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One loop gauge couplings in AdS5
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We calculate the full 1-loop corrections to the low energy coupling of a bulk gauge boson in a slice of AdS5

which are induced by generic 5-dimensional scalar, Dirac fermion, and vector fields with arbitraryZ23Z28
orbifold boundary conditions. In the supersymmetric limit, our results correctly reproduce the results obtained
by an independent method based on 4-dimensional effective supergravity. This provides a nontrivial check of
our results and assures the regularization scheme independence of the results.
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I. INTRODUCTION

Models with extra dimensions have provided new insig
into the large scale hierarchy between the weak scaleMW
;102 GeV and the Planck scaleM Pl;1018 GeV. In this re-
gard, the Randall-Sundrum model~RS1! is particularly inter-
esting as it explains the weak to Planck scale ratio using
warped 5D geometry@1#:

ds25GMNdxMdxN5e22kRuyugmndxmdxn1R2dy2, ~1!

where2p<y<p, k is the AdS curvature andR is the or-
bifold radius. In this spacetime background, a 4-dimensio
~4D! graviton is localized near the UV brane aty50 whose
cutoff mass scaleMUV is of the order of the 5D Planck scale
On the other hand, in the original RS1 model, all the st
dard model~SM! fields are assumed to be confined on the
brane aty5p whose cutoff scaleMIR;e2pkRMUV . Then,
with a moderately large value ofkR(;12), the model can
generate the large scale hierarchyM Pl /MW;MUV /MIR
;1016 without any severe fine-tuning of the fundamen
parameters.

An apparent drawback of the original RS1 model is th
one has to abandon the attractive possibility that the
gauge couplingsga

2 (a51,2,3) are unified at a high energ
scale throughthe quantum corrections calculable within th
model. Experimental data show thatga

2 at MW differs from
each other by order unity:

1

ga
2~MW!

2
1

gb
2~MW!

5O~1! ~a5” b!. ~2!

On the other hand, the size of quantum corrections to 1ga
2

which are calculable within the RS1 model is

DS 1

ga
2D 5OS 1

8p2
ln~MIR

2 /MW
2 !D 5OS 1

8p2D , ~3!

so the RS1 model does not give any insight on why the
gauge couplings atMW differ from each other by order unity
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It has been noted recently@2–7# that one can achieve th
gauge unification, while still solving the hierarchy problem
within the 5D effective field theory on AdS5 if the SM gauge
bosons propagate in 5D bulk spacetime. In such a case
size of quantum corrections calculable within the model

DS 1

ga
2D 5OS 1

8p2
ln~M Pl

2 /MW
2 !D 5O~1!, ~4!

as in the case of conventional 4D grand unified theor
~GUT!. This allows that the observed differences of gau
couplings are explained in terms of quantum correctio
which are calculable within the model.

Calculation of the 1-loop corrections to gauge coupling
AdS5 was first attempted in@2# for a GUT model in which all
gauge-charged matter fields are confined on the UV bra
The computation involves a Pauli-Villars regulator wi
regulator massLPV!k, which could catch only the correc
tions at scales significantly belowk. In @3#, a momentum
cutoff depending on the position in the 5th dimension w
proposed to regulate the 1-loop corrections. Though in
itively sensible, it is difficult to isolate the regulato
independent part from the regulator-dependent total cor
tions in this regularization, which makes the interpretation
the results unclear. In@4,7#, the 1-loop corrections have bee
computed for generic supersymmetric gauge theory on A5
using the gaugedU(1)R symmetry and chiral anomaly in 5D
supergravity~SUGRA! and also the known properties o
gauge couplings in 4D effective SUGRA. In this approac
one could obtain the 1-loop corrections~including those
from scales betweenk and the 5D cutoff scaleL.k) in
obviously regulator-independent manner. In@5,6#, 1-loop
corrections in 5D scalar QED on AdS5 have been computed
~using dimensional regularization and also Pauli-Villa
regularization! and the results are nicely interpreted in term
of AdS and conformal field theory~CFT! correspondence.

In this paper, we present the full 1-loop corrections to t
low energy coupling of bulk gauge bosons in a slice of Ad5
which are induced by generic 5D scalar, Dirac fermion a
vector fields with arbitraryZ23Z28 orbifold boundary condi-
tions. To be explicit, we adopt dimensional regularizati
@8#, but the results should be independent of the used re
larization scheme as they correspond to the sche
independent corrections calculable within 5D effective fie
©2003 The American Physical Society05-1
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theory. When applied to the supersymmetric case@9,10#, our
results correctly reproduce the expressions which are
tained in a completely independent approach based on
effective SUGRA. This provides a nontrivial check of o
results, and also assures the scheme independence of t
sults. We also note that the subtraction scales of log di
gences at two orbifold fixed points, i.e.,y50 andp, differ
by the warp factore2pkR. This is physically expected, an
can be confirmed by comparing the results with those
Pauli-Villars regularization as well as with the results of t
4D SUGRA calculation.

The organization of this paper is as follows. In Sec. II, w
set up the notations for 5D gauge theory on a slice of Ad5
including the Kaluza-Klein~KK ! analysis for generic 5D
scalar, Dirac fermion, and vector fields with arbitraryZ2

3Z28 orbifold boundary conditions. In Sec. III, we prese
our main results, i.e., 1-loop gauge couplings in AdS5 in-
duced by generic 5D fields, obtained using the backgro
field method with dimensional regularization. In Sec. IV, w
consider the supersymmetric limit in order to confirm th
our results correctly reproduce the results from the
SUGRA calculation, and conclude in Sec. V.

II. GAUGE THEORY ON A SLICE OF AdS 5

The model we study is a 5D gauge theory defined o
slice of AdS5 with spacetime metric~1!, containing generic
gauge-charged 5D scalar, fermion and vector fields with
bitraryZ23Z28 boundary conditions. The Lagrangian is give
by

E d4xdyA2GF2
1

4g5a
2

FaMNFMN
a 2

1

2
DMfDMf

2
1

2
mf

2 f22 i c̄~gMDM2mc!cG , ~5!

whereDM is the covariant derivative containing the gau
connections as well as the spin connection of AdS5. We pa-
rametrize the masses of scalar and fermion fields as

mf
2 5ak21

2k

R
@b0d~y!2bpd~y2p!#, mc5cke~y!,

~6!

wheree(y)5y/uyu, b0, and bp are the brane mass param
eters aty50 andy5p, respectively, andc is the fermion
kink mass parameter. The 5D fields in the model can h
arbitraryZ23Z28 orbifold boundary conditions,

f~2y!5Zff~y!, f~2y1p!5Zf8 f~y1p!,

c~2y!5Zcg5c~y!, c~2y1p!5Zc8g5c~y1p!,

Am
a ~2y!5ZaAm

a ~y!, Am
a ~2y1p!5Za8Am

a ~y1p!, ~7!

with ZF561 andZF8 561 for F5$f,c,AM
a %. Though we

are interested in the low energy coupling ofAm
a having Za

5Za851, there can be 5D vector fields having otherZ2
04500
b-
D

re-
r-

f

d

t

a

r-

e

3Z28 parity which are charged for the gauge fields withZa

5Za851. Note that the brane mass of the scalar field ay
50 (y5p) is relevant only whenZf51 (Zf8 51).

The KK spectrum of bulk fields on a slice of AdS5 has
been discussed in detail in@10#. It is rather straightforward to
generalize the analysis of@10# to the field with arbitraryZ2

3Z28 parity. A generic 5D fieldF can be decomposed as

F~x,y!5( Fn~x! f n~y!,

where the KK wave functionf n satisfies

@2eskRuyu]y~e2skRuyu]y!1R2k2M̂F
2 # f n5R2e2kRuyumn

2f n
~8!

for the KK mass eigenvaluemn . Here s5$2,4,1% and the
bulk mass parameters

M̂F
2 5$0,a,c~c61!% for F5$Am ,f,e22kRuyucL,R%.

~9!

This determinesf n to be

f n~y!5eskRuyu/2FJaS mn

k
ekRuyu D1ba~mn!YaS mn

k
ekRuyu D G ,

~10!

where

a5A~s/2!21M̂F
2 . ~11!

To determine the corresponding KK mass spectrum,
needs to impose the orbifold boundary condition. Parity-ev
conditions under the reflection aty50 or p leads to

d fn

dy
5rkR fn at y50 or p, ~12!

for the brane mass parameter

r 5$0,b0 or bp ,7c% for F5$Am ,f,e22kRuyucL,R%.

~13!

Then using Eqs.~10! and ~12!, one finds

ba~mn!52

S s

2
2r D JaS mn

k
ekRỹD1

mn

k
ekRỹJa8 S mn

k
ekRỹD

S s

2
2r DYaS mn

k
ekRỹD1

mn

k
ekRỹYa8 S mn

k
ekRỹD ,

~14!

whereỹ50 or p. Parity-odd conditions under the reflectio
at y50 or p leads to

f n50 at y50 or p, ~15!

yielding
5-2
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ba~mn!52

JaS mn

k
ekRỹD

YaS mn

k
ekRỹD . ~16!

With the above results, the KK spectrum of the 5D fie
F can be determined by the so-calledN function N(q)
5N(2q) which has simple zeros atq56mn5” 0:

N~mn!50. ~17!

If there exists a massless mode,N has a double zero atq
50. For later use, here we summarize theN functions for all
Z23Z28 boundary conditions of the corresponding 5D fie
Let r 0 denote the brane mass parameter aty50 andr p the
brane mass parameter aty5p. The N function for
(ZF ,ZF8 )5(1,1) is given by

N11~q!5H S s

2
2r 0D JaS q

kD1
q

k
Ja8 S q

kD J H S s

2
2r pDYaS q

TD
1

q

T
Ya8 S q

TD J 2H S s

2
2r pD JaS q

TD
1

q

T
Ja8 S q

TD J H S s

2
2r 0DYaS q

kD1
q

k
Ya8 S q

kD J ~18!

where T5ke2pkR. As for the fields with other boundar
conditions, i.e., (ZF ,ZF8 )5(1,2),(2,1),(2,2), we find

N12~q!5YaS q

TD F S s

2
2r 0D JaS q

kD1
q

k
Ja8 S q

kD G
2JaS q

TD F S s

2
2r 0DYaS q

kD1
q

k
Ya8 S q

kD G ,
N21~q!5JaS q

kD F S s

2
2r pDYaS q

TD1
q

T
Ya8 S q

TD G
2YaS q

kD F S s

2
2r pD JaS q

TD1
q

T
Ja8 S q

TD G ,
N22~q!5JaS q

kDYaS q

TD2JaS q

TDYaS q

kD . ~19!

As we will see in the next section, one can choose
appropriate gauge fixing to make sure that the KK spectr
of A5 is determined by theN function of 5D scalar fieldf
with a specific mass:

NA5
5Nf for mf

2 524k21
4k

R
„d~y!2d~y2p!….

~20!

In fact, one needs to know the asymtotic bahaviors of th
N functions atuqu→` to regulate the UV divergence an
also the behaviors atuqu→0 to find the 1-loop couplings in
the IR limit. Some properties of theN functions including
those asymptotic behaviors are summarized in Appendix
04500
.

n
m

e

.

III. ONE LOOP EFFECTIVE COUPLINGS

In this section, we calculate the 1-loop effective coupli
of gauge field zero mode in AdS5 using the background field
method@11# with dimensional regularization@8#. Let us first
describe the calculation scheme. We split the gauge field

AM
a 5ĀM

a 1ÃM
a , ~21!

whereĀM
a denotes the background gauge field in the gau

Ā5
a50 and ÃM

a is the quantum fluctuation. We choose th
gauge fixing term

2
1

2g5a
2 E d5xA2GFe2kRuyugmnDmÃn

a

1
e2kRuyu

R2
]y~e22kRuyuÃ5!G 2

~22!

whereDm is defined by the background gauge fieldĀm
a . The

corresponding ghost action is given by

E d5xA2GFe2kRuyuj̄aD2ja1
e2kRuyu

R2
j̄a]y~e22kRuyu]yj

a!G ,

~23!

whereD25gmnDmDn . It is then straightforward to find the
following gauge-fixed actions which are quadratic inÃm

a ,Ã5
a

andja:

E d5xF2
1

4g5a
2 S 22RÃm

a D2Ãam14R fabcF̄mn
a ÃbmÃcn

2
2

R
Ãm

a ]y~e22kRuyu]y!Ãam2
2

R
e22kRuyuÃ5

aD2Ã5
a

2
2

R3
e22kRuyuÃ5

a]y
2~e22kRuyuÃ5

a!D
1e22kRuyuRH j̄aD2ja2

1

R2
j̄a]y~e22kRuyu]yj

a!J G .

~24!

The action of scalar and fermion fields can be written as

E d5xFe22kRuyuR
1

2
fS D21

1

R2
e2kRuyu]ye

24kRuyu]y

2e22kRuyumf
2 D f2e23kRuyuR~ c̄LigmDmcL

1c̄RigmDmcR!2e24kRuyu~ c̄Lig5]ycR1c̄Rig5]ycL!

2 iRe24kRuyumc~c̄LcR1c̄RcL!G . ~25!

Note that the quadratic action ofÃ5
a has the same form as th
5-3
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action of 5D real scalarf with mf
2 524k214kR21@d(y)

2d(y2p)#, justifying the relation~20!.
One-loop effective action of the gauge field zero mo

can be obtained by integrating out all quantum fluctuat
fields at 1-loop order. This procedure yields

Se f f5E d4xS 2
pR

4g5a
2

FamnFmn
a D 1Gf@Am#1Gc@Am#

1GA@Am#, ~26!

where the first term is obviously the tree level action, a
Gf , Gc , andGA represent the 1-loop corrections due to t
loops of f, c, and AM

a ~and also the ghost fieldsja,j̄a),
respectively:

iGf52
1

2
Trf ln„2D21M2~f!…,

iGc5
1

2
Trc ln„2D21M2~c!1FmnJ1/2

mn
…,

iGA52
1

2
TrAm ln„2D21M2~Am!1FmnJ1

mn
…,

2
1

2
TrA5

ln„2D21M2~A5!…1Trj,j̄ ln„2D21M2~j!….

~27!

Here we replace the background gauge fieldĀm
a by unbarred

Am
a , and M2(F) is the mass-square operator whose eig

valuesmn
2 are determined by the zeros of the correspond

N function.Jj
mn is the 4D Lorentz spin generator normalize

as tr(Jj
mnJj

rs)5C( j )(gmrgns2gmsgnr) where C( j )
5(0,1,2) for (j 50,1/2,1).

The above 1-loop effective action is divergent, so it nee
to be regulated. As in the case of a flat 5D orbifold, the U
divergence structure of 5D gauge theory on AdS5 is given by

2E d5xA2GF ga

32p3
LFMN

a FaMN

1
ln L

32p2 S l0

d~y!

AG55

1lp

d~y2p!

AG55
D Fmn

a FamnG
~28!

where the coefficient of linear divergence (ga) is highly sen-
sitive to the used regularization scheme, while those of
divergences at fixed points (l0,p) are scheme independen
In dimensional regularization,ga50, however this does no
have any special physical meaning. As for the coefficients
log divergences, it is straightforward to find@12#
04500
e
n

d

-
g

s

g

f

l05
1

24
@Ta~f11!1Ta~f12!2Ta~f21!2Ta~f22!#

2
23

24
@Ta~A11!1Ta~A12!2Ta~A21!2Ta~A22!#,

lp5
1

24
@Ta~f11!2Ta~f12!1Ta~f21!2Ta~f22!#

2
23

24
@Ta~A11!2Ta~A12!1Ta~A21!2Ta~A22!#,

~29!

where Ta(F)5Tr(Ta
2) for the gauge group representatio

given by F, fzz8 (z,z856) is a 5D real scalar field with
Z23Z28 parity (z,z8), andAzz8 is a 5D real vector field.

With the UV divergences given by Eq.~28!, the low en-
ergy effective gauge coupling can be written as

1

ga
2~p,k,R!

5F 1

g5a
2 ~L!

1
ga

8p3GpR1F 1

g0a
2 ~L!

1
1

gpa
2 ~L!

1
l01lp

8p2
ln LG1

1

8p2
D̃a~p,k,R!1O~1/L!

~30!

wherep is the 4D momentum of the external gauge bos
zero mode,g0a

2 (L) andgpa
2 (L) denote the bare brane gaug

couplings at the orbifold fixed pointsy50 and y5p, re-
spectively, andO(1/L) stands for the part suppressed
1/L. Here the conventional momentum running and also
finite KK threshold corrections are encoded inD̃a . The bare
brane couplingsg0a

2 (L) and gpa
2 (L) can be interpreted a

the Wilsonian brane couplings atL in the metric frame of
GMN @see Eq.~1!#. However, when measured in the metr
frame of 4D massless gravitongmn5e2kRuyuGmn , they should
be interpreted as the Wilsonian couplings at different sca
g0a

2 (L) at the scaleL and gpa
2 (L) at the rescaled scal

e2pkRL. One can then assume thatg0a
2 (L) andgpa

2 (L) are
of order 8p2, under which

1

ga
2~p,k,R!

5
pR

ĝ5a
2

1
1

8p2
Da„p,k,R, ln~L!…1OS 1

8p2D ,

~31!

where 1/ĝ5a
2 51/g5a

2 1gaL/8p3 and Da5D̃a1(l0

1lp)ln L. Note that 1/ĝ5a
2 represents the 5D bare couplin

which isnot calculable within 5D effective field theory.~But
it would be determined by the UV dynamics at scales ab
L.! On the other hand,Da represents the corrections from
scales belowL which are unambiguously calculable withi
5D effective field theory. In the following, we computeDa
induced by generic 5D scalar, Dirac fermion and vec
fields with arbitraryZ23Z28 boundary conditions.

Regularizing a field theory on compact space involves
regularization of the KK summation. It is then convenient
5-4
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convert the KK summation into an integral by introducing
pole functionP(q) @8# having the following properties:~i!
P(q) has poles atq5mn , ~ii ! each pole has the residue
~iii ! there existsd.0 such thatP→B for uRe(q)u→` and
Im(q).d, while P→2B for uRe(q)u→` and Im(q)
,2d, whereB is an imaginary constant. These condition
uniquely determine the pole function. In our case, it is giv
by

P~q!5
N8~q!

2N~q!
, ~32!

for which

(
mn

E d4p f~p,mn!5E
�

dq

2p i E d4pP~q! f ~p,q!, ~33!

FIG. 1. Contour� in the complexq plane. Bold dots represen
the mass poles.
t t

04500
n

where� denotes the contour depicted in Fig. 1.
To obtain the 1-loop effective action of gauge field ze

mode, one needs to compute

Tr ln„2D21M2~F!1FmnJj
mn
… ~34!

which contains the following two-point amplitude:

FIG. 2. For the contribution fromP̃(q), the contour↼ can be
deformed to the contourC represented by the bold line since th
contribution vanishes on the dotted infinite half circle. Hatch
lines on the imaginary axis are logarithmic branch cuts. After in
grating by parts, the pointx where the branch cut starts becomes
simple pole. Then the integral alongC is given by the values of the
integrand at the boundary ofC at infinity and the residue value a
the pointx. The integral along⇁ can be similarly treated in the
lower half plane.
E
�

dq

2p i
P~q!E d4p

~2p!4
Am

a ~2p!An
a~p!Ta~F!F d~ j !E d4k

~2p!4

gmn
„~p1k!21q2

…2
1

2
~p12k!m~p12k!n

~k21q2!„~p1k!21q2
…

22C~ j !~p2gmn2pmpn!E d4k

~2p!4

1

~k21q2!„~p1k!21q2
…

G[ i E d4p

~2p!4
Ga~p!Am

a ~2p!~p2gmn2pmpn!An
a~p!, ~35!
,
where d( j )5(1,4,4) andC( j )5(0,1,2) for j 5(0,1/2,1).
For the computation of the above integral, it is convenien
split the pole function into two parts:

P~q!5 P̃~q!1P`~q!, ~36!

whereP̃→O(q22) at uqu→`. ThenP` can be written as

P`~q!52
A

q
2Be„Im~q!…, ~37!
o
where e(x)5x/uxu and A and iB are some real constants
which gives

P̃~q!5
N8~q!

2N~q!
1

A

q
1Be„Im~q!…. ~38!

With the decomposition~36!, all UV divergences appear in
the contribution fromP` in a manner allowing simple di-
mensional regularization, while the contribution fromP̃ is
finite.
5-5
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The 4D momentum integrald4p in Eq. ~35! exhibits a
branch cut on the imaginary axis ofq. For the contribution
from P̃, one can change the contour as in Fig. 2 since
contribution from the infinite half-circle vanishes. After inte
grating by parts, we find that the part ofGa from P̃ is given
by

DGa5
Ta~F!

8p2 S 1

6
d~ j !22C~ j ! DF~q!uq→ i`

2
1

8p2E0

1

dxS 1

2
d~ j !~122x!222C~ j ! D

3F~q!uq5 iAx(12x)p2 , ~39!

where

F~q!5
1

2
ln N1A ln q1Bq.

The contribution fromP` includes the log divergence from
the pole term 1/q. This can be regulated by the standa
dimensional regularization of 4D momentum integral,d4p
→dDp, yielding a 1/(D24) pole. On the other hand, th
step-function contribution frome„Im(q)… involves a 5D mo-
mentum integral which is linearly divergent, but it simp
gives a finite result in dimensional regularization. Adding t
divergent contribution fromP` to the finite part fromP̃, we
obtain

Ga5
Ta~F!

8p2 F S 1

6
d~ j !22C~ j ! DF~q!uq→ i`

1E
0

1

dxS 2
1

2
d~ j !~122x!212C~ j ! D

3S 1

2
ln NDU

q5 iAx(12x)p2

1AE
0

1

dxS 2
1

2
d~ j !~122x!2

12C~ j ! D S 1

D24D . ~40!

In fact, the values ofA andF(q) at q→ i` depend only on
the Z23Z28 parity of the corresponding 5D field,not on the
spin of the field. We then find

A5~21/2,0,0,1/2!

for Z23Z28 parity (ZF ,ZF8 )5(11,12,21,22) and

Fuq→ i`5S 1

4
pkR2

1

2
ln k, 2

1

4
pkR,

1

4
pkR,

2
1

4
pkR1

1

2
ln kD

for the sameZ23Z28 parity.
04500
e

In order to get a physical result from Eq.~40!, we still
need to subtract the 1/(D24) pole. When written in the
position space of 5th dimension, 1/(D24) term in Eq.~40!
eventually leads to a term }@l0d(y)1lpd(y
2p)#Fmn

a Famn/(D24) in the 1-loop effective action.@See
Eqs.~28! and~29! for the definition ofl0 andlp .] Then the
subtraction procedure should take into account that the cu
scales aty50 andp differ by the warp factore2pkR. The
correct subtraction scheme is to add a counterterm

E d4xdyAG
1

32p2 Fl0S 1

~D24!
2 ln~L! D d~y!

AG55

1lpS 1

~D24!
2 ln~Le2pkR! D d~y2p!

AG55
GFmn

a Famn, ~41!

which gives an extraR-dependent contribution}lppkR to
the low energy gauge coupling. This can be considered
principle as a different choice of the bare IR brane coupl
gpa

2 (L). However if the 5D orbifold field theory is regulate
in an R-independent manner, which is the most natu
choice in view of the fact thatR is a dynamical field in 5D
theory, this extra piece should be considered as a part
calculable correction. Also the strong coupling assumpt
on the bare brane couplings@13#, g0a

2 (L)'gpa
2 (L)

5O(8p2), applies for theR-independent part. As we wil
see in the next section, our subtraction scheme correctly
produces the results in the supersymmetric case which ca
obtained by a completely independent method based on
effective SUGRA whose regulator mass isR independent.
We also explicitly show in Appendix B that our subtractio
scheme gives precisely the same result as theR-independent
Pauli-Villars regularization for the case of 5D scalar QED

With the prescription to compute the regularized one-lo
gauge coupling which has been discussed so far, it is n
straightforward to computeDa induced by generic 5D fields
with arbitrary Z23Z28 boundary condition. The correctio
due to 5D scalar fields is given by

Da~f!5
1

12FTa~f11!H lnS L

k D
23E

0

1

du F~u!ln Nf11
S iu

2
Ap2D J

23Ta~f12!E
0

1

du F~u!ln Nf12
S iu

2
Ap2D

23Ta~f21!E
0

1

du F~u!ln Nf21
S iu

2
Ap2D

2Ta~f22!H lnS L

k D
13E

0

1

du F~u!ln Nf22
S iu

2
Ap2D J G ~42!
5-6
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where the part with coefficientTa(fzz8) represents the con
tribution from the loops of 5D scalar fieldfzz8 and

F~u!5u~12u2!1/2.

Here Nfzz8
(z56,z856) are theN functions of Eqs.~18!

and ~19! for

~ZF ,ZF8 ,s,r 0 ,r p ,a!5~z,z8,2,b0 ,bp ,A41a!.

The 1-loop corrections due to 5D fermion and vector fie
are similarly obtained to be

Da~c!5
1

3 FTa~c11!H 2 lnS k

pD2pkR

13E
0

1

du G~u!ln Nc11
S iu

2
Ap2D J

1Ta~c12!H 2pkR

13E
0

1

du G~u!ln Nc12
S iu

2
Ap2D J 1Ta~c21!

3H pkR13E
0

1

du G~u!ln Nc21
S iu

2
Ap2D J

1Ta~c22!H 2 lnS k

pD2pkR

13E
0

1

du G~u!ln Nc22
S iu

2
Ap2D J G , ~43!

Da~A!5
1

12FTa~A11!H 23 lnS p

L D121 lnS p

k D122pkR

1E
0

1

du K~u!ln NA11
S iu

2
Ap2D J 1Ta~A12!

3H 2pkR1E
0

1

du K~u!ln NA12
S iu

2
Ap2D J

1Ta~A21!H pkR1E
0

1

du K~u!ln NA21
S iu

2
Ap2D J

1Ta~A22!H 23 lnS L

k D12 lnS k

pD2pkR

1E
0

1

du K~u!ln NA22
S iu

2
Ap2D J G ,

where

G~u!5u~12u2!1/22u~12u2!21/2,

K~u!529u~12u2!1/2124u~12u2!21/2.
04500
s

Here Nc11
, Nc12

, Nc21
and Nc22

are theN functions of
Eqs.~18! and ~19! for

~ZF ,ZF8 ,s,r ,a!

5~2,2,1,c,uc21/2u!,~1,2,1,2c,uc11/2u!,

~2,1,1,2c,uc11/2u!,~2,2,1,2c,uc11/2u!,

wherer 5r 05r p , andNA11
,NA12

,NA21
andNA22

are the
N functions for

~ZF ,ZF8 ,s,r ,a!5~2,2,4,2,0!,~1,2,2,0,1!,

~2,1,2,0,1!,~2,2,2,0,1!.

Note thatNc11
andNA11

are given byN22 in Eq. ~19!, not

N11 in Eq. ~18!.
For a practical application of the above results, one m

consider the low momentum limitp!m1 wherem1 denotes
the lowestmass eigenvalue determined by the correspond
N function. The results ofDa in such a limit are summarized
in Table I. We also provide in Table II the expressions ofDa
induced by a scalar field with particular values of bulk a
brane mass parameters, i.e.,b05bp anda5u22b0u, which
corresponds to the scalar field in supersymmetric theory.

IV. 4D SUPERGRAVITY CALCULATION

In @4,7#, 1-loop low energy gauge couplings in AdS5 have
been obtained in the supersymmetric case using the ga
U(1)R symmetry and chiral anomaly@14# in 5D SUGRA in
AdS5 @9,10# and also the known properties of gauge co
plings in 4D effective SUGRA@15#. In this section, we con-
firm that the results of the previous section correctly rep
duce the SUGRA results when applied in the supersymme
case.

To proceed, let us briefly discuss supersymmetric
theory on AdS5. The theory contains two types of 5D supe
multiplets other than the SUGRA multiplet: one is the hyp
multiplet H containing two 5D complex scalar fieldshi

( i 51,2) and a Dirac fermionc, and the other is the vecto
multiplet V containing a 5D vectorAM , real scalarS and a
symplectic Majorana fermionl i . In the supersymmetric
model, all scalar fields haveb05bp5b anda5u22bu @see
Eqs.~6! and~11! for the definitions ofb0,p anda] and their
superpartner fermion has a kink mass parameterc56(3
22b)/2. Also theU(1)R symmetry is gauged with the grav
photonBM in the following way:

DMhi5]Mhi2 i S 3

2
~s3! j

i 2cd j
i D ke~y!BMhj1•••

DMc5]Mc1 icke~y!BMc1•••
5-7
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DMl i5]Ml i2 i
3

2
~s3! j

i ke~y!BMl j1•••, ~44!

wherec has a kink masscke(y) and the ellipses stand fo
the couplings with other gauge fields. Taking into acco
the Z23Z28 parity, the supermultiplet structure is given by

Hzz8~c!5Xhzz8
1 S b5

3

2
2cD ,hz̃z̃8

2 S b5
3

2
1cD ,czz8~c! C,

Vzz85S Azz8
m ,Az̃z̃8

5
~b52!,lzz8

i S c5
1

2D ,S z̃z̃8~b52! D ,

~45!

TABLE I. One loop corrections forp!m1 where m1 is the
lowest nonzero KK mass.

Type (zz8) Da(p,k,R, ln L)

Real (11) if Q115” 0.
scalarf 1

12Ta(f11)@ ln L2ln k2ln Q11#

if Q1150,
1

12Ta(f11)@ ln L1ln k22 ln p2ln R11#

(12) if Q125” 0,
2

1
12Ta(f12)ln Q12

if Q1250,
1

12Ta(f12)@22 ln p12 ln k2ln R12#

(21) if Q215” 0,
2

1
12Ta(f21)ln Q21

if Q2150,
1

12Ta(f21)@22 ln p12 ln k2ln R21#

(22) 1
12Ta~f22!F2ln L1ln k2lnSeapkR2e2apkR

pa DG
Spinorc (11)

1
3Ta~c11!F2pkR12 ln k22 ln p22 ln

3He(c21/2)pkR2e2(c21/2)pkR

p~c21/2! J G
(12) 2

3 Ta(c12)cpkR
(21) 2

2
3 Ta(c21)cpkR

(22)

1
3Ta~c22!F2pkR12 ln k22 ln p22 ln

3He(c11/2)pkR2e2(c11/2)pkR

p~c11/2! J G
Vector A (11) 1

12Ta(A11)@223 lnL122pkR221 lnk
144 lnp121 ln 2kR#

(12) 2
11
6 Ta(A12)pkR

(21) 11
6 Ta(A21)pkR

(22)

1
12Ta~A22!F23 lnL2pkR221 lnk22 ln p

121 lnSepkR2e2pkR

p DG
04500
t

where the subscriptsz,z8 denote theZ23Z28 parity, z̃

52z, z̃852z8, b is the brane mass parameter andc is the
kink mass parameter.

Let us assume that our 5D theory is compactified in
manner preservingD54 N51 supersymmetry. This allows
the low energy physics to be described by 4D effect
SUGRA whose action can be written as

S4D5E d4xF E d4uH 23 expS 2
K

3 D J
1S E d2u

1

4
f aWaaWa

a1H.c.D G , ~46!

whereWa
a is the chiral spinor superfield for the 4D gaug

multiplet and we set the 4D gravity multiplet by the
vacuum values. The Ka¨hler potentialK can be expanded in
powers of generic gauge-charged chiral superfieldQ:

K5K0~T,T * !1ZQ~T,T * !Q* e2VQ1•••, ~47!

whereT denotes the radion superfield whose scalar com
nent is given by

T 5R1 iB5 ,

and the gauge kinetic functionf a is a holomorphicfunction
of T. Then the 1-loop gauge couplings in effective 4
SUGRA can be determined byf a containing the 1-loop
threshold correction from massive KK modes and also
tree-level Kähler potentialK @15#:

1

ga
2~p!

5Re~ f a!1
ba

16p2
lnS M Pl

2

e2K0/3p2D
2(

Q

Ta~Q!

8p2
ln~e2K0/3ZQ!1

Ta~Adj!

8p2
ln„Re~ f a!…,

~48!

whereba5(Ta(Q)23Ta(Adj) is the 1-loop beta function
coefficient andM Pl is the Planck scale ofgmn which defines
p252gmn]m]n .

TABLE II. 5D scalar contribution forp!m1 whenb05bp and
a5u22b0u.

(11)
1
12Ta~f11!Fln L1ln k22 ln p2pkR

2lnHe(12b)pkR2e2(12b)pkR

p~12b! JG
(12) 1

12Ta(f12)(22b)pkR
(21) 2

1
12Ta(f21)(22b)pkR

(22)
1
12Ta~f22!F2ln L1ln k2lnHe(22b)pkR2e2(22b)pkR

p~22b! JG
5-8
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Let us consider the 4D effective SUGRA of a 5D theo
which contains H11 ,H12 ,H21 ,H22 as well as
V11 ,V12 ,V21 ,V22 . The 5D vector multipletV11 gives
a massless 4D gauge multiplet containingA11

m whose low
energy couplings are of interest to us, whileV22 gives a
massless 4D chiral multiplet containingS111 iA11

5 . H11

andH22 also give massless 4D chiral multiplets containi
h11

1 andh11
2 , respectively, whose tree level Ka¨hler metrics

are required to compute the 1-loop gauge coupling~48!.
Other 5D multiplets, i.e.,V12 ,V21 ,H12 andH21 do not
give any massless 4D mode. LetYQ5e2K0/3ZQ where
ZQ(Q5H11 ,H22 ,V22) denote the Ka¨hler metric of the
4D massless chiral superfields coming from the 5D mul
lets H11 ,H22 and V22 , respectively. Following Refs
@7,16#, it is straightforward to find thetree level ZH11

,ZH22

and alsof a containingthe 1-loop threshold correctionsfrom
massive KK modes:

M Pl
2 5e2K0/3M5

25
M5

3

k
~12e2kp(T1T * )!,

YH11
5

M5

S 1

2
2c11D k

~e(1/22c11)pk(T1T * )21!,
e

A
ob

b-
su

c
in

ld

wi

04500
-

YH22
5

M5

S 1

2
1c22D k

~e(1/21c22)pk(T1T * )21!,

YV22
5

k

M5

1

epk(T1T * )21
,

f a5
pT
ĝ5a

2
1

z8

8p2 S 3

2 (
Vzz8

Ta~Vzz8!2 (
Hzz8

czz8Ta~Hzz8! D kpT,

~49!

whereM5 is the 5D Planck scale, andczz8 is the kink mass
of Hzz8 . As was noted in@7#, the KK threshold correction to
f a can be entirely determined by the chiral anomaly w
respect to the followingB5-dependent phase transformatio

lai→e3ikuyuB5/2lai, c→e2 ickuyuB5c. ~50!

Using the above results, we finally find
Da5Ta~H11!F lnS k

pD2c11pkR2 lnS e(122c11)pkR21

p~122c11! D G2Ta~V11!F3 lnS M5

p D2
3

2
pkR2 ln~M5R!G

1c12Ta~H12!pkR2
3

2
Ta~V12!pkR2c21Ta~H21!pkR1

3

2
Ta~V12!pkR1Ta~H22!F lnS k

pD1c22pkR

2 lnS e(112c22)pkR21

p~112c22! D G1Ta~V22!F ln
M5

p
1 ln

M5

k
1

1

2
kpR1 ln~12e22pkR!G ~51!
ion

e
ric
e re-
d on

-
r-

ce
e

is
F
nd
for p!m1 wherem1 is the lowest nonzero KK mass. Not
that m1;ke2pkR for the bulk fields other thanH12 or
H21 , while H12 hasm1;ke2(1/21c12)pkR for c12>1/2
and m1;ke2pkR for c12<1/2, and H21 has m1

;ke(21/21c21)pkR for c21<21/2 and m1;ke2pkR for
c21>21/2. The above result obtained by 4D SUGR
analysis perfectly agrees with the result that one would
tain using the results of Tables I and II whenM5 is replaced
by L. This provides a nontrivial check for the results o
tained in the previous section and assures us that our re
are truly scheme independent.

V. CONCLUSION

In this paper, we have calculated the full 1-loop corre
tions to the low energy coupling of bulk gauge bosons
AdS5 induced by generic 5D scalar, fermion and vector fie
with arbitrary Z23Z28 orbifold boundary conditions. The
used calculation scheme is the background field method
-

lts

-

s

th

dimensional regularization. We noted that the subtract
scale for the log divergence at the IR brane (y5p) should be
taken to beLe2pkR whereL is the subtraction scale for th
UV brane (y50). We also considered the supersymmet
case to assure us that our results correctly reproduce th
sults obtained by a completely independent method base
4D effective supergravity analysis.

Note added. While this work was in completion, we re
ceived @17,18# discussing the 1-loop gauge coupling reno
malization due to 5D scalar loops in AdS5 background and
its interpretation in the context of AdS-CFT corresponden
and also@19# discussing the 1-loop renormalization in th
context of deconstructed AdS5.
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APPENDIX A: SOME PROPERTIES OF THE N
FUNCTIONS

In this appendix, we present some properties of theN
functions,Nzz8 (z,z856), given in Eqs.~18! and ~19!. Us-
ing Ya(x)5@cosapJa(x)2J2a(x)#/sinap and also the fact
that Nzz8 are antisymmetric under the exchange ofJa and
Ya , one can rewrite theN functions as

N11~q!52
1

sinap F H S s

2
2r 0D JaS q

kD1
q

k
Ja8 S q

kD J H S s

2

2r pD J2aS q

TD1
q

T
J2a8 S q

TD J 2H S s

2
2r pD JaS q

TD
1

q

T
Ja8 S q

TD J H S s

2
2r 0D J2aS q

kD1
q

k
J2a8 S q

kD J G ,
N12~q!52

1

sinap F H S s

2
2r 0D JaS q

kD1
q

k
Ja8 S q

kD J J2aS q

TD
2JaS q

TD H S s

2
2r 0D J2aS q

kD1
q

k
J2a8 S q

kD J G ,
N21~q!5

1

sinap F H S s

2
2r pD JaS q

TD1
q

T
Ja8 S q

TD J J2aS q

kD
2JaS q

kD H S s

2
2r pD J2aS q

TD1
q

T
J2a8 S q

TD J G ,
N22~q!52

1

sinap FJaS q

kD J2aS q

TD2JaS q

TD J2aS q

kD G ,
~A1!

where T5ke2pkR. Then usingJa(x)5xa f (x2), one can
easily see that allN functions are even functions:

Nzz8~q!5Nzz8~2q!.

We already knowNzz8(q) is analytic nearq50, allowing an
expansion aroundq50:

Nzz8~q!5Qzz81
q2

k2
Rzz81O~q4!, ~A2!

where

Q115
1

pa F S a1r p2
s

2D S a2r 01
s

2De2apkR

2S a1r 02
s

2D S a2r p1
s

2DeapkRG , ~A3!

Q1252
1

pa F S a2r 01
s

2De2apkR

1S a1r 02
s

2DeapkR G ,

04500
Q215
1

pa F S a2r p1
s

2DeapkR1S a1r p2
s

2De2apkRG ,
Q225

1

pa
@eapkR2e2apkR#,

R115
1

4p F 1

a~a21! H S 22a2r 01
s

2D
3S a2r p1

s

2DeapkR1S 221a1r p2
s

2D
3S a2r 01

s

2De(22a)pkRJ 1
1

a~a11! H S 2a2r p

1
s

2D S 21a2r 01
s

2De2apkR1S a1r 02
s

2D
3S 21a2r p1

s

2De(a12)pkRJ G ,
R125

1

4p F2
1

a~a21! H S 221a1r 02
s

2DeapkR

1S a2r 01
s

2De(22a)pkRJ 1
1

a~a11! H S 21a

2r 01
s

2De2apkR1S a1r 02
s

2De(21a)pkRJ G ,
R2152

1

4p F 1

a~12a! H S 221a1r p2
s

2De(22a)pkR

1S a2r p1
s

2DeapkRJ 1
1

a~11a! H S 21a2r p

1
s

2De(21a)pkR1S a1r p2
s

2De2apkRJ G ,
R225

1

4p F 2
1

a~a21!
$e2(a22)pkR2eapkR%

1
1

a~a11!
$e2apkR2e(a12)pkR%G .

The KK mass eigenvaluemn is determined by the zeros ofN
function:N(mn)50. Obviously a 5D field has a massless 4
mode iff Qzz850. Generically, a nonzero KK mass eige
value starts to appear frommn5O(T). However, in some
special cases, there can be nonzero mass eigenvalues
smaller thanT5ke2pkR. For instance, ifa5s/22r 0 anda
has a large value,Q12;e2apkR andR12;eapkR, giving a
very light state ofF12 with mn;ke2apkR. Similarly, if a
5r p2s/2, F21 can also have a very smallmn . However,
F22 does have neither a massless state nor a very light s
with mn!ke2pkR.
5-10
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The asymptotic behavior of anN function at uqu→` is
essential for regularizing the 1-loop gauge coupling. Us
the asymptotic formulas of Bessel functions:

Ja~x!→A 2

px
cosFx2S a1

1

2D G ,
Ya~x!→A 2

px
sinFx2S a1

1

2D G ,
we find

N11~q!→2
2qepkR/2

pk
sinS ~12epkR!q

k D ,

N12~q!→2
2

p
e2pkR/2 cosS ~12epkR!q

k D ,

N21~q!→ 2

p
epkR/2 cosS ~12epkR!q

k D ,

N22~q!→2
2k

pq
e2pkR/2 sinS ~12epkR!q

k D .

APPENDIX B: COMPARISON WITH PAULI-VILLARS
REGULARIZATION

The natural regularization in 5D theory is to cut off 5
momentum in the 5D metric frame ofGMN : 2GMN]M]N
,L2. In AdS background, this would correspond to an
fective y-dependent cutoff of 4D momentum in the 4D me
ric frame of gmn : p252gmn]m]n,e22kRuyuL2. In dimen-
sional regularization, such a feature is not manifest, but
be taken into account by choosing the subtraction sc
;Le2kRỹ whereỹ50 or p is the location of log divergence
On the other hand, such feature is rather manifest in Pa
Villars ~PV! regularization in whichL corresponds to a 5D
regulator mass. In this appendix, we compare our result
ing dimensional regularization with the subtraction sche
~41! to the PV result for scalar QED. For simplicity
we consider the massless scalar QED withZ23Z28
parity (11).

In the PV scheme, the UV divergence is regulated b
PV regulator with 5D massL which has the sameZ23Z28
boundary condition asf but opposite statistics:

(
n
E d4p

~2p!4
f ~p,mn!→(

n
H E d4p

~2p!4
f ~p,mn!

2E d4p

~2p!4
f ~p,Mn!J , ~B1!

whereMn is the KK spectrum for the PV regulator. We co
vert the summation into an integral using the pole functio

Pf5
Nf8

2Nf
, PPV5

NPV8

2NPV
,

04500
g

-

n
le

li-

s-
e

a

:

and then the regulated amplitude is given by

E
�

dq

2p i
Preg~q!E d4p

~2p!4
f ~p,q!, ~B2!

wherePreg(q)[Pf(q)2PPV(q). SinceNf andNPV are the
same limiting behavior atuqu→`, Preg(q) vanishes at in-
finity. After a partial integration alongq, we find

DPV58p2E
C

dq

2p i S 1

2
ln Nf2

1

2
ln NPVD d

dq H 1

2E dx~1

22x!2
1

~4p!2
ln„x~12x!p21q2

…J
52

1

4E dx~122x!2~ ln Nf2 lnNPV!uq5 iAx(12x)p2 ,

~B3!

where C is the contour line described in Fig. 2. Forq
!ke2pkR,

Nf'
q2

k2
epkRS epkR2e2pkR

p D , ~B4!

NPV'
~a22!~a12!

pa
~e2apkR2eapkR!.

~B5!

For L@k, a[A41L2/k2'L/k, and so

ln NPV'pLR1 ln L2 ln k. ~B6!

We then find

DPV5
1

12FpLR1 ln L1 ln k22 ln p2pkR

2 lnS epkR2e2pkR

p D G , ~B7!

which is precisely the same as the result in Table II fo
massless realf11 obtained using dimensional regularizatio
with the subtraction scheme~41!. In scalar QED, the charge
scalar field should be complex, so that it gives a loop corr
tion twice that of the above result.
5-11
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