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Vafa-Witten theorem on spontaneous breaking of parity

Martin B. Einhorn*
Michigan Center for Theoretical Physics, Randall Laboratory, The University of Michigan, Ann Arbor, Michigan 48109
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We reexamine the proof provided by Vafa and Witten that there is no spontaneous parity breaking in theories
with vectorlike fermions. We argue that the various criticisms that have been leveled at the original proof do
not invalidate it.
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I. INTRODUCTION

Several years ago, Vafa and Witten@1# ~VW! provided a
simple, elegant argument for the absence of spontaneous
ity violation in theories containing only vectorlike fermion
this result, however, has been criticized on various grou
dealing with mathematical niceties underlying the proof.
was argued in@2# and later in@3# that the expression for th
free energy on which the VW argument is based has an
defined infinite-volume limit and is therefore insufficient
determine the absence of spontaneous parity violation.
viously, Aoki @4# had noted the possibility that lattice QC
has a parity-violating phase which disappears in the c
tinuum limit; this apparently presents a problem for the V
result since the original proof can be applied to the latti
regulated theory as well as to the continuum. Hence the A
phase, even if only present at nonzero lattice spacing, wo
directly contradict the results of@1# providedthe assumptions
made by VW are satisfied by the lattice regulated theory
finite spacing. This model was studied carefully by Sha
and Singleton@5# who argued that the Aoki phase is not rule
out by the results of VW since their arguments appear no
be applicable for the case of fermionic order paramet
Finally, Ref.@6# raised the possibility of parity-violating op
erators that evade the proof of VW for systems in a therm
bath. In this paper, we will re-examine these complaints
find that, for physically relevant systems, they do not inva
date the results of VW@1#. In a related paper@7#, we argue
that the proof, even under the assumptions stated, does
however, exclude spontaneous parity violation under cer
circumstances.

We organize this paper as follows. In Sec. II we revie
the original VW argument. In Sec. III we examine the lar
volume limit of the theory and show that, as claimed in@2#,
it is well defined only for the case where spontaneous s
metry breaking does not occur; yet we will argue that t
deficiency does not invalidate the results of VW. We rev
the lattice arguments in Sec. IV where we argue that the A
phases~at least for a large number of fermions! do not rep-
resent absolute minima of the effective potential but o

*Email address: meinhorn@umich.edu
†Email address: jose.wudka@ucr.edu
0556-2821/2003/67~4!/045004~8!/$20.00 67 0450
ar-

s
t

l-

e-

-

-
ki
ld

t
e

to
s.

l
d
-

ot,
in

-
s
t
ki

y

metastable states.1 In Sec. V we consider the use of ferm
onic operators as order parameters for a possible pa
violating phase transition; in contrast to the results of@5# we
find that this type of order parameter exhibits the same
havior claimed by VW. We then argue that there is a sim
and useful fermionic operator that can be better used a
order parameter since it preserves chirality~the operators
used in@4,5# violate both parity and chiral symmetry!. Parity
violation at finite temperature is briefly revisited in Sec. V
and parting comments are presented in Sec. VII. A ma
ematical result is relegated to the Appendix.

II. THE VAFA-WITTEN ARGUMENT

In this section we summarize the original VW argume
The idea is to consider a theory with actionS that is even
under parity transformations and contains only vectorl
fermions~so that the corresponding fermionic determinant
real!, and to add a parity-violating termX so that the full
Minkowski-space action becomes

Stot5S1lX, ~1!

wherel is a small real parameter andX is Hermitian. We
will assume~without loss of generality! that X is parity odd;
all gauge-fixing terms are assumed to be contained inS. The
bosonic terms inS are assumed to be real~this is always
possible for all linear gauges!2 ~see for example@9#!. We will
concentrate on theories that do not contain scalar fields.

We first consider the case whereX is a purely bosonic
operator. Some comments concerning scalar theories are
vided in Sec. VII. We first obtain the free energy by Wic
rotating S in Eq. ~1!. While not without ambiguities, to be
precise, we will follow the procedure of@10#. Any parity-
violating operator contains ane tensor and this implies tha
the corresponding term acquires an additional factor oi
upon Wick rotation, thus we find

1This should not be used to completely dismiss these state
irrelevant: recent experiments in heavy-ion collisions create fin
volume systems that may relax temporarily into parity-violati
configurations@8#.

2For this it is convenientnot to introduce ghosts and deal with th
gauge-fixing determinant directly.
©2003 The American Physical Society04-1
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iStot→2SE1 ilXE , ~2!

with SE andXE real ~the subscriptE will be used to denote
the quantities in Euclidean space!. The ‘‘free energy’’W is
then

e2W(l)5E @dA#e2SE
boson

1 ilXEDet~D” E1M !, ~3!

where A denotes the gauge fields, andSE
boson the purely

bosonic contributions toSE .3 We take the mass matrixM
diagonal with non-negative eigenvalues~as we are not inter-
ested in explicit P violation!; the Euclidean-space fermioni
covariant derivative is denoted byDE which is anti-
Hermitian in our conventions@10# ~the gamma matrices ar
Hermitian!. The fermionic determinant is then a real fun
tional of the gauge fields for vectorlike couplings@11#.

Consider now the case whereX is a fermionic bilinear4:

X5c̄Oc. ~4!

After a Wick rotation and to first order inl the fermionic
integration yields

e2W(l)5E @dA#e2SE
boson

1 ilXE
(eff)

Det~D” E1M !;

XE
(eff)52 iTrF 1

D” E1M
OEG , ~5!

where OE5g0g5Og5g0.5 A naive calculation shows tha
XE

(eff) is real if OE
†52g5OEg5. In particular note that this

holds for the simple casesOE5 ig5 and OE5D”J Eg5. There
is, of course, a possibility that these rather formal results
flawed by the mathematical subtleties involved in prope
definingXE

(eff) @5#; we discuss this possibility in Sec. V.
With these preliminaries the proof is based on the cla

@1# that all parity-violating operators correspond to realXE or
XE

(eff) , in which case

W~l!>W~0!, ~6!

as a result of Schwartz’s inequality. The validity of this res
then rests on the requirement that the measure is pos
definite, that is, Det(D” E1M ).0. This is true for the case
of vectorlike fermions@11#, but can be extended to som
more general types of fermionic Lagrangians; we return

3For constantl, W(l) will be proportional to the space-tim
volume.

4WhenX contains products of bilinears these can be turned in
sum of bilinears through the introduction of appropriate auxilia
fields by using the Hubbard-Stratonovich trick@12#; the arguments
below carry through provided these auxiliary fields are vectors;
will be investigated in detail in@7#.

5It is understood thatOE is obtained by replacingD0→2 iD 0
E ,

g0→g0
E , gk→2 igk

E in O. In our conventionsgm
E†51gm

E and
$gm

E ,gn
E%5dmn .
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this point in Sec. IV. Note that in proving Eq.~6! we used the
fact thatW is real sinceX is odd under parity and the inte
gration involves both a configuration and its parity con
gate.

Since any explicit violation of the symmetry~in this case
parity! results in an increased free energy, the lowest ene
ground state will be parity symmetric. To see that Eq.~6!

implies vanishing of the expectation value ofX, X̄, it is use-
ful to pass to the effective potentialV(X̄)

V~X̄![W~l!2lX̄, with X̄[
]W

]l
. ~7!

Inversely, usingl52V8(X̄), we can write this as

W~l!5V~X̄!1lX̄5V~X̄!2X̄V8~X̄!. ~8!

We want to show that, in the limitl→06, X̄→0. Suppose,
on the contrary, that6 asl→01, X̄5vÞ0. This is necessar
ily at a minimum ofV(X̄).7 If we adopt the usual conventio
that W(0)50, thenV(v)50 as well. The inequality Eq.~6!
therefore implies that

V~X̄!2X̄V8~X̄!5$V~X̄!2~X̄2v !V8~X̄!%2vV8~X̄!>0.
~9!

Sincev is a minimum,V8(v)50. If we expand in a neigh-
borhood ofX̄5v, the term in the curly brackets contains
least one power of (X̄2v) greater than the last term and
moreover, sincev is a minimum, the leading term in th
expansion ofV8(X̄) will be an odd power of (X̄2v). @For
V9(v).0, it will be linear in (X̄2v).# But then the inequal-
ity will be violated in a neighborhood ofX̄5v. Therefore,
the only possibility is thatv50.8

The same conclusion can be obtained starting from
Hamiltonian derived from Eq.~1!.9 Indeed, if the ground
state is not parity symmetric, then, whenl50, there will be
two degenerate lowest-energy statesu6& that are parity con-
jugate of each other. Now, the Hamiltonian corresponding
Eq. ~1! is of the formH1lJ whereH is parity even andJ
parity odd; a straightforward application of degenerate p
turbation theory shows that the termlJ lifts the degeneracy,
so that the lowest energy state for the system equals

E02uleu1O~l2!; E05^6uHu6&;e5^1uJu2&
~10!

a

is

6The casel→02 is similar.
7Since the actionSE is parity symmetric, andX̄ is parity odd,

W(l)52W(2l), and V(X̄)5V(2X̄). So, 2v will also be a
minimum, but we simply pick one of them.

8The same result is obtained when one defines the effective

tential in the regionuX̄u,uvu using the Maxwell construction@13#.
9The following is a clarification of an argument presented in@1#.
4-2
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that decreasesas a function ofl. This contradicts Eq.~6!
and implies that there are no parity-degenerate vacua:
symmetry is not broken.

III. LARGE VOLUME EFFECTS

The results summarized in the previous section were c
cized in@2# based on the following observation. Suppose
construct a Landau-Ginzburg functional of the order para
eter defined asXE /V, whereV denotes the spatial volume o
the system. Explicitly,

e2W5E
2`

`

drE @dA#e2SE
boson

1 ilXEDet~D” E1M !

3d~r2XE /V!

5E
2`

`

dre2F(r)1 iVlr, ~11!

whereF is presumably proportional toV and we assume i
can be expanded in a power series inr. Since the original
action is parity symmetricF will be even inr. For definite-
ness we will consider the case

F~r!5VF1

4
br41

1

2
ar2G , ~12!

hence

e2W5~Vb!21/4I~q!

I~q!5E
2`

`

dx expF2
1

4
x42aq2/3x21 iqxG ~13!

where

q5l~V3/b!1/4; a5
1

2
a~l2b!21/3. ~14!

The integralI is evaluated in the Appendix, we find, fo
small ulu,

I.ze2V[a2/(4b)1l2/(4a)1•••]cos~VuluAuau/b1f!; ulu!1,

a,0.ze2V[a2/(4b)1uluAa/b1l2/(4a)1•••] ; ulu!1, a.0
~15!

wherez, f are constants.
For the case of no spontaneous symmetry breakinga

.0) the free energyF is well defined and satisfies Eq.~6!
though it is not analytic inl. When the symmetry is spon
taneously broken the free energy suffers from the ailme
described in@2#. Note that the bound~6! is satisfied in either
case.

Since the free energy is ill defined whena,0 @though Eq.
~6! is still obeyed#, the VW argument is incomplete in thi
case. The problem is that the partition function oscillat
corresponding to a complexW; we now argue that this will
not occur in any physical system. Indeed, a reasonable
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quirement for a system is that the Hamiltonian be an ad
tively renormalizable operator that is bounded from belo
In this case exp(2W) equals theb→0 limit of the partition
function Z5Tr e2bH. For any finiteb, the standard expres
sion for Z in terms of energy eigenvalues shows that it ca
not be negative, provided we assume that the expone
decrease in the contributions from large~renormalized! en-
ergy states is sufficient to guarantee convergence of the tr
Systems obeying these restrictions will haveZ.0, which
then implies exp(2W)>0. In such cases the possibility o
negativea ~or any set of parameters leading to a comp
W), where parity is spontaneously broken, will not be re
ized.

This same issue was discussed in@3#, where it is claimed
thatW(l), when defined appropriately, has the same dep
dence onl independent of the sign ofa. Although we find
that this is not the case, the claims of this reference would
validated by Eq.~15! provided the free energy is a concav
function of l, as is indeed the case whena.0.

This, however, is not the case whena,0. If we adopt the
prescription of@3# of defining the free energy through a
average over the volume, the results are ambiguous. For
ample the free energy per unit volume,

f 52 lim
V→`

1

V
ln_I ~16!

would equalf 5a2/(4b)1l2/(4a)1••• provided wedefine

lim
V→`

ln cos~cV!

V
50 ~17!

for any fixed real constantc. In this case the conclusions o
@3# follow: we cannot use thel dependence of the free en
ergy to determine the presence or absence of symm
breaking. However, this is anad hoc choice: considerVn
5(n11/2)p2e2upn for a real constantu and a positive
integern. Then lettingV5Vn and taking the infinite volume
limit by letting n→`, we find

lim
n→`

ln cosVn

Vn
5 i 2u, ~18!

having taken the branch of the logarithm such th
ln cosVn5np(i2u). With these choices the limit is certainl
nonzero. The point is that the large volume limit of (ln_I)/V
is ill defined.10 It is possible to define the limit so that th
troublesome oscillatory term does not contribute, but it
unclear whether this is the physically correct definition of t
free energy.

We conclude that the concerns raised in@2,3# are valid in
that the partition function would not be positive definite in
system exhibiting spontaneous parity violation. Howev
this situation will not arise for systems with a Hamiltonia

10For a different choice of the branch cuts the imaginary te
would be absent.
4-3
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bounded from below such that the density of states does
grow faster than the exponential of the energy.

IV. LATTICE CONSIDERATIONS

In a series of publications@4# Aoki proposed a phase dia
gram for lattice QCD that is markedly different from th
standard case~both quantitatively and qualitatively! for non-
zero lattice spacing~all such peculiar effects disappear in th
continuum limit!. In this scenario the theory has two phas
one where the 3 pions are massless, being the Golds
bosons produced by the spontaneous breaking of the u
chiral symmetry. In the second phase flavor symmetry is
lieved to be spontaneously broken down toU(1) generating
two Goldstone bosons~for the case of 2 massless quarks! so
that the third pion is massive in this phase. The transiti
between phases are of the second order so that the third
mass vanishes smoothly as the phase boundary is
proached. In this second phase parity is also spontaneo
broken leading to a nonzero expectation value of the or
parameter̂ c̄ ig5c&.

Though Aoki’s original arguments were made within t
lattice-regulated theory, the results of Sec. II would
equally applicable to this case@5# provided the various as
sumptions made are satisfied. Should this be the case
presence of a parity-violating phase at finite lattice spac
casts doubt on the results of@1#, even though the parity
asymmetric phase disappears in the continuum.

The lattice arguments in Ref.@4# are supported by two
large-N calculations, one for the two-dimensional Gros
Neveu model@14# and one for four-dimensional QCD@15#;
both are based on finding minima for the effective poten
that do not respect parity. In addition there is also so
numerical evidence based on the Monte Carlo evaluatio
several observables. We will revisit these calculations in
paragraphs below.

A. The lattice Gross-Neveu model

This model containsN spinor fieldsc i where the doubling
problem is fixed using Wilson fermions. The dynamics
defined by the lattice action~we take a unit lattice spacing!

S5
1

2 (
i 51

N

c i~n!̄H @]”c i #~n!1
1

2
r @hc i #~n!1@s~n!

2 ip~n!g5#c i~n!J 1
N

2g2 (
n

@s~n!21p~n!2#,

~19!

where g is N-independent and the derivatives denote
usual lattice operations@16,17#. In the largeN limit and for
constants andp, the fermionic determinant yields a func
tion which has a minimum for a nonzero value ofp. Even
though quantum fluctuations are known to destroy this n
trivial vacuum@18#, this calculation does suggest the pos
bility of the richer phase diagram described in@4#.

These results for the Gross-Neveu model do not con
dict general argument presented in@1#. This is because this
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model does not satisfy an important assumption made in
riving the VW result: since the fermions do not couple ve
torially, the fermionic determinant associated with Eq.~19! is
not positive definite. While this model can be used as gu
ance in obtaining the phase structure of QCD on the lattic
does not provide a violation of the VW results.

B. Lattice QCD in 4 dimensions at largeN

Another example considered by Aoki is the case of
large N limit ( N again denotes the number of fermions! in
lattice QCD in 4 dimensions using Wilson’s formalism. D
note by s(n)5c(n) ^ c(n), then, following @4#, we con-
sider the effective potential for these operators in the c
where they are position-independent in the largeN and
strong coupling limits. Replacing then

s~n!→seiug5 ~20!

the effective action for this order parameter is~we take again
unit lattice spacing! @15#

Seff54NVH ms cos~u!2 ln~s!22FA124s2sin~u!221

2 lnS 11A124s2sin~u!2

2 D G J , ~21!

where V denotes the lattice volume,m the bare fermion
mass, and we have chosen the Wilson fermion parametr
51. The effective potential isminus the above expression
We will also replaceN ln s5(N/2)ln s2 and avoid a spurious
imaginary contribution toSeff . This expression has a serie
of local extrema at the points

~ i !:cosu561, s561/m.

~ i i !:cosu56mA 3

162m2, s56A 3

162m2.

~22!

Points (i i ) are local minima ofSeff for m2,4 but are saddle
points form.2; (i i ) are saddle points form2,16 and un-
physical otherwise. It is remarkable that the curvature of
effective potential at points (i i ) is positive in theu direction,
corresponding to a positive pion mass parameter.

None of these points, however, represent the global m
mum of the effective action. In fact we have the behavio

Seff→1`, s→0,→2`, s→`, u5p. ~23!

Hence points~i! represent metastable states where parity
broken, the stable vacuum ats50 is parity even. Note tha
the stability of thes50 vacuum is determined solely by th
term lns and may be altered by finiteN corrections.

This still does not explain why the numerical evaluati
of ^c̄g5c& yields a nonzero result. This is understood by t
observation@4# that the Wilson action does not lead to
positive fermionic determinant, which follows from the fa
that the Wilson term does not anticommute withg5. It is
4-4
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possible to generalize somewhat the results of@11#, and to
show that the Wilson action leads to a positive fermio
determinant, butonly when the fermions carry a real repr
sentation of the gauge group@7#, which is not the case fo
QCD. Hence the presence of spontaneous parity violatio
QCD with Wilson fermions does not invalidate VW for finit
lattice spacing, as the theory does not comply with the
sumptions made in@1#. On the other hand, the lattice resu
do indicate that̂ c̄g5c&→0 in the continuum limit, as de
manded by VW. In this sense the results in@4# supportthose
of @1#.

V. FERMIONIC ORDER PARAMETERS

In a calculation related to Aoki’s, Sharpe and Singlet
@5# considered the case of QCD with two flavors to whi
they added a source for a parity-violating order-parame
Then they studied the vacuum expectation value of this o
parameter as the source strength was set to zero. The fe
onic part of the Lagrangian in Euclidean space is

Lferm5C̄~D” E1m1he2 iug5t3!C, ~24!

whereC denotes the fermion iso-doublet~assumed degener
ate in mass!, andh the source strength. The Euclidean cov
riant derivative operatorD” E is anti-Hermitian~in our con-
ventions the Euclidean gamma matrices are Hermitian@10#!,
and the Pauli matrixt3 acts on the isospin variables.

The possibility of spontaneous parity violation can
studied considering the expectation values of operators o
form

O G
(a)5C̄aGCa, a51,2; ~25!

where a labels the isospin components andG is a linear
combination of the unit matrix,ig5 , t3 andi t3g5. To obtain
the general form of the expectation value,

^O G
(a)&5TrH G

1

D” E1m1h exp@2 iug5~t3!aa#
J , ~26!

~no sum overa) we follow @5,19# and consider the abov
system in a finite volume; we then expand the above tr
using the eigenfunctions ofD” E which we denote bywn .
Explicitly,

D” Ewn5 ilnwn , ~27!

where we used the fact that the Euclidean Dirac operato
anti-Hermitian. As usual@20# we will treat the zero modes
separately.

Whenln5” 0 the modewn is paired withg5wn for which

D” E~g5wn!5 i ~2ln!~g5wn!, ~28!

hence in the$wn ,g5wn% subspace we have
04500
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D” E1m1he7 iug5

→S iln1m1h cosu 7 ih sinu

7 ih sinu 2 iln1m1h cosu D , ~29!

and we can replaceg5→t1 ~denoting the usual Pauli matrix!.
Then the corresponding contributions to the trace~26! are

TrH 1
1

D” E1m1he7 iug5
J → 2~h cosu1m!

ln
21L2 ;

TrH ~ ig5!
1

D” E1m1he7 iug5
J →7

2h sinu

ln
21L2 ; ~30!

where

L25h21m212hmcosu. ~31!

For the zero modesln50 we can choosewn to be an eigen-
state ofg5,

g5wn5xnwn , xn
251. ~32!

In this one-dimensional subspace we can replaceg5→xn and

D” E1m1he7 iug5→he7 iuxn1m. ~33!

Then the corresponding contributions to Eq.~26! become

TrH 1
1

D” E1m1he7 iug5
J → he6 iuxn1m

L2
;

TrH ~ ig5!
1

D” E1m1he7 iug5
J → ixn

he6 iuxn1m

L2
.

~34!

Adding all terms we find

TrH 1
1

D” E1m1he7 iug5
J 5(

n

h cosu1m

ln
21L2 6 in

h sinu

L2 ,

TrH ~ ig5!
1

D” E1m1he7 iug5
J 57(

n

h sinu1m

ln
21L2

1 in
h cosu1m

L2 , ~35!

where the sum is overall modes~with positive negative and
zero eigenvalues!, andn denotes the index ofD” E ,

n5(
n

xn , ~36!

where this sum is over the zero modes only.
Using these expressions we find, for the operators

Eq. ~24!,
4-5
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^O 1
(a)&5

h cosu1m

LV (
n

L

ln
21L22 i ~t3!aa

n

V

h sinu

L2 ,

^O ig5

(a) &5~t3!aa

h sinu

LV (
n

L

ln
21L2 1 i

n

V

h cosu1m

L2

~37!

~no sum overa) whereV denotes the space-time volume.
particular,

K E d4x C̄ ig5C L 52in
h cosu1m

L2 . ~38!

Taking the infinite volume limit and then lettingh approach
zero, we obtain

K E d4x C̄ ig5C L
h50

52i
n

m
5

i

8p2E d4x Tr@ F̃mnFmn#.

~39!

The authors of@5# obtain zero instead of the above expre
sion since they did not include the contribution from the ze
modes explicitly. Note also that both isospin compone
contribute equal amounts to the right-hand side of Eq.~39!.
The fact that we obtain a nonvanishing expression in
~39! doesnot imply that parity is broken: this will be true
only if this nonzero value survives the integration over t
gauge fields. That integral cannot be evaluated, even
mally; yet the fact that the right-hand side of Eq.~39! is
purely imaginary allows us to use the argument leading
Eq. ~6! which implies that, in fact, parity is not broken.

It is worth noting that Eq.~39! is consistent with the
anomaly equation in Euclidean space provided we ass
that there are no massless excitations, so that the vol
integral of the divergence of the axial current vanishes.
also note that the corresponding expression for the pa
even bilinear gives

^C̄C&h5052E dlr̃A~l!
2m

l21m2 ~40!

where r̃A denotes the spectral density per unit four-volum
for the operatorD” E . This expression reproduces the corr
sponding result of@5#.

If we add to the Lagrangian a termu Tr FF̃/(4p)2

~whereF denotes the field strength of the gauge field in
fermionic covariant derivative andF̃ the corresponding dual!
then Eq.~39! can be interpreted as stating that the expec
tion value on the left-hand side can be compensated by
appropriate shift inu. For the case of low-energy QCD th
is precisely the same result obtained using a chiral Lagra
ian: a constant shift in theh8 field can be compensated by
shift in u @21#.

The expression~39! validates the claims of@1# in that the
expectation value is purely imaginary. We also note that
~39! is ill-defined in the massless case where it has ah
singularity. This problem is connected to the fact that
operators under consideration,O ig5

(a) , violateboth parity and
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chiral symmetry. We can repeat the calculations for an
erator that violates only parity such as

O D
(a)5Caig5D”JCa. ~41!

In this case we find

^O D
(a)&52 i ~t3!aah sinuE dlr̃A~l!

2l

l21m2 , ~42!

that vanishes ash→0, but also vanishes whenu50 when
the theory is parity symmetric. For this operator the exp
tation value is zero at the level of the fermion integral,
contrast with Eq.~39!.

It is worth pointing out thatO D
(a) is not related toOig5

(a) in

Eq. ~25! through the use of the equations of motion, in fa
if we replace D” →D” 1 im in Eq. ~41! O D

(a) remains un-
changed. This shows that this operator can be eliminated
performing a chiral rotation on the fermion fields, and is th
equivalent to a purely bosonic operator proportional to
index of the Dirac operatorD” E @22#.

The authors of@5# also consider the behavior of the lattic
version of this theory close to the continuum. They find th
the leading contributions to the effective potential for t
meson fieldS5s1 i t•p, (s21p251), equals

Veff~S!52c1s1c2s2, ~43!

with c2 approximately constant~independent ofm) while c1
is expected to be a linear function ofm. The crucial issue
here is the sign ofc2: if c2,0 the potential has a minimum
at s251 that corresponds to a parity-symmetric vacuu
where the pion field gets no expectation value. If, on
other hand,c2.0 parity will be broken.11 In view of the
above discussion that supports the results of Ref.@1#, and
suggests that the parity-violating vacua of the large-N,
strong coupling lattice theory are not absolutely stable,
believe that, in fact,c2,0 as well.

VI. PARITY VIOLATION AT FINITE TEMPERATURE

In @6# it is noted that systems in a heat bath have
available additional timelike vectornm ~the temperature
vector!, that can be used to construct P-violating operat
that apparently do not acquire the crucial factor ofi
upon a Wick rotation. An example is the operat
eabgdnd Tr@DaFbnnnFgmnm#.

In order to examine this claim we consider the case
time-dependent field theory at finite temperature. In this c
it is well known @23# that in the functional integral exponen
the time integration should be carried along a complex p
starting at2` and ending at2`2 ib. The temperature vec
tor is, in the rest frame for the system, the tangent to t
path, and so it is, in general, complex. For the purposes
evaluating the expectation value of an order parameter

11In addition, the phase structure suggested by Aoki is reprodu
by this model whenc2.0.
4-6
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path can be taken parallel to the imaginary axis and, a
result,nm is purely imaginary. Since all operators in the cla
mentioned above are odd innm, theydo receive a factor ofi
and will not violate the claims of@1#.

VII. COMMENTS AND CONCLUSIONS

The above calculations provide a reexamination of
original Witten-Vafa result concerning the absence of sp
taneous parity violation in theories with only vectorlike fe
mion couplings. We also reviewed the various criticisms
that result and concluded that none of them is strong eno
to invalidate the conclusions of@1#.

Theories with scalars can evade the VW result in t
ways. First, some pseudoscalar fields~if present! can acquire
an expectation value, but such order parameters do no
ceive a factor ofi when Wick rotated. Second, in such the
ries the fermionic determinant is not necessarily posit
definite ~e.g. in theories containing solitons@24#!.

In confining and parity-conserving theories containi
fermions and gauge bosons, the low-energy excitations
often scalars and fermions~as is the case for QCD!. The
comments above suggest that the low-energy effective th
ries for such models can, in principle, violate parity spon
neously. In fact the standard chiral nonlinear sigma mo
@21#, with the addition of an electromagnetic mass@25#, al-
lows parity-violating vacua for a certain range of paramete
On the other hand, the VW argument implies that there is
parity violation in the underlying theory. Of course, on
could simply argue that the VW result for the underlyin
theory merely requires that the low-energy parameters
such that no parity violation occurs. Still, this situation ope
the possibility that there might be some nonperturbative
fects that allow such theories to evade the results of VW.
investigation of this possibility lies beyond the scope of t
present publication, though we intend to discuss it fully
the near future@7#.

Finally, we note that, as briefly mentioned in@1#, the same
arguments cannot be used to rule out spontaneousCP viola-
tion in theories without scalars as there areCP-violating
operators that remain real upon Wick rotation~e.g.
Fmn

a Fnr
b Frm

c f abc where F denotes the non-Abelian fiel
strength, andf the group structure constants!. So, even
though it is known that such theories cannot violateCP ex-
plicitly @26#, the possibility of their exhibiting spontaneou
CP violation remains.
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APPENDIX

In this appendix we evaluate the integral

I~q!5E
2`

`

dx expF2
1

4
x42aq2/3x21 iqxG ~A1!
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in the limit of largeuau. Our strategy will be to construct a
differential equation forI whose solutions can be obtaine
by a method similar to the WKB approach. The disadvanta
of this approach is that the differential equation has soluti
that do not correspond toI. In order to extract the relevan
ones we will use the following property:

uIu<E
2`

`

expF2
1

4
x42aq2/3x2G

5ea2q4/3/2Auauq2/3K1/4~a2q4/3/2! →
q→` Ap/a

21/4q1/3
~A2!

that follows from the Schwartz inequality.
Integrating by parts, we find~a prime denotes aq deriva-

tive!

I-1uI91vI81wI50 ~A3!

where

u52
8

3
a2q1/31

8a

6aq2~27232a3!q7/3

v5
4

9
a~4a329!q2/32

8

9
a2q22/3

2
~224/9!a3q1/3

6aq2~27232a3!q7/3

w5
4

9
a2q25/32

4

3
aq21/31

16

27
a4q21/31S 16a3

27
21Dq

2
32

9

a2~aq22/313q2/3!

6aq2~27232a3!q7/3
. ~A4!

In the largeq limit the solutions forI can be obtained by
using the ansatz

I5exp~2yq4/3! ~A5!

that solves Eq.~A3! for largeq provided

64y32128a2y2116a~8a329!y1~16a3227!50.
~A6!

Of the three solutions to this equation one is real for alla;
we call it y0. The two others are a complex conjugate of ea
other fora&0.944941 and real fora.0.944941; we denote

TABLE I. Asymptotic behavior of the solutions to the differen
tial equation~A3!.

Solution a→1` a→2`

y0 a21A2a11/(8a)1••• 21/(4a)1•••

y1 21/(4a)1••• a21 iA2uau11/(8a)1•••

y2 a21A2a11/(8a)1••• a22 iA2uau11/(8a)1•••
4-7
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them by y6 with the sign associated with the sign of th
imaginary part. The asymptotic behavior of these solution
given in Table I.

The required solutions should satisfy Eq.~A2! which im-
plies that the correspondingy should have a positive rea
part. In this way we find, for largeuau
tt
ar-

.

l

04500
is
I.Ze2q4/3[a211/(8a)1•••]cos~A2uauq4/31f!; a→2`

I.Ze2q4/3[a21A2a11/(8a)1•••] ; a→1` ~A7!

whereZ, f are constants. This is the result used in the te
n,
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