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Finite-temperature scalar fields and the cosmological constant in an Einstein universe
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We study the back-reaction effect of a massless minimally coupled scalar field at finite temperatures in the
background of an Einstein universe. Substituting for the vacuum expectation value of the components of the
energy-momentum tensor on the right hand side of the Einstein equation, we deduce a relationship between the
radius of the universe and its temperature. This relationship exhibits a maximum temperature, below the Planck
scale, at which the system changes its behavior drastically. The results are compared with the case of a
conformally coupled field. An investigation into the values of the cosmological constant exhibits a remarkable
difference between the conformally coupled case and the minimally coupled one.
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I. INTRODUCTION (FRW) models since it is believed that the real universe is,
more or less, a sophisticated form of the Friedmann models.
Quantum fields in curved spacetimes have been investHowever the time dependence of the spacetime metric gen-
gated by many author§or a thorough indepth review see erally creates unsolvable fundamental problems. One such
Ref.[1]). The basic question was whether the zero-point enproblem was the definition of vacuum in a time-dependent
ergy of a quantized field act as the source of a gravitationahackground7]; a time-dependent background is eligible to
field. The works dealing with this question began in the mid-produce particles continuously, therefore, pure vacuum states
1970s when matter fields were brought into contact within the Minkowskian sense do not exist. On the other hand, an
spacetime curvature through the calculation of the vacuunhyestigation into the thermodynamics of a time-dependent
expectation value of the energy-momentum teq§¢r ,,|0) system lacks the proper definition of thermal equilibrium,

[rzl_?]' Thﬁ motiv_atior|1 forl studying tEiS quan[t)ity dst¢ms dfrom which is a basic necessity for studying finite-temperature
the fact thatT ,, is a local quantity that can be defined at a4 theory in curved backgrounds].

spe_cifip spacetime point, contrary to the particle concept During the last 25 years numerous papers have been pub-
which is global_. T_he energy-momentum tensor also acts a3 fhed dealing with quantum field theoretic calculations per-
source of gravity in the Einstein field equations, therefore |tf

is expected that0| T ,,|0) can play an important role in any ormed in curved spacetimes, and specifically in the Einstein

attempt to model a self-consistent dynamics involving theuniverse. On basic reason for choosing the Einstein universe
classical gravitational field coupled to the quantized mattefS that it stands the two fundamental challenges mentioned
fields. So, oncé0|T,,|0) is calculated in a specified back- gbqve. Being static, the Einstein universe leaves no amblgu-
ground geometry, we can substitute it on the right hand sidd in defining the vacuum both locally and globally]. This
(RHS of the Einstein field equation and demand self-Same feature also allows for thermal equilibrium to be de-

consistency. For models with a cosmological constant sucfined unambiguously. Ford2] has shown that a closed
as the Einstein static model this means that Robertson-Walker universe has the same vacuum energy and

pressure as a static universe of instantaneously equal radius.
1 Furthermore, the Einstein static metric can be related to the
Ruv= 59mR+0,,A= —8m(0|T,,|0), (1) closed Robertson-Walker metric through conformal transfor-
mations; further, it was shown by Kennef] that thermal
whereR,,, is the Ricci tensorg,, is the metric tensor, and  Green functions for the static Einstein universe and the time-
is the scalar curvature. dependent Robertson-Walker universe are conformally re-
The solution of Eq(1) will determine the development of lated, hence deducing a one to one correspondence between
the spacetime in presence of the given matter field, for whichhe vacuum and the many particle states of both universes.
|0) can be defined unambiguously. This is known as theSo, under the equilibrium condition, the thermodynamics of
“back-reaction problem.” It is interesting to perform the cal- quantum fields in an Einstein universe of radauis equiva-
culation of (0|T,,|0) in Friedmann-Robertson-Walker lent to that of an instantaneously static closed FRW universe
of equal radiug2,5,9. This means that the results obtained
in a closed FRW universe would be qualitatively the same as
*Electronic mail: maltaie@yu.edu.jo those obtained in an Einstein universe. This implies that suc-
"Electronic mail: rezakord@yahoo.com cessive states of the Einstein universe can represent a work-
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ing model that will include features of the FRW universe wherea is the radius of the spatial part of the univeiSe

with a nonzero cosmological constant if no geometrodynamiand 0< y<, 0< @<, and O< ¢=<27.

cal effect is assumed to exist. We consider an Einstein universe being filled with a mass-
The finite-temperature corrections to the vacuum energyess quantum gas in thermal equilibrium at temperaflire

of the universe is an important factor in defining its thermalThe total energy density of the system can be written as
development. Thus it is interesting to consider such calcula-

tions, and it would be of further interest to consider the back- (Tootot={Too) T+ (Too)o. (3)
reaction of such cases on the development of the very early
universe. where(T)o is the zero-temperature vacuum energy density

Altaie and Dowker{10] calculated the finite-temperature (Casimir energy densijyand (Too)t is the correction for
corrections to the massless conformally coupled scalar fieldinite temperatures, i.e.,
the neutrino field, and the photon field in the background of
an Einstein universe. The results of the calculation for the 1 dhen
photon field were used to deduce a self-consistent solution <Too>T=v E m,
for the Einstein field equation, i.e., a back-reaction problem, n EXpPen
from which a relation between the temperature and the radiL\?/heree andd, are the eigenenergies and degeneracies of
of the Einstein universe was deduced. However, this relatior,[lh th “t t n NV =2723% is th | f th tial
was not fully exploited at that time and therefore some of the € nth state, andv=csma" IS the volume of the spafia
thermodynamical aspects were kept unexposed. section of the Ems_tem_ universe.

Recently[11] (hereafter, Refl11] will be referred to as)l Normally (Tog)1 is divided into two parts: the blackbody
we have investigated the back-reaction effects of the confol®M. which is calculated by converting the summation into
mally coupled scalar field and the photon fields in the backan integration and is denoted K¥qp)7, and the correction
ground of the Einstein universe. We solved the Einstein fielderm, calculated from the remainder and denoted Ty)s
equation in each case and found a relation between the tenisee Ref[10]), so that Eq(3) can be written
perature and the radius of the universe. This relation exhib-
ited a minimum radius below which no self-consistent solu- (Tootor={Too) 2+ (Too) 2+ (To00- (5)
tion for the Einstein field equation can be found. Also we
have found that the system exhibits two different behaviors, Experience tells us that in the limi=Ta—0, we have
one at very small radii where the temperature rises sharplysee Ref[10])
with the radius until it reaches a maximum value, after which
it decreases as the radius is increased. We called the first lim (Too) 3= —(To)>, (6)
regime the “Casimir regime” since through it the vacuum é—0
energy is dominant and we called the second one the o _

“Planck regime" since the energy of the System follows a SO that at the IOW-temperature limit we are left with the Ca-
Planckian distribution. simir term only, whereas in the high-temperature limit we

In this paper we will consider the calculation of the back-have
reaction effects of the minimally coupled massless scalar
field at finite temperatures in the background of the Einstein im(Too) 7= —(Tooo, (7
static universe. The aim is to expose the thermal behavior of £
the system and compare the results with those of the confor- .
mally coupled case. Taking into consideration the renewed® that we areé left with the t_)la_ckbody term only. In the next
interest in the cosmological constant, we will also investigateseCt_'on we will use these I|m|ts.to obtain the value of the
the relationship between the values of the cosmological conc@Simir energy and the expression for the blackbody term.

stant and the temperature for successive states of the Einstein 1© Investigate thg back-reaction gﬁ‘ect of f!nlte—
universe for both the conformally coupled and the minimally t€mperature quantum fields on the behavior of spacetime we
coupled cases, in order to expose the different roles playeff?ould substitute fofTog),; on the RHS of the Einstein

by both fields during the Casimir and the Planck regimesfi€ld; this time with the cosmological constaht i.e.,
This consideration will shed light on the question of the de-

cay of the cosmological constant during early stages of the R
universe(corresponding to small radii states of the Einstein
universe; such a question falls within the context of infla-

tionary cosmology. Results shows that there is qualitative All the Einstein field equations for the system are satisfied

and important differences in the behavior of the cosmologi-due to the symmetry of the Einstein universe which is topo-

: : 3
cal constant for both fields in the Casimir regime. Through-gically described byT® S°, and due to the structure of
out this paper we use the natural units in whikc=1% (T,.,) in this geometry which comes to be diagonal, and is

4

,uv_EngR+ngA:_87T<T,uv>tot' (8)

—kg=1. given by (see Ref[1], p. 186
S
Il. BASIC FORMALISM (T = p(s) diag 1—1/3— 13— 1/3), ©
2%t

The metric of the static Einstein universe is given by

ds?=dt?—af dy?+siry(d6?>+sirtedgp?)],  (2)  wherep(s) is a spin-dependent coefficient.
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Since we are interested in the energy density, we will
considerTy, only. In order to eliminateA from Eqg. (8) we
multiply both sides withg,,,, and sum ove and v, then
using the fact thaff%,=0 for massless fields, and for the
Einstein univers&Ry,=0, goo=1, andR=6/a, we get

6
— =32m(Too)tot - (10) T
a

Note that in the general case conformal anomalies do ap-
pear in the expression fo(rTl’j), but because of the high ol
symmetry enjoyed by the Einstein universe these anomalies
do not appear an(T%) is found to be traceless for massless

particles. Casimiz Regime
0 1 2 3 1
a

IIl. THE VACUUM ENERGY AND BACK-REACTION . . . .
FIG. 1. Comparison between the temperature-radius relationship

The minimally coupled massless scalar field satisfies théor massless conformally couplédashed lingand the minimally

covariant Klein-Gordon equation coupled(solid ling) scalar fields.
Ueé=0, (11)  which is just half the value obtained for the photon field, as
_ . would be expected. However, in the limit of very large radius
where[1=V,V*. a we obtain the usual value of the blackbody radiation term,

Equation(11) was solved by Schrdinger[12] for the case i
of closed universe, the energy eigenvalues are given by

2

12 . T
€ :M n=0,1,23 (12) lim <T00>tot:%-r4- (18
n a ’ 1ty A £
and the degeneracy of each energy leveljs (n+1)2. In order to investigate the back-reaction effect of the field

For a minimally coupled massless scalar field in an Ein-we substitute foTog)o, from Eqgs.(13) in (10) and request
stein universe the total energy density is therefore given bya self-consistent solution; we get

(n+1)2[n(n+2)]*2 28 S (n+1)An(n+2)]"2
37 i=0 exp{[n(n+2)]Y¥¥& -1

1 0
: 19
(Tootot 2234 nZO exp{[n(n+2)1Y% & -1 " -

This equation determines a relation between the tempera-

In the low-temperature limitor small radiuswe find that  ture T and the radius of the Einstein universe in presence of
) the minimally coupled massless scalar field. The solutions of

lim (Tog)101=0, 149 this equation are shown in Fig. 1 in comparison with the

&0 results obtained earlier for the conformally coupled case.

which, by Egs.(5) and (7), means that the renormalized Here again two regimes are recognized, one corresponding to
vacuum energy density for the minimally coupled scalar fielgsmall values o€ where the temperature rises sharply reach-

regime is controlled by the vacuum ener@lie Casimir en-
(Too)o=0. (15  ergy), we therefore call it the “Casimir regime.” The second

regime is what we call the “Planck regime,” which corre-

Indeed this result can be confirmed by applying the Abelsponds to large values @ and in which the temperature
Plana summation formula asymptotically approaches zero for very large valuea. of

From Egs.(10) and(18) we can calculate the background

. » 1 (= Fix)=f(=ix) (Tolman temperature of the universe in the limit of high
nZl f(m= fo FOgdx=31(0)+i fo e2m_ 1 dx temperature and large radius. This is found to be
(16) 45 1/4
directly to the energy mode sum. Tf(ﬁ (20

In the high-temperature limit we deduce that

2 1 T2 This is the same result we obtained for the conformally
<-|-00>$:7T_-|-4+ S (17) coupled case discussed in I. To get a glimpse into the mean-
30 12 32 ing of this result, we may substitute farthe present value of
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the Hubble length, i.ea=1.38<10? cm and we obtairm possible values of the cosmological constant for different
=31.556 K. Conversely if we demand that the backgroundadii of the Einstein universe in presence of the massless
temperature have the same value as the present equival&@nformally coupled and minimally coupled scalar field. But
temperature of the cosmic microwave backgroGB) since different radii of the universe correspond to different
radiation, i.e., 2.73 K, then the radius of the Einstein uni-temperatures with a nontrivial relationship between the ra-
verse should be 1.2010%° cm. This is about two orders of dius and the temperature as was found in Sec. Il of this
magnitude larger than the estimated Hubble length. paper, the values of the cosmological constant at different
The reason for the coincidence of the behavior of thed€mperatures turns out to be nontrivial and rather of some
minimally coupled and conformally coupled scalar fields inSerious interest as we find qualitative differences between the
the Planck regimes stems from the fact that the field equawo types of fields.
tions differ only by a factor of H? which becomes arbi-  Contracting the field equations in E@) we find that
trarily small for large values dd. This means that the differ-
ence between the behaviors of the two fields can only be
noticeable within the Casimir regime, and this difference will
become even clearer in the next section when we consider
the cosmological constant. In the massive cases this factor
can be absorbed into the mass itself and consequently one
can differentiate between the two field at the very early
stages of the universe only, but as the radius of the universe _ E+A: — 8
- L. Ptot s (22)
grows large the difference between the minimally coupled a?
scalar field and the conformally coupled one becomes unde-
tectable. This conclusion is quite general and would apply irgnd
the case of the FRW universe, too.

_R_
A=g= (21)

3
2a?’

On the other hand the Einstein field equations reduce to

1 87 piot

IV. THE COSMOLOGICAL CONSTANT a2 TA=T3 @3

The cosmological constant was first introduced by Ein-
stein in order to justify the equilibrium of a static universe Where pyo=(Tg)10- Solving the above two equations we
against its own gravitational attraction. The discovery ofobtain
Hubble that the universe may be expanding led Einstein to
abandon the idea of a static universe and, along with it the A=8mpiot- (24
cosmological constant. However the Einstein static universe
remain of interest to theoreticians since it provided a useful Here we will considerp,o;=p,act pPraq, PUL I @ more
model to achieve a better understanding of the interplay ofjeneral case one can Sg{y1=p,act Prad T Pmatters With
spacetime curvature and of quantum field theoretic effects,,q belonging to the massless field filling the spatial part of
Recent years have witnessed a resurgence of interest in tlige universe ang..e; belonging to the pressureless dust
possibility that a positive cosmological constafit may that may exist. The addition of the energy density of the
dominate the total energy density in the univef®e recent  pressureless matter will not make any qualitative change in
reviews, see Ref§l14] and[15]). At a theoretical leve\ is  the results since,,iier iN @an Einstein universe specifically
predicted to arise out of the zero-point quantum vacuunbehaves in the same way as glg,. andp,,q-
fluctuations of the fundamental quantum fields. Using pa- Using Eq.(21) and the results obtained in the previous
rameters arising in the electroweak theory results in a valusection for the dependence ®fon a we can solve for the
of the vacuum energy densipy,..=10° GeV*, which is al-  dependence ok on T. Figure 2 depicts the relationship be-
most 162 times larger than the current observational uppettween the cosmological constafit and the temperature for
limit on A, which is 104" GeV*~10 2° g/cn?. On the successive states of the Einstein universe under the effect of
other hand the QCD vacuum is expected to generate a cothe back reaction of the minimally coupled scalar field at
mological constant of the order of 18 GeV* which is many  finite temperatures in comparison with the conformally
orders of magnitude larger than the observed value. This isoupled field. It shows that the cosmological constant for the
known as the old cosmological constant problem. The nevninimally coupled case decays monotonically from an infi-
cosmological problem is to understand why is not only  nite value all through the vacuum dominated regime until it
small but also, as the current observations seem to indicategaches a comparatively small value at a critical temperature
why it is of the same order of magnitude as the present mass which the system changes its behavior into the Planck
density of the universe. regime. However, in the conformally coupled case we notice

The value of the cosmological constant for an Einsteinthat the value of\ is nearly constant throughout the Casimir
universe seems to be trivial. It is directly related to the totalregime and only starts decay in the Planck regime. From the
energy density. However, since the energy density in an Einpoint of view of inflationary models a large value af is
stein universe varies inversely wieif and not witha®, new  needed to resolve the problem of horizon and the problem of
features are expected in the behavior of the cosmologicdlatness, and possibly to generate seed fluctuations for galaxy
constant. In what follows we are going to investigate theformation[15].
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similar to the results obtained in this work. Therefore, we

s00t feel that the calculations in the Einstein universe are useful
in understanding the interplay between quantum fields and
Gasimiz Regine the curvature. Indeed in | our calculations showed that an

soot Einstein universe with a curvature radius about two order of
magnitude larger than the Hubble radius will have the same
CMB temperature as the presently measured one. On the
other hand the analysis of the most recent observations of the
CMB spectrum suggests that the curvature radius of the real
universe is at least 50 times larger than the Hubble radius
[16]. This is a point in favor of the practical relevance of the

2001

calculations.
100} The main findings are the same as previously stated in |
but with additional points concerning the cosmological con-
______________ , stant:
o e a— e (i) The thermal development of the universe is a direct

consequence of the state of its global curvature.

FIG. 2. Comparison between the contributions of the massless (ii) Unless it qontaing some pressureless matter .the Ein-
conformally coupleddashed lineand the minimally couple¢solid ~ Stein universe will be singular at zero temperature in pres-
line) scalar fields to the cosmological constant in an Einstein uni€nce of the minimally coupled massless scalar field, in con-

verse at finite temperatures. trast with the conformally coupled case where a nonzero
radius was found to be an effect of the back-reaction of the
V. DISCUSSION AND CONCLUSIONS nonzero Casimir energy. A nonzero expectation value of the

vacuum energy density always implies a symmetry breaking

One of the interesting points of this paper is the clearevent.
difference between the behavior of the conformally coupled (iii) During the Casimir regime the universe is totally con-
massless scalar field and the minimally coupled scalar fieltrolled by vacuum. The energy content of the universe is a
as a result of the back reaction, a behavior that becomdsinction of its radius. Using the conformal relation between
clearer when the value of the cosmological constant is conthe static Einstein universe and the closed FRW univi@ke
sidered. However, one may feel uneasy with the energy scakhis result indicates that in a FRW model there would be a
that appears to be higher than the Planck scale in the case ofntinuous creation of energy out of vacuum as long as the
the conformally coupled scalar field which was considered iruniverse is expanding, a result which was confirmed by
[. In fact this is only fictitious because if we consider the Parker long ag$17].
collective effect of many fields then the resultant effect will  (iv) The cosmological constant arising from the minimal
bring the energy scale below the Planck energy. This can bscalar field mostly decays during the Casimir regime,
easily checked if one solves the Einstein field equation withwhereas the conformally coupled scalar field dominates most
both the minimally coupled and the conformally coupled en-of the Casimir regime and part of the Planck regime. This
ergies added up in the source, which confirms the conclusioimdicates that the minimally coupled scalar field plays most
in Ref. [13] that the range of validity of the quasiclassical of its effective roles in regions of high curvatures.
approximation can be extended for a large number of fields. Recenly it was shown by Ellis and Maartdris] that the

The conformal relationship between the static Einsteirbirth of an inflating universe from the state of a static Ein-
universe and the Robertson-Walker universe and the possitein universe containing minimally coupled scalar field and
bility to consider the Einstein universe of a given radius asordinary matter is quite possible under certain conditions.
representative of an instantaneously static Robertson-Walk&uch models are shown to avoid the quantum gravity era.
universe[2] and the one to one correspondence between thElowever, as remarked by the authors, the fine-tuning prob-
vacuum and the many particle states of both universes dem in these models is to fix the initial radius. Therefore, the
established by the work of Kenned$] suggests that the results presented in this paper may find some applications in
thermal behavior of a real closed universe is qualitativelysuch an approach for closed inflationary cosmologies.
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