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We reexamine the proof provided by Vafa and Witten that there is no spontaneous parity breaking in theories
with vectorlike fermions. We argue that the various criticisms that have been leveled at the original proof do
not invalidate it.
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[. INTRODUCTION metastable statésln Sec. V we consider the use of fermi-
onic operators as order parameters for a possible parity-
Several years ago, Vafa and Wittgh] (VW) provided a  Violating phase transition; in contrast to the result§sfwe

simple, elegant argument for the absence of spontaneous péind that this type of order parameter exhibits the same be-
ity violation in theories containing only vectorlike fermions; havior claimed by VW. We then argue that there is a simple
this result, however, has been criticized on various grounddnd useful fermionic operator that can be better used as an
dealing with mathematical niceties underlying the proof. Itorder parameter since it preserves chiralitye operators
was argued ii2] and later in[3] that the expression for the used in[4,5] violate both parity and chiral symmejryParity
free energy on which the VW argument is based has an i||y|0|a.t|0n at finite temperature IS br|eﬂy revisited in Sec. VI,
defined infinite-volume limit and is therefore insufficient to @nd parting comments are presented in Sec. VII. A math-
determine the absence of spontaneous parity violation. Pr&matical result is relegated to the Appendix.
viously, Aoki [4] had noted the possibility that lattice QCD
has a parity-violating phase which disappears in the con- Il. THE VAFA-WITTEN ARGUMENT

tinuum limit; this apparently presents a problem for the VW In this section we summarize the original VW arqument
result since the original proof can be applied to the lattice- g 9 '

regulated theory as well as to the continuum. Hence the Aok-lrhe idea IS fo consider a theory with ac_t@"that IS even
nder parity transformations and contains only vectorlike

phase, even if only present at nonzero lattice spacing, woul ermions(so that the corresponding fermionic determinant is
directly contradict the results ¢1] providedthe assumptions ea), and to add a parity-violating ter® so that the full

made by VW are satisfied by the lattice regulated theory a inkowski-space action becomes
finite spacing. This model was studied carefully by Sharpe P
and Singletori5] who argued that the Aoki phase is not ruled Si= S+AX (1)
out by the results of VW since their arguments appear not to o '

be applicable for the case of fermionic order parametersyhere\ is a small real parameter antlis Hermitian. We
Finally, Ref.[6] raised the possibility of parity-violating op-  will assume(without loss of generalitythat X is parity odd:;
erators that evade the proof of VW for systems in a thermaj| gauge-fixing terms are assumed to be contained Fhe
bath. In this paper, we will re-examine these Complaints an%osonic terms inS are assumed to be reahis is a|WayS
find that, for phySICally relevant systems, they do not inva”'possib|e for all linear gauggs(see for examp|é9])_ We will
date the results of VW1]. In a related papel7], we argue  concentrate on theories that do not contain scalar fields.
that the proof, even under the assumptions stated, does not, we first consider the case whereis a purely bosonic
however, exclude spontaneous parity violation under certaigperator. Some comments concerning scalar theories are pro-
circumstances. vided in Sec. VII. We first obtain the free energy by Wick-
We organize this paper as follows. In Sec. Il we reviewotating S in Eq. (1). While not without ambiguities, to be
the original VW argument. In Sec. Ill we examine the Iargeprecise, we will follow the procedure dfl0]. Any parity-
volume limit of the theory and show that, as claimed2f,  vjolating operator contains aatensor and this implies that

it is well defined only for the case where spontaneous symthe corresponding term acquires an additional factori of
metry breaking does not occur; yet we will argue that thisypon Wick rotation, thus we find

deficiency does not invalidate the results of VW. We revisit

the lattice arguments in Sec. IV where we argue that the Aoki———

phaseqat least for .a_large number of ferm@mﬁo not rep- This should not be used to completely dismiss these states as

resent absolute minima of the effective potential but onlyirelevant: recent experiments in heavy-ion collisions create finite-
volume systems that may relax temporarily into parity-violating

configurationg 8].
*Email address: meinhorn@umich.edu 2For this it is conveniennot to introduce ghosts and deal with the
TEmail address: jose.wudka@ucr.edu gauge-fixing determinant directly.
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iSior— — Se+HiAXg, 2) this point in Sec. IV. Note that in proving E(6) we used the
fact thatW is real sinceX is odd under parity and the inte-
with Sg and Xg real (the subscripE will be used to denote gration involves both a configuration and its parity conju-
the quantities in Euclidean spac&he “free energy”Wis  gate.
then Since any explicit violation of the symmetfin this case
parity) results in an increased free energy, the lowest energy
ground state will be parity symmetric. To see that ).

implies vanishing of the expectation lalue)QfZ it is use-
ful to pass to the effective potentil(X)

e W) f [dAJe S MeDeDe+ M), (3)

where A denotes the gauge fields, ar8l>™" the purely

bosonic contributions t&g .> We take the mass matrikl

diagonal with non-negative eigenvalu@s we are not inter- V(Y)EWO\)—AY with X= ﬂv. @)

ested in explicit P violatiop the Euclidean-space fermionic ’ 2N

covariant derivative is denoted b¥pg which is anti-

Hermitian in our conventionfl0] (the gamma matrices are |nyersely, usingy = — V' (X), we can write this as

Hermitian. The fermionic determinant is then a real func-

tional of the gauge fields for vectorlike couplingkL]. R

Consider now the case wheXeis a fermionic bilinedt: W) =V(X) +AX=V(X) = XV'(X). ®

X=E(’)z/x. (4 We want to show that, in the limit—0~, X—0. Suppose,

on the contrary, thétash—0*, X=v+0. This is necessar-

ily at a minimum of\/(Y).7 If we adopt the usual convention
thatW(0)=0, thenV(v)=0 as well. The inequality EJ6)
therefore implies that

After a Wick rotation and to first order iR the fermionic
integration yields

e‘W(”)=f [dAle 2™ N E Det D+ M);

V(X) =XV (X)={V(X)— (X—0)V'(X)} =0V’ (X)=0.
9

XEN = —iTr

Ok |, ©)

De+M Sincev is a minimum,V'(v)=0. If we expand in a neigh-

where Oz=y°y50y59°.5 A naive calculation shows that borhood ofX=v, the term in the curly brackets contains at

XM is real if @E: —v°Og®. In particular note that this least one power ofi—v) greater than the last term and,

E : : - : .
holds for the simple case8z=iys and Og=Dgy5. There MOrEOVer, sinca is a minimum, the leading term in the

is, of course, a possibility that these rather formal results ar&xpansion oV’ (X) will be an odd power of X—v). [For
flawed by the mathematical subtleties involved in properlyV”(v)>0, it will be linear in (X—v).] But then the inequal-

defining X [5]; we discuss this possibility in Sec. V. ity will be violated in a neighborhood ok=v. Therefore,
With these preliminaries the proof is based on the claimthe only possibility is thap =0.8
[1] that all parity-violating operators correspond to r&alor The same conclusion can be obtained starting from the
XM in which case Hamiltonian derived from Eq(1).° Indeed, if the ground
state is not parity symmetric, then, wher-0, there will be
W(N)=W(0), (6)  two degenerate lowest-energy staftes that are parity con-

) ) o ) jugate of each other. Now, the Hamiltonian corresponding to
as a result of Schwartz’s inequality. The validity of this resuItEq. (1) is of the formH+ A= whereH is parity even anE
then rests on the requirement that the measure is posﬁw&anty odd; a straightforward application of degenerate per-

definite, that is, De@g+M)>0. This is true for the case {rhation theory shows that the ter lifts the degeneracy,
of vectorlike fermions[11], but can be extended to some ¢4 that the lowest energy state for the system equals
more general types of fermionic Lagrangians; we return to

Eo—|Ne|+O(N\?); Eq=(x|H|%);e=(+]|E|-)
10)

SFor constantx, W(\) will be proportional to the space-time
volume. -
“WhenX contains products of bilinears these can be turned into a _
. : ; : o0 The casen—0
sum of bilinears through the introduction of appropriate auxiliary i i ) ] — ]
fields by using the Hubbard-Stratonovich trick?]; the arguments Since the actiore is parity symmetric, and Is parity odd,
below carry through provided these auxiliary fields are vectors; thisV(\) =—W(—X), and V(X)=V(—X). So, —v will also be a

is similar.

will be investigated in detail ifi7]. minimum, but we simply pick one of them.

%It is understood tha® is obtained by replacin@®,— —iD§, ®The same result is obtained when one defines the effective po-
Y’ —v5, Y——iyg in O. In our conventionSyET= +75 and tential in the regior{X|<|v| using the Maxwell constructiofi.3].
{75 ,75}= Suv- The following is a clarification of an argument presentedlih
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that decreasesas a function of\. This contradicts Eq(6)  quirement for a system is that the Hamiltonian be an addi-
and implies that there are no parity-degenerate vacua: thi&vely renormalizable operator that is bounded from below.

symmetry is not broken. In this case exp{W) equals theB—0 limit of the partition
functionZ=Tre A", For any finiteg, the standard expres-
IIl. LARGE VOLUME EEEECTS sion for Z in terms of energy eigenvalues shows that it can-

) ) _ _ _ not be negative, provided we assume that the exponential
The results summarized in the previous section were critijecrease in the contributions from largrenormalized en-
cized in[2] based on the following observation. Suppose Wegrgy states is sufficient to guarantee convergence of the trace.
construct a Landau-Ginzburg functional of the order paramsystems obeying these restrictions will haZe-0, which
eter defined aXg /V, whereV denotes the spatial volume of then implies exptW)=0. In such cases the possibility of

the system. Explicitly, negativea (or any set of parameters leading to a complex
. ; W), where parity is spontaneously broken, will not be real-
oson, .
yW:f m4fdmeﬁe*“&DwDE+M) ized.

This same issue was discussed3f where it is claimed
thatW(\), when defined appropriately, has the same depen-
dence on\ independent of the sign & Although we find
% _ that this is not the case, the claims of this reference would be
Zf dpe” 7P TIVAe, (1) validated by Eq(15) provided the free energy is a concave
o function of A, as is indeed the case what»0.

where F is presumably proportional t& and we assume it | NS, however, is not the case whar:0. If we adopt the

can be expanded in a power seriespinSince the original prescription of[3] of defining the free energy through an
action is parity symmetric® will be even inp. For definite- aVerage over the volume, the_ results are ambiguous. For ex-
ness we will consider the case ample the free energy per unit volume,

X 8(p—Xg/V)

1 1 1
4 2 V—oo
hence would equalf =a?/(4b)+\?/(4a)+ - - - provided wedefine
e =(vb)~"1(q) ~ IncogcV)
lim ———=0 17)
© 1 Voo
I(q)zf dxexp{—zx“—aqz’%@ﬂqx (13

for any fixed real constard. In this case the conclusions of
[3] follow: we cannot use th& dependence of the free en-
ergy to determine the presence or absence of symmetry
1 breaking. However, this is aad hoc choice: considelV,
a=A(V3b)¥%  a=-a(\%h) 13 (14 =(n+1/2)m—e "™ for a real constant and a positive
2 integern. Then lettingV=V, and taking the infinite volume
limit by letting n—<, we find

where

The integralZ is evaluated in the Appendix, we find, for

small |\, |- In cosV, -
im———=i—u,
T=ze VIR NG+ Toog v\ |V]al/b+ ¢); [A]<1, P
a<0=ze VI/UD) TINABHAZ(4a) ¢ 1. |\| <1, a>0 having taken the branch of the logarithm such that

(15) In cosV,,=n(i—u). With these choices the limit is certainly
nonzero. The point is that the large volume limit of @V
wherez, ¢ are constants. is ill defined!® It is possible to define the limit so that the
For the case of no spontaneous symmetry breakiag (troublesome oscillatory term does not contribute, but it is
>0) the free energy¥ is well defined and satisfies E() unclear whether this is the physically correct definition of the
though it is not analytic irn. When the symmetry is spon- free energy.
taneously broken the free energy suffers from the ailments We conclude that the concerns raised2r8] are valid in
described irf2]. Note that the boun¢b) is satisfied in either that the partition function would not be positive definite in a
case. system exhibiting spontaneous parity violation. However,
Since the free energy is ill defined whar:0 [though Eqg. this situation will not arise for systems with a Hamiltonian
(6) is still obeyed, the VW argument is incomplete in this
case. The problem is that the partition function oscillates;
corresponding to a complew, we now argue that this will  °For a different choice of the branch cuts the imaginary term
not occur in any physical system. Indeed, a reasonable revould be absent.
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bounded from below such that the density of states does nohodel does not satisfy an important assumption made in de-

grow faster than the exponential of the energy. riving the VW result: since the fermions do not couple vec-
torially, the fermionic determinant associated with ELp) is
IV. LATTICE CONSIDERATIONS not positive definite. While this model can be used as guid-

ance in obtaining the phase structure of QCD on the lattice, it
In a series of publicationi$t] Aoki proposed a phase dia- does not provide a violation of the VW results.

gram for lattice QCD that is markedly different from the
standard caséboth quantitatively and qualitativelyor non-
zero lattice spacin@all such peculiar effects disappear in the . o
continuum limib. In this scenario the theory has two phases, Another example considered by Aoki is the case of the
one where the 3 pions are massless, being the Goldstoh'ge N limit (N again denotes the number of fermipris
bosons produced by the spontaneous breaking of the usuttice QCD in 4 dimensions using Wilson’s formalism. De-
chiral symmetry. In the second phase flavor symmetry is benote by o(n)=(n)® ¢(n), then, following[4], we con-
lieved to be spontaneously broken downlt¢l) generating Sider the effective potential for these operators in the case
two Goldstone bosondor the case of 2 massless quarke ~ where they are position-independent in the lafgeand
that the third pion is massive in this phase. The transitionstrong coupling limits. Replacing then
between phases are of the second order so that the third pion 0y
mass vanishes smoothly as the phase boundary is ap- o(n)—oe™rs (20)

proached. In this second phase parity 1S also spontaneousgp{e effective action for this order parametefuge take again
broken leading to a nonzero expectation value of the order

— unit lattice spacing[15]
parametex i ysi).

Though Aoki’'s original arguments were made within the — .
lattice-regulated theory, the results of Sec. Il would be Ser=4NQ|mo cog6)—In(o)—2|y1-40sin(6)°—1
equally applicable to this cag®] provided the various as-

B. Lattice QCD in 4 dimensions at largeN

sumptions made are satisfied. Should this be the case, the 1+ J1—402sin( 6)?

presence of a parity-violating phase at finite lattice spacing —In 5 , (21)
casts doubt on the results pf], even though the parity-

asymmetric phase disappears in the continuum. where Q denotes the lattice volumen the bare fermion

The lattice arguments in Ref4] are supported by tWo 355 and we have chosen the Wilson fermion parameter
largeN calculations, one for the two-dimensional Gross-— 1 The effective potential isninusthe above expression.
Neveu mode(14] and one for four-dimensional QCILS]; e will also replaceN In o=(N/2)In o? and avoid a spurious

both are based on finding minima for the effective potentiakyaginary contribution tS.;. This expression has a series
that do not respect parity. In addition there is also som&y |ocal extrema at the points

numerical evidence based on the Monte Carlo evaluation of
several observables. We will revisit these calculations in the (i):cosf=*1, o==*1/m.
paragraphs below.

. [ 3 [ 3
A. The lattice Gross-Neveu model (if):cosf==m T6—-m> 7 * 16—m2

This model containsl spinor fieldsy; where the doubling (22)
problem is fixed using Wilson fermions. The dynamics is
defined by the lattice actiofwe take a unit lattice spaciing

Points (i) are local minima oS4 for m?<4 but are saddle
points form>2; (ii) are saddle points faom?<16 and un-
1 N 1 physical otherwise. It is remarkable that the curvature of the
S= > > i(n)| [yl (n)+ Er[Dd/i](n)Jr [o(n) effective potential at pointsi() is positive in thef direction,
=1 corresponding to a positive pion mass parameter.
None of these points, however, represent the global mini-

N
—im(n)ys]li(n); + 2—92 E [o(n)?+ m(n)?], mum of the effective action. In fact we have the behavior,
n

(19 Se— +®, 0—0,—-—o, oc—xo, O=7. (23

where g is N-independent and the derivatives denote theHence points(i) represent metastable states where parity is
usual lattice operationi6,17. In the largeN limit and for ~ broken, the stable vacuum at=0 is parity even. Note that
constanto and 77, the fermionic determinant yields a func- the stability of theo=0 vacuum is determined solely by the
tion which has a minimum for a nonzero value of Even  term Ino and may be altered by finitd corrections. _
though quantum fluctuations are known to destroy this non- This still does not explain why the numerical evaluation
trivial vacuum[18], this calculation does suggest the possi-of {ysi) yields a nonzero result. This is understood by the
bility of the richer phase diagram described[#]. observation[4] that the Wilson action does not lead to a

These results for the Gross-Neveu model do not contrapositive fermionic determinant, which follows from the fact
dict general argument presented[i. This is because this that the Wilson term does not anticommute wigg. It is
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possible to generalize somewhat the result$1df, and to  pP.+m+he %7
show that the Wilson action leads to a positive fermionic
determinant, bubnly when the fermions carry a real repre-
sentation of the gauge grouf], which is not the case for
QCD. Hence the presence of spontaneous parity violation in
QCD with Wilson fermions does not invalidate VW for finite and we can replacgs— 7, (denoting the usual Pauli matjix

lattice spacing, as the theory does not comply with the asThen the corresponding contributions to the tré@® are
sumptions made ifl]. On the other hand, the lattice results

(29

iA,+m+h cosé *ih sing
+ih sing —iNp+m+h cosd)’

do indicate tha{ yysi)—0 in the continuum limit, as de- 1 2(h cosf+m)
manded by VW. In this sense the result§ 4 supportthose Do+ m+he o7 — N+ AZ
of [1].
el (i) 1 _2hsing 20
V. FERMIONIC ORDER PARAMETERS re (i y5}DE+m+heii”75 —F )\ﬁ-I—AZ ; (30
In a calculation related to Aoki's, Sharpe and Singleton
[5] considered the case of QCD with two flavors to whichwhere
they added a source for a parity-violating order-parameter.
Then they studied the vacuum expectation value of this order A?=h?+m*+2hmcose. (3D
parameter as the source strength was set to zero. The fermi- _
onic part of the Lagrangian in Euclidean space is For the zero modes,=0 we can choose, to be an eigen-
state ofys,
— A + + —i 9’)’57’3
Lterm \I,(DE m-+he ", (24) Y5Pn= Xn®n: Xn_l (32

whereW¥ denotes the fermion iso-doubl@ssumed degener- |n this one-dimensional subspace we can repiage x,, and
ate in mask andh the source strength. The Euclidean cova-

riant derivative operatoDg is anti-Hermitian(in our con- De+m+he 7% he™ Ot m, (33
ventions the Euclidean gamma matrices are Herm|[tif),
and the Pauli matrix-3 acts on the isospin variables. Then the corresponding contributions to E26) become
The possibility of spontaneous parity violation can be '
studied considering the expectation values of operators of the L 1 he®fxn+m
r — — ;
form IDE+m+he+|0y5 AZ
O%a):‘];’ar\l’a, a=1,2; (25) . [ ( ) 1 ] ' heti0Xn+ m
r I ’)/5 io - Xn 2 .
where a labels the isospin components ahdis a linear De+m+he'™s A
combination of the unit matriX,ys, 73 andi 73ys. To obtain (34)
the general form of the expectation value, Adding all terms we find
1 1 h cosé+m _ hsine
(O@)=TriT . } (26) T - oy hoserm ; heng
De+m+h exd —i60ys(73)aal De+m+he™¥s) 7 A+A A
(no sum overa) we follow [5,19] and consider the above . h sin@+m
system in a finite volume; we then expand the above traceTrj (i y5)—1i€y E N2 ZrAZ
using the eigenfunctions dbz which we denote byep,,. De+m+he'™s n
Explicitly,  h cosf+m
+1 V—Az ) (39

Depn=iNnen, (27)

where the sum is ovaall modes(with positive negative and
where we used the fact that the Euclidean Dirac operator igero eigenvalugsand v denotes the index dbg,

anti-Hermitian. As usua]20] we will treat the zero modes

separately.
When\,#0 the modeyp, is paired withyse, for which szn: Xn> (36)
De(ysen) =i(—Np)(¥5@n), (28)  where this sum is over the zero modes only.
Using these expressions we find, for the operators in
hence in thd ¢,,, ys¢,} subspace we have Eq. (24),
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h cosé+m A ] v hsing chiral symmetry. We can repeat the calculations for an op-
<O(1a)>: AQ ; >\2+A2_'(T3)aa§ TAZ erator that violates only parity such as
n
() — yraj ~,_mwra

(0@~ (1) h sine2 A Y h cosf+m Oy’ =V ysD W2, (41)

H = (T | —

e YA A )\§+A2 Q A In this case we find

(37)
~ 2\
(no sum over) where() denotes the space-time volume. In (O@Y=—i(73),50 sinaf d)\pA()\))\2+m2, 42)

particular,

. h cosf+m that vanishes aBh—0, but also vanishes whefi=0 when
< f d*x Ti 'y5‘lf> =2j vz (39 the theory is parity symmetric. For this operator the expec-
tation value is zero at the level of the fermion integral, in
contrast with Eq(39).

It is worth pointing out that? ! is notrelated toO3) in

Eq. (25) through the use of the equations of motion, in fact,
= v p if we replaceD—D+im in Eq. (41) O&) remains un-
J d*x WiysW¥ - =21 = WJ A" TIF 40 F 0] changed. This shows that this operator can be eliminated by
h=o (39)  Pperforming a chiral rotation on the fermion fields, and is then
equivalent to a purely bosonic operator proportional to the
The authors of 5] obtain zero instead of the above expres-index of the Dirac operatdDg [22].
sion since they did not include the contribution from the zero The authors of5] also consider the behavior of the lattice
modes explicitly. Note also that both isospin componentsrersion of this theory close to the continuum. They find that
contribute equal amounts to the right-hand side of 8§).  the leading contributions to the effective potential for the
The fact that we obtain a nonvanishing expression in Eqmeson fieldS =o+i7 m, (0?+ @?=1), equals
(39) doesnot imply that parity is broken: this will be true
only if this nonzero value survives the integration over the Ver(2) = —co+ 0%, (43
gauge fields. That integral cannot be evaluated, even for- ) .
mally; yet the fact that the right-hand side of EQ9) is  With c; approximately constaritndependent ofn) while c,
purely imaginary allows us to use the argument leading tds expected to be a linear function of. The crucial issue
Eq. (6) which implies that, in fact, parity is not broken. here is the sign of,: if c,<<0 the potential has a minimum
It is worth noting that Eq.(39) is consistent with the at o®=1 that corresponds to a parity-symmetric vacuum
anomaly equation in Euclidean space provided we assum#here the pion field gets no expectation value. If, on the
that there are no massless excitations, so that the volunfgher hand.c,>0 parity will be broken:' In view of the
integral of the divergence of the axial current vanishes. Weabove discussion that supports the results of Ref. and

also note that the corresponding expression for the paritysuggests that the parity-violating vacua of the laNye-
even bilinear gives strong coupling lattice theory are not absolutely stable, we

believe that, in factc,<0 as well.

Taking the infinite volume limit and then lettingapproach
zero, we obtain

(W), o=~ f d\pa(N) (40)

N2+ m? VI. PARITY VIOLATION AT FINITE TEMPERATURE

In [6] it is noted that systems in a heat bath have an
available additional timelike vecton* (the temperature
vecton, that can be used to construct P-violating operators

wheref)A denotes the spectral density per unit four-volume
for the operatod . This expression reproduces the corre-

sponding result of5]. i ~ , that apparently do not acquire the crucial factor iof
If we add to the Lagrangian a teri Tr FF/(4m)"  ynon a Wick rotation. An example is the operator
(whereF denotes the field strength of the gauge field in theeaﬁyﬁnﬁTr[DaFﬁynvF n“].
fermionic covariant derivative arfd the corresponding dual In order to examinyg this claim we consider the case of
then Eq.(39) can be interpreted as stating that the expectatime-dependent field theory at finite temperature. In this case
tion value on the left-hand side can be compensated by ainis well known[23] that in the functional integral exponent,
appropriate shift ing. For the case of low-energy QCD this the time integration should be carried along a complex path
is precisely the same result obtained using a chiral Lagrangstarting at— and ending at-«—i 8. The temperature vec-
ian: a constant shift in thg' field can be compensated by a tor is, in the rest frame for the system, the tangent to this
shift in 6 [21]. path, and so it is, in general, complex. For the purposes of
The expressioii39) validates the claims dfL] in that the  evaluating the expectation value of an order parameter the
expectation value is purely imaginary. We also note that Eq.

(39) is ill-defined in the massless case where it hasta 1/

singularity. This problem is connected to the fact that the !n addition, the phase structure suggested by Aoki is reproduced

operators under consideratidﬁ,i(i)s, violate both parity and by this model wherc,>0.
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path can be taken parallel to the imaginary axis and, as i the limit of large|«|. Our strategy will be to construct a
result,n* is purely imaginary. Since all operators in the classdifferential equation foiZ whose solutions can be obtained
mentioned above are odd nt, theydo receive a factor of by a method similar to the WKB approach. The disadvantage
and will not violate the claims ofl]. of this approach is that the differential equation has solutions
that do not correspond t@. In order to extract the relevant
ones we will use the following property:

The above calculations provide a reexamination of the
original Witten-Vafa result concerning the absence of spon- 17]< Jw exp{ _ Ex“— aq2’3x2}
taneous parity violation in theories with only vectorlike fer- —w 4
mion couplings. We also reviewed the various criticisms of
that result and concluded that none of them is strong enough a—> /o
to invalidate the conclusions ¢1]. ’ ’ = "2 [a[ g7 1 4 a?q*12) — s A2
Theories with scalars can evade the VW result in two 27
ways. First, some pseudoscalar fie{dgresen} can acquire . .
an expectation value, but such order parameters do not réhat foIIow.fs from the Schwqrtz me_quallty. .
ceive a factor of when Wick rotated. Second, in such theo- . Integrating by parts, we finth prime denotes g deriva-
ries the fermionic determinant is not necessarily positivelVe)
definite (e.g. in theories containing solitong4]).

VII. COMMENTS AND CONCLUSIONS

In confining and parity-conserving theories containing "+ ul"+vI' +wI=0 (A3)
fermions and gauge bosons, the low-energy excitations arehere
often scalars and fermion@s is the case for QODThe
comments above suggest that the low-energy effective theo- 8 8a
ries for such models can, in principle, violate parity sponta- U= — — a2q'3+
neously. In fact the standard chiral nonlinear sigma model 3 6aq—(27—32a°%)q""

[21], with the addition of an electromagnetic m48§)], al-

lows parity-violating vacua for a certain range of parameters. 4 8

On the other hand, the VW argument implies that thereisno  v= §a(4a3—9)q2/3— §azq72/3
parity violation in the underlying theory. Of course, one

could simply argue that the VW result for the underlying (22419 a3q3

theory merely requires that the low-energy parameters are —

such that no parity violation occurs. Still, this situation opens 6aq—(27—-32a%)q""?

the possibility that there might be some nonperturbative ef-

fects that allow such theories to evade the results of VW. An A o em A, 16, 16a°
investigation of this possibility lies beyond the scope of the W~ g® d ~ 34 Tt5zad T o1

present publication, though we intend to discuss it fully in

the near futurd7]. 32 a?(aq ?P+3g%3)
Finally, we note that, as briefly mentioned[it], the same 9 6aq—(27—322%)q"®

arguments cannot be used to rule out spontan€®isiola-

tion in theories without scalars as there &®-violating  |n the largeq limit the solutions forZ can be obtained by

operators that remain real upon Wick rotatiof®.g. ysing the ansatz

Fa F> FS,fanc Where F denotes the non-Abelian field

strength, andf the group structure constantsSo, even T=exp—yq*®) (A5)

though it is known that such theories cannot viol&te ex-

plicitly [26], the possibility of their exhibiting spontaneous that solves Eq(A3) for largeq provided

CP violation remains.

(Ad)

64y°— 12822y + 16a(8a>—9)y+ (16a°—27)=0.
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APPENDIX Solution a— +oo a— — 0
In this appendix we evaluate the integral Yo ?+\2a+1/(8a)+ - - —1U(4a)+---
. 1 Y —1U(4a)+--- a?+iV2]al+1/(8a)+ - - -
I(q)=f dxex;{—zx“—aq%xzﬂqx (A1) Y- ?+\2a+1(8a)+--  a®—i\2[a[+1/(8a)+- -
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them byy. with the sign associated with the sign of the Izze—q4/3[a2+1/(8a)+~~»]Coi \/mq4/3+ b); a——o
imaginary part. The asymptotic behavior of these solutions is ’
given in Table I.

The required solutions should satisfy E&2) which im- T~7e P+ Zar U+ g, 4o (A7)
plies that the corresponding should have a positive real
part. In this way we find, for largex| whereZ, ¢ are constants. This is the result used in the text.
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