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Generalized Lorentz invariance with an invariant energy scale
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The hypothesis that the Lorentz transformations may be modified at Planck scale energies is further ex-
plored. We present a general formalism for theories which preserve the relativity of inertial frames with a
nonlinear action of the Lorentz transformations on momentum space. Several examples are discussed in which
the speed of light varies with energy and elementary particles have a maximum momenta and/or energy.
Energy and momentum conservation are suitably generalized and a proposal is made for how the new trans-
formation laws apply to composite systems. We then use these results to explain the ultrahigh-energy cosmic
ray anomaly and we find a form of the theory that explains the anomaly, and leads also to a maximum
momentum and a speed of light that diverges with energy. We finally propose that the spatial coordinates be
identified as the generators of translation in Minkowski spacetime. In some examples this leads to a commu-
tative geometry, but with an energy dependent Planck constant.
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I. INTRODUCTION

Several experimental and theoretical developments p
to the possibility that the usual relation between energy
momentum that characterizes the special theory of relativ

E25p21m2, ~1!

may be modified at Planck scales. Among these is the
served threshold anomalies in ultrahigh-energy cosmic
~UHECR! protons@1,2#, and possibly also TeV photons@3#.
As pointed out first by Amelino-Camelia and Piran@4#, these
can be explained by modifications of the energy momen
relations of the form

E25p21m21lE31•••, ~2!

wherel is of the order of the Planck length.
Such a modified energy-momentum relationship leads

further predictions which are falsifiable with planned expe
ments. Among these is an energy dependent speed of l
observable~with l of the order of the Planck length! in
planned gamma ray observations@5#. An energy dependen
speed of light may also imply that the speed of light w
faster in the very early universe, when the average ene
was comparable to Planck energies@6#. As pointed out by
Moffat @7#, and Albrecht and Magueijo@8#, such an effect
could provide an alternative solution to the horizon probl
and other problems addressed by inflation. Such modi
dispersion relations also may lead to corrections to the
dictions of inflationary cosmology, observable in future hi
precision measurements of the cosmic microwave ba
ground ~CMB! spectrum@9#. Finally a modified dispersion
relation may lead to an explanation of the dark energy
terms of energy trapped very high momentum and lo
energy quanta, as pointed out by Mersini and collabora
@10#.
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These effects open up the possibility of testing hypothe
about Planck scale physics by more than one window, in
present and near future. Indeed, the fact that the hypoth
that the energy-momentum relations receive corrections
the form of Eq.~2! is experimentally testable, withl on the
form of the Planck scale, is alone sufficient reason to c
sider it.

However there are also theoretical issues which motiv
such a modification. Several calculations@11# in loop quan-
tum gravity in fact predict modified dispersion relations
the form ~2!. That they do so is not surprising for, from th
point of view of the quantum theory of gravity, global Lo
entz invariance is no more than an accidental symmetry
the ground state of the classical limit of the theory.1 Thus, it
is to be expected that corrections to consequences of Lor
invariance appear as quantum gravitational effects, whic
to say as corrections to the laws of special relativity wh
are suppressed byl Planck.

At the same time, there is a simple reason to be skept
that the energy momentum relations may receive modifi
tions of the form of Eq.~2!. Such a modification contradict
the transformation laws of special relativity, according
which energy and momentum transform according to
Lorentz transformations, so as to preserve the Minkow
metric. Lorentz invariance is generally assumed to be a c
sequence of the oldest and most reliable principle in all
dynamics, which is the relativity of inertial frame. One ma
then worry that were the hypothesis~2! confirmed experi-
mentally, that event would signal that after all there is
preferred frame of reference in nature, in contradiction to
last 400 years of progress in science.

Very recently several people have realized that this wo
is unnecessary@12–14#. It is possible to keep the principle o

1Neglecting the cosmological constant.
©2003 The American Physical Society17-1



s
rti
e
o

tia
ea
n

su

ay
o
tu
ro
hy
tri
c,
rd

an
o
a

um

h
om
el
ar
e

a
g
th
th

.
fo
y
e
o

th
l h

ic
po
e

o

u

g-

re-

os-
ll

this

a-
u-

me,
,
rtial
the

tion
nto
the
we
e
ve
he

we
for-
d in

ade
an

x-
ed.
was
s-
lar,

ial
ob-

ro-
on
of

ns
hors
o-
n-

of
al
ble,
of
it
ory

ed
ns,
h-
the

the
weng
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the relativity of inertial frames, and simply modify the law
by which energy and momenta measured by different ine
observers are related to each other. By adding nonlin
terms to the action of the Lorentz transformations on m
mentum space, one can maintain the relativity of iner
frames. The quadratic invariant is replaced by a nonlin
invariant, which in turn leads to modified dispersion relatio
of the form of Eq.~2!.

There is indeed a simple argument that suggests that
a modification may be necessary. In quantum theories
gravity such as loop quantum gravity, the Planck length pl
the role of a threshold below which the classical picture
smooth spacetime geometry gives way to a discrete quan
geometry. This suggests that the Planck length plays a
analogous to the atomic spacing in condensed matter p
ics. Below that length there is no concept of a smooth me
It is then not surprising if quantities involving the metri
such as the quadratic invariant, receive corrections of o
of the Planck length.

However this raises a problem. Lengths are not invari
under Lorentz transformations, so one observer’s thresh
will be perceived to be set in at a different length scale th
another’s.2

Alternatively, various hypotheses concerning quant
gravity @16,17# and string theory@18,19# suggest that the
geometry of spacetime is in fact noncommutative. In suc
modification the spacetime coordinates may no longer c
mute and there may be modified energy-momentum r
tions. This in turn suggests a deformation of the Poinc´
symmetry of flat spacetime, one example of which is giv
by thek-Poincare´ symmetry discussed, for example, in@20–
22#. In all these proposals, the noncommutativity is me
sured by a parameter which has the dimensions of a len
Again, we can ask how it is that all observers agree on
scale at which noncommutativity appears, given that leng
normally are not invariant under Lorentz transformations

These paradoxes may be resolved if the Lorentz trans
mations may be modified so as to preserve a single energ
momentum scale. Then all observers will agree that ther
an invariant energy or momentum above which the picture
spacetime as a smooth manifold breaks down. Because
are then two constants which are preserved, this proposa
been called ‘‘doubly special relativity@12,14#.’’

To summarize, the various experimental and theoret
issues we have mentioned lead us to ask whether it is
sible to modify the principles of physics so that all of th
following requirements are met.

~1! The relativity of inertial frames, as proposed by Galile
Descartes, Newton and Einstein, is preserved.

~2! There is nevertheless an invariant energy scaleEP

5l21, which is of the order of the Planck scale.
~3! The threshold for UHECRs should be increased as s

gested by experiment.3

2For another view of this apparent paradox, however, see@15#.
3The situation for the TeV photon threshold is not as convinci

so we do not yet impose it as a requirement.
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~4! The theory should exhibit a varying, preferably diver
ing, speed of light, at high energies.

~5! The theory should have a maximal momentum, cor
sponding to the granular nature of space.

The main question this paper raises is whether it is p
sible to modify the principles of special relativity so that a
five of these requirements are met. The main result of
paper is that the answer is affirmative.

To explain the viewpoint we take, we can start by emph
sizing that no matter how quantum mechanical, noncomm
tative or deformed the geometry of spacetime may beco
if the principle of the relativity of inertial frames is to hold
the transformations between measurements made by ine
observers must satisfy the group property. Furthermore,
group must be a six parameter extension of the rota
group, with the three additional parameters going over i
the boosts of special relativity whenever quantities of
order of the Planck scale can be ignored. However, as
argued in@13# the only group with these properties is th
Lorentz group itself. Hence, the only possibility to achie
all of these conditions is through a nonlinear action of t
ordinary Lorentz group on the states of the theory.

In a recent paper, we proposed this viewpoint, and
proposed a class of theories in which the Lorentz trans
mations act nonlinearly on momentum space. We studie
some detail a simple example@13# of a theory in which the
action of the Lorentz group on momentum space was m
nonlinear, in such a way that the Planck energy became
invariant. However, as we will demonstrate below, this e
ample does not satisfy all of the conditions just mention
Furthermore, studies by other authors suggested that it
not obvious how to modify the action of the Lorentz tran
formations so as to achieve all these conditions, in particu
it appeared that theories in which the relativity of inert
frames is preserved may not be able to account for the
served threshold anomalies.

Before going further, we want to emphasize that the p
posal to modify the action of the Lorentz transformations
momentum space was not originated by us. Modifications
special relativity in which the action of the transformatio
are nonlinear have been considered by a number of aut
@5,12,14,20–23#. To our knowledge the earliest such pr
posal is by Fock@23# and related proposals have been co
sidered earlier also in@5,12,14,20–22#. We consider that our
contribution is mainly to take a phenomenological point
view in which we insist that the modifications of speci
relativity are to be treated in the most general way possi
so as to allow nature to teach us if and how the relativity
inertial frames is realized in a fundamental theory. While
may in the future happen that a fundamental quantum the
of gravity makes predictions for the exact form of a modifi
dispersion relation or action of the Lorentz transformatio
we want to avoid too hastily following any particular mat
ematical hypothesis about the structure of spacetime to
exclusion of others.

Recently a number of authors have contributed to
study of such theories, discussing many aspects which
are not able to consider here@24–26#. However, we are able
,
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GENERALIZED LORENTZ INVARIANCE WITH AN . . . PHYSICAL REVIEW D67, 044017 ~2003!
to address a number of issues which concern the whole c
of theories in which the Lorentz transformations act nonl
early on momentum space.

It is not hard to see that if one adds momenta and ene
linearly, as we normally do in physics, the conservation
momentum is inconsistent with the new nonlinear action
the Lorentz group on momentum space. Is it then poss
that energy and momentum conservation is maintained,
with these laws also becoming nonlinear?

There is no experimental reason why the energy and
menta of elementary particles cannot be bounded by
Planck energy, but this is certainly not the case for mac
scopic systems. Thus, the transformation laws must dis
guish elementary from composite systems in such a way
the macroscopic bodies can have Planck energies and
menta while transforming and moving according to the us
laws of special relativity.

If a modified energy momentum relation is the explan
tion for the observed threshold anomalies, there appear
be a necessity that these modifications are significant alre
at the scales of the thresholds themselves, which are
scales of TeV’s for the photons and 1011 GeV for the pro-
tons, i.e. small compared to the Planck energy. At the sa
time, there is no observed energy dependence of the spe
light, seen in gamma ray observations, to scales up
1023EPlanck, which is in fact much higher than the scale
the problematic thresholds. So how could a theory reso
the problem of the threshold anomalies, without at the sa
time causing an energy dependent speed of light at sc
which are already ruled out by experiment?

Before the present viewpoint was formulated a numbe
authors arrived at modified Lorentz transformations by
vestigating the hypothesis that geometry becomes nonc
mutative, so that spacetime coordinates no longer comm
A beautiful example of such a theory is thek-Poincare´ sym-
metry ofk-deformed Minkowski spacetime, which is indee
a noncommutative geometry@21,22#. However, it is impor-
tant to ask whether the noncommutativity of spacetime co
dinates is a necessary consequence of modifying the ac
of the Lorentz transformations on momentum space, so a
have an invariant Planck energy and/or momentum,
whether one can achieve such a modification in the con
of a commutative spacetime geometry.

In this paper we will resolve all of these issues, in t
course of showing that all 5 of our conditions can be me

The plan of this paper is as follows. In Sec. II we start
noting that the procedure defined in@13# is not unique: there
are other possible nonlinear realizations of the Lorentz gr
in momentum space, associated with different operator
place ofU(p0) ~defined in@13#!. Each of these leads to dif
ferent modified invariants and hence to different dispers
relations for massive and massless particles. We also w
down the necessary and sufficient conditions for a gen
nonlinear action to display an invariant energy scale, an
maximal momentum. We place conditions uponU so that the
group property of the action is preserved and highlight
emergence of a preferred frame should these condition
violated.
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In Sec. III we discuss several examples, and show h
the variable speed of light theories discussed in cosmol
@6–8# and thek-Poincare´ group fit into the general frame
work introduced here.

Then, in Sec. IV we explain how energy and momentu
conservation are maintained in these theories, a ma
closely related to the definition of momenta addition. Th
allows us in Sec. V to examine the kinematics of UHEC
and gamma rays, placing constraints upon the possible r
izations of our theory which can explain current observ
tions. We find that standard deformations can only expl
the threshold anomalies with anegativePlanck energy, of the
order of 1011 GeV. However, we exhibit one class of dispe
sion relations~and an associated nonlinear Lorentz actio!
where this problem does not exist.

Finally in Sec. VI, we point out that because the Loren
group acts nonlinearly on momentum space, the action
spacetime coordinates is also nontrivial. We propose tha
quantum theory the space and time coordinates are to
defined to be generators of translations in momentum sp
In contrast to other definitions, this leads to a commutat
spacetime geometry. But the commutation relations betw
position and momentum become energy dependent, lea
to a new energy dependent modification of the uncerta
relations.

II. GENERALIZED NONLINEAR ACTIONS
AND DEFORMED DISPERSION RELATIONS

In our first paper@13# we proposed a nonlinear modifica
tion of the action of the Lorentz group in momentum spa
which contains an observer independent length scale~de-
noted here byl), and reduces to the usual linear action
low energies. For the new proposal the concept of metric~a
quadratic invariant! collapses at high energies, being r
placed by the nonquadratic invariant

uupuu2[
habpapb

~12lp0!2
. ~3!

The group algebra, however, is left unchanged, sugges
that the spin connection formulation of general relativ
may still be valid~as the connection takes values in the
gebra!. This remarkable feature may be traced to the fact t
our modified boost generators~and likewise for the rotation
generators! may be written in the form

Ki5U21@p0#L0
i U@p0#, ~4!

whereLab5pa(]/]pb)2pb(]/]pa) are the standard Lorent
generators. For the particular boosts we have proposed
have:

U@p0#[exp~lp0D ! ~5!

~whereD5pa(]/]pa) is a dilatation!, or more specifically:

U@p0#~pa!5
pa

12lp0
~6!
7-3
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JOÃO MAGUEIJO AND LEE SMOLIN PHYSICAL REVIEW D67, 044017 ~2003!
@whereU@p0#(pa) denotes thea component of the image#.
We note thatl may have either sign. We expect that it w
be proportional to plus or minus the Planck length. We a
note that this is not a unitary equivalence, because, as ma
easily checked, in generalU is not unitary. In fact we shall be
mainly interested in singular expressions forU, for reasons
to be explained shortly. In addition the transformation d
pends on parameterl, and we shall at times recall this de
pendence with the notationU@p0 ;l#. When there is no risk
of confusion we shall drop one or both of the variables
square brackets. Note that the transformation induced bU
coincides with the linearization procedure proposed by Ju
@27# in the single particle sector.

The choice ofU made in Eq.~5! is dictated by nothing bu
simplicity and the fact that it leads to the Fock-Lorentz gro
acting in momentum space@23,28,29#. Any other nonunitary,
nonlinearU leads to a nontrivial alternative representation
the Lorentz group, with algebra:

@Ji ,K j #5e i jkKk ; @Ki ,K j #5e i jkJk ~7!

~with @Ji ,Jj #5e i jkJk trivially preserved!. Indeed any genera
tors produced via Eq.~4! ~whatever the choice ofU) have
the same commutators as the originalL0

i , since we are
merely changing the representation. Hence any group ac
generated via Eq.~4!, but with a different form forU, gen-
eralizes our formalism, even if the resulting action does
preserveEP5l21 @as is the case with Eq.~5! @13##. Thus
one has to face the issue of how to decide whichU is the
correct one. Our view is that such a matter should be dec
by experiment. To this end we note that the most gen
invariant associated with the new group action is

uupuu2[habU~pa!U~pb! ~8!

from which follows a deformed dispersion relation. Dispe
sion relations may then act as the experimental input into
formalism.

Alternatively, a dispersion relation may be derived fro
calculations in a theory such as loop quantum gravity@11#. If
we have reason to believe that the theory maintains the r
tivity of inertial frames, in spite of the appearance of mo
fied terms in the energy-momentum relations, this impl
that the symmetry of the ground state, corresponding in
classical limit to Minkowski spacetime, is a nonlinear rep
sentation of the Lorentz group such as that considered h
In this case we may read off theU from the calculated modi-
fications to the energy-momentum relations.

Ideally, then, the formalism we are discussing can be u
to compare experiment and theory, as well as to extrapo
between predictions of different experimental results. Th
we see this formalism as being part of a phenomenolog
quantum gravity effects, as opposed to directly having f
damental significance.

A. Building a general U-map

Following this philosophy, we start from a hypothetic
measurement of a set of dispersion relations and from this
infer the group action. Any isotropic dispersion relation m
be written as
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E2f 1
2~E;l!2p2f 2

2~E;l!5m2 ~9!

implying

U+~E,p!5~E f1 ,pf 2!. ~10!

U defined in this way maps energy-momentum space,P,
onto itself. In general such a map is not invertible. For t
action of the Lorentz group to be modified according to E
~4! we must have an invertible map. It must then be th
there is a sector ofP, which we will callP phys, such thatU,
with range restricted toP phys, is invertible. Typical ex-
amples of the restriction which definesP phys are E
,EPlanck and/orupu,EPlanck.

A further condition is that the image ofU must include
the range@0,̀ # for both energy and momentum. This is b
cause the ordinary Lorentz boostsL span this interval, and so
U21LU would not always exist otherwise. If this conditio
is not satisfied the group property of the modified Loren
action is destroyed. If for instanceE f1 does not span@0,̀ #
then there is a limitingg factor for each energy, a featur
which not only destroys the group property but also selec
preferred frame, thereby violating the principle of relativit
@In contrast, the condition that the algebra~7! be preserved
does not restrict in any wayf 1 and f 2.#

With these two assumptions, we can then use Eq.~4! to
construct the modified boosts and translations onP phys and
obtain the particular realization of our theory incorporati
the new results. In particular, all such theories will have
unmodified Lorentz algebra, realized generally nonlinea
on momentum space. The restriction toP phys will also be-
come part of the new theory.

Unlessf 15 f 2 we obtain a theory displaying a frequenc
dependent speed of light. More precisely, definingf 3
5 f 2 / f 1 we have

c5
dE

dp
5

f 3

12
E f38

f 3

. ~11!

Hence our formalism may be readily adapted to vary
speed of light~VSL! theories, justifying some of the assum
tions in @6#.

B. A general action which preserves an energy scale or has a
maximal momentum

We mentioned in the Introduction that several theoreti
arguments suggest that in natureEP should be an invarian
under the action of the Lorentz group. We discuss here
conditions onU such that this will be the case.

Given Eq. ~4! we know that the invariants of the new
theory are the inverse images viaU of the invariants of stan-
dard special relativity. But the only invariant energy in line
relativity is the infinite energy.4 Hence the condition we are
looking for is

4Another possibility is the zero energy, so that a condition
invariance isU(EP)5Epf 1(EP)50 @30#. This condition, however,
is inconsistent with the other requirements discussed in this sec
7-4
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GENERALIZED LORENTZ INVARIANCE WITH AN . . . PHYSICAL REVIEW D67, 044017 ~2003!
U~EP!5Epf 1~EP!5` ~12!

that is,U should be singular atEP . In addition note that in
special relativity there are three situations in whichE5`:

A photon (uupuu250), for whichE5p5`.
A particle with infinite rest mass.
A particle with finite rest mass moving at the speed

light.

These are mapped byU21 into 3 distinct types of objects
that can have the~invariant! Planck energy: those with zero
infinite, and finite mass, respectively, photons, particles,
something we may call infinitons. The latter have the pro
erty that, like photons, they cannot be boosted to a
frame; however, they are not zero mass objects. The se
have the property that their momentum can only have
values: zero or the Planck momentum. These objects
generally mark the boundaries ofP phys. As in the case of the
limiting velocity of the speed of light in ordinary specia
relativity, whether they are limiting idealizations, or re
physical cases, depends on the dynamics of the partic
theory.

The condition for the existence of a maximal momentu
is simply thatE f1 / f 25E/ f 3 has a maximum. Hence we no
that the conditions for a varying speed of light and for t
existence of a maximum momentum are related, and ind
one may show that existence of a maximum momentum
plies that the speed of light must diverge at some energy

III. SOME EXAMPLES

We now turn to discuss several examples of theories
meet the various requirements we posited. In Secs. III A
III B we discuss examples of VSL theories. Another intere
ing exercise~performed in Sec. III C! consists of using the
dispersion relations associated with thek-Poincare´ group to
build a realization of our theory.

A. A VSL dispersion relation

The varying speed of light scenario@7,8# is an interesting
alternative to cosmological inflation. It was found in@6,31#
that some deformed dispersion relations~such as the ones in
@21,32,33#! might lead to a realization of VSL~and even
inflation!.

The dispersion relations for massless particles were w
ten in @6,31# in the formE22p2f 2(E)50, failing to define
fully f 1(E) and f 2(E). However, as an example let us co
sider the case of@33# with f 25 f 511lE, and f 151. Then,
from Eq. ~10!, we have

U+~E,p!5@E,p~11lE!#. ~13!

This model is known to have an energy dependent spee
light c(E)5dE/dp5(11lE)2; also all momenta must b
smaller than the maximum momentump5l21, which can
only be reached by photons with infinite energy. We note t
if the theory is to provide a solution to the horizon proble
independent of inflation, we requirel.0. Even though the
image ofU does not span@0,̀ # if we restrict ourselves to
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positive energies, it does so inEP@2`,`#, so the group
property is preserved for this proposal.

Following the procedures described above we arrive at
following transformation laws for photons:

E85g~12v !E ~14!

p85
g~12v !p

11lp@g~12v !21#
. ~15!

Although no energy remains invariant, the Planck mom
tum p5l21 is an invariant and is also the maximal mome
tum. The gravitational redshift formula is unmodified in th
theory, but expressions for phenomena involving excha
of momentum will be different.

For massive particles we find that we still have thatE0
5m0c2, that the mass still transforms likem5m0g, and that
in any frameE5mc2. However, the general expression f
the momentum is now

p5
mv

11lm
~16!

showing that for massive particles we must havep,pmax
5l21.

Similar expressions may be derived for other VSL mod
considered in the literature.

B. A second VSL theory

A second VSL theory is obtained by choosing

U5e2lE2]/]E. ~17!

leading to the energy momentum relation

E2

~11lE!2 2p25m2. ~18!

This results in the same modification of the speed of light
photons as the first example, but differs in the ener
momentum relation for massive particles. Note that in t
case there is an invariant energy scale, which with the n
tion used isE52l21, that is, it is negative forl.0.

A more general set of isotropic energy momentum re
tions may be derived from the choice,

U5eg1(E)E]/]E1g2(E)pi]/]pi. ~19!

We thus see the need for experiment, or further theoret
considerations, to fix the high energy behavior of the act
of the Lorentz transformations on momentum space.

C. The k-Poincaré group

The k-Poincare´ group is a quantum deformation of th
usual Poincare´ group@20,22,34#, which we now show can be
reinterpreted in our formalism. It leads to dispersion relatio
of the form ~9! with
7-5
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f 15
sinh~lE!

lE
~20!

f 25exp~lE! ~21!

from which aU can be read off according to our prescriptio
It leads to modified boost generators:

Fi5
elE

coshlE
@pi]E2lpiD#1

sinhlE

lelE
]pi

~22!

and it can be checked that these satisfy the standard Lor
algebra.

Exponentiation reveals the finite Lorentz transformatio

E85l21sinh21~F ! ~23!

pz85
pze

lE2vl21sinh~lE!

F1AF211
~24!

px85
px

F1AF211
~25!

py85
py

F1AF211
~26!

F~E,pz!5g@sinh~lE!2vpzlelE#. ~27!

For photons these reduce to the Doppler shift formula:

E85l21sinh21@g~12v !sinhlE#. ~28!

For massive particles we have the relation

E5l21log@~lm!1A~lm!211# ~29!

with m5gm0.
Note that although the theory we have written down h

the same dispersion relations as those of thek-Poincare´
group, this may not necessarily imply that the structure
spacetime must be assumed to be noncommutative.
theory is not based on a quantum deformation of the P
carégroup, but merely a nonlinear realization of the und
formed Lorentz group. This is true even in the case in wh
the dispersion relations are the same as derived from
k-Poincare´ group. We will see below how the spacetime c
ordinates may be introduced, in a way that does not req
the introduction of noncommutative spacetime geometry.

IV. COMPOSITE SYSTEMS AND CONSERVATION LAWS

Once we accept the possibility of nonlinear transform
tion laws, we soon discover that kinematic relations valid
single particles need not be true for composite systems~this
is certainly the case with the transformation laws the
selves!. In fact we are left with an ambiguity concerning ho
momenta are added and how composite quantities transf
To some extent this is a desirable feature: nonlinearity
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pears to build into the theory the concept of elementary p
ticle, clearly differentiating between them and composites
any case, as we mentioned in the Introduction, such a
tinction is necessary for theories in which energy or mom
tum of elementary particles are bounded.

A. Composite systems

One has to tread gingerly when defining the multiparti
sector, as theories predicting deformed dispersion relat
often have ill-behaved multiparticle sectors.5 For instance, a
straightforward addition rule is the following:

pa
(12)5U21@U~pa

(1)!1U~pa
(2)!# ~30!

and likewise for larger collections of particles,p(1 . . .n). This
is the simplest composition map, and it does lead to
conservation of energy and momentum, as may be ea
checked.

However, there is a problem with this law. As may b
checked, with this definition the composite momenta tra
form according to the same nonlinear equations as the
menta of the constituents. This quickly leads to inconsist
cies, for instance, it implies that composite momenta sat
the same deformed dispersion relations as single parti
~with m(1 . . .n)5m11 . . . 1mn). For the choice~5! this im-
plies that a set of particles satisfyingE!EP can never have
a collective energy larger thanEp . This is blatantly in con-
tradiction with observation: macroscopic collections of o
jects withE!EP quite often have energies far in excess
EP , and in fact satisfy to good approximation undeform
dispersion relations. A severe inconsistency has arisen, tr
able to definition~30!.

There are several ways around this problem. One w
proposed in@27#, here we describe another. We have no
before that the transformationU depends onp0 but also on
parameterl, and we restore the latter dependence with n
tation U@p0 ;l#. The idea is now that a system ofn elemen-
tary particles should satisfy kinematical relations obtain
from a mapU@p0 ;l/n#, that is, a map for which the Planc
energyEP5l21 is replaced bynEP . We can therefore de
fine:

p(12)[p(1)
% p(2)

5U21@p0 ;l/2#„~U@p0 ;l#~p(1)!1U@p0 ;l#~p(2)!….

~31!

This defines a new, generally nonlinear, composition law
energy and momenta, which we denote by% to indicate that
it is not ordinary addition. In general

p(1 . . .n)5U21@p0 ;l/n#„U@p0 ;l#~p1!1 . . .

1U@p0 ;l#~pn!…. ~32!

5We thank G. Amelino-Camelia for bringing this point to our a
tention.
7-6



st

n

el

al
r

a-
la
e
-
n
ia
he
n

n
pt-

t-

pic
r to
eir

with
tary
n-

ion
hys-
ly a
s a
ntal
tion
se it
om

it is
on-
m
-

le
the

tiv-
n-
nd
rva-

nta

er-
y
y in
be

GENERALIZED LORENTZ INVARIANCE WITH AN . . . PHYSICAL REVIEW D67, 044017 ~2003!
With this definition a system ofn particles satisfies a system
of transformations obtained fromU@p0 ;l/n# via Eq. ~4!,
equivalent to the usual ones but replacingl with l/n. As a
result, the collective momentumP(N)5p(1 . . .n) satisfies de-
formed dispersion relations withl replaced byl/n. This can
never lead to inconsistencies because if alln particles of a
system have sub-Planckian energies then the total will
be sub-Planckian, in the sense thatEtot!nEP . We have
therefore circumvented the paradox described above.

For instance, in the case whereU is given by Eq.~5! the
addition rule forN particles becomes:

pa
(N)

12
lp0

(N)

N

5(
i

pa
( i )

12lp0
( i )

. ~33!

Interestingly, for sets of particles with identical energies a
momenta, this reduces to plain additivity.

The composite momentum satisfies the dispersion r
tions:

uup(N)uu2[
habpa

(N)pb
(N)

S 12
lp0

(N)

N D 2 5M2 ~34!

and the transformation laws are now:

p0
(N)85

g~p0
(N)2vpz

(N)!

11
l

N
~g21!p0

(N)2
l

N
gvpz

(N)

~35!

pz
(N)85

g~pz
(N)2vp0

(N)!

11
l

N
~g21!p0

(N)2
l

N
gvpz

(N)

~36!

px
(N)85

px
(N)

11
l

N
~g21!p0

(N)2
l

N
gvpz

(N)

~37!

py
(N)85

py
(N)

11
l

N
~g21!p0

(N)2
l

N
gvpz

(N)

. ~38!

If p0
( i )!EP5l21 for all i, we find that Eq.~33! reduces to

standard addition andp(N) transforms according to the usu
Lorentz transformations and satisfies quadratic dispersion
lations.

More generally the proposal~32! for momenta addition
has the followingU-independent properties. It is commut
tive but nonassociative, as expected from any addition
incorporating the concept of elementary particle. If each
ementary particle satisfiesE!l21, then energy and momen
tum are approximately additive and the composite mome
approximately satisfy all relations and laws of linear spec
relativity. Hence our definition avoids the pathologies of t
choice~30!. However, if a single particle within a collectio
04401
ill

d

a-

e-

w
l-

ta
l

is Planckian~so that its invariant ism5`), then the full
collection ~say, of N particles! is Planckian~it has energy
EN5NEP .) This can be proved by noting that the collectio
also has infinite total mass. This feature is physically acce
able.

The addition law~32! can be generalized to

p(1 . . .n)5U21@p0 ; f ~n,l!#„U@p0 ;l#~p(1)1 . . .

1U@p0 ;l#~p(n)
… ~39!

where f (n,l) can be any function leading to suitable limi
ing properties. Then Eq.~32! is a particular case of Eq.~39!
with f (n,l)5l/n.

This proposal solves the problem of how macrosco
bodies transform at a cost, which is that for an observe
transform the energy and momenta of a system from th
measurements to those made by an observer moving
respect to them, they must know if the system is elemen
or composite and, if composite, how many quanta it co
tains. The idea that kinematics should make a distinct
between elementary and composite systems is new to p
ics, but we would like to suggest that this is not necessari
reason to abandon it. Instead, it is possible that this i
feature of a classical or quantum mechanics of fundame
particles. For example, a theory that makes such a distinc
may be able to resolve the measurement problem becau
has an objective way to distinguish macroscopic bodies fr
fundamental particles.

B. Energy and momentum conservation

Our theory conserves energy and momentum because
spacetime translation invariant. However, the theory is n
linear, and thepa of a system of two particles is not the su
pa

11pa
2 , a matter which filters into the definition of energy

momentum conservation. This point was made in@27#, and is
closely related the definition of momenta in the multipartic
sector discussed in the previous section. We find that in
same way that the transition from Galilean to special rela
ity destroys the additivity of speeds, the transition from li
ear to nonlinear relativity destroys additivity of energy a
momentum themselves. Hence energy-momentum conse
tion, say for a 2-body collision, can now be written as

pa% qa5pa8% qa8 ~40!

where unprimed/primed variables refer to energy-mome
before/after the collision. For instance for the choice~5! we
have:

pa

12lp0
1

qa

12lq0
5

pa8

12lp08
1

qa8

12lq08
. ~41!

This leads to a number of kinematic novelties at high en
gies. For instance~if l.0) a particle close to Planck energ
becomes more and more unreceptive to receiving energ
collisions, no matter how hard one might hit it. This may
thought of as a novel kind of asymptotic freedom.
7-7
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C. Modified Fock space

We finally note that even though the nonlinearities of o
formalism distinguish between elementary particles a
composites, its setup is purely classical. Elementary p
ticles, however, are quantum particles, i.e. excitations
quantum fields for which a Fock space can be defined.
therefore reassuring that one can easily adapt our cons
tion to quantum particles. Let the Fock space be define
the usual way, i.e. by means of standard creation and a
hilation operatorsa†(p) anda(p), so that the vacuum satis
fies a(p)u0&50 for all p, single particle states take the for
up&5a†(p)u0&, and multiple particle states are defined
iteration. We can therefore write the quantumfree Hamil-
tonian as

Ĥ05(
k

\Ekuk&K kU1(
k,k8

~Ek% Ek8!Ukk8L ^kk8u1 . . . .

~42!

Quantum interactions can be written likewise. For instanc
f4 interaction leads to the interacting Hamiltonian:

Ĥ int5:f4:

'(
kk8

(
pp8

d~p% p82k% k8!a†~p!a†~p8!a~k!a~k8!.

~43!

Thus we have incorporated our proposal for classical m
mentum addition into a quantum framework.

V. MODIFICATIONS OF THE THRESHOLD ANOMALIES

Now that we know that our theory is consistent wi
energy-momentum conservation and is not obviously in c
tradiction with the observed properties of macroscopic b
ies, we may attempt to apply it to the real world. The fi
application we would like to consider is to follow the su
gestion of Amelino-Camelia and Piran@4# that a modified
dispersion relation may resolve the problem of the obser
threshold anomalies. We study first the gamma ray anom
because it is a bit simpler than the cosmic ray anomaly.
will see that while it was essential to establish that ene
and momentum are conserved in the theory, the analys
actually simpler than might have been expected.

A. Gamma ray threshold anomalies

The issue of the gamma ray threshold anomaly arises
cause one expects a cutoff at around 10 TeV in the flux
gamma rays, due to their interaction with the infrared ba
ground. At these energies it becomes kinematically poss
to produce an electron positron pair by scattering o
gamma ray from a photon of the infrared background, le
ing to a prediction for an upper limit to observed energi
However, while the experimental situation is still somewh
controversial, there are indications that the predicted thre
old is not observed~see, e.g.@3#!.
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For a threshold reaction, in the center of mass frame
electron and positron have no momentum. Hence, due
momentum conservation, in this frame the gamma ray
the infrared photon have the same energy. Energy conse
tion then implies that their energy equals the rest energy
an electronme . We can draw these conclusions becauseme
!EP , and so all corrections imposed by our theory are n
ligible.

We then need to perform a boost transformation from
center of mass frame to the cosmological frame. This can
pinned down by the condition that one of the photons
redshifted to the infrared background energy. Since in t
process all energies involved are again sub-Planckian we
use plain special relativistic formulas to conclude thatEIR
5(12v)gme , and sinceg@1 @implying 12v'1/(2g2)]
we have:

g5
me

2EIR
. ~44!

The same boost transformation blueshifts the other photo
our predicted value for the gamma ray threshold energy. T
operation, however, may have to be performed with the c
rected boost. The uncorrected threshold energy is

Eth05g~11v !me'2gme5
me

2

EIR
. ~45!

This is now corrected to

Eth5U21~Eth0! ~46!

since the full boost is nowU(Eth)5g(11v)U(me) and
U(me)'me .

We may now obtain exact threshold formulas for the va
ous proposals in the literature. For@13# we have

Eth5

me
2

EIR

11
lme

2

EIR

~47!

and for thek-Poincare´ group:

Eth5l21sinh21
lme

2

EIR
. ~48!

In both cases we note that withl.0 the threshold islowered
rather than raised. Hence if the observations have anythin
do with these dispersion relations the implication seems to
that l,0. In this case the invariant Planck energy is neg
tive EP52l21, a situation already discussed in@13#.

The dispersion relation~18! on the other hand is obtaine
from aU acting on energy like theU but with l→2l. It is
therefore not surprising that the threshold formula in t
theory is
7-8
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Eth5

me
2

EIR

12
lme

2

EIR

~49!

which is raised withl.0. However, the invariant in this
case is also a negative Planck energyEP52l21, so the
previous conclusion remains—threshold anomalies impl
negative Planck energy for dispersion relations propose
literature. This example is interesting as it tells us that
modifications necessary to raise the speed of light, if
theory is to serve as a VSL theory and explain the horiz
problem, are of the same sign as those required to explain
absence of the thresholds, at least in these classes of mo

Regardless of the issue of the sign ofEP there remains its
order of magnitude. From Eq.~47! we get

l5
1

Eth
2

1

Eth0
~50!

so we find that we would needuEPu;10 TeV to explain the
gamma ray anomaly. In addition fine tuning is required: h
close ul21u lies to Eth0 determines the actual threshold e
ergy Eth .

This example teaches us an important lesson. So lon
the modified transformation law has a single dimensio
parameter,m'l21, then from Eq.~50! we see that if the
usual and new threshold are the same rough order of ma
tude, thenm must be of the same order of magnitude as w
This problem is a direct consequence of Eq.~46!, from
which we can see that so long as there are no small dim
sionless parameters inU then the result is a formula with
three-dimensional parameters; so long as two are of the s
order of magnitude, so must be the third. This tells us that
mechanism for moving the threshold used by Amelin
Camelia and Piran in@4# cannot work in a relativistic theory
because it relies on a coincidence of small ratios in the c
mological frame. However, this coincidence does not exis
all frames of reference, hence it cannot be part of the solu
of the problem in a relativistic theory. This is then not
problem with our example, but a general issue with theo
of the kind we are considering, which preserve the relativ
of inertial frames.

B. UHECR threshold anomalies

A similar anomaly also seems to plague ultrahigh-ene
cosmic rays~UHECRs!. These are rare showers derived fro
a primary cosmic ray, probably a proton, with energy abo
1011 GeV. At these energies there are no known cosmic
sources within our own galaxy, so it is expected that in th
travels, the extra-galactic UHECRs interact significantly w
the cosmic microwave background~CMB!. These interac-
tions should impose a hard cutoff aboveEth0'1011 GeV,
the energy at which it becomes kinematically possible
produce a pion. This is the so-called Greisen-Zatsep
Kuzmin ~GZK! cutoff; however, UHECRs have been o
served beyond the threshold@1,2#.
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An argument identical to the one just made for gam
rays leads to the conclusion that any corrections impose
our theory appear at the level of boosting the proton in
threshold reaction from the center of mass to the cosmol
cal frame. Hence the corrected threshold formula is sim
Eth5U21(Eth0). However, a novelty appears at this sta
because the proton is not an elementary particle, so tha
the boost transformation we should replacel by l/Np ,
whereNp is the ‘‘number of quanta living inside a proton.
Hence the correct formula is

Eth5U21@Eth0 ;l/Np#~Eth0!. ~51!

All formulas presented above for gamma rays may now
adapted to UHECRs. The conclusion is now thatNpEP

;21011 GeV for previously proposed dispersion relation
Using the more general definition~39! we havef (EP

21 ,Np)
;21011 GeV.

The question is then what is the right value ofNp in the
case of a confined state such as the proton. An answer to
problem may require the application of this theory to the f
quantum field theory of QCD. From the point of view o
phenomenology, the suggestion in any case is that the pa
eters that modify the boost properties of the proton may
fer from those of the electron and photon. One may th
adjust the free functionf (l,n) used in defining the multipar
ticle sector to reconcile the difference in energy scales of
cosmic ray and gamma ray thresholds. However, given
Np for the proton is likely of order 3, it is difficult to see
how this could be accomplished for any simple functionf,
unless it contains small dimensionless parameters.

C. How to resolve all five issues

From the preceeding discussion we see that there
basic problem with using a modified form of special relat
ity such as we are considering here to solve the problem
the threshold anomolies. The problem is that so long as
function f 1 has a single dimensional parameter,l, and no
small dimensionless parameters, thenl21 must not be too
many orders of magnitude away from the threshold predic
by the usual linear theory. This prevents a single kinemat
effect from solving both the gamma ray and UHECR anom
lies, as they occur at very different energies, it also preve
a theory withl on the order of the Planck length from solv
ing either.

One might conclude from this that in the event that o
servations do in the end support the hypothesis that mod
dispersion relations with the approximate form of Eq.~2!,
when applied in the cosmological rest frame, do resolve
threshold anomolies, this would be inconsistent with the re
tivity of inertial frames. Indeed, our argument shows that
simple form off 1 depending on only one scale could resol
the problem in a relativistic theory, so long as that scale w
the Planck scale.

However, before reaching such a drastic conclusion, th
is a simpler possibility to consider, which is that the functi
7-9
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JOÃO MAGUEIJO AND LEE SMOLIN PHYSICAL REVIEW D67, 044017 ~2003!
f 1 has more than one scale in it.6 To see that this is sufficien
to resolve the UHECR anomaly, while preserving an inva
ant energy scale of the order of the Planck energy, note
we can multiply the previousf 1 used in fitting the threshold
anomalies by a function that is approximately 1 forE!EP
51019 GeV, but which diverges atEP . For instance we may
take the function

f 15
1

~11l1E!~12lE!
~52!

with l1@l. It is easy to see that ifNpl1
21'1011 GeV then

the UHECR threshold is raised. This theory makes the p
diction that the actual UHCR threshold should lie som
where between its special relativity valueEth0 andNpEP ~as
l1

21 can never be as high asEP5l21).
In addition such a theory displays an invariant posit

energy,EP5l21 which may be of order 1019 GeV. Also the
image ofU associated with thisf 1 is @0,̀ #, so that in this
theory the threshold anomalies are consistent with the gr
property of the action, and the principle of relativity.

Finally, can we pick a theory that satisfies the other cr
ria we set out in the introduction? To see that this is straig
forward, note that the functionf 2 does not enter the discus
sion of threshold anomalies, and so the issues of VSL an
the existence of a maximal momentum are decoupled f
threshold anomalies. Instead as we see from Eq.~11! and the
discussion at the end of Sec. II B, both of these properties
governed byf 35 f 2 / f 1.

To avoid an energy dependent speed of light that so
would have been detected in observations of gamma
bursts,f 3 should differ from unity only on the Planck scal
For example, considerf 35eE/EP. It is easy to see that thi
gives a maximum momentum, equal toEP and a diverging
speed of light.

VI. REAL SPACE FORMULATION

If Lorentz transformations are nonlinear they take a d
ferent aspect in real and momentum space. The choic
momentum space in@13# is tied to the use of the Fock
Lorentz representation, which has a large time-like invari
suitable for identification with the Planck energyEP but not
the Planck timetP . Once in momentum space one may a
how to recover a real space formulation.

One prescription is to define space coordinates as the
erators of shifts in momentum space~this seems to be at odd
with the proposal in@34#!. Because the theory is nonlinea
shifts are not pure additive constants, and may be read
from standard shifts subject to aU transformation. For@13#,
small energy shifts take the form:

6As pointed out in@35#, yet another solution is to allow for a
nonuniversalU. Different particles could then have a differentU, or
U could depend on the rest massm of the particle it acts on. One
can then use the proton mass as an automatic extra scale i
problem.
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dE5~12lE!2e ~53!

dpi52l~12lE!pie ~54!

whereas momentum shifts are

dE50 ~55!

dpi5~12lE!e. ~56!

Hence the corresponding spatial coordinates are

t5~12lp0!S ~12lp0!
]

]p0
2lD D ~57!

xi5~12lp0!
]

]pi
. ~58!

This bears some resemblance to Snyder’s noncommuta
geometry@36#, which has

xm5
]

]pm
2lpmD ~59!

@see Eq.~9! in @36##. However, there is an important differ
ence. As may be easily checked, the space and time co
nates all commute with each other.

@xa,xb#50. ~60!

The price to pay for this is that there are now novelties
the commutators of the spacetime coordinates with ene
and momenta. Indeed:

@xi ,pj #5d j
i ~12lp0! ~61!

@x0,pi #52l~12lp0!pi ~62!

@x0,p0#5~12lp0!2. ~63!

This suggests that we have now an energy depen
Planck’s ‘‘constant’’ since Eq.~61! implies\512lp0. As a
result for Planck energies there is no uncertainty principle
the Planck energy is not only an invariant but it is also a
parently perfectly classical. We are currently investigati
further the implications of this proposal.

VII. CONCLUSIONS

In this paper we have presented a general method
implementing nonlinear actions of the Lorentz group bas
upon knowledge of the dispersion relations. Our resu
complement those of other authors who have studied
possibility that the action of the Lorentz transformations
modified at high energies. The approach taken in this pa
generalizes that in@13# by considering different mapsU,
which we identified with functionsf 1 and f 2 in Eq. ~9!. We
found that the group property is preserved ifU is invertible
and its image contains@0,̀ #. If E f1 diverges at some finite
energyEP , this takes the place of an invariant Planck e
ergy. Careful design ofU may also explain the threshol

the
7-10
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GENERALIZED LORENTZ INVARIANCE WITH AN . . . PHYSICAL REVIEW D67, 044017 ~2003!
anomalies. The functionf 2 may then be used to implement
maximal momentum and a diverging speed of light. Us
the freedom to choosef 1 and f 2 we found that all five re-
quirements we listed in the Introduction may be achieved
one theory. One, among many, examples that do so is
following:

f 15
1

~11l1E!~12lE!
, f 25eE/EPlanck, ~64!

with l1@EPlanck
21 .

We also discussed the extension of the transforma
laws to real space. We found that there is no general nee
the coordinates of space to become noncommutative.
stead, by defining the coordinates of space to be genera
of translations in momentum space, we arrived at a com
tative spacetime geometry. While it remains for experim
to decide, we note that this approach is closer to the spir
general relativity, in which the local properties of spacetim
arise from the tangent space of a manifold. It then may
close to that expected from the classical limit of quant
gravity, according to which the Poincare invariance
Minkowski spacetime has no fundamental significance,
is only an accidental symmetry of the ground state of
classical limit. Furthermore, by taking this point of view w
discovered a novel feature of the theory, which is that
effective Planck’s constant appears to become energy de
dent.

Of course there are many things still to do to investig
whether theories of the kind discussed here have a chan
be true. It is important to understand whether the modifi
tions of the energy momentum relations predicted by lo
quantum gravity in@11# are necessary consequences of t
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theory and, if so, whether that theory predicts the existe
of a preferred frame or a modification of Lorentz transform
tions preserving the relativity of inertial frames. Of equ
interest is the question of whether critical string theory7 can
be made consistent with deformed dispersion relations
modifications of the action of Lorentz transformations,
whether observations of such effects would disprove criti
string theory@37#. Indeed, the general question of how
incorporate the kinds of modifications of kinematics conte
plated here and in related papers into a fully interact
quantum field theory remains open, as does the questio
how these modifications may be incorporated into class
general relativity@24–26,38#.

Of course, the main motivation for studying this class
theories is the hope that in the not too distant future as
physical and cosmological observations of the kind cons
ered here will teach us whether and how Lorentz invaria
is realized at the scales relevent for quantum gravity.
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