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Finite-temperature scalar fields and the cosmological constant in an Einstein universe
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We study the back-reaction effect of a massless minimally coupled scalar field at finite temperatures in the
background of an Einstein universe. Substituting for the vacuum expectation value of the components of the
energy-momentum tensor on the right hand side of the Einstein equation, we deduce a relationship between the
radius of the universe and its temperature. This relationship exhibits a maximum temperature, below the Planck
scale, at which the system changes its behavior drastically. The results are compared with the case of a
conformally coupled field. An investigation into the values of the cosmological constant exhibits a remarkable
difference between the conformally coupled case and the minimally coupled one.

DOI: 10.1103/PhysRevD.67.044018 PACS number~s!: 04.62.1v
s
e
en
n
id
it
u

m
a

ep
as

y
th
tte
-
id
lf
uc

f
ic
th
l-
r

is,
els.
en-
uch
ent
to
ates
, an
ent
m,
ure

pub-
er-
ein
rse

ned
igu-

e-
d
and

dius.
the
or-

e-
re-

ween
ses.
of

rse
d
as

uc-
ork-
I. INTRODUCTION

Quantum fields in curved spacetimes have been inve
gated by many authors~for a thorough indepth review se
Ref. @1#!. The basic question was whether the zero-point
ergy of a quantized field act as the source of a gravitatio
field. The works dealing with this question began in the m
1970s when matter fields were brought into contact w
spacetime curvature through the calculation of the vacu
expectation value of the energy-momentum tensor^0uTmnu0&
@2–6#. The motivation for studying this quantity stems fro
the fact thatTmn is a local quantity that can be defined at
specific spacetime point, contrary to the particle conc
which is global. The energy-momentum tensor also acts
source of gravity in the Einstein field equations, therefore
is expected that̂0uTmnu0& can play an important role in an
attempt to model a self-consistent dynamics involving
classical gravitational field coupled to the quantized ma
fields. So, oncê0uTmnu0& is calculated in a specified back
ground geometry, we can substitute it on the right hand s
~RHS! of the Einstein field equation and demand se
consistency. For models with a cosmological constant s
as the Einstein static model this means that

Rmn2
1

2
gmnR1gmnL528p^0uTmnu0&, ~1!

whereRmn is the Ricci tensor,gmn is the metric tensor, andR
is the scalar curvature.

The solution of Eq.~1! will determine the development o
the spacetime in presence of the given matter field, for wh
u0& can be defined unambiguously. This is known as
‘‘back-reaction problem.’’ It is interesting to perform the ca
culation of ^0uTmnu0& in Friedmann-Robertson-Walke
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~FRW! models since it is believed that the real universe
more or less, a sophisticated form of the Friedmann mod
However the time dependence of the spacetime metric g
erally creates unsolvable fundamental problems. One s
problem was the definition of vacuum in a time-depend
background@7#; a time-dependent background is eligible
produce particles continuously, therefore, pure vacuum st
in the Minkowskian sense do not exist. On the other hand
investigation into the thermodynamics of a time-depend
system lacks the proper definition of thermal equilibriu
which is a basic necessity for studying finite-temperat
field theory in curved backgrounds@8#.

During the last 25 years numerous papers have been
lished dealing with quantum field theoretic calculations p
formed in curved spacetimes, and specifically in the Einst
universe. On basic reason for choosing the Einstein unive
is that it stands the two fundamental challenges mentio
above. Being static, the Einstein universe leaves no amb
ity in defining the vacuum both locally and globally@1#. This
same feature also allows for thermal equilibrium to be d
fined unambiguously. Ford@2# has shown that a close
Robertson-Walker universe has the same vacuum energy
pressure as a static universe of instantaneously equal ra
Furthermore, the Einstein static metric can be related to
closed Robertson-Walker metric through conformal transf
mations; further, it was shown by Kennedy@8# that thermal
Green functions for the static Einstein universe and the tim
dependent Robertson-Walker universe are conformally
lated, hence deducing a one to one correspondence bet
the vacuum and the many particle states of both univer
So, under the equilibrium condition, the thermodynamics
quantum fields in an Einstein universe of radiusa is equiva-
lent to that of an instantaneously static closed FRW unive
of equal radius@2,5,9#. This means that the results obtaine
in a closed FRW universe would be qualitatively the same
those obtained in an Einstein universe. This implies that s
cessive states of the Einstein universe can represent a w
©2003 The American Physical Society18-1
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M. B. ALTAIE AND M. R. SETARE PHYSICAL REVIEW D 67, 044018 ~2003!
ing model that will include features of the FRW univer
with a nonzero cosmological constant if no geometrodyna
cal effect is assumed to exist.

The finite-temperature corrections to the vacuum ene
of the universe is an important factor in defining its therm
development. Thus it is interesting to consider such calc
tions, and it would be of further interest to consider the ba
reaction of such cases on the development of the very e
universe.

Altaie and Dowker@10# calculated the finite-temperatur
corrections to the massless conformally coupled scalar fi
the neutrino field, and the photon field in the background
an Einstein universe. The results of the calculation for
photon field were used to deduce a self-consistent solu
for the Einstein field equation, i.e., a back-reaction proble
from which a relation between the temperature and the ra
of the Einstein universe was deduced. However, this rela
was not fully exploited at that time and therefore some of
thermodynamical aspects were kept unexposed.

Recently@11# ~hereafter, Ref.@11# will be referred to as I!,
we have investigated the back-reaction effects of the con
mally coupled scalar field and the photon fields in the ba
ground of the Einstein universe. We solved the Einstein fi
equation in each case and found a relation between the
perature and the radius of the universe. This relation ex
ited a minimum radius below which no self-consistent so
tion for the Einstein field equation can be found. Also w
have found that the system exhibits two different behavio
one at very small radii where the temperature rises sha
with the radius until it reaches a maximum value, after wh
it decreases as the radius is increased. We called the
regime the ‘‘Casimir regime’’ since through it the vacuu
energy is dominant and we called the second one
‘‘Planck regime’’ since the energy of the system follows
Planckian distribution.

In this paper we will consider the calculation of the bac
reaction effects of the minimally coupled massless sc
field at finite temperatures in the background of the Einst
static universe. The aim is to expose the thermal behavio
the system and compare the results with those of the con
mally coupled case. Taking into consideration the renew
interest in the cosmological constant, we will also investig
the relationship between the values of the cosmological c
stant and the temperature for successive states of the Ein
universe for both the conformally coupled and the minima
coupled cases, in order to expose the different roles pla
by both fields during the Casimir and the Planck regim
This consideration will shed light on the question of the d
cay of the cosmological constant during early stages of
universe~corresponding to small radii states of the Einste
universe!; such a question falls within the context of infla
tionary cosmology. Results shows that there is qualita
and important differences in the behavior of the cosmolo
cal constant for both fields in the Casimir regime. Throug
out this paper we use the natural units in whichG5c5\
5kB51.

II. BASIC FORMALISM

The metric of the static Einstein universe is given by

ds25dt22a2@dx21sin2x~du21sin2udf2!#, ~2!
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wherea is the radius of the spatial part of the universeS3

and 0<x<p, 0<u<p, and 0<f<2p.
We consider an Einstein universe being filled with a ma

less quantum gas in thermal equilibrium at temperatureT.
The total energy density of the system can be written as

^T00& tot5^T00&T1^T00&0 , ~3!

where^T00&0 is the zero-temperature vacuum energy dens
~Casimir energy density! and ^T00&T is the correction for
finite temperatures, i.e.,

^T00&T5
1

V (
n

dnen

exp ben21
, ~4!

whereen and dn are the eigenenergies and degeneracies
the nth state, andV52p2a3 is the volume of the spatia
section of the Einstein universe.

Normally ^T00&T is divided into two parts: the blackbod
term, which is calculated by converting the summation in
an integration and is denoted by^T00&T

b , and the correction
term, calculated from the remainder and denoted by^T00&T

a

~see Ref.@10#!, so that Eq.~3! can be written

^T00& tot5^T00&T
b1^T00&T

a1^T00&0 . ~5!

Experience tells us that in the limitj[Ta→0, we have
~see Ref.@10#!

lim
j→0

^T00&T
a52^T00&T

b , ~6!

so that at the low-temperature limit we are left with the C
simir term only, whereas in the high-temperature limit w
have

lim
j→`

^T00&T
a52^T00&0 , ~7!

so that we are left with the blackbody term only. In the ne
section we will use these limits to obtain the value of t
Casimir energy and the expression for the blackbody ter

To investigate the back-reaction effect of finit
temperature quantum fields on the behavior of spacetime
should substitute for̂ T00& tot on the RHS of the Einstein
field, this time with the cosmological constantL, i.e.,

Rmn2
1

2
gmnR1gmnL528p^Tmn& tot . ~8!

All the Einstein field equations for the system are satisfi
due to the symmetry of the Einstein universe which is top
logically described byT^ S3, and due to the structure o
^Tmn& in this geometry which comes to be diagonal, and
given by ~see Ref.@1#, p. 186!

^Tm
n &5

p~s!

2p2a4
diag~1,21/3,21/3,21/3!, ~9!

wherep(s) is a spin-dependent coefficient.
8-2
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Since we are interested in the energy density, we w
considerT00 only. In order to eliminateL from Eq. ~8! we
multiply both sides withgmn and sum overm and n, then
using the fact thatTm

m50 for massless fields, and for th
Einstein universeR0050, g0051, andR56/a2, we get

6

a2
532p^T00& tot . ~10!

Note that in the general case conformal anomalies do
pear in the expression for̂Tm

m&, but because of the high
symmetry enjoyed by the Einstein universe these anoma
do not appear and̂Tm

m& is found to be traceless for massle
particles.

III. THE VACUUM ENERGY AND BACK-REACTION

The minimally coupled massless scalar field satisfies
covariant Klein-Gordon equation

hf50, ~11!

whereh5¹m¹m.
Equation~11! was solved by Schro¨dinger@12# for the case

of closed universe, the energy eigenvalues are given by

en5
@n~n12!#1/2

a
, n50,1,2,3 . . . ~12!

and the degeneracy of each energy level isdn5(n11)2.
For a minimally coupled massless scalar field in an E

stein universe the total energy density is therefore given

^T00& tot5
1

2p2a4 (
n50

`
~n11!2@n~n12!#1/2

exp$@n~n12!#1/2/j%21
1^T00&0 .

~13!

In the low-temperature limit~or small radius! we find that

lim
j→0

^T00& tot50, ~14!

which, by Eqs.~5! and ~7!, means that the renormalize
vacuum energy density for the minimally coupled scalar fi
at zero temperature vanishes, i.e.,

^T00&050. ~15!

Indeed this result can be confirmed by applying the Ab
Plana summation formula

(
n51

`

f ~n!5E
0

`

f ~x!dx2
1

2
f ~0!1 i E

0

` f ~ ix !2 f ~2 ix !

e2px21
dx

~16!

directly to the energy mode sum.
In the high-temperature limit we deduce that

^T00&T
b5

p2

30
T41

1

12

T2

a2
, ~17!
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which is just half the value obtained for the photon field,
would be expected. However, in the limit of very large radi
a we obtain the usual value of the blackbody radiation ter
i.e.,

lim
j→`

^T00& tot5
p2

30
T4. ~18!

In order to investigate the back-reaction effect of the fie
we substitute for̂ T00& tot from Eqs.~13! in ~10! and request
a self-consistent solution; we get

a25
8

3p (
n50

`
~n11!2@n~n12!#1/2

exp$@n~n12!#1/2/j%21
. ~19!

This equation determines a relation between the temp
tureT and the radiusa of the Einstein universe in presence
the minimally coupled massless scalar field. The solutions
this equation are shown in Fig. 1 in comparison with t
results obtained earlier for the conformally coupled ca
Here again two regimes are recognized, one correspondin
small values ofj where the temperature rises sharply rea
ing a maximum atTmax'0.6Tp50.8531032 K. Since this
regime is controlled by the vacuum energy~the Casimir en-
ergy!, we therefore call it the ‘‘Casimir regime.’’ The secon
regime is what we call the ‘‘Planck regime,’’ which corre
sponds to large values ofj, and in which the temperatur
asymptotically approaches zero for very large values ofa.

From Eqs.~10! and~18! we can calculate the backgroun
~Tolman! temperature of the universe in the limit of hig
temperature and large radius. This is found to be

Tb5S 45

8p3a2D 1/4

. ~20!

This is the same result we obtained for the conforma
coupled case discussed in I. To get a glimpse into the me
ing of this result, we may substitute fora the present value o

FIG. 1. Comparison between the temperature-radius relation
for massless conformally coupled~dashed line! and the minimally
coupled~solid line! scalar fields.
8-3
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M. B. ALTAIE AND M. R. SETARE PHYSICAL REVIEW D 67, 044018 ~2003!
the Hubble length, i.e.,a51.3831028 cm and we obtainT
531.556 K. Conversely if we demand that the backgrou
temperature have the same value as the present equiv
temperature of the cosmic microwave background~CMB!
radiation, i.e., 2.73 K, then the radius of the Einstein u
verse should be 1.2931030 cm. This is about two orders o
magnitude larger than the estimated Hubble length.

The reason for the coincidence of the behavior of
minimally coupled and conformally coupled scalar fields
the Planck regimes stems from the fact that the field eq
tions differ only by a factor of 1/a2 which becomes arbi-
trarily small for large values ofa. This means that the differ
ence between the behaviors of the two fields can only
noticeable within the Casimir regime, and this difference w
become even clearer in the next section when we cons
the cosmological constant. In the massive cases this fa
can be absorbed into the mass itself and consequently
can differentiate between the two field at the very ea
stages of the universe only, but as the radius of the univ
grows large the difference between the minimally coup
scalar field and the conformally coupled one becomes un
tectable. This conclusion is quite general and would apply
the case of the FRW universe, too.

IV. THE COSMOLOGICAL CONSTANT

The cosmological constant was first introduced by E
stein in order to justify the equilibrium of a static univer
against its own gravitational attraction. The discovery
Hubble that the universe may be expanding led Einstein
abandon the idea of a static universe and, along with it
cosmological constant. However the Einstein static unive
remain of interest to theoreticians since it provided a use
model to achieve a better understanding of the interplay
spacetime curvature and of quantum field theoretic effe
Recent years have witnessed a resurgence of interest in
possibility that a positive cosmological constantL may
dominate the total energy density in the universe~for recent
reviews, see Refs.@14# and@15#!. At a theoretical levelL is
predicted to arise out of the zero-point quantum vacu
fluctuations of the fundamental quantum fields. Using
rameters arising in the electroweak theory results in a va
of the vacuum energy densityrvac5106 GeV4, which is al-
most 1053 times larger than the current observational up
limit on L, which is 10247 GeV4;10229 g/cm3. On the
other hand the QCD vacuum is expected to generate a
mological constant of the order of 1023 GeV4 which is many
orders of magnitude larger than the observed value. Th
known as the old cosmological constant problem. The n
cosmological problem is to understand whyrvac is not only
small but also, as the current observations seem to indic
why it is of the same order of magnitude as the present m
density of the universe.

The value of the cosmological constant for an Einst
universe seems to be trivial. It is directly related to the to
energy density. However, since the energy density in an E
stein universe varies inversely witha2 and not witha3, new
features are expected in the behavior of the cosmolog
constant. In what follows we are going to investigate t
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possible values of the cosmological constant for differ
radii of the Einstein universe in presence of the mass
conformally coupled and minimally coupled scalar field. B
since different radii of the universe correspond to differe
temperatures with a nontrivial relationship between the
dius and the temperature as was found in Sec. II of t
paper, the values of the cosmological constant at differ
temperatures turns out to be nontrivial and rather of so
serious interest as we find qualitative differences between
two types of fields.

Contracting the field equations in Eq.~8! we find that

L5
R

4
5

3

2a2
. ~21!

On the other hand the Einstein field equations reduce

2
3

a2
1L528pr tot , ~22!

and

2
1

a2
1L5

8pr tot

3
, ~23!

where r tot5^T0
0& tot . Solving the above two equations w

obtain

L58pr tot . ~24!

Here we will considerr tot5rvac1r rad , but in a more
general case one can setr tot5rvac1r rad1rmatter, with
r rad belonging to the massless field filling the spatial part
the universe andrmatter belonging to the pressureless du
that may exist. The addition of the energy density of t
pressureless matter will not make any qualitative change
the results sincermatter in an Einstein universe specificall
behaves in the same way as dorvac andr rad .

Using Eq. ~21! and the results obtained in the previo
section for the dependence ofT on a we can solve for the
dependence ofL on T. Figure 2 depicts the relationship be
tween the cosmological constantL and the temperature fo
successive states of the Einstein universe under the effe
the back reaction of the minimally coupled scalar field
finite temperatures in comparison with the conforma
coupled field. It shows that the cosmological constant for
minimally coupled case decays monotonically from an in
nite value all through the vacuum dominated regime unti
reaches a comparatively small value at a critical tempera
at which the system changes its behavior into the Pla
regime. However, in the conformally coupled case we not
that the value ofL is nearly constant throughout the Casim
regime and only starts decay in the Planck regime. From
point of view of inflationary models a large value ofL is
needed to resolve the problem of horizon and the problem
flatness, and possibly to generate seed fluctuations for ga
formation @15#.
8-4
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V. DISCUSSION AND CONCLUSIONS

One of the interesting points of this paper is the cle
difference between the behavior of the conformally coup
massless scalar field and the minimally coupled scalar fi
as a result of the back reaction, a behavior that beco
clearer when the value of the cosmological constant is c
sidered. However, one may feel uneasy with the energy s
that appears to be higher than the Planck scale in the ca
the conformally coupled scalar field which was considered
I. In fact this is only fictitious because if we consider th
collective effect of many fields then the resultant effect w
bring the energy scale below the Planck energy. This can
easily checked if one solves the Einstein field equation w
both the minimally coupled and the conformally coupled e
ergies added up in the source, which confirms the conclu
in Ref. @13# that the range of validity of the quasiclassic
approximation can be extended for a large number of fie

The conformal relationship between the static Einst
universe and the Robertson-Walker universe and the po
bility to consider the Einstein universe of a given radius
representative of an instantaneously static Robertson-Wa
universe@2# and the one to one correspondence between
vacuum and the many particle states of both universe
established by the work of Kennedy@8# suggests that the
thermal behavior of a real closed universe is qualitativ

FIG. 2. Comparison between the contributions of the mass
conformally coupled~dashed line! and the minimally coupled~solid
line! scalar fields to the cosmological constant in an Einstein u
verse at finite temperatures.
d
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similar to the results obtained in this work. Therefore, w
feel that the calculations in the Einstein universe are us
in understanding the interplay between quantum fields
the curvature. Indeed in I our calculations showed that
Einstein universe with a curvature radius about two order
magnitude larger than the Hubble radius will have the sa
CMB temperature as the presently measured one. On
other hand the analysis of the most recent observations o
CMB spectrum suggests that the curvature radius of the
universe is at least 50 times larger than the Hubble rad
@16#. This is a point in favor of the practical relevance of th
calculations.

The main findings are the same as previously stated
but with additional points concerning the cosmological co
stant:

~i! The thermal development of the universe is a dir
consequence of the state of its global curvature.

~ii ! Unless it contains some pressureless matter the
stein universe will be singular at zero temperature in pr
ence of the minimally coupled massless scalar field, in c
trast with the conformally coupled case where a nonz
radius was found to be an effect of the back-reaction of
nonzero Casimir energy. A nonzero expectation value of
vacuum energy density always implies a symmetry break
event.

~iii ! During the Casimir regime the universe is totally co
trolled by vacuum. The energy content of the universe i
function of its radius. Using the conformal relation betwe
the static Einstein universe and the closed FRW universe@8#,
this result indicates that in a FRW model there would be
continuous creation of energy out of vacuum as long as
universe is expanding, a result which was confirmed
Parker long ago@17#.

~iv! The cosmological constant arising from the minim
scalar field mostly decays during the Casimir regim
whereas the conformally coupled scalar field dominates m
of the Casimir regime and part of the Planck regime. T
indicates that the minimally coupled scalar field plays m
of its effective roles in regions of high curvatures.

Recenly it was shown by Ellis and Maartens@18# that the
birth of an inflating universe from the state of a static E
stein universe containing minimally coupled scalar field a
ordinary matter is quite possible under certain conditio
Such models are shown to avoid the quantum gravity e
However, as remarked by the authors, the fine-tuning pr
lem in these models is to fix the initial radius. Therefore, t
results presented in this paper may find some application
such an approach for closed inflationary cosmologies.
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