4D effective SUGRALS5]. In this section, we con-

firm that the results of the previous section correctly repro-
duce the SUGRA results when applied in the supersymmetric
} +Ta(ALo) case.

To proceed, let us briefly discuss supersymmetric 5D
iu theory on AdS. The theory contains two types of 5D super-
E\/Ez)] multiplets other than the SUGRA multiplet: one is the hyper-

multiplet H containing two 5D complex scalar fields

1 iu (i=1,2) and a Dirac fermion, and the other is the vector
+Ta(A+){ ka+f du K(u)In NA+<§\/F>] multiplet V containing a 5D vectoA,,, real scala and a

0 symplectic Majorana fermion\'. In the supersymmetric

iu
L

1
+J du K(u)InNg4
0 ++

1
x[ —7-rkR+f du K(u)In Na,
o _

A K model, all scalar fields have,=b,=b anda=|2—b| [see
+Ta(A__){ 231In " +21In —) — kR Egs.(6) and(11) for the definitions obg . anda] and their
p ; ; ’
superpartner fermion has a kink mass parameter+ (3
1 iu —2b)/2. Also theU (1) symmetry is gauged with the gravi-
+ Jo duK(u)inN, 5\/52) } } photonB,, in the following way:

where ) . 3 ) . .
G(u)=u(1—u?®¥—y(1—-u? 12
K(u)=—9u(1-u?®2+24u(1—u? "2 Duy=dyip+icke(y)Byyp+ - - -
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TABLE I. One loop corrections fop<<m; wherem, is the
lowest nonzero KK mass.

PHYSICAL REVIEW D 67, 045005 (2003

TABLE 1l. 5D scalar contribution fop<m; whenby=Db_ and
a= |2_ b0| .

Type z7Z) Aa(p.k,R,InA)
(++) LT.(¢. )| IN A+Ink—2 Inp—mkR
Real (++) if Q,,+#0.
scalar¢ ETo(ds)[INA—Ink—InQ..] -b)7KR_ o~(1-b)mkR
it Q. =0, "”[ w1 D) ]
2Ta(¢ )N Atink=2Inp=InR..]  (+-) LT.(¢, )(2-b)7kR
(+-) [FO.-#0, (—+) —1:Ta(¢-+)(2-b)mkR
—131a(¢y)INQ, Q2-b)TkR_ o~ (2-D)mkR
if Q. =0, (--) 5Ta(¢- )| —In A+In k—In[ ]
1 m(2—b)
la(dr)[—2Inp+2Ink—InR, _]
(=+) if Q_,+0,
—12Ta(¢-)INQ_,
. ifQ_.=0, where the subscripte,z’ denote theZ,xZ, parity, z
Ta(d_)[—2Inp+2Ink—=InR_,] . ~, , - .
127a R kR =—z, z2/=-7', bisthe brane mass parameter arid the
(—=)  iT(é )|—InA+in k—In( € ) kink mass parameter. . o
ma Let us assume that our 5D theory is compactified in a
Spinoryr  (++) L manner preservin® =4 N=1 supersymmetry. This allows
aTa(++)| —7KR+2Ink—2Inp—2in the low energy physics to be described by 4D effective
e UDHR_ o (o~ 12)kR SUGRA whose action can be written as
% m(c—1/2) ] N K
(+-) §Ta(y)emkR S4D=fd X fd o -3exq 3
(—+) —3Ta(i-)emkR .
()| —7kR+2Ink—2Inp—21n + f dZGZfaWa“W§+ H.c.||, (46)
(=)
« el AR~ e(ﬁllz)#kR] whereW? is the chiral spinor superfield for the 4D gauge
m(c+1/2) multiplet and we set the 4D gravity multiplet by their
VectorA  (++)  5Ta(Ay4)[—23InA+227kR—21Ink vacuum values. The Kéer potentialk can be expanded in
+441Inp+21In XR] powers of generic gauge-charged chiral superfigld
(+-) ~ YT (A, )7kR
(—+) TTa(A_ ) mkR K=Ko(T,T*)+Zo(T.T*)Q*e VQ+---,  (47)
Ta(A_)[23INA—mkR-21Ink—2Inp where7 denotes the radion superfield whose scalar compo-
(—-) nent is given by
eﬂ'kR_efﬂ'kR
+21In(—ﬂ_ ) T=R+iBs,
and the gauge kinetic functiofy, is a holomorphicfunction
of 7. Then the 1-loop gauge couplings in effective 4D
_ 3 _ _ SUGRA can be determined bf, containing the 1-loop
DyN'=dy\'—i 5(03)}ke(y)BM)\J+ cee (44)  threshold correction from massive KK modes and also the
tree-level Kaler potentialk [15]:
where s has a kink masske(y) and the ellipses stand for 1 b, Mgl
the couplings with other gauge fields. Taking into account ——=Re(f,) + 51N TKy32
the Z,X Z}, parity, the supermultiplet structure is given by ~ YalP 167% \e "%p
Ta(Q) Ta(Ad))
L[ 3 , [ 3 =2 ——In(e **Zg)+ ——=In(Re(f,)),
H,z(c)= hzzr bZE_C vh’z'ir b:§+C W, (C) ), Q 8w 8
(48)

. 1 _ _ N i :
5 i Il I whereb,=>T,(Q) —3T,(Ad)) is the 1-loop beta function
Aoz (b= 2)')\ZZ'<C_ 2) ’EZZ'(b_Z))’ coefficient andVip; is the Planck scale af,,, which defines

VZZV = ( Al;
(45) p2: - gMV(?,uaV .

7'
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Let us consider the 4D effective SUGRA of a 5D theory Mg .
which contains H., ,H,_,H_, ,H__ as well as Yy = 1—(9(1/2+°")”k(7” )-1),
Vi,V ,V_,,V__.The 5D vector multiple¥, , gives (—+c__ k
a massless 4D gauge multiplet containifj, whose low 2
energy couplings are of interest to us, while _ gives a
massless 4D chiral multiplet cont51ini|§g++4riAi+ CHL
andH _ _ also give massless 4D chiral multiplets containing Yy = L ;*
hl . andh? . , respectively, whose tree level Kler metrics = Mg emk(T+7T7) 1

are required to compute the 1-loop gauge coupli4g).

Other 5D multiplets, i.eyV, _,V_, ,H,_andH_, do not

give any massless 4D mode. Léto=e K¥Z, where T 7' (3

Zo(Q=H, . ,H__,V__) denote the Khaler metric of the fa:TJF @ 5\/2, Ta(sz’)_HE, Cor Ta(Hyz) | k7T,
4D massless chiral superfields coming from the 5D multip- Ysa “ “ (49)
lets H,, ,H__ and V__, respectively. Following Refs.
[7,16], it is straightforward to find theree level Z;  ,Z

and alsof , containingthe 1-loop threshold correctiorfsom  whereMg is the 5D Planck scale, ang}, is the kink mass

massive KK modes: of H,, . As was noted ifj7], the KK threshold correction to
s f, can be entirely determined by the chiral anomaly with
M2,=e" K0’3M§=%(1—e‘ Kn(T+T4)y respect to the followindds-dependent phase transformation:
M5 " e )\ai*)e3ik\y\85/2)\ai' ¢He—ick|y\85¢. (50)
Yo, =g (eI m -,
(§_C++ K Using the above results, we finally find
|
k e(1—2C++)7TkR_ 1 M5 3
AaZTa(H++) In B —C++7TkR—|n W —Ta(V++) 31n ? —Eka—In(M5R)

3 3

0. Ta(H, )mkR= 5TV, )7kR—c_ To(H ) 7kR+ S To(V, )mkR+To(H_)lIn| = |+c kR
| et Ml v ol Ms g Ms L R (1 2mR 51
N md+2c_) a(__)nIO n—-+skaR+In(1-e ) (51)

for p<m; wherem; is the lowest nonzero KK mass. Note dimensional regularization. We noted that the subtraction

that m;~ke ™R for the bulk fields other tharH,_ or  scale for the log divergence at the IR brage=(r) should be

H_., while H, _ hasm;~ke (V27 ¢+ )7kR for ¢ =1/2  taken to beAe™ ™R whereA is the subtraction scale for the

and m;~ke ™R for c,_<1/2, and H_, has m; UV brane f/=0). We also considered the supersymmetric

~kel~V2re-)7kR for ¢ <—1/2 and m;~ke kR for  case to assure us that our results correctly reproduce the re-

c_.=-—1/2. The above result obtained by 4D SUGRA Sults obtained by a completely independent method based on

analysis perfectly agrees with the result that one would ob4D effective supergravity analysis. .

tain using the results of Tables | and Il whbh is replaced ~ Note addedWhile this work was in completion, we re-

by A. This provides a nontrivial check for the results ob- ceived[17,18 discussing the 1-loop gauge coupling renor-

tained in the previous section and assures us that our resuffi@alization due to 5D scalar loops in Agd$ackground and

are truly scheme independent. its interpretation in the context of AdS-CFT correspondence
and also[19] discussing the 1-loop renormalization in the

context of deconstructed AdS
V. CONCLUSION

In this paper, we have calculated the full 1-loop correc- ACKNOWLEDGMENTS
tions to the low energy coupling of bulk gauge bosons in  We thank H. D. Kim for useful discussions. This work is
AdS; induced by generic 5D scalar, fermion and vector fieldssupported in part by BK21 Core program of MOE, KRF
with arbitrary Z,xZ; orbifold boundary conditions. The Grant No. 2000-015-DP0080, KOSEF Sundo-Grant, and
used calculation scheme is the background field method witKOSEF through CHEP of KNU.
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APPENDIX A: SOME PROPERTIES OF THE N 1

FUNCTIONS Q7+=%

S
eaﬂ'kR_I_ ( a+ r,— E) e—aﬂ'kR

S
(a r.+ 5
In this appendix, we present some properties of he
functions,N,, (z,z’= =), given in Eqs.(18) and(19). Us- 1
ing Y, (x)=[cosaml,(x)—J_,(X)]/sinam and also the fact Q,,=ﬁ[e‘”"R— e kR,
that N,, are antisymmetric under the exchangeJgfand
Y,, one can rewrite th&l functions as

R.,= ! —1 2 +S
N s @=— e[S —ro a4+ Do 9} (5 R Tl (R
D= " Sinaa | [ 127 0] el k) T kel k(]2
X| a—r +E)e”kR+(—2+a+r —E)
q\.a., (a\] [[s_ q "2 ™2
Seaeh e R (FREEE
x| a—rot ofe@amel , L1,
a_,[(da s a| . a., (d 0" 2 a(a+1) g
S I Ry N s L
T T 2 0)Trelk) TkTelk) )
S S —awkR S
+§ 2+C¥_r0+§ e + a+r0—§
N._(q)=— E_r39+_3'93 d
+-4q sinam| |12 "9)elk) " kTelk/|TTAT s
X 2+a,_rw+§ e(a+2)7TkR ’
q S ay 9., (9
‘Ja(?)[(i‘“))‘]-a K *EJ—a(E)H'
R _ 1 1 2 S amkR
1 s al q._,/q q T 4m| ala—1) Fatrom3)e
N (D= Ginam| || 27 7ol 7) T 7 el 7) [0l ¢ S
_ ~ | a(2—a)7kR
, q S ; q +qJ, q +| a r0+2 e +a(a+1) (2+a
Ak |\ 27 7] e )T T [ ) S S
_r0+§ e*a‘rrkR_i_ (1+ro_ §>e(2+a)‘rrkR} ,
q q q q
R e “(k)‘]“<?)_‘]“(?)‘]“(§)’ -
s
(Al) R,Jr:—ﬂ m( —2+a+rw—§>e(2“)"kR
where T=ke™ "R, Then usingJ,(x)=x%f(x?), one can L
. ; A s
easily see that alN functions are even functions: tla—r + 2 |eam R} ¢ 2ta—r.
2 a(l+a)
N,z (d)=Nzz(—q). S S
| a2+t a@)mkR _ “|a—amkR
We already knowN,,,(q) is analytic neag=0, allowing an +2 € Tlatrs 2)8 ] ’
expansion around=_0:
1 1
2 N —(a—2)mkR_ qamk
R__= e e
sz’(q):sz'+%Rzz’+0(q4)a (AZ) Am a(a_l){ R}
_ = fga—amkR_ q(at+2)7k
where " a(a+ l){e ¢ R}}
0 _1 wtr —E)(a—r 4 3 g-ankr The KK mass eigenvalue, is determined by the zeros bf
T ra T2 02 function:N(m,)=0. Obviously a 5D field has a massless 4D

mode iff Q,,,=0. Generically, a nonzero KK mass eigen-

, (A3) value starts to appear from,=O(T). However, in some
special cases, there can be nonzero mass eigenvalues much
smaller thanT=ke™ "R For instance, ifx=s/2—r, and a

arkR has a large valu®, _~e ™R andR, _~e*™R, giving a

€ very light state of®, _ with m,~ke™ *"*R_Similarly, if «

=r_,—s/2, ®_, can also have a very smati,,. However,

@ _ _ does have neither a massless state nor a very light state

with m,<ke™ kR,

amkR

e

S S
a+ro— E) ( a—r, + 5

1
Qi =——

yes

S

+

S
a+ ro_ E) eaWkR
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The asymptotic behavior of aN function at|g|—« is  and then the regulated amplitude is given by
essential for regularizing the 1-loop gauge coupling. Using
the asymptotic formulas of Bessel functions:

B 1 =ty T tpa) ®2)
J,(X)— —CO{X— a+ = = 2mi reg(q (271')4 P-4
X 2
Y, (X)— /isin N }) ’ whereEreg(_q)EP(b(q)_—va(q). SinceN,, andeV are the
“ X 2 same limiting behavior afg|—o, P.4q) vanishes at in-
finity. After a partial integration along, we find
we find
2 e'n’kR/Z 1_e7TkR
N (@)= == sin K )q» A =8ﬂ2f-23 N, 210 Npy |- 1fdxu
PV c2mi\2 % 27 "PV]dql 2
2 (1—e™R)q
_ = A—7wkR2 1
Ni(@)——Te COS{ k : —2x)2 In(x(1—x)p?+q?)
(4m)?
2 (1——e”kR)q)
£ AmkR2 1
N-(@=e °°S< k) =—Zf dX(1—20)2(IN Ny = INNpy) g1 175072
2k (1-e™R)q (B3)
I —akR2 qinl 2 -~ 71
N__(q) qu sin K .
where C is the contour line described in Fig. 2. For
APPENDIX B: COMPARISON WITH PAULI-VILLARS <keﬁﬂkR,

REGULARIZATION

The natural regularization in 5D theory is to cut off 5D
momentum in the 5D metric frame @y: —GMNoydn
<AZ2. In AdS background, this would correspond to an ef-
fective y-dependent cutoff of 4D momentum in the 4D met-
ric frame ofg,,: p?=—g**d,d,<e *R¥IAZ In dimen-
sional regularization, such a feature is not manifest, but can (a—2)(a+2)
be taken into account by choosing the subtraction scale Npy~ ————
~Ae ¥RYwherey=0 or = is the location of log divergence. e (B5)
On the other hand, such feature is rather manifest in Pauli-

Villars (PV) regularization in whichA corresponds to a 5D

regulator mass. In this appendix, we compare our result Ussor A>k, a=+4+ A2/k’~A/k, and so

ing dimensional regularization with the subtraction scheme

(41) to the PV result for scalar QED. For simplicity,

we consider the massless scalar QED wityXxZ, INNpy~7AR+INA—Ink. (B6)
parity (+ +).

In the PV scheme, the UV divergence is regulated by a
PV regulator with 5D mas# which has the sam&,xz,  We then find
boundary condition ag but opposite statistics:

kR — kR
e —e
Ny~ —e”kR( —) , (B4)

(efaﬂ'kR_ eaﬂ'kR) .

d*p ‘p 1{
f(p,m,)— f(p,m, Apy=7%| TAR+INA+Ink—2 Inp—7kR
7kR_ o— 7kR
_f ™ fpMal @D _'”(%) ’ =0
(2m* M)

whereM,, is the KK spectrum for the PV regulator. We con- \nich s precisely the same as the result in Table Il for a

vert the summation into an integral using the pole functions;;,;<sjess reab, ., obtained using dimensional regularization

N/ N/ with the subtraction schenmd1l). In scalar QED, the charged

p¢:_¢' ppvzi’ scalar field should be complex, so that it gives a loop correc-
2N, 2Npy tion twice that of the above result.
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