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Domain wall dynamics of phase interfaces

L. P. Csernai,1,2,3 J. I. Kapusta,3 and E. Osnes4
1Theoretical and Computational Physics Section, University of Bergen, Allegaten 55, 5007 Bergen, Norway

2KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, 1525 Budapest, Hungary
3School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455

4Department of Physics, University of Oslo, P.O.Box 1048 Blindern, 0316 Oslo 3, Norway
~Received 3 January 2002; published 10 February 2003!

The statics and dynamics of a surface separating two phases of a relativistic quantum field theory at or near
the critical temperature typically make use of a free energy as a functional of an order parameter. This free
energy functional also affords an economical description of states away from equilibrium. The similarities and
differences between using a scalar field as the order parameter versus the energy density are examined, and a
peculiarity is noted. We also point out several conceptual errors in the literature dealing with the dynamical
prefactor in the nucleation rate.
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I. INTRODUCTION

Different phases of matter are separated in space and
by dividing layers called domain walls. The dynamics of t
domain walls is the determining mechanism governing ph
transitions in an intermediate range between very slow, q
sistatic and very rapid, dynamical processes. In this inter
diate range the phase transition speed and the speed o
ternal constraints are comparable to each other.

The dynamics of phase transitions is an involved sub
even in macroscopic systems. First of all, phase transit
can be different. They may include slow burning or deflag
tion, detonation, condensation, evaporation, and many o
forms of transition. Nevertheless, the basic conditions of
these transitions have some similarities. These arise from
basic conservation laws and from the requirement of loca
at least approximately local, equilibrium.

In a dynamical situation the approach using the equa
of state with a first order phase transition is identical both
compression and in expansion. If the compression is su
sonic, shock or detonation waves are formed where the fi
new phase is immediately created. The phase trans
speed influences only the width of the shock front. On
other hand, for slow dynamics and rapid phase transition
shock front width is primarily determined by the transpo
coefficients, viscosity and heat conductivity, and not by
phase transition speed.

At high energies a relativistic treatment is frequently ne
essary. It is important to mention that a system is also r
tivistic if the matter is radiation dominated, meaning that t
rest mass of the constituent particles is zero or neglig
compared to the fourth root of the energy density. Th
types of systems must be treated as relativistic even if
collective velocities are small. This was one of the import
new features recognized in Ref.@1#. If conserved charges d
not exist the application of the conventional theory of pha
transition dynamics@2,3# is not possible, and this leads t
essential differences in the phase transition dynamics. M
importantly the flow is tied to the energy flow; thus energy
heat current and the fluid flow are identical and heat cond
tion ~with respect to the flow! may not occur. Therefore th
0556-2821/2003/67~4!/045003~7!/$20.00 67 0450
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coefficient of heat conductivity does not exist, and can
govern the phase transition speed.

The spatial configuration of phase transition instabilit
varies in large homogeneous systems. When the condit
for the occurrence of a new phase are established the m
common form of the appearance of the new phase happ
via the formation of small critical size bubbles or drople
~Subcritical size bubbles or droplets will shrink and vani
but supracritical size ones will grow.! This configuration is
called homogeneous nucleation.

As the level of supercooling increases and the amoun
the new phase increases other geometries become ene
cally more favorable, such as elongated cylindrical obje
~spagetti! or layers~lasagna!. The phase transition dynamic
is then referred to as spinodal decomposition, indicating t
systems which supercool~or superheat! and reach the adia
batic or isothermal spinodals on the phase diagram start
formation of the new phase in these configurations imme
ately.

Finally, when the two phases are about equally abund
and/or the transition is extremely rapid the two phases fo
a somewhat random occupation of the configuration sp
called percolation.

Most frequently explicit dynamical calculations are pe
formed for the homogeneous nucleation geometry as thi
usually the initial and the slowest of all. Nevertheless,
domain walls and their dynamical properties play an imp
tant role in all of the above mentioned configurations. O
important feature of the nucleation studies that is not alw
recognized is that within the dynamical domain wall or dro
let wall we do not have thermal equilibrium. Here, quantiti
like energy, entropy or particle density make sense, wh
other quantities that rely on thermal equilibrium, such as
equation of state, may not.

If the fluid is perfect and consists of a single phase
matter in full phase equilibrium, the flow is adiabatic@4#.
Nevertheless entropy production is still possible if the s
tem is out of phase equilibrium@4#, or out of thermal equi-
librium. Thus, in domain walls entropy may be produc
even in perfect fluids as here we do not have an equatio
©2003 The American Physical Society03-1
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state which would satisfy the requirements of equilibriu
thermodynamics.

In this paper we would like to discuss connections b
tween the two most frequently encountered approache
phase transitions using effective field theoretical models
phenomenological thermal and fluid dynamical methods
Sec. II we first demonstrate with a simple effective fie
theoretical model how one can obtain a Landau-model t
of phenomenological description of critical dynamics.
Sec. III we elaborate on the assumptions and error of dif
ent approaches used recently in the literature. We prese
summary and conclusion in Sec. IV.

II. THE FREE ENERGY FUNCTIONAL

A common approach to dealing with a phase transition
relativistic quantum field theory is to assume a uniform co
densatef for some scalar field and then to compute quant
and thermal fluctuations about that condensate@5#. This is
especially so for systems exhibiting spontaneous symm
breaking where the condensate field serves as an orde
rameter to distinquish the two phases. Examples include
Higgs field in electroweak theory and the sigma field or s
lar quark condensate in strong interaction physics. The
sulting free energy densityf is obtained from the partition
function Z in the usual way:

f ~f,T!52T ln Z~f,T,V!/V. ~1!

HereV is the volume. Since the high temperature symme
phase usually corresponds tof50, it is customary to define
the effective potential as the deviation of the free ene
from its value in the symmetric phase:

V~f,T!5 f ~f,T!2 f ~0,T!. ~2!

The pointf50 is either a global minimum or only a loca
minimum depending on whetherT is greater than or less tha
the critical temperatureTc , respectively. Therefore the re
sults of computations are often found to be, or parametri
as, a fourth order polynomial inf:

V~f,T!5 (
n52

4

an~T!fn. ~3!

Occasionally one will find additional terms of orde
f4ln(f/L) or higher powers off, but these are not commo
and will not change our analysis qualitatively.

To give a specific example we will use the parametri
tion of Ref. @6#:

V~f,T!5
1

2
g~T22T0

2!f22
1

3
aTf31

1

4
lf4. ~4!

The g, T0
2, a andl are temperature independent constan

to be specified shortly. In an equilibrium state the free ene
density is the negative of the pressure,f (T)52p(T). Nor-
malizing to the high temperature symmetric phase, and
noting the equilibrium pressure of that phase byph(T), we
have
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f ~f,T!52ph~T!1V~f,T!. ~5!

It is not enough to specify the effective potential; the eq
librium pressure as a function of temperature must be sp
fied too.

If one knows the free energy as a function ofT then the
energy densitye can be calculated from the basic thermod
namic identities. In particular, if we want to know the ener
density for a specific value of the condensate field, includ
out of equilibrium configurations also, then we must hold
fixed during the temperature differentiation:

e~f,T!5 f ~f,T!2T
]

]T
f ~f,T!

5eh~T!2
g

2
~T21T0

2!f21
l

4
f4. ~6!

The first line above is the general thermodynamic ident
the second line applies to the specific parametrization un
discussion. If one is at a local minimum of the effectiv
potential, eitherfh(T)50 or f l(T).0 corresponding to the
high and low temperature phases, respectively, then
doesn’t matter whether the order parameter is held fixed d
ing the differentiation or not because] f (f,T)/]f50 at
those points. These two points correspond to thermodyna
cal equilibrium.

If the system undergoes a first order phase transition
critical temperatureTc then at that temperaturef will have
two degenerate minima. For a finite range of temperat
above Tc there will persist a higher, local minimum a
f l(T).0. For a finite range of temperature belowTc there
will persist a higher, local minimum atfh(T)50. The most
important physical quantities are the latent heatL5De(Tc)
5eh(Tc)2el(Tc), the correlation lengths j22

5]2f (0,Tc)/]f25]2f „f l(Tc),Tc…/]f2, which are equal for
the fourth order effective potential atTc , and the surface
energys. At the critical temperature the planar interfaci
profile has a nice analytical solution on account of the f
that the effective potential becomes symmetric. In the us
way one finds that the profile fieldf̄(x) is

f̄~x!5
f l~Tc!

2
@12tanh~x/2j!#. ~7!

This interpolates through intermediate nonequilibrium sta
from f l(Tc) for x!2j to fh(Tc)50 for x@j. The surface
energy can then be expressed as

s5E
2`

`

dxS df̄

dx
D 2

. ~8!

The parameters in the effective potential can be expresse
terms of these physical parameters as follows:

g5S 11
Lj

6s D 1

Tc
2j2
3-2
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To
25

Lj

Lj16s
Tc

2

l5
1

3sj3

a5
1

Tcj
A 3

2sj3
. ~9!

For purposes of illustration, and with the QCD phase tran
tion in mind, we choose the following numerical values:

j5
1

Tc

s5
17

6

p2

45
Tc

3

L5
68p2

45
Tc

4 . ~10!

This choice ofB results in a critical temperatureTc which is
identical to the one obtained in a very simple model fo
phase transition between an ideal massless pion gas~3 inter-
nal bosonic degrees of freedom! and an ideal two flavor
quark-gluon plasma~37 effective bosonic degrees of fre
dom!. The resulting latent heat is large, useful mainly f
display purposes. Other choices of parameters or a more
phisticated equation of state can be used instead. The re
ing simple equation of state in the quark-gluon plasma ph
is

ph~T!5
37p2

90
T4B. ~11!

The numerical value for the latent heatL corresponds to a
transition from the 37 degrees of freedom mentioned ab
to 3 degrees of freedom for massless pions. Compared to
results of lattice simulations of QCD the values for the lat
heat and surface free energy are too large by about an o
of magnitude@7#. This is actually a subtle issue to som
extent because there are as yet are no reliable values
these quantities in full dynamical QCD with the physic
values of the up, down, and strange quark masses. Cu
lattice simulations show either a weakly first order pha
transition or no true phase transition, only a very rapid cro
over from hadronic gas to quark-gluon plasma. Homo
neous nucleation with a well-defined bubble surface and
dius requires a first order transition, but the value of
latent heat is not crucial. These assumptions must be ke
mind when applying nucleation theory to QCD or to a
other theory. It is convenient to make everything dimensi
less by measuring energies in units ofTc and lengths in units
of 1/Tc , which practice we adhere to in the rest of this se
tion.

The effective potential~4! as a function off is plotted in
Fig. 1 for three different temperatures: the critical one a
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1% above and below it. This displays the traditional behav
of a strong first order phase transition. The plot includ
negative values off which may or may not be allowable
depending on the origin off and its physical interpretation

The free energy density~5! as a function off is plotted in
Fig. 2 for the same temperatures. The only difference
tween this and Fig. 1 is the addition of the pressure as ev
ated in the high temperature symmetric phase.

The energy density~6! as a function off is plotted in Fig.
3. It has a maximum atf50. This follows directly from the
expression fore given earlier: For small values off the
deviation fromeh(T) is quadratic inf with negative curva-
ture. Note that the energy density goes negative whenf is
greater than about 2.0.

Rather than using the fieldf as the order parameter on
might consider other choices more appropriate for the pr
lem at hand. For example, one could take as the order
rameter the deviation of the energy density from its equil
rium value and expand the free energy in a power serie
this difference. This is the Landau approach to the desc
tion of fluctuations and to departures from equilibrium sta
@8#. Such an approach to the nuclear liquid-gas phase tra

FIG. 1. The effective potential as a function of the field.

FIG. 2. The free energy density as a function of the field.
3-3
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tion was implemented by Goodmanet al. @9#. It is also this
same function that was used in working out the nucleation
relativistic first order phase transitions by two of us@1#. With
these motivations we plot the free energy versus the en
in Fig. 4 by usingf as a parameter. There are a number
points to be made concerning this figure. First, there are
minima at each of the chosen temperatures. The minima
cur at the energy densitiesel(T) and eh(T). The lower of
these two represents the equilibrium state while the o
represents a metastable state except atTc when they are de-
generate. The value off at a minimum is equal to the nega
tive of the pressure in that particular phase:pl(T)
52 f „el(T),T… and ph(T)52 f „eh(T),T…. Second, the
value of el(0.99Tc),0! This is an indication of the inad
equacy of the specific parametrization of the effective pot
tial at this temperature, and probably at lower temperatu
too. This is an important point to always be aware of wh
writing down any formula for an effective potential. Third
the free energy has a cusp at the location of the high den
symmetric phase. This is an unavoidable consequence o
inference of the free energy from the effective potent
From Fig. 3 or from the corresponding formula it is clear th

FIG. 3. The energy density as a function of the field.

FIG. 4. The free energy as a function of the energy density
derived from Figs. 1–3.
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the energy density is a maximum atf50. This means that
the plot of the free energy ends at the equilibrium dens
eh(T) of the symmetric phase with a cusp. In casef is
defined for positive values only then the effective poten
V, the free energy densityf, and the energy densitye end
abruptly atf50 while f (e,T) would end abruptly at the
finite value eh(T). Physically this must be a restriction o
fluctuations to those associated withf and onlyf. This is
too restrictive by far; there are certainly other physical p
cesses not taken into account. For example, placing part
in a box in contact with a heat reservoir allows for the e
change of energy between the particles and the reser
resulting in fluctuations in energy and pressure. These p
cesses are always present in systems at fixed temperatur
are not accounted for, or associated with, fluctuations in
order parameter.

Now let us follow the Landau construction of the fre
energy away from equilibrium states using the energy d
sity as the order parameter with no reference tof whatso-
ever. This is the construction made in@1# in the context of
constructing spherical surfaces separating two phases at
critical temperatures. The total free energy of interaction
the sum of a gradient energy and a free energy density i
grated over space.

FI$e~x!%5E d3xF1

2
K„¹e~x!…21 f „e~x!,T…G . ~12!

The f is most economically written as a fourth order polyn
mial in e:

f ~e,T!5 (
n50

4

bn~T!en. ~13!

The coefficients are functions of temperature. They are
termined by several requirements. The first is thatf has
minima located atel(T) and eh(T), such thatf at those
points be equal to the negative of the corresponding equ
rium pressure:

f „eh~T!,T…52ph~T!

f „el~T!,T…52pl~T!. ~14!

This results in four equations involving the fivebn . Two
more equations result from fixing the correlation leng
~which is the same in the two phases only atTc) and the
surface energys ~which, strictly speaking, is only well de
fined at Tc). This set of six equations is not inconsiste
because the coefficient of the gradient energy,K, must also
be determined:

]2f /]e2ue5eh(Tc)5]2f /]e2ue5el (Tc)5
6s

jL2

K5
6sj

L2
. ~15!s
3-4
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We insist upon the same equilibrium energy densities
pressures as used in the effective potential approach, and
the same correlation length and surface energy atTc too:

s5KE
2`

`

dxS dē

dx
D 2

~16!

ē~x!5
1

2
@eh~Tc!1el~Tc!1De~Tc!tanh~x/2j!#. ~17!

Then the Landau expansion of the free energy as a func
of the energy density is obtained and is plotted in Fig. 5. T
f (e,T) is now a smooth and well-behaved function. Its on
failing is that the equilibrium energy density at 0.99Tc is
negative, but that is a consequence of insisting that it be
same as for the effective potential, which was negative.~Ac-
tually, fluctuations into states with negative energy can
avoided if one uses the Laurent expansion instead of
fourth order polynomial approximation@10#, but only if the
lower minimum is at positive energy density.! In fact, with
the Landau approach we have a closer connection betw
the physical observables and the free energy. For exam
we can easily specify the equilibrium energy density a
pressure in each phase, making it simple to avoid such
welcome behavior as a negative energy density in equ
rium. Of course the direct connection with the condens
field f is lost.

The main difference between the two approaches is
the field theoretical approach parametrizes the out
equilibrium configurations in terms of an effective potent
as a function off that shows smooth, quadratic minim
around the two equilibrium states, whereas the Landau t
of thermodynamical approach does the same in terms of
free energy as a function of the energy densitye. These two
approaches are not fully equivalent: the highly nonline
f (e) dependence obtained from this particular field theor
cal model does not yield a smooth quadratic minimum
terms of e at eh ~where f50). This leads to unphysica

FIG. 5. The free energy as a function of the energy density fr
a Landau construction.
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estimates for energy density fluctuations, in our opinio
Which approach one takes depends on the physical situa
being addressed.

Finally we comment on the appearance of negative ene
density. This is an unphysical artifact arising from parame
zations being used outside their realm of applicability. Th
are practical means to alleviate this problem. See, for
ample, Refs.@6# and @10#. Since it is not our purpose to
construct accurate physical models we do not pursue th
means here but only make the reader aware of them.

III. DYNAMICS OF FIRST ORDER PHASE TRANSITIONS

A phase transition occurs because of some change in
global properties of the system. Examples of such chan
are: an expansion chamber or a sudden quench in temp
ture in the laboratory, the expansion of hot matter in a hig
energy heavy ion collision, and the expansion of the ea
universe. Generally we need to compare the phase trans
rate to the rate of expansion or quench. The speed at w
the phase transition proceeds comes into play when the s
at which the external variables, such as the volume, beco
comparable to or exceeds that of phase conversion.

If the rate of change of an external variable is slow the
is sufficient time to maintain phase equilibrium on a coar
grained time scale. This also means that all other equilib
tion processes are completed as these invariably require
time and less interaction than the conversion of one phas
matter to another.

Thus, in the case of slow external dynamics and ra
phase equilibration the matter is in complete equilibriu
including phase equilibrium, and the equation of state of
matter undergoing a first order phase transition is given
the Maxwell construction. Then we have a fully develop
mixed phase, and the phase abundances are typically g
by the conservation of energy and entropy. In this limiti
case no information on dynamical processes is needed.
type of transition is adiabatic. Even in moderately fast d
namical expansions there are only small deviations from
ideal and complete phase equilibrium~Maxwell construc-
tion!. This deviation results in some delay in the creation
the new phase, leading to supercooling or superheating
extra entropy production@4#. Even in slow, nearly adiabatic
phase transitions there may exist deviations from full eq
librium. Relevant possibilities include baryon number ge
eration in a cosmological electroweak phase transition
baryon and isospin inhomogeneities generated in a cos
logical QCD phase transition. Any departure from full equ
librium will result in some entropy generation, howev
small it may be.

For heavy ion reactions the first attempt to explicit
evaluate the phase transition speed of homogeneous n
ation was described in@1,11#. The homogeneous nucleatio
mechanism correctly describes the initial stage of the ph
transition when the abundance of the newly created phas
still small and when the rate of phase conversion is the sl
est process.

Here a couple of remarks are necessary. There are se
requirements to form critical-sized bubbles or droplets of
3-5
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new phase. Both pressure balance and temperature equ
should be established between the phases; this require
transfer of energy and momentum across the phase boun
If local equilibrium is assumed both before and after t
formation of the new phase then we cannot relax the requ
ment of pressure and temperature equilibrium.

Langer’s modern theory of nucleation yields the followin
formula for the rate:

I 5
k

2p
V0e2DF/T ~18!

whereDF is the change in the free energy of the system d
to the formation of the critical droplet.V0 is a statistical
prefactor which measures the available phase space vol
k is a dynamical prefactor which determines the exponen
growth rate of critical droplets which are perturbed fro
their quasiequilibrium radiusR* :

k5
d

dt
ln@R~ t !2R* #. ~19!

The dynamical prefactor has been calculated by Langer
Turski @2,3# and by Kawasaki@12# for a liquid-gas phase
transition near the critical point, where the gas is not dilu
to be

k5
2lsT

,2n,
2R

*
3

. ~20!

This involves the thermal conductivityl, the surface free
energys, the latent heat per molecule, and the density of
molecules in the liquid phasenl . The interesting physics in
this expression is the appearance of the thermal conducti
In order for the droplet to grow beyond the critical siz
latent heat must be conducted away from the surface into
gas. For a relativistic system of particles or quantum fie
which has no net conserved charge, such as baryon num
the thermal conductivity vanishes. The reason is that ther
no rest frame defined by the baryon density to refer to h
transport. Hence this formula obviously cannot be applied
such systems. The dynamical prefactor for such systems
first evaluated in the manner of Langer by two of us@1# to be

k5
4s

~Dw!2R
*
3 F4

3
h1zG . ~21!

Hereh andz are the shear and bulk viscosities, respective
and Dw is the enthalpy density difference between the t
phases~equal to the latent heat since the pressures are e
at the critical temperature!. This fully relativistic expression
was subsequently generalized by Venugopalan and Vis
@13# to include a conserved baryon number:

k5
2s

~Dw!2R
*
3 FlT12S 4

3
h1z D G . ~22!
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In the nonrelativistic limit and when the viscosities are sm
compared to the heat conductivity this reduces to Lang
expression. In the relativistic limit with no net baryon num
ber, where effectivelyl→0, this reduces to Eq.~21!.

Unfortunately there are several erroneous expressions
k which subsequently appeared in the literature. In@14# one
finds that, in the relativistic limit with no net baryon numbe

k5A 2swh

~Dw!2R
*
3

. ~23!

This was ‘‘derived’’ under the assumption of vanishing she
viscosities. An expression fork in the nonrelativistic limit
with nonzero baryon number was found which differed fro
Langer’s result too. By including the viscosities another p
per @15# finds that

k5A 2swh

~Dw!2R
*
3

1
1

cs
2

s

~Dw!2R
*
3 F4

3
h1zG . ~24!

Herecs is the speed of sound in the low density phase. In
limit that the viscosities vanish this reduces to the result
@14#, and in the limit that they are large this reduces to t
result of @1# albeit with a factor of 1/cs

2 rather than 4.
The results found by@14# and@15# are suspicious becaus

they predict a dynamical growth factor even in the abse
of viscous forces. The analysis of@14# is wrong because of a
misinterpretation of a derivative. That paper follows the a
proach of@1# relatively closely except for one crucial poin
At some point in the analysis one encounters the deriva
] f (ē,T)/]ē evaluated at the radial profileē5ē(r ) of the
energy density for a spherical bubble or droplet connect
the two phase. Thusē(r ) varies betweenel andeh . The free
energy density varies accordingly. As explained carefully a
in some detail in@1#, this derivative is taken at fixed tem
perature. At the equilibrium points it is zero: see the disc
sion in Sec. II above. However, the paper@14# equatesf with
2p irrespective of whether we are at one of the minima
not. It then assumes an equation of statep5cs

2e to finally
obtain ] f (e,T)/]e52cs

2 . From that point on the analysi
diverges, and the erroneous results fork inevitably follow.

The paper@15# attempts to derive an expression fork
which reduces to that of@1# when the viscosity is large and t
that of @14# when the viscosity is small or vanishes. O
course this is impossible if the result of@14# is wrong, as we
have pointed out. One error in@15# is to sometimes include
@their Eq.~10!# and sometimes exclude@their Eq.~9! with p
interpretted as the equilibrium pressure# the variation in the
free energy through nonequilibrium states in the surface
gion in an uncontrolled fashion. In particular, an extra te
cs

2¹2n(r ) is introduced on the right side of their Eq.~20!.
This term is not present in their pair of Eqs.~17!, which are
the ones to be solved so as to determinek. The authors never
commit to exactly whatcs

2 is except to say that it ‘‘could be
the velocity of sound in the medium around the saddle c
figuration.’’ In the absence of this ad hoc term, the analy
following their Eq.~20! is otherwise consistent with that fol
3-6



e
on
-
-
e

s
f
-

th

re
ul

t

r
r-
n

s
iti
ha
lis

eq
v

ity
gib

a
th

m
a
d

en
te

her
par-

und
s is

ative

is
and
se
we
hes
vy

ase

the
ce
eld
oth
s a
he
cle-
ties
s as
ns.

n-
arch

DOMAIN WALL DYNAMICS OF PHASE INTERFACES PHYSICAL REVIEW D67, 045003 ~2003!
lowing Eq. ~71! of @1#. A second error is to assume that th
divergence of the velocity vanishes in the surface regi
meaning thatr 2v(r ) is a constant. This is directly contra
dicted by their own Eq.~30! since both the energy and en
thalpy densities are varying rapidly in the surface. As deriv
in @1# the quantityr 2v(r ) is a constant only whenr exceeds
the bubble radiusR by more than a few correlation length
but still less than 2R. A third error is to drop the left side o
their Eq. ~26! compared to the right side without justifica
tion; in fact, they are the same order of magnitude. If
authors had followed the analysis of@1# without introducing
ad hoc, undetermined quantities, and had not made incor
approximations, they would have obtained the same res
Their errors seem to be entirely motivated by the desire
find an interpolating formula between the results of@1# and
@14#.

It is also possible to argue that the erroneous results fok
are not only mathematically incorrect but physically inco
rect too. What is relevant is the slowest required process,
the fastest. Furthermore it is incorrect to add up the rate
all processes to obtain the highest possible phase trans
speed. If not all required processes are completed the p
transition is not complete either. For example to estab
pressure~momentum! equilibrium @14,15# is not sufficient,
because then a subsequent step of establishing thermal
librium is required, and only when both processes are o
has the phase transition been completed.

In Ref. @1# the slowest process, heat transfer via viscos
was evaluated. In some cases, when we have non-negli
net baryon charge in our system, the heat conductivity m
also contribute to the heat transfer to the new phase,
speeding up somewhat this slowest of all processes@13#. If
the transport coefficients are all vanishing so that ther
balance cannot be achieved, we will never reach both ph
and thermal equilibrium, so the rate tends to zero as state
Ref. @1#.

In case other degrees of freedom exist which permit
ergy transport between the phases leading to a common
s

n,
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perature@16,17#, these processes can be combined with ot
transport processes like viscosity, heat conduction, and
ticle diffusion ~such as neutrino transport! leading to faster
temperature balance and a higher rate. However, so
waves do not lead to dissipation as perfect fluid dynamic
adiabatic~in the absence of shock waves!. Thus, the sound
wave as the sole mechanism cannot characterize dissip
transport processes, as was mistakenly claimed in@14# and
@15#.

A final remark: If the external dynamical evolution
much faster than the processes involved in the phase
kinetic equilibration then the matter involved in the pha
transition loses both phase and thermal equilibrium, and
have to abandon the thermal and fluid dynamical approac
altogether. An example in the context of high energy hea
ion collisions is presented in@18# where an effective field
theoretical approach is used. Generally this will be the c
for small, rapidly developing systems only.

IV. CONCLUSIONS

In this paper we have examined two subtle issues in
dynamics of domain walls. One of them is the differen
between the effective potential as a function of a scalar fi
and the free energy as a function of energy density, b
evaluated near the critical temperature. The other involve
misconception in the literature about the derivation of t
dynamical prefactor, or growth rate, in homogeneous nu
ation theory. It is important to understand these subtle
because of their importance in such physical environment
cosmology, astrophysics and high energy nuclear collisio
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