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The statics and dynamics of a surface separating two phases of a relativistic quantum field theory at or near
the critical temperature typically make use of a free energy as a functional of an order parameter. This free
energy functional also affords an economical description of states away from equilibrium. The similarities and
differences between using a scalar field as the order parameter versus the energy density are examined, and a
peculiarity is noted. We also point out several conceptual errors in the literature dealing with the dynamical
prefactor in the nucleation rate.
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[. INTRODUCTION coefficient of heat conductivity does not exist, and cannot
govern the phase transition speed.

Different phases of matter are separated in space and time The spatial configuration of phase transition instabilities
by dividing layers called domain walls. The dynamics of thevaries in large homogeneous systems. When the conditions
domain walls is the determining mechanism governing phasér the occurrence of a new phase are established the most
transitions in an intermediate range between very slow, quacommon form of the appearance of the new phase happens
sistatic and very rapid, dynamical processes. In this intermeyia the formation of small critical size bubbles or droplets.
diate range the phase transition speed and the speed of @Subcritical size bubbles or droplets will shrink and vanish
ternal constraints are comparable to each other. but supracritical size ones will growThis configuration is

The dynamics of phase transitions is an involved subjectg|led homogeneous nucleation.
even in macroscopic systems. First of all, phase transitions ag the level of supercooling increases and the amount of
can be different. They may include slow burning or deflagrathe new phase increases other geometries become energeti-
tion, detonation, condensation, evaporation, and many othelyy more favorable, such as elongated cylindrical objects
forms of transition. Nevertheless, the basic conditions of a”(spagetti or layers(lasagna The phase transition dynamics

these transitions have some similarities. These arise from ti]g then referred to as spinodal decomposition, indicating that

basic conservation laws and from the requirement of local, Ogystems which supercoébr superheatand reach the adia-

at least approximately local, equilibrium. $atic or isothermal spinodals on the phase diagram start the

In a dynamical situation the approach using the equatio i £ th h N th . i . di
of state with a first order phase transition is identical both in Otg?;/a lon of the new phase In these configurations Immedi-

compression and in expansion. If the compression is supef'€Y
sonic, shock or detonation waves are formed where the final inally, when the two phases are about equally abundant
new phase is immediately created. The phase transitiognd/or the transition is extremgly rapid the two pha}ses form
speed influences only the width of the shock front. On the? Somewhat random occupation of the configuration space
other hand, for slow dynamics and rapid phase transition théalled percolation.
shock front width is primarily determined by the transport Most frequently explicit dynamical calculations are per-
coefficients, viscosity and heat conductivity, and not by theformed for the homogeneous nucleation geometry as this is
phase transition speed. usually the initial and the slowest of all. Nevertheless, the
At high energies a relativistic treatment is frequently nec-domain walls and their dynamical properties play an impor-
essary. It is important to mention that a system is also relatant role in all of the above mentioned configurations. One
tivistic if the matter is radiation dominated, meaning that theimportant feature of the nucleation studies that is not always
rest mass of the constituent particles is zero or negligibleecognized is that within the dynamical domain wall or drop-
compared to the fourth root of the energy density. Thesdet wall we do not have thermal equilibrium. Here, quantities
types of systems must be treated as relativistic even if théke energy, entropy or particle density make sense, while
collective velocities are small. This was one of the importantother quantities that rely on thermal equilibrium, such as the
new features recognized in R¢L]. If conserved charges do equation of state, may not.
not exist the application of the conventional theory of phase If the fluid is perfect and consists of a single phase of
transition dynamicg2,3] is not possible, and this leads to matter in full phase equilibrium, the flow is adiabafi].
essential differences in the phase transition dynamics. Mostlevertheless entropy production is still possible if the sys-
importantly the flow is tied to the energy flow; thus energy ortem is out of phase equilibriurf#], or out of thermal equi-
heat current and the fluid flow are identical and heat condudibrium. Thus, in domain walls entropy may be produced
tion (with respect to the flovmay not occur. Therefore the even in perfect fluids as here we do not have an equation of
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state which would satisfy the requirements of equilibrium f(,T)=—pp(T)+V(s,T). (5
thermodynamics.

In this paper we would like to discuss connections be-t is not enough to specify the effective potential; the equi-
tween the two most frequently encountered approaches tbrium pressure as a function of temperature must be speci-
phase transitions using effective field theoretical models angled too.
phenomenological thermal and fluid dynamical methods. In  |f one knows the free energy as a functionTothen the
Sec. Il we first demonstrate with a simple effective field energy densite can be calculated from the basic thermody-
theoretical model how one can obtain a Landau-model typ@amic identities. In particular, if we want to know the energy
of phenomenological description of critical dynamics. Indensity for a specific value of the condensate field, including
Sec. Il we elaborate on the assumptions and error of differout of equilibrium configurations also, then we must hold it
ent approaches used recently in the literature. We presentfied during the temperature differentiation:
summary and conclusion in Sec. IV.

J
II. THE FREE ENERGY FUNCTIONAL e(¢T)=H(T)=T-=1(sT)

A common approach to dealing with a phase transition in y \
relativistic quantum field theory is to assume a uniform con- =en(T)— —(T2+T§)¢2+ — ¢ (6)
. 2 4
densatep for some scalar field and then to compute quantum

and thermal fluctuations about that condengae This is The first line above is the general thermodynamic identity;

espeqally so for systems eXh'b't'.ng spontaneous symmet%e second line applies to the specific parametrization under
breaking where the condensate field serves as an order Pdiscussion. If one is at a local minimum of the effective

rameter to distinquish the two phases. Examples include thpe)otential, ithewby(T) =0 or ¢ (T)>0 corresponding to the

Higgs field in electroweak theory and the sigma field or SCapish and low temperature phases. respectivelv. then it
lar quark condensate in strong interaction physics. The re; 9 b P ' P Y

sulting free energy densitiis obtained from the partition doesn’t matter whether the order parameter is held fixed dur-
function Z in the usual way: ing the differentiation or not becaus#& (¢, T)/d$p=0 at

those points. These two points correspond to thermodynami-
f(¢,T)=—TINZ($,T,V)IV. (1)  cal equilibrium. _ N
If the system undergoes a first order phase transition at a
HereV is the volume. Since the high temperature symmetriccritical temperaturel; then at that temperaturfewill have
phase usually correspondsdo=0, it is customary to define two degenerate minima. For a finite range of temperature
the effective potential as the deviation of the free energyabove T, there will persist a higher, local minimum at

from its value in the symmetric phase: ¢ (T)>0. For a finite range of temperature beldw there
will persist a higher, local minimum ab,(T)=0. The most
V(¢ T)=1(¢,T)—f(0,T). (2)  important physical quantities are the latent hieatAe(T,)

. L . =e,(T.)—e(T,), the correlation lengths & 2
The. point$=0 is either a gIoba_I minimum or only a local =0%f(0,T.)/9d2=*f ((T.),To) 92, which are equal for
minimum depending on wheth@tis greater than or less than 14 tourth order effective potential &t., and the surface

th? critical temperaturdc, respectivgly. 'tl;herefore the 1e- anergy . At the critical temperature the planar interfacial
sults of computations are often found to be, or parametrlzegrof"e has a nice analytical solution on account of the fact

as, a fourth order polynomial itb: that the effective potential becomes symmetric. In the usual

4 way one finds that the profile fiela(x) is
V($,T)=2 a(T)o". 3)
=2 —_H(To)
$(x)= ——[1—tanh(x/2§)]. (7)

Occasionally one will find additional terms of order

»*In(p/A) or higher powers ofp, but these are not common . . . _
and will not change our analysis qualitatively. This interpolates through intermediate nonequilibrium states

To give a specific example we will use the parametrizafM #1(Tc) for x<—¢& 10 ¢,(T¢) =0 for x>¢. The surface
tion of Ref.[6]: energy can then be expressed as

2
1 1 1 = [dé
— 2_ T2 2_ 3. 4 = -
The y, T§, a and\ are temperature independent constantsThe parameters in the effective potential can be expressed in

to be specified shortly. In an equilibrium state the free energyerms of these physical parameters as follows:
density is the negative of the pressuféT)=—p(T). Nor-

malizing to the high temperature symmetric phase, and de- L) 1
noting the equilibrium pressure of that phasefdyT), we y=|1+ —)—
have 6o/ T2
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For purposes of illustration, and with the QCD phase transi- 0.1 7
tion in mind, we choose the following numerical values:

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

FIG. 1. The effective potential as a function of the field.

17 7% _,
7% 45
1% above and below it. This displays the traditional behavior
6872 of a strong first order _phase transition. The plot includes
L= 5 T‘C‘_ (10) negative values ofp which may or may not be allowable,

depending on the origin ap and its physical interpretation.
The free energy densitp) as a function ofp is plotted in
Fig. 2 for the same temperatures. The only difference be-
%ween this and Fig. 1 is the addition of the pressure as evalu-
ated in the high temperature symmetric phase.
The energy density6) as a function ofp is plotted in Fig.

This choice ofB results in a critical temperatuiie, which is
identical to the one obtained in a very simple model for
phase transition between an ideal massless piori3yaser-
nal bosonic degrees of freedprand an ideal two flavor

quark-gluon plasmas37 effective bosonic degrees of free- 3. It has a maximum ap=0. This follows directly from the

dpm). The resulting latent h'eat is large, useful mainly forexpression fore given earlier: For small values ap the
display purposes. Other choices of parameters or a more Sﬁ-

phisticated equation of state can be used instead. The resu eviation fromen(T) is quadratic ing with negative curva-
ing simple equation of state in the quark-gluon plasma phasé”e' Note that the energy density goes negative whda
is greater than abou_t 2.0. _
Rather than using the fielg as the order parameter one
2 might consider other choices more appropriate for the prob-
Pn(T)= 90 TB. (11) lem at hand. For example, one could take as the order pa-
rameter the deviation of the energy density from its equilib-
rium value and expand the free energy in a power series in
this difference. This is the Landau approach to the descrip-
ion of fluctuations and to departures from equilibrium states
]. Such an approach to the nuclear liquid-gas phase transi-

The numerical value for the latent heatcorresponds to a

transition from the 37 degrees of freedom mentioned abov
to 3 degrees of freedom for massless pions. Compared to t
results of lattice simulations of QCD the values for the laten
heat and surface free energy are too large by about an order

of magnitude[7]. This is actually a subtle issue to some 0.0 I I I I I
extent because there are as yet are no reliable values for T=0.99T
these quantities in full dynamical QCD with the physical —01 L :

values of the up, down, and strange quark masses. Current
lattice simulations show either a weakly first order phase

transition or no true phase transition, only a very rapid cross- 02 y
over from hadronic gas to quark-gluon plasma. Homoge-
neous nucleation with a well-defined bubble surface and ra-
dius requires a first order transition, but the value of the

latent heat is not crucial. These assumptions must be kept in

f(¢.T)

mind when applying nucleation theory to QCD or to any —04 T=1.01%, .
other theory. It is convenient to make everything dimension-

less by measuring energies in unitsigfand lengths in units —05 ) ! ! !

of 1/T., which practice we adhere to in the rest of this sec- 05 00 05 1.0 15 2.0 25
tion. )

The effective potential4) as a function ofg is plotted in
Fig. 1 for three different temperatures: the critical one and FIG. 2. The free energy density as a function of the field.
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20 T T T T T the energy density is a maximum @&t=0. This means that
the plot of the free energy ends at the equilibrium density

15 . en(T) of the symmetric phase with a cusp. In cageis
defined for positive values only then the effective potential
10 . V, the free energy densitfy and the energy density end
— abruptly até=0 while f(e,T) would end abruptly at the
B 5 4 finite value ey(T). Physically this must be a restriction of
% fluctuations to those associated withand only ¢. This is
0 too restrictive by far; there are certainly other physical pro-
cesses not taken into account. For example, placing particles
5L i in a box in contact with a heat reservoir allows for the ex-
change of energy between the particles and the reservoir,
. . . . . resulting in fluctuations in energy and pressure. These pro-
_10_0 5 00 05 10 15 20 25 cesses are always present in systems at fixed temperature and
' ' ' ) ' ' ' are not accounted for, or associated with, fluctuations in an
¢ order parameter.
FIG. 3. The energy density as a function of the field. Now let us follow the Landau construction of the free

energy away from equilibrium states using the energy den-
tion was implemented by Goodmat al. [9]. It is also this ~ Sity as the order parameter with no referenceptovhatso-
same function that was used in working out the nucleation ofVer. This is the construction made iy in the context of
relativistic first order phase transitions by two of[ag. With ~ constructing spherical surfaces separating two phases at non-
these motivations we plot the free energy versus the energgritical temperatures. The total free energy of interaction is
in Fig. 4 by usinge$ as a parameter. There are a number ofthe sum of a gradient energy and a free energy density inte-
points to be made concerning this figure. First, there are twgrated over space.
minima at each of the chosen temperatures. The minima oc-
cur at the energy densities(T) and e,(T). The lower of = {e(x)}=f d3x
these two represents the equilibrium state while the other :
represents a metastable state excefit.athen they are de-
generate. The value dfat a minimum is equal to the nega- Thefis most economically written as a fourth order polyno-
tive of the pressure in that particular phasg;(T) mialine
=—f(g(T),T) and pu(T)=—1f(ey(T),T). Second, the
value of ¢/(0.99T;)<0! This is an indication of the inad- :
equacy of the specific parametrization of the effective poten- f(e,T)= n§=:O bn(T)e". (13
tial at this temperature, and probably at lower temperatures
too. This is an important point to always be aware of VVhenThe coefficients are functions of temperature. They are de-
writing down any formula for an effect_|ve potent|a_1l. Th'rd'_termined by several requirements. The first is thdtas
the free energy has a cusp at the location of the high dens'%inima located ate/(T) and e,(T), such thatf at those

;ymmetnc phase. This is an unavoidable consequence O.f tq)%ints be equal to the negative of the corresponding equilib-
inference of the free energy from the effective potentlal.rium pressure:

From Fig. 3 or from the corresponding formula it is clear that

%K(Ve(x))2+ fe(x),T)|. (12

f(en(T),T)=—pn(T)

f(e(T), T)=—pi(T). (14

This results in four equations involving the filg,. Two
more equations result from fixing the correlation length
(which is the same in the two phases onlyTa) and the
surface energyr (which, strictly speaking, is only well de-
. fined atT.). This set of six equations is not inconsistent
because the coefficient of the gradient enekgymust also
be determined:

6o
(92f/(792| e:eh(TC) = (92f/(962| e:eI(TC) = —2
20 &L
e
. . 60¢
FIG. 4. The free energy as a function of the energy density as =2 (15)
derived from Figs. 1-3. L?
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estimates for energy density fluctuations, in our opinion.
Which approach one takes depends on the physical situation
being addressed.

Finally we comment on the appearance of negative energy
density. This is an unphysical artifact arising from parametri-
zations being used outside their realm of applicability. There
are practical means to alleviate this problem. See, for ex-
ample, Refs[6] and [10]. Since it is not our purpose to
construct accurate physical models we do not pursue these
means here but only make the reader aware of them.

IIl. DYNAMICS OF FIRST ORDER PHASE TRANSITIONS

-5 0 5 10 15 20 A phase transition occurs because of some change in the
e global properties of the system. Examples of such changes
, , are: an expansion chamber or a sudden quench in tempera-
FIG. 5. The free energy as a function of the energy density fromy,, .« in the laboratory, the expansion of hot matter in a high-
a Landau construction. energy heavy ion collision, and the expansion of the early
universe. Generally we need to compare the phase transition
We insist upon the same equilibrium energy densities angate to the rate of expansion or quench. The speed at which
pressures as used in the effective potential approach, and ugf phase transition proceeds comes into play when the speed
the same correlation length and surface energy.abo: at which the external variables, such as the volume, becomes
comparable to or exceeds that of phase conversion.
o del? If the rate of change of an external variable is slow there
o= Kf dx(:) (16 is sufficient time to maintain phase equilibrium on a coarse-
* dx grained time scale. This also means that all other equilibra-
tion processes are completed as these invariably require less
_ 1 time and less interaction than the conversion of one phase of
e(x)= z[eh(Tc) +e(To)+Ae(T)tanh(x/2¢)]. (17)  matter to another.
Thus, in the case of slow external dynamics and rapid
phase equilibration the matter is in complete equilibrium,
Then the Landau expansion of the free energy as a functioimcluding phase equilibrium, and the equation of state of the
of the energy density is obtained and is plotted in Fig. 5. Thenatter undergoing a first order phase transition is given by
f(e,T) is now a smooth and well-behaved function. Its onlythe Maxwell construction. Then we have a fully developed
failing is that the equilibrium energy density at 019is  mixed phase, and the phase abundances are typically given
negative, but that is a consequence of insisting that it be they the conservation of energy and entropy. In this limiting
same as for the effective potential, which was negafie:  case no information on dynamical processes is needed. This
tually, fluctuations into states with negative energy can baype of transition is adiabatic. Even in moderately fast dy-
avoided if one uses the Laurent expansion instead of thaamical expansions there are only small deviations from the
fourth order polynomial approximatiodO], but only if the ideal and complete phase equilibriu(ivlaxwell construc-
lower minimum is at positive energy densjtyn fact, with  tion). This deviation results in some delay in the creation of
the Landau approach we have a closer connection betweehe new phase, leading to supercooling or superheating and
the physical observables and the free energy. For examplextra entropy productiof4]. Even in slow, nearly adiabatic,
we can easily specify the equilibrium energy density andohase transitions there may exist deviations from full equi-
pressure in each phase, making it simple to avoid such uriibrium. Relevant possibilities include baryon number gen-
welcome behavior as a negative energy density in equiliberation in a cosmological electroweak phase transition and
rium. Of course the direct connection with the condensatéaryon and isospin inhomogeneities generated in a cosmo-
field ¢ is lost. logical QCD phase transition. Any departure from full equi-
The main difference between the two approaches is thdtbrium will result in some entropy generation, however
the field theoretical approach parametrizes the out-ofsmall it may be.
equilibrium configurations in terms of an effective potential For heavy ion reactions the first attempt to explicitly
as a function of¢ that shows smooth, quadratic minima evaluate the phase transition speed of homogeneous nucle-
around the two equilibrium states, whereas the Landau typation was described ifi,11]. The homogeneous nucleation
of thermodynamical approach does the same in terms of theiechanism correctly describes the initial stage of the phase
free energy as a function of the energy densitfhese two transition when the abundance of the newly created phase is
approaches are not fully equivalent: the highly nonlinearstill small and when the rate of phase conversion is the slow-
f(e) dependence obtained from this particular field theoretiest process.
cal model does not yield a smooth quadratic minimum in  Here a couple of remarks are necessary. There are several
terms ofe at e, (where ¢=0). This leads to unphysical requirements to form critical-sized bubbles or droplets of the

045003-5



L. P. CSERNAI, J. I. KAPUSTA, AND E. OSNES PHYSICAL REVIEW b7, 045003 (2003

new phase. Both pressure balance and temperature equalltythe nonrelativistic limit and when the viscosities are small

should be established between the phases; this requires tbempared to the heat conductivity this reduces to Langer’s

transfer of energy and momentum across the phase boundagxpression. In the relativistic limit with no net baryon num-

If local equilibrium is assumed both before and after theber, where effectivelj\—0, this reduces to Eq21).

formation of the new phase then we cannot relax the require- Unfortunately there are several erroneous expressions for

ment of pressure and temperature equilibrium. x which subsequently appeared in the literaturel14] one
Langer’s modern theory of nucleation yields the following finds that, in the relativistic limit with no net baryon number,

formula for the rate:
20'Wh (23)
K— - 5.
|= 2 Qe 8FT (18) V (aw)?R?

2

h is the ch in the f fth This was “derived” under the assumption of vanishing shear
whereAF |st_e change in _t_e ree energy o the sy_stgm due(‘/iscosities. An expression fat in the nonrelativistic limit
to the formation of the critical droplet), is a statistical \\ith nonzero baryon number was found which differed from

prefactor which measures the available phase space volume,qer's result too. By including the viscosities another pa-
« is a dynamical prefactor which determines the exponentlaber[ls] finds that

growth rate of critical droplets which are perturbed from

their quasiequilibrium radiuR, : oW 1 o 4
/ h
K= + —
(Aw)?R3  ¢Z (Aw)%R3

4 577+4- (24
k= IN[R(O-R,]. (19

Herec, is the speed of sound in the low density phase. In the

The dynamical prefactor has been calculated by Langer anMit that the viscosities vanish this reduces to the result of
Turski [2,3] and by Kawasak[12] for a liquid-gas phase [14], and in the .Iimi.t that they are Igrge this reduces to the
transition near the critical point, where the gas is not dilute fesult of[1] albeit with a factor of 1dg rather than 4.

to be The results found bj14] and[15] are suspicious because
they predict a dynamical growth factor even in the absence

NoT of viscous forces. The analysis [df4] is wrong because of a
K= ——\, (20) misinterpretation of a derivative. That paper follows the ap-

€°niR; proach of{1] relatively closely except for one crucial point.

At some point in the analysis one encounters the derivative

This involves the thermal conductivity, the surface free f(e T)/ge evaluated at the radial profie=e(r) of the
energyo, the latent heat per molecuteand the density of energy density for a spherical bubble or droplet connecting

mplecules in thg liquid phage, . The interesting physics if‘ _.the two phase. Thus(r) varies betweer, ande,,. The free
this expression is the appearance of the thermal conductivitye oy density varies accordingly. As explained carefully and
In order for the droplet to grow beyond the critical size

: h b q q : h ; ) ’hin some detail in1], this derivative is taken at fixed tem-
atent heat must be conducted away from the surface Into thq 1,re At the equilibrium points it is zero: see the discus-

gas. For a relativistic system of particles or quantum field ion in Sec. Il above. However, the paji¢4] equates with

which has no net conserved charge, such as baryon numbe_r,p irrespective of whether we are at one of the minima or

the thermal condqctlwty vanishes. The reason is that there ISot. It then assumes an equation of st|at=ec§e to finally
no rest frame defined by the baryon density to refer to heatbt inaf (e T)/de— —c2. From that point on the analvsi
transport. Hence this formula obviously cannot be applied T (e, d)the_ Cs. 1O ﬁl ;qu .ci bl i"ﬁ alysis
such systems. The dynamical prefactor for such systems wal/€rges, and the erroneous results omevitably follow.

. : The paper[15] attempts to derive an expression fer
first evaluated in the manner of Langer by two of ifto be ; ; o
geroy ok which reduces to that ¢fL] when the viscosity is large and to

that of [14] when the viscosity is small or vanishes. Of
_ (21) course this is impossible if the result[df4] is wrong, as we

have pointed out. One error [A5] is to sometimes include

[their Eg.(10)] and sometimes excludéheir Eq.(9) with p

Here » and{ are the shear and bulk viscosities, respectivelynterpretted as the equilibrium presslitee variation in the
and Aw is the enthalpy density difference between the twoff€€ energy through nonequilibrium states in the surface re-
phasegequal to the latent heat since the pressures are equ@ion in an uncontrolled fashion. In particular, an extra term
at the critical temperatujeThis fully relativistic expression CsV>¥(r) is introduced on the right side of their E(R0).

was subsequently generalized by Venugopalan and Vischdthis term is not present in their pair of Eq4.7), which are
[13] to include a conserved baryon number: the ones to be solved so as to determind he authors never

commit to exactly what§ is except to say that it “could be

4o
(Aw)?R3

4+
§77§

20 4 the velocity of sound in the medium around the saddle con-
k=————(ANT+2[ 9+ ]|]|. (22 figuration.” In the absence of this ad hoc term, the analysis
253 37 . . . ) . .
(AW)°Ry following their Eq.(20) is otherwise consistent with that fol-
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lowing Eq.(71) of [1]. A second error is to assume that the peraturd 16,17, these processes can be combined with other
divergence of the velocity vanishes in the surface regiontransport processes like viscosity, heat conduction, and par-
meaning thatr?v(r) is a constant. This is directly contra- ticle diffusion (such as neutrino transppieading to faster
dicted by their own Eq(30) since both the energy and en- temperature balance and a higher rate. However, sound
thalpy densities are varying rapidly in the surface. As derivedvaves do not lead to dissipation as perfect fluid dynamics is
in [1] the quantityrv(r) is a constant only whenexceeds adiabatic(in the absence of shock waye3hus, the sound
the bubble radiu®k by more than a few correlation lengths wave as the sole mechanism cannot characterize dissipative
but still less than R. A third error is to drop the left side of transport processes, as was mistakenly claimeld.4h and
their Eq. (26) compared to the right side without justifica- [15].
tion; in fact, they are the same order of magnitude. If the A final remark: If the external dynamical evolution is
authors had followed the analysis [df] without introducing  much faster than the processes involved in the phase and
ad hog undetermined quantities, and had not made incorredtinetic equilibration then the matter involved in the phase
approximations, they would have obtained the same resultgransition loses both phase and thermal equilibrium, and we
Their errors seem to be entirely motivated by the desire tdave to abandon the thermal and fluid dynamical approaches
find an interpolating formula between the resultd bf and  altogether. An example in the context of high energy heavy
[14]. ion collisions is presented ifl8] where an effective field

It is also possible to argue that the erroneous results for theoretical approach is used. Generally this will be the case
are not only mathematically incorrect but physically incor-for small, rapidly developing systems only.
rect too. What is relevant is the slowest required process, not
the fastest. Furthermore it is incorrect to add up the rates of
all processes to obtain the highest possible phase transition IV. CONCLUSIONS
speed. If not all required processes are completed the phase
transition is not complete either. For example to esstablisQj
pressure(momentum equilibrium [14,15 is not sufficient, y

In this paper we have examined two subtle issues in the
namics of domain walls. One of them is the difference
between the effective potential as a function of a scalar field
eghd the free energy as a function of energy density, both
has the phase transition been completed év_aluated near _the crltl_cal temperature. The o;her_ involves a
' misconception in the literature about the derivation of the

In Ref.[1] the slowest process, heat transfer via V'SCO.S't.y namical prefactor, or growth rate, in homogeneous nucle-
was evaluated. In some cases, when we have non-negligib i

net baryon charge in our system, the heat conductivity ma - . . .
also contribute to the heat transfer to the new phase, thdéecause of their importance in such physical environments as

speeding up somewhat this slowest of all proce§ak If LSOanO|Ogy, astrophysics and high energy nuclear collisions.

the transport coefficients are all vanishing so that thermal
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