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Generalized Lorentz invariance with an invariant energy scale
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The hypothesis that the Lorentz transformations may be modified at Planck scale energies is further ex-
plored. We present a general formalism for theories which preserve the relativity of inertial frames with a
nonlinear action of the Lorentz transformations on momentum space. Several examples are discussed in which
the speed of light varies with energy and elementary particles have a maximum momenta and/or energy.
Energy and momentum conservation are suitably generalized and a proposal is made for how the new trans-
formation laws apply to composite systems. We then use these results to explain the ultrahigh-energy cosmic
ray anomaly and we find a form of the theory that explains the anomaly, and leads also to a maximum
momentum and a speed of light that diverges with energy. We finally propose that the spatial coordinates be
identified as the generators of translation in Minkowski spacetime. In some examples this leads to a commu-
tative geometry, but with an energy dependent Planck constant.
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[. INTRODUCTION These effects open up the possibility of testing hypotheses
about Planck scale physics by more than one window, in the
Several experimental and theoretical developments poirgresent and near future. Indeed, the fact that the hypothesis
to the possibility that the usual relation between energy anthat the energy-momentum relations receive corrections of
momentum that characterizes the special theory of relativitythe form of Eq.(2) is experimentally testable, witk on the
o o o form of the Planck scale, is alone sufficient reason to con-
ES=p+m, @ sider it.
However there are also theoretical issues which motivate
uch a modification. Several calculatigrid] in loop quan-
um gravity in fact predict modified dispersion relations of
the form(2). That they do so is not surprising for, from the
rlrl)oint of view of the quantum theory of gravity, global Lor-
entz invariance is no more than an accidental symmetry of
the ground state of the classical limit of the thebihus, it

may be modified at Planck scales. Among these is the ob-
served threshold anomalies in ultrahigh-energy cosmic ra
(UHECR) protons[1,2], and possibly also TeV photon83].
As pointed out first by Amelino-Camelia and PirgH, these
can be explained by modifications of the energy momentu
relations of the form

E2=p2+m?+\E3+-- -, (2)  istobe expected that corrections to consequences of Lorentz
invariance appear as quantum gravitational effects, which is
where is of the order of the Planck length. to say as corrections to the laws of special relativity which

Such a modified energy-momentum relationship leads t@re suppressed B anck.
further predictions which are falsifiable with planned experi- At the same time, there is a simple reason to be skeptical
ments. Among these is an energy dependent speed of lighthat the energy momentum relations may receive modifica-
observable(with \ of the order of the Planck lengthn tions of the form of Eq(2). Such a modification contradicts
planned gamma ray observatiof§. An energy dependent the transformation laws of special relativity, according to
speed of light may also imply that the speed of light waswhich energy and momentum transform according to the
faster in the very early universe, when the average energyorentz transformations, so as to preserve the Minkowski
was comparable to Planck energiéd. As pointed out by metric. Lorentz invariance is generally assumed to be a con-
Moffat [7], and Albrecht and Magueijf8], such an effect sequence of the oldest and most reliable principle in all of
could provide an alternative solution to the horizon problemdynamics, which is the relativity of inertial frame. One may
and other problems addressed by inflation. Such modifiethen worry that were the hypothesi®) confirmed experi-
dispersion relations also may lead to corrections to the prementally, that event would signal that after all there is a
dictions of inflationary cosmology, observable in future highpreferred frame of reference in nature, in contradiction to the
precision measurements of the cosmic microwave backiast 400 years of progress in science.
ground (CMB) spectrum[9]. Finally a modified dispersion Very recently several people have realized that this worry
relation may lead to an explanation of the dark energy, iris unnecessarjl2—14. It is possible to keep the principle of
terms of energy trapped very high momentum and low-
energy quanta, as pointed out by Mersini and collaborators—
[10]. INeglecting the cosmological constant.
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the relativity of inertial frames, and simply modify the laws (4) The theory should exhibit a varying, preferably diverg-
by which energy and momenta measured by different inertial  ing, speed of light, at high energies.
observers are related to each other. By adding nonlinedb) The theory should have a maximal momentum, corre-
terms to the action of the Lorentz transformations on mo-  sponding to the granular nature of space.
mentum space, one can maintain the relativity of inertial
frames. The quadratic invariant is replaced by a nonlinear The main question this paper raises is whether it is pos-
invariant, which in turn leads to modified dispersion relationssible to modify the principles of special relativity so that all
of the form of Eq.(2). five of these requirements are met. The main result of this
There is indeed a simple argument that suggests that sugtaper is that the answer is affirmative.
a modification may be necessary. In quantum theories of To explain the viewpoint we take, we can start by empha-
gravity such as loop quantum gravity, the Planck length playsizing that no matter how quantum mechanical, noncommu-
the role of a threshold below which the classical picture oftative or deformed the geometry of spacetime may become,
smooth Spacetime geometry gives way to a discrete quantuif]the principle of the relativity of inertial frames is to hold,
geometry. This suggests that the Planck length plays a rolé€ transformations between measurements made by inertial
analogous to the atomic spacing in condensed matter phy§Pservers must satisfy the group property. Furthermore, the
ics. Below that length there is no concept of a smooth metricdr0UP must be a six parameter extension of the rotation
It is then not surprising if quantities involving the metric, 9roup, with the three additional parameters going over into
such as the quadratic invariant, receive corrections of orddf€ boosts of special relativity whenever quantities of the
of the Planck length. order of the Planck scale can be ignored. However, as we
However this raises a problem. Lengths are not invarianf'gued in[13] the only group with these properties is the
under Lorentz transformations, so one observer’s thresholliorentz group itself. Hence, the only possibility to achieve
will be perceived to be set in at a different length scale thari!l Of these conditions is through a nonlinear action of the
another’ ordinary Lorentz group on the states of the theory.
Alternatively, various hypotheses concerning quantum [N & recent paper, we proposed this viewpoint, and we
gravity [16,17] and string theory[18,19 suggest that the Proposed a class of theories in which the Lorentz transfor-
geometry of spacetime is in fact noncommutative. In such gnations act nonlinearly on momentum space. We studied in
modification the spacetime coordinates may no longer comsome detail a simple exampl&3] of a theory in which the
mute and there may be modified energy-momentum rela@ction of the Lorentz group on momentum space was made
tions. This in turn suggests a deformation of the Poincardonlinear, in such a way that the Planck energy became an
symmetry of flat spacetime, one example of which is giveninvariant. However, as we will demonstrate below, this ex-
by the x-Poincaresymmetry discussed, for example[R0—  @mple does not satisfy all of the conditions just mentioned.
22]. In all these proposals, the noncommutativity is mea--urthermore, studies by other authors suggested that it was
sured by a parameter which has the dimensions of a lengtflot obvious how to modify the action of the Lorentz trans-
Again, we can ask how it is that all observers agree on théormations so as to achieve all these conditions, in particular,
scale at which noncommutativity appears, given that length§ appeared that theories in which the relativity of inertial
normally are not invariant under Lorentz transformations. frames is preserved may not be able to account for the ob-
These paradoxes may be resolved if the Lorentz transfors€rved threshold anomalies. _
mations may be modified so as to preserve a single energy or Before going further, we want to emphasize that the pro-
momentum scale. Then all observers will agree that there i80Sal to modify the action of the Lorentz transformations on
an invariant energy or momentum above which the picture offomentum space was not originated by us. Modifications of
spacetime as a smooth manifold breaks down. Because thefgecial relativity in which the action of the transformations
are then two constants which are preserved, this proposal hge nonlinear have been considered by a number of authors
been called “doubly special relativify12,14.” [5,12,14,20-2B To our knowledge the earliest such pro-
To summarize, the various experimental and theoreticaP©S@! is by Fock23] and related proposals have been con-
issues we have mentioned lead us to ask whether it is po§idered earlier also ifb,12,14,20-2p We consider that our

sible to modify the principles of physics so that all of the contribution is mainly to take a phenomenological point of
following requirements are met. view in which we insist that the modifications of special

o o ~relativity are to be treated in the most general way possible,
(1) The relativity of inertial frames, as proposed by Galileo, g as to allow nature to teach us if and how the relativity of

Descartes, Newton and Einstein, is preserved. inertial frames is realized in a fundamental theory. While it
(2) There is nevertheless an invariant energy scéle may in the future happen that a fundamental quantum theory

=\"1, which is of the order of the Planck scale. of gravity makes predictions for the exact form of a modified
(3) The threshold for UHECRs should be increased as sugdispersion relation or action of the Lorentz transformations,

gested by experimerit. we want to avoid too hastily following any particular math-

ematical hypothesis about the structure of spacetime to the
exclusion of others.

2For another view of this apparent paradox, however,[$6¢ Recently a number of authors have contributed to the
3The situation for the TeV photon threshold is not as convincing,study of such theories, discussing many aspects which we
so we do not yet impose it as a requirement. are not able to consider he24—-26. However, we are able
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to address a number of issues which concern the whole class In Sec. Il we discuss several examples, and show how
of theories in which the Lorentz transformations act nonlin-the variable speed of light theories discussed in cosmology
early on momentum space. [6—8] and thek-Poincaregroup fit into the general frame-
It is not hard to see that if one adds momenta and energyork introduced here.

linearly, as we normally do in physics, the conservation of Then, in Sec. IV we explain how energy and momentum
momentum is inconsistent with the new nonlinear action ofconservation are maintained in these theories, a matter
the Lorentz group on momentum space. Is it then possibl§losely related to the definition of momenta addition. This
that energy and momentum conservation is maintained, bi@/lows us in Sec. V to examine the kinematics of UHECRs
with these laws also becoming nonlinear? and gamma rays, placing constraints upon the possible real-

There is no experimental reason why the energy and mdZations of our theory which can explain current observa-
menta of elementary particles cannot be bounded by th ons. We find that standard deformations can only explain

Planck energy, but this is certainly not the case for macro'"® threshold anomalies W|thrmgat|v<_—:P_Ianck energy, Of. the
scopic systems. Thus, the transformation laws must distin(—)rder of 16 GeV. However, we exhibit one class of disper-

OpIC Sy ) ’ . . sion relations(and an associated nonlinear Lorentz agtion
guish elementary from composite systems in such a way th%here this problem does not exist

the macroscopic bodies can have Planck energies and mo- Finally in Sec. VI, we point out that because the Lorentz

menta while Fransfor.m.ing and moving according to the us“%roup acts nonlinearly on momentum space, the action on
laws of special relativity. o spacetime coordinates is also nontrivial. We propose that in
~ If a modified energy momentum relation is the explana-guantum theory the space and time coordinates are to be
tion for the observed threshold anomalies, there appears igefined to be generators of translations in momentum space.
be a necessity that these modifications are significant alreadyj contrast to other definitions, this leads to a commutative

at the scales of the thresholds themselves, which are ogpacetime geometry. But the commutation relations between
scales of TeV’s for the photons and*t@eV for the pro-  position and momentum become energy dependent, leading
tons, i.e. small compared to the Planck energy. At the sam& a new energy dependent modification of the uncertainty

time, there is no observed energy dependence of the speedrefations.

light, seen in gamma ray observations, to scales up to

10 3Epjancke Which is in fact much higher than the scale of Il. GENERALIZED NONLINEAR ACTIONS

the problematic thresholds. So how could a theory resolve AND DEFORMED DISPERSION RELATIONS

the problem of the threshold anomalies, without at the same

time causing an energy dependent speed of light at scalets In cf)l::] first tPape']Eltﬁ] WLe protposed a _nonlmear :nodmca-
which are already ruled out by experiment? lon of the action of the Lorentz group in momentum space

Before the present viewpoint was formulated a number o?Nh'Ch contains an observer independent Iepgth S@&
authors arrived at modified Lorentz transformations by in—nOtGd herg by.), and reduces to the usual linear action at
vestigating the hypothesis that geometry becomes nonconlngw energies. Fpr the new proposa] the conqept of memc
mutative, so that spacetime coordinates no longer commut@u""drat'C invariant CO"aF’?E’? at .h'gh energies, being re-
A beautiful example of such a theory is tkePoincaresym- Placed by the nonquadratic invariant
metry of k-deformed Minkowski spacetime, which is indeed ab
a noncommutative geometf21,22. However, it is impor- Ilpl|2= 7" PaPo ' @)
tant to ask whether the noncommutativity of spacetime coor- (1—\pg)?
dinates is a necessary consequence of modifying the action
of the Lorentz transformations on momentum space, so as féhe group algebra, however, is left unchanged, suggesting
have an invariant Planck energy and/or momentum, othat the spin connection formulation of general relativity
whether one can achieve such a maodification in the contexnay still be valid(as the connection takes values in the al-
of a commutative spacetime geometry. gebra. This remarkable feature may be traced to the fact that

In this paper we will resolve all of these issues, in theour modified boost generatofand likewise for the rotation
course of showing that all 5 of our conditions can be met. generatorsmay be written in the form

The plan of this paper is as follows. In Sec. Il we start by A _
noting that the procedure defined[it3] is not unique: there K'=U""[po]LoU[Pol, 4
are other possible nonlinear realizations of the Lorentz group
in momentum space, associated with different operators iWhereL ,,=p,(3/dp°) — pp(d/Ip?) are the standard Lorentz
place ofU(p,) (defined in[13]). Each of these leads to dif- generators. For the particular boosts we have proposed we
ferent modified invariants and hence to different dispersiorhave:
relations for massive and massless particles. We also write
down the necessary and sufficient conditions for a general U[pol=expApoD) ®)
nonlinear action to display an invariant energy scale, and a i i i .
maximal momentum. We place conditions ugdso that the (whereD =p,(d/Jp,) is a dilatation, or more specifically:
group property of the action is preserved and highlight the
emergence of a preferred frame should these conditions be U[Pol(pa) = _pa (6)
violated. 1-Apo
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[whereU[ pol(pa) denotes _thea component of the ima}de_ EZfi(E;)\)_ p2f§(E;)\):m2 9)

We note thain may have either sign. We expect that it will

be proportional to plus or minus the Planck length. We alsdmplying

note that this is nota unita_ry equive}lence, because, as may be Us(E,p)=(Efy,pf,). (10)
easily checked, in genertlis not unitary. In fact we shall be

mainly interested in singular expressions fdy for reasons U defined in this way maps energy-momentum sp&ee,
to be explained shortly. In addition the transformation de-onto itself. In general such a map is not invertible. For the
pends on parameter, and we shall at times recall this de- action of the Lorentz group to be modified according to Eq.
pendence with the notatidd[ py;\]. When there is no risk (4) we must have an invertible map. It must then be that
of confusion we shall drop one or both of the variables inthere is a sector gP, which we will call PP"S such that,
square brackets. Note that the transformation inducetd by with range restricted tgPP"YS is invertible. Typical ex-
coincides with the linearization procedure proposed by Judeamples of the restriction which define®P"Ys are E
[27] in the single particle sector < Epianck @and/or|p| < Epjanck-

The choice olJ made in Eq(5) is dictated by nothing but A further condition is that the image & must include
simplicity and the fact that it leads to the Fock-Lorentz groupthe rangg 0,2] for both energy and momentum. This is be-
acting in momentum spa¢@3,28,29. Any other nonunitary, cause the ordinary Lorentz boostspan this interval, and so
nonlinearU leads to a nontrivial alternative representation ofU LU would not always exist otherwise. If this condition
the Lorentz group, with algebra: is not satisfied the group property of the modified Lorentz

oo - oo o action is destroyed. If for instandef,; does not spaf0,]
[31KI]= e Kyi; [K'KI]= e, (7 then there is a limitingy factor for each energy, a feature
which not only destroys the group property but also selects a
preferred frame, thereby violating the principle of relativity.
[In contrast, the condition that the algeli@ be preserved
O(]'%oes not restrict in any wafy andf,.]

With these two assumptions, we can then use (Bgto

gonstruct the modified boosts and translations?Ys and

(with [J',J1]= €'k J, trivially preserved. Indeed any genera-
tors produced via Eq4) (whatever the choice df}) have
the same commutators as the origind, since we are
merely changing the representation. Hence any group acti
generated via Eq4), but with a different form forU, gen-
eralizes our formalism, even if the resulting action does no . . o . .
preserveEp=\ " [as is the case with Eq5) [13]]. Thus obtain the particular realization of our theory incorporating

one has to face the issue of how to decide wWHitlis the the new results. In particular, all such theories will have a
correct one. Our view is that such a matter should be decideﬁnrnOdIerd Lorentz algebra, re"?‘"z.ed gt?]ry\sera_lly nonlinearly
by experiment. To this end we note that the most genera‘?n momentum space. The restriction26™>° will also be-

invariant associated with the new group action is come part of the new thgory. . .
Unlessf,=f, we obtain a theory displaying a frequency

l|p|1?= 72U (p,)U(py) (8)  dependent speed of light. More precisely, definifig

) . ) ) ) =f,/f; we have
from which follows a deformed dispersion relation. Disper-

sion relations may then act as the experimental input into the _ dE _ f3
: C=——=—"7. (12)
formalism. dp Ef;
Alternatively, a dispersion relation may be derived from 1- —f3

calculations in a theory such as loop quantum grajvfy. If
we have reason to believe that the theory maintains the reladence our formalism may be readily adapted to varying
tivity of inertial frames, in spite of the appearance of modi-speed of ligh{VSL) theories, justifying some of the assump-
fied terms in the energy-momentum relations, this impliesions in[6].

that the symmetry of the ground state, corresponding in the

classical limit to Minkowski spacetime, is a nonlinear repre- B. A general action which preserves an energy scale or has a
sentation of the Lorentz group such as that considered here. maximal momentum

In this case we may read off théfrom the calculated modi-

o : We mentioned in the Introduction that several theoretical
fications to the energy-momentum relations.

. . : rguments suggest that in natdEg should be an invariant
Ideally, then, the formalism we are discussing can be use g dd P

_ nder the action of the Lorentz group. We discuss here the
to compare experiment and theory, as well as to eXtrap‘)lat@onditions onU such that this will be the case
between predictions of different experimental results. Thus, Given Eq.(4) we know that the invariants. of the new
we see this formalism as being part of a phenomenology Olfh '

i ity effect d to directly having f eory are the inverse images \Waof the invariants of stan-
quantum gravity €liects, as opposed to directly having funqa g special relativity. But the only invariant energy in linear
damental significance.

relativity is the infinite energ§.Hence the condition we are

looking for is

A. Building a general U-map 9
Following this philosophy, we start from a hypothetical

measurement of a set of dispersion relations and from this we*Another possibility is the zero energy, so that a condition for

infer the group action. Any isotropic dispersion relation mayinvariance isU(Ep) =E,f1(Ep) =0 [30]. This condition, however,

be written as is inconsistent with the other requirements discussed in this section.
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U(Ep)=E,f1(Ep) =0 (12 positive energies, it does so Be[—«,»], so the group
property is preserved for this proposal.
that is,U should be singular & . In addition note that in Following the procedures described above we arrive at the
special relativity there are three situations in whigk o; following transformation laws for photons:

A photon (|p||?=0), for whichE=p=cs.
A particle with infinite rest mass.
A particle with finite rest mass moving at the speed of
light. i Cal)]
1+Np[y(1-v)—1]"

E'=y(1-v)E (14)

(15
These are mapped by ! into 3 distinct types of objects
that can have thénvarian Planck energy: those with zero, Although no energy remains invariant, the Planck momen-
infinite, and finite mass, respectively, photons, particles, angum p=xX "1 is an invariant and is also the maximal momen-
something we may call infinitons. The latter have the proptum. The gravitational redshift formula is unmodified in this
erty that, like photons, they cannot be boosted to a resheory, but expressions for phenomena involving exchange
frame; however, they are not zero mass objects. The secorfi momentum will be different.
have the property that their momentum can only have two For massive particles we find that we still have tEat
values: zero or the Planck momentum. These objects wil=mc?, that the mass still transforms like=m,y, and that
generally mark the boundaries BP"°. As in the case of the in any frameE=mc2. However, the general expression for
limiting velocity of the speed of light in ordinary special the momentum is now
relativity, whether they are limiting idealizations, or real
physical cases, depends on the dynamics of the particular mu
theory. P=17m (16)

The condition for the existence of a maximal momentum
is simply thate f, /f,=E/f5; has a maximum. Hence we note ; : :
that the conditions for a varying speed of light and for theS:hO\ivlmg that for massive particles we must Naepmax
existence of a maximum momentum are related, and indeed
one may show that existence of a maximum momentum im
plies that the speed of light must diverge at some energy.

Similar expressions may be derived for other VSL models
considered in the literature.

B. A second VSL theory
A second VSL theory is obtained by choosing

IIl. SOME EXAMPLES

We now turn to discuss several examples of theories that
meet the various requirements we posited. In Secs. Il A and U= ME%IE (17)
[l B we discuss examples of VSL theories. Another interest-
ing exercise(performed in Sec. lll €consists of using the |eading to the energy momentum relation
dispersion relations associated with tkd?oincaregroup to
build a realization of our theory. E2

m - p2= m?. (18)

A. A VSL dispersion relation

The varying speed of light scenalfi@,8] is an interesting  This results in the same modification of the speed of light for
alternative to cosmological inflation. It was found[i§,31]  photons as the first example, but differs in the energy-
that some deformed dispersion relatigeach as the ones in momentum relation for massive particles. Note that in this
[21,32,33) might lead to a realization of VSl(and even case there is an invariant energy scale, which with the nota-
inflation). tion used isE=—\ "1, that is, it is negative foh>0.

The dispersion relations for massless particles were writ- A more general set of isotropic energy momentum rela-
ten in[6,31] in the formE?—p?f?(E)=0, failing to define tions may be derived from the choice,
fully f,(E) andf,(E). However, as an example let us con-
sider the case dB3] with f,=f=1+\E, andf,=1. Then, U = e9u(BIEAIE+gx(E)pidlapi, (19
from Eq. (10), we have

We thus see the need for experiment, or further theoretical
Ue(E,p)=[E,p(1+XE)]. (13  considerations, to fix the high energy behavior of the action

) ) of the Lorentz transformations on momentum space.
This model is known to have an energy dependent speed of

light c(E)=dE/dp=(1+\E)?; also all momenta must be
smaller than the maximum momentuos=\ 1, which can
only be reached by photons with infinite energy. We note that The k-Poincaregroup is a quantum deformation of the
if the theory is to provide a solution to the horizon problem,usual Poincargroup[20,22,34, which we now show can be
independent of inflation, we requite>0. Even though the reinterpreted in our formalism. It leads to dispersion relations
image ofU does not spafO,~] if we restrict ourselves to of the form(9) with

C. The k-Poincare group
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Sinh(\E) pears to build into the theory the concept of elementary par-

1= 7 NE (200 ticle, clearly differentiating between them and composites. In
any case, as we mentioned in the Introduction, such a dis-

f,=exg\E) (21) tinction is necessary for theories in which energy or momen-

tum of elementary particles are bounded.

from which aU can be read off according to our prescription.
It leads to modified boost generators: A. Composite systems

e E SinhAE One has to tread gingerly when defining the multiparticle
Fi=—h)\[pif95—)\piD]+ —& (22)  sector, as theories predicting deformed dispersion relations
CoshhE Ae ' often have ill-behaved multiparticle sectdrBor instance, a

straightforward addition rule is the following:
and it can be checked that these satisfy the standard Lorentz g g

algebra. p{P=U"U(pM) +U(p?)] (30
Exponentiation reveals the finite Lorentz transformations:

E’=\"Lsinh™ }(F) (23) and likewise for larger collections of particlgs: ™. This
is the simplest composition map, and it does lead to the
0,6°E— u) ~IsinH(AE) conservation of energy and momentum, as may be easily

!

Pl = (24)  checked.
F+VF?+1 However, there is a problem with this law. As may be
checked, with this definition the composite momenta trans-
Py @5 form according to the same nonlinear equations as the mo-
T 25  menta of the constituents. This quickly | inconsisten-
Px Ft+ JFir1 enta of the constituents s quickly leads to inconsiste

cies, for instance, it implies that composite momenta satisfy
the same deformed dispersion relations as single particles

- Py (26) (with my . y=my+ ... +m;). For the choicd5) this im-
Y F+FZ+1 plies that a set of particles satisfyiltg<Ep can never have
a collective energy larger tha, . This is blatantly in con-
F(E,p,) = y[SinhAE)—vp,\e F]. (27)  tradiction with observation: macroscopic collections of ob-
jects withE<Ep quite often have energies far in excess of
For photons these reduce to the Doppler shift formula: Ep, and in fact satisfy to good approximation undeformed
dispersion relations. A severe inconsistency has arisen, trace-
E'=\""sinh [ y(1—v)sinh\E]. (28)  able to definition(30).
) ] ) There are several ways around this problem. One was
For massive particles we have the relation proposed if27], here we describe another. We have noted
_ before that the transformatido depends orp, but also on
E=\"tog[ (\m) + J(Am)*+1] (29) parametei, and we restore the latter dependence with no-

tationU[ pg;\]. The idea is now that a system oflemen-
tary particles should satisfy kinematical relations obtained
%rom a mapU[ pg;N/n], that is, a map for which the Planck
nergyEp=\"1 is replaced bynEp. We can therefore de-

with m=ymj.

Note that although the theory we have written down ha
the same dispersion relations as those of iBoincare
group, this may not necessarily imply that the structure oif.
spacetime must be assumed to be noncommutative. ol
theory is not based on a quantum deformation of the Poin-

caregroup, but merely a nonlinear realization of the unde- p?=pWep®

formed Lorentz group. This is true even in the case in which —U Yo N21UNDa AT (0™ + Ul pa: N 1(p@)

the dispersion relations are the same as derived from the [Po:M21((ULPos M J(PT) +UlLPo: M (p).
x-Poincaregroup. We will see below how the spacetime co- (31)

ordinates may be introduced, in a way that does not require
the introduction of noncommutative spacetime geometry. This defines a new, generally nonlinear, composition law for
energy and momenta, which we denotedbyto indicate that

IV. COMPOSITE SYSTEMS AND CONSERVATION LAWS it is not ordinary addition. In general
Once we accept the possibility of nonlinear transforma- W= U N/ nT(UTDr N +
tion laws, we soon discover that kinematic relations valid for P [Po;MnJ(ULPo; A (P - -
single particles need not be true for composite systéhis +U[po;N]1(pn))- (32

is certainly the case with the transformation laws them-

selves. In fact we are left with an ambiguity concerning how

momenta are added and how composite quantities transform>we thank G. Amelino-Camelia for bringing this point to our at-
To some extent this is a desirable feature: nonlinearity aptention.
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With this definition a system af particles satisfies a system is Planckian(so that its invariant isn=<), then the full

of transformations obtained frord[py;\/n] via Eq. (4), collection (say, of N particleg is Planckian(it has energy
equivalent to the usual ones but replacingvith A\/n. Asa  Ey=NEp.) This can be proved by noting that the collection
result, the collective momentu@™=p( " satisfies de- also has infinite total mass. This feature is physically accept-
formed dispersion relations with replaced by./n. This can  able.

never lead to inconsistencies because ifraflarticles of a The addition law(32) can be generalized to
system have sub-Planckian energies then the total will still
be sub-Planckian, in the sense that,<nEp. We have pt - M=U"pg:f(n,\)](U[pg:N](pM+ ...
therefore circumvented the paradox described above. _ ")
For instance, in the case whdteis given by Eq.(5) the +ULpo; M (p™) (39

addition rule forN particles becomes: . . . -
wheref(n,\) can be any function leading to suitable limit-

gN) g) ing properties. Then Eq32) is a particular case of E¢39)
o~ 2 0 (33)  with f(n,\)=N\/n.
1— Po i 1-Apg This proposal solves the problem of how macroscopic
N bodies transform at a cost, which is that for an observer to

) , e , , transform the energy and momenta of a system from their
Interestingly, for sets of particles with identical energies andy,easurements to those made by an observer moving with
momenta, this reduces to plain additivity. _ _ respect to them, they must know if the system is elementary
_ The composite momentum satisfies the dispersion relas, composite and, if composite, how many quanta it con-
tions: tains. The idea that kinematics should make a distinction

abi(N) ~(N) between elementary and composite systems is new to phys-
_ 7 PaPp ics, but we would like to suggest that this is not necessarily a
1p]2= w2 =M? CUI L0 suggestihatihis is any
APy reason to abandon it. Instead, it is possible that this is a
N ) feature of a classical or quantum mechanics of fundamental
particles. For example, a theory that makes such a distinction
and the transformation laws are now: may be able to resolve the measurement problem because it
" ™ has an objective way to distinguish macroscopic bodies from
, - fundamental particles.
pE,N) _ v(py  —vp; ") (35 undamental particles

N N
I+ 5 1)p§ )_NW pd B. Energy and momentum conservation

Our theory conserves energy and momentum because it is
Ny’ y(pNV — v pM) spacetime translation invariant. However, the theory is non-
2 = N N (36  Jinear, and thep, of a system of two particles is not the sum
1+ —(y—1)pMN = —yvpN pi+p2, a matter which filters into the definition of energy-
N N a Ta . : X )
momentum conservation. This point was madg2in], and is
(N) closely related the definition of momenta in the multiparticle
E(N)': X (37) sector discussed in the previous section. We find that in the
same way that the transition from Galilean to special relativ-
ity destroys the additivity of speeds, the transition from lin-
ear to nonlinear relativity destroys additivity of energy and
, p() momentum themselves. Hence energy-momentum conserva-
piV’ = Y . (38) tion, say for a 2-body collision, can now be written as

\ \
1+ (y=1)pg" = 5 ropd”

\ \
1+ (y=1pg" = 5 ropd”

Pa®0a=Pa®0d, (40)

If p§’<Ep=\"" for all i, we find that Eq(33) reduces to where unprimed/primed variables refer to energy-momenta
standard addition anpg™ transforms according to the usual before/after the collision. For instance for the choiBewe
Lorentz transformations and satisfies quadratic dispersion rérave:
lations.

More generally the propos&B2) for momenta addition / /
has the followingU-independent properties. It is commuta- Pa + 9a __Pa + %a _
tive but nonassociative, as expected from any addition law 1=Apo  1-Aqo 1-Apy 1-Xgg
incorporating the concept of elementary patrticle. If each el-
ementary particle satisfi@&s<\ ~ !, then energy and momen- This leads to a number of kinematic novelties at high ener-
tum are approximately additive and the composite momentagies. For instancéf A>0) a particle close to Planck energy
approximately satisfy all relations and laws of linear speciabecomes more and more unreceptive to receiving energy in
relativity. Hence our definition avoids the pathologies of thecollisions, no matter how hard one might hit it. This may be
choice(30). However, if a single particle within a collection thought of as a novel kind of asymptotic freedom.

(41
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C. Modified Fock space For a threshold reaction, in the center of mass frame the

We finally note that even though the nonlinearities of our€!€ctron and positron have no momentum. Hence, due to

formalism distinguish between elementary particles andnomentum conservation, in this frame the gamma ray and
composites, its setup is purely classical. Elementary part_he infrared photon have the same energy. Energy conserva-

ticles, however, are quantum particles, i.e. excitations ofion then implies that their energy equals the rest energy of
quantum fields for which a Fock space can be defined. It i@ électrorm.. We can draw these conclusions becamge
therefore reassuring that one can easily adapt our construcs Ep» @nd so all corrections imposed by our theory are neg-

tion to quantum particles. Let the Fock space be defined ifjgible. _
the usual way, i.e. by means of standard creation and anni- We then need to perform a boost transformation from the

hilation operatora'(p) anda(p), so that the vacuum satis- center of mass frame to the cosmological frame. This can be
fiesa(p)|0)=0 for all p, single particle states take the form Pinnéd down by the condition that one of the photons be
Ip)=a’(p)|0), and multiple particle states are defined byredshlfted to the infrared background energy. Since in this

iteration. We can therefore write the quantdree Hamil-  PrOcess all energies involved are again sub-Planckian we can
use plain special relativistic formulas to conclude tEat

tonian as . . ; 2
=(1-v)yme, and sincey>1 [implying 1-v~1/(2y7)]
N we have:
Ho= >, AEJK)( K|+, (Ex®Ey) KK ) (kK'|+ ... .
k Kk’ Me
(42 v= 2R’ (44

Quantum interactions can be written likewise. For instance

4% interaction leads to the interacting Hamiltonian: q‘he same boost transformation blueshifts the other photon to

our predicted value for the gamma ray threshold energy. This
N operation, however, may have to be performed with the cor-

Hine=:¢" rected boost. The uncorrected threshold energy is
~2, 2 d(pep —kek)a'(p)a'(pakyalk’). m?
kk' pp’ Eiho= 7(1+v)me~27me=E—. (45)
(43) IR

. . This is now corrected to
Thus we have incorporated our proposal for classical mo-

mentum addition into a quantum framework. _
a En=U"1(Egno) (46)

V. MODIFICATIONS OF THE THRESHOLD ANOMALIES since the full boost is nowJ(E)=y(1+v)U(m,) and

Now that we know that our theory is consistent with U(Me)~Me. _ _
energy-momentum conservation and is not obviously in con- We may now obtain exact threshold formulas for the vari-

tradiction with the observed properties of macroscopic bod®Us proposals in the literature. Hdr3] we have
ies, we may attempt to apply it to the real world. The first

application we would like to consider is to follow the sug- mg

gestion of Amelino-Camelia and Pirdd] that a modified E_IR

dispersion relation may resolve the problem of the observed E”‘ZW (47)
threshold anomalies. We study first the gamma ray anomaly 14—2°

because it is a bit simpler than the cosmic ray anomaly. We Er

will see that while it was essential to establish that energy
and momentum are conserved in the theory, the analysis &nd for thex-Poincaregroup:
actually simpler than might have been expected.
2

_ . _ )\me
A. Gamma ray threshold anomalies Epn=\""sinh 1E_|R' (48)
The issue of the gamma ray threshold anomaly arises be-
cause one expects a cutoff at around 10 TeV in the flux ofn both cases we note that with>0 the threshold ifowered
gamma rays, due to their interaction with the infrared back+ather than raised. Hence if the observations have anything to
ground. At these energies it becomes kinematically possibldo with these dispersion relations the implication seems to be
to produce an electron positron pair by scattering of ahat\<0. In this case the invariant Planck energy is nega-
gamma ray from a photon of the infrared background, leadtive Ep=—\ "%, a situation already discussed|it3].
ing to a prediction for an upper limit to observed energies. The dispersion relatiofiL8) on the other hand is obtained
However, while the experimental situation is still somewhatfrom aU acting on energy like th&) but withA— —\. Itis
controversial, there are indications that the predicted thresttherefore not surprising that the threshold formula in this
old is not observedsee, e.g[3]). theory is
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mﬁ An argument identical to the one just made for gamma

E_IR rays leads to the conclusion that any corrections imposed in
Ewv=——7 (49 our theory appear at the level of boosting the proton in a
_7‘me threshold reaction from the center of mass to the cosmologi-

Er cal frame. Hence the corrected threshold formula is simply

o . _ . Eqn=U Y(Eyno). However, a novelty appears at this stage
which is raised with\>0. However, the lnvaflfmt in this because the proton is not an elementary particle, so that in
case is also a negative Planck enefgy=—\"", so the  the boost transformation we should replaxeby \/N,,

previous conclusion remains—threshold anomalies imply gvhereN,, is the “number of quanta living inside a proton.”
negative Planck energy for dispersion relations proposed ifyence the correct formula is

literature. This example is interesting as it tells us that the

modifications necessary to raise the speed of light, if the Etn=U " Etho;MNpl(Egno)- (51)

theory is to serve as a VSL theory and explain the horizon

problem, are of the same sign as those required to explain the

absence of the thresholds, at least in these classes of mode&m formulas presented above for gamma rays may now be
Regardless of the issue of the signEgf there remains its  adapted to UHECRSs. The conclusion is now tNYE p

order of magnitude. From E@47) we get ~—10'" GeV for previously proposed dispersion relations.
Using the more general definitidi39) we havef(E;1 Np)
St (50 ~— 10" GeV.
Eth  Etno The question is then what is the right valueldf in the

] ] case of a confined state such as the proton. An answer to this
so we find that we would ne€ép|~10 TeV to explain the  prohlem may require the application of this theory to the full
gamma ray anomaly. In addition fine tuning is required: hOunantum field theory of QCD. From the point of view of
close|\ 1| lies to Ey,o determines the actual threshold en- phenomenology, the suggestion in any case is that the param-
ergy E - , eters that modify the boost properties of the proton may dif-

This example teaches us an important lesson. So 10ng 88 from those of the electron and photon. One may then
the modified transformation law has a single dimensional,j st the free functiofi(\,n) used in defining the multipar-
parameteru~\ -, then from Eq.(50) we see that if the jcje sector to reconcile the difference in energy scales of the
usual and new threshold are the same rough order of magniysmic ray and gamma ray thresholds. However, given that
tude, theru must be of the same order of magnitude as well.\ “tor the proton is likely of order 3, it is difficult to see

This problem is a direct consequence of B46), from oy this could be accomplished for any simple function
which we can see that so long as there are no small dimeny,jess it contains small dimensionless parameters.

sionless parameters id then the result is a formula with

three-dimensional parameters; so long as two are of the same

order of magnitude, so must be the third. This tells us that the C. How to resolve all five issues

mechanism for moving the threshold used by Amelino- ) ] ) ]
Camelia and Piran if4] cannot work in a relativistic theory From the preceeding discussion we see that there is a
because it relies on a coincidence of small ratios in the cos2asic problem with using a modified form of special relativ-
mological frame. However, this coincidence does not exist ity SUch as we are considering here to solve the problem of
all frames of reference, hence it cannot be part of the solutiof’® threshold anomolies. The problem is that so long as the
of the problem in a relativistic theory. This is then not afunction f; has a single dimensional parameter,and no
problem with our example, but a general issue with theorie$Mall dimensionless parameters, then" must not be too

of the kind we are considering, which preserve the relativitymany orders of magnitude away from the threshold predicted
of inertial frames. by the usual linear theory. This prevents a single kinematical

effect from solving both the gamma ray and UHECR anoma-
) lies, as they occur at very different energies, it also prevents
B. UHECR threshold anomalies a theory with\ on the order of the Planck length from solv-
A similar anomaly also seems to plague ultrahigh-energyng either.
cosmic raySUHECRS. These are rare showers derived from  One might conclude from this that in the event that ob-
a primary cosmic ray, probably a proton, with energy aboveservations do in the end support the hypothesis that modified
10' GeV. At these energies there are no known cosmic raglispersion relations with the approximate form of Ef),
sources within our own galaxy, so it is expected that in theirwhen applied in the cosmological rest frame, do resolve the
travels, the extra-galactic UHECRSs interact significantly withthreshold anomolies, this would be inconsistent with the rela-
the cosmic microwave backgrounl®€MB). These interac- tivity of inertial frames. Indeed, our argument shows that no
tions should impose a hard cutoff abofg,,~10' GeV, simple form off, depending on only one scale could resolve
the energy at which it becomes kinematically possible tahe problem in a relativistic theory, so long as that scale were
produce a pion. This is the so-called Greisen-Zatsepinthe Planck scale.
Kuzmin (GZK) cutoff; however, UHECRs have been ob- However, before reaching such a drastic conclusion, there
served beyond the threshdld,2]. is a simpler possibility to consider, which is that the function
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f, has more than one scale irfiTo see that this is sufficient SE=(1-\E)%e (53)
to resolve the UHECR anomaly, while preserving an invari-
ant energy scale of the order of the Planck energy, note that Spi=—A(1—\E)pje (54)

we can multiply the previou$; used in fitting the threshold .
anomalies by a function that is approximately 1 foxE,  Whereas momentum shifts are
=10 GeV, but which diverges &g . For instance we may

take the function oE=0 (59

1 opi=(1—AE)e. (56)
fi= (52 _ . .
(1+ME)(1-AE) Hence the corresponding spatial coordinates are
; ; -1 1 J

with N>\, It is easy to see that Ko\, '~ 10" GeV then t=(1-Apo)| (1=Apo)7——AD (57)

the UHECR threshold is raised. This theory makes the pre- Po

diction that the actual UHCR threshold should lie some- P

where between its special relativity valkg,, andN,Ep (as x'=(1-A\pg)—. (58)

A; ! can never be as high &.=\"1). Ipi

In addition such a theory displays an invariant positive
energy,Ep=X\ "1 which may be of order 8 GeV. Also the
image ofU associated with thi$; is [0c], so that in this
theory the threshold anomalies are consistent with the group 9
property of the action, and the principle of relativity. X"=a——)\p”D (59

Finally, can we pick a theory that satisfies the other crite- Pu

ria we set out in the introduction? To see that this is straight[See Eq«9) in [36]]. However, there is an important differ-

forward, note that the functiofi, does not enter the discus- ence. As may be easily checked, the space and time coordi-
sion of threshold anomalies, and so the issues of VSL and ¢{ates all commute with each other.

the existence of a maximal momentum are decoupled from

This bears some resemblance to Snyder’s noncommutative
geometry[36], which has

threshold anomalies. Instead as we see from(EL.and the [x?xP]=0. (60)
discussion at the end of Sec. Il B, both of these properties are
governed byf;=f,/f;. The price to pay for this is that there are now novelties in

To avoid an energy dependent speed of light that so fathe commutators of the spacetime coordinates with energy
would have been detected in observations of gamma ragnd momenta. Indeed:
bursts,f, should differ from unity only on the Planck scale.

For example, considef,=e®Er. It is easy to see that this [X',pj1=&)(1=\po) (61)

gives a maximum momentum, equal Ep and a diverging 0

speed of light. [X%,pi]= =N (1=Xpo)pi (62)
[X°,po]=(1—N\pg)%. (63

VI. REAL SPACE FORMULATION .
This suggests that we have now an energy dependent

If Lorentz transformations are nonlinear they take a dif-Planck’s “constant” since E¢(61) impliesi=1—\p,. As a
ferent aspect in real and momentum space. The choice o&sult for Planck energies there is no uncertainty principle—
momentum space ifi13] is tied to the use of the Fock- the Planck energy is not only an invariant but it is also ap-
Lorentz representation, which has a large time-like invarianparently perfectly classical. We are currently investigating
suitable for identification with the Planck energy but not  further the implications of this proposal.
the Planck timep. Once in momentum space one may ask
how to recover a real space formulation. VII. CONCLUSIONS

One prescription is to define space coordinates as the gen-
erators of shifts in momentum spakis seems to be atodds I this paper we have presented a general method for
with the proposal if34]). Because the theory is nonlinear, implementing nonlinear actions of the Lorentz group based
shifts are not pure additive constants, and may be read offPon knowledge of the dispersion relations. Our results

from standard shifts subject tola transformation. Fof13], ~ complement those of other authors who have studied the
small energy shifts take the form: possibility that the action of the Lorentz transformations is

modified at high energies. The approach taken in this paper
generalizes that if13] by considering different map¥,
6As pointed out in[35], yet another solution is to allow for a Which we identified with functiong, andf, in Eq.(9). We
nonuniversal. Different particles could then have a differator ~ found that the group property is preservedlifis invertible
U could depend on the rest massof the particle it acts on. One and its image contain®,»]. If Ef; diverges at some finite
can then use the proton mass as an automatic extra scale in tefiergyEp, this takes the place of an invariant Planck en-
problem. ergy. Careful design ofJ may also explain the threshold
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anomalies. The functiof, may then be used to implement a theory and, if so, whether that theory predicts the existence
maximal momentum and a diverging speed of light. Usingof a preferred frame or a modification of Lorentz transforma-
the freedom to choosg, andf, we found that all five re- tions preserving the relativity of inertial frames. Of equal
quirements we listed in the Introduction may be achieved irinterest is the question of whether critical string théargin
one theory. One, among many, examples that do so is thee made consistent with deformed dispersion relations and
following: modifications of the action of Lorentz transformations, or
whether observations of such effects would disprove critical
o 1 £ — oE/Epianck 64) string theory[37]. Indeed, the general question of how to
"(1+ME)(1-NE)’ 2 ' incorporate the kinds of modifications of kinematics contem-
plated here and in related papers into a fully interacting
with A 1> Eﬁ(—}mck- quantum field theory remains open, as does the question of
We also discussed the extension of the transformatiohow these modifications may be incorporated into classical
laws to real space. We found that there is no general need fejeneral relativity[ 24 —26,38.
the coordinates of space to become noncommutative. In- Of course, the main motivation for studying this class of
stead, by defining the coordinates of space to be generatoftiseories is the hope that in the not too distant future astro-
of translations in momentum space, we arrived at a commuphysical and cosmological observations of the kind consid-
tative spacetime geometry. While it remains for experimentered here will teach us whether and how Lorentz invariance
to decide, we note that this approach is closer to the spirit ofs realized at the scales relevent for quantum gravity.
general relativity, in which the local properties of spacetime
arise from the tangent space of a manifold. It then may be
close to that expected from the classical limit of quantum
gravity, according to which the Poincare invariance of We are grateful for conversations with Stephon Alex-
Minkowski spacetime has no fundamental significance, buander, Giovanni Amelino-Camelia, Jurek Kowalski-Gilkman,
is only an accidental symmetry of the ground state of theSeth Major, Fotini Markopoulou, John Moffat and Carlo
classical limit. Furthermore, by taking this point of view we Rovelli, which have helped us to understand better the idea
discovered a novel feature of the theory, which is that theproposed here. Joaviagueijo thanks the Perimeter Institute
effective Planck’s constant appears to become energy depefor hospitality. Lee Smolin would like to thank the Jesse
dent. Phillips Foundation for support which made his contribution
Of course there are many things still to do to investigateto this work possible.
whether theories of the kind discussed here have a chance to
be true. It is important to understand whether the modifica=—
tions of the energy momentum relations predicted by loop "There are also related results concerning noncritical string theory
guantum gravity i 11] are necessary consequences of thafs].
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