
PHYSICAL REVIEW D 67, 044016 ~2003!
Metric-affine approach to teleparallel gravity

Yu. N. Obukhov* and J. G. Pereira
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil
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The teleparallel gravity theory, treated physically as a gauge theory of translations, naturally represents a
particular case of the most general gauge-theoretic model based on the general affine group of spacetime. On
the other hand, geometrically, the Weitzenbo¨ck spacetime of distant parallelism is a particular case of the
general metric-affine spacetime manifold. These physical and geometrical facts offer a new approach to
teleparallelism. We present a systematic treatment of teleparallel gravity within the framework of the metric-
affine theory. The symmetries, conservation laws and the field equations are consistently derived, and the
physical consequences are discussed in detail. We demonstrate that the so-called teleparallel GR-equivalent
model has a number of attractive features which distinguishes it among the general teleparallel theories,
although it has a consistency problem when dealing with spinning matter sources.
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I. INTRODUCTION

Theories of gravity based on the geometry of distant p
allelism @1–7# are commonly considered as the closest al
native to general relativity~GR! theory. Teleparallel gravity
models possess a number of attractive features both from
geometrical and physical viewpoints. Teleparallelism na
rally arises within the framework of the gauge theory of t
spacetime translation group. Translations are closely rel
to the group of general coordinate transformations which
derlies GR. Accordingly, the energy-momentum current r
resents the matter source in the field equations of telepar
gravity, as in GR.

Geometrically, teleparallel models are described by
Weitzenbo¨ck spacetime. The latter is characterized by
trivial curvature and nonzero torsion. The tetrad~or a co-
frame! field is the basic dynamical variable which can
treated as the gauge potential corresponding to the grou
local translations. Then the torsion is naturally interpreted
the corresponding gauge field strength. As a result, a gr
tational teleparallel Lagrangian is straightforwardly co
structed, in a Yang-Mills manner, from the quadratic tors
invariants.

Teleparallel gravity belongs naturally to the class of t
metric-affine gravitational theories~MAG!. Quite generally
@8#, MAG can be understood within the framework of th
gauge approach for the affine group, a semidirect produc
the general linear group and the translation group. The
responding gauge field potentials are the linear connec
and the coframe, whereas the curvature and the torsion
out to be the gauge gravitational field strengths. In additi
the metric represents one more fundamental field with
nonmetricity as the corresponding field strength.

From the gauge-theoretic point of view, teleparallel gra
ity is distinguished among the other MAG models by redu
ing the affine symmetry group to the translation subgroup
geometric language, teleparallelism arises from the gen
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metric-affine spacetime after we impose two constraints
putting curvature and nonmetricity equal to zero. In th
sense, teleparallelism can be treated, both physically
geometrically, as a particular case of the general MA
theory.

In the present paper we will study teleparallel grav
within the MAG approach. A similar analysis was previous
developed in@6# for the Poincare´ gauge approach. We wil
consider the general class of teleparallel models which
characterized by three dimensionless coupling constants.
ter recalling some basic facts about MAG in Sec. II, w
derive the field equations of the general teleparallel theor
Sec. III. Then in Sec. IV we show that the teleparallel grav
model can be reduced to an effective Einstein theory w
some modified energy-momentum current as a source. W
the coupling constants have specific values~5.1!, the exact
equivalence between general relativity and teleparallel gr
ity is established for spinless sources. However, in Sec. V
demonstrate certain consistency problems for the sou
with spin. Among the general teleparallel models, there i
class of theories with the proper conformal properties.
discuss the definition of conformal symmetry in teleparall
ism in Sec. VI. Finally, we analyze the spherically symmet
solutions for general teleparallel gravity coupled to the el
tromagnetic field. We pay special attention to the behavio
the ~Riemannian! curvature and torsion invariants. This a
pect was not studied in detail before. The formulation of t
spherically symmetric problem and its preliminary analy
is given in Secs. VII–IX. A number of new solutions is ob
tained, both charged and uncharged. In Sec. X we presen
class of conformally flat solutions that generalizes the so
tions of Bertotti and Robinson. The corresponding geome
appears to be regular from both the Riemannian curva
and the teleparallel torsion points of view. The complete
of uncharged solutions is presented in Sec. XI. This is d
for all possible choices of the three coupling constants
teleparallel gravity. We analyze in Sec. XII the correspon
ing spacetime geometries, and find that the generic solut
are no black holes. In Sec. XIII we show that only in th
above mentioned general relativity limit, i.e., for the speci
values of the coupling constants~5.1!, we recover the

te
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Schwarzschild and the Reissner-Nordstro¨m black hole con-
figurations. This fact can be considered as an argumen
voring the choice of the rigid structure of the teleparal
Lagrangian with the fixed values of the three coupling co
stants. The analysis of the torsion invariants reveals, h
ever, that even for the case of the teleparallel equivalen
the general relativity, the horizon of a black hole represen
singular surface for the torsion. This latter fact was not n
ticed in the literature previously.

Our basic notations and conventions are those of@8#. In
particular, the signature of the metric is assumed to be2,
1,1,1). Spacetime coordinates are labeled by the La
indices, i , j , . . . 50, . . . ,3 ~for example,dxi), whereas the
Greek indices,a,b, . . . 50, . . . ,3, label the local frame
components~for example, the coframe 1-formqa). Along
with the coframe 1-formsqa, we will widely use the so-
called h-basis of the dual coframes. Namely, we define
Hodge dual such thathª * 1 is the volume 4-form. Further
more, denoting byea the vector frame, we have thatha
ªeach5 * qa , habªebcha5 * (qa`qb), habg
ªegchab , andhabgd ªedchabg . The last expression is thu
the totally antisymmetric Levi-Civita tensor.

II. PRELIMINARIES: METRIC-AFFINE APPROACH

In this section we recall some basic facts concern
metric-affine geometry in four dimensions. For a more d
tailed discussion in arbitrary dimensions, see@8#. The metric-
affine spacetime is described by the metricgab , the coframe
1-formsqa, and the linear connection 1-formsGb

a. These
are interpreted as the generalized gauge potentials, while
corresponding field strengths are the nonmetricity 1-fo
Qab52Dgab , and the 2-forms of torsionTa5Dqa and
curvatureRb

a5dGb
a1Gg

a`Gb
g.

In our analysis of the teleparallel gravity we will heavi
use the results related to the irreducible decomposition
the fundamental geometric and physical objects in MA
The details about this method can be found in@8# and @9#.
Here, we will mainly need to recall the irreducible parts
the torsion 2-formTa which are defined by

(2)Ta
ª

1

3
qa`T, with TªeacTa, ~2.1!

(3)Ta
ª2

1

3
* ~qa`P!, with Pª * ~Ta`qa!,

~2.2!

(1)Ta
ªTa2 (2)Ta2 (3)Ta. ~2.3!

In tensor components, the torsion 2-form

Ta5
1

2
Ti j

adxi`dxj5
1

2
Tmn

aqm`qn ~2.4!

gives rise, through the above decomposition, to the vec
of trace and axial trace of torsion:
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eacT5Tma
m, eacP5

1

2
Tmnlhmnla . ~2.5!

Given the metricgab , the Christoffel connectionG̃b
a is

defined as a unique connection with vanishing torsion a
nonmetricity: D̃qa50 and D̃gab50. The Riemannianop-
erators and geometrical objects, constructed from the Ch
offel connection, will be denoted by a tilde. The gene
affine connection can always be decomposed into Riema
ian and post-Riemannian parts,

Gb
a5G̃b

a1Nb
a, ~2.6!

where thedistortion 1-form Nab can be expressed in term
of torsion and nonmetricity as

Nab52e[acTb]1
1

2
~eacebcTg!qg1~e[acQb]g!qg

1
1

2
Qab . ~2.7!

The MAG Lagrangian of the gravitational field is con
structed from the forms of curvature, torsion, and nonmet
ity. In @9# the method of irreducible decompositions was a
plied to the most general quadratic Lagrangian, revealing
possibility of reformulating the MAG field equations as a
effective Einstein equation. Here we will use the results
@9# to obtain an analogous reformulation of teleparallel gra
ity.

III. FIELD EQUATIONS

In the teleparallel theory, we have two geometrical co
straints:

Rb
a5dGb

a1Gg
a`Gb

g50, ~3.1!

Qab52Dgab52dgab1Gb
ggag1Ga

ggag50.
~3.2!

These equations mean that there is a distant parallelism
spacetime. The result of a parallel transport of a vector d
not depend on the path. Moreover, the lengths and angles
not changed during a parallel transport.

One may wonder, what actually we do gain when w
‘‘embed’’ teleparallel gravity into the MAG theory. After all
Eq. ~3.1! may be solved trivially by performing a linea
transformation of the frame and connection

ea→Lb
aeb , Ga

b→Lg
aGg

dL21b
d1L21b

gdLg
a .
~3.3!

In view of Eqs.~3.1!,~3.2!, it is always possible to choose th
matrix Lb

a of the linear transformation in such a way th
the transformed local metric becomes the stand
Minkowski, gab5oabªdiag(21,11,11,11), whereas the
transformed local connection becomes trivial:Ga

b50. Then
the ~co!frame is left over as the only dynamical variable. W
will call such a choice aWeitzenbo¨ck gauge. The visible
6-2
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disadvantage of such an approach is the resulting rigid st
ture of the tetrad field which cannot be altered at one’s w
To a great extent, this is contrary to the very spirit of re
tivity theory, which treats all coordinates and frame syste
on an equal footing basis. By embedding teleparallelism i
MAG, we remove the unwarranted rigidity of the tetrad fie
and return to the far more physically natural situation, wh
we can choose a reference and coordinate system at our
convenience.

Now we can formulate teleparallel gravity as the MA
model with the constraints~3.1!,~3.2!. Correspondingly, the
Lagrangian of the teleparallel theory quite generally can
written as

V5
1

2k
Ta` * S (

I 51

3

aI
(I )TaD 1

1

2
mab`Qab2na

b`Ra
b.

~3.4!

Here a1 ,a2 ,a3 are the three dimensionless coupling co
stants, and the gravitational coupling constant is, as us
k58pG/c3, with G the Newton’s gravitational constant. In
serting Eqs.~2.1!–~2.4! into the first term in Eq.~3.4!, we
find

Ta` * S (
I 51

3

aI
(I )TaD 5~c1Tmn

aTmn
a1c2Tma

mTna
n

1c3Tmn
aTa

mn!h, ~3.5!

where the new coefficients are the following combinations
the original coupling constants:

c15
2a11a3

3
, c25

2~a22a1!

3
, c35

2~a32a1!

3
.

~3.6!

Variation of the teleparallel action with respect to t
Lagrange multipliersmab and na

b yields the constraints
~3.1! and ~3.2! of the geometry of distant parallelism. Th
Lagrangian~3.4! is invariant under the redefinition

mab→mab1Djab, ~3.7!

na
b→na

b1Dxa
b2ja

b ~3.8!

of the Lagrange multiplier fields. Here,jab5jba is an arbi-
trary symmetric 2-form, whereasxa

b is an arbitrary 1-form.
The proof of the invariance is based on the three Bian
identities of MAG. Indeed, we have for the additionalx term
arising from Eq.~3.8! in the Lagrangian

~Dxa
b!`Ra

b5d~xa
b`Ra

b!1xa
b`DRa

b. ~3.9!

Being a total differential, the first term in the right-hand si
can be discarded. The last term vanishes in view of the
anchi identityDRa

b[0. As for thej terms which appear in
the Lagrangian when we make the transformation~3.7!,~3.8!,
we find
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2
~Djab!`Qab1ja

b`Ra
b5

1

2
d~jab`Qab!2

1

2
jab

`~DQab22R(ab)!.

~3.10!

Again, as a total derivative, the first term can be neglect
whereas the last term vanishes by virtue of the Bianchi id
tity DQab[2R(ab) . As a result, the field equations derive
from Eq. ~3.4! will determine the Lagrange multipliers onl
up to the ambiguity imposed by the symmetry~3.7!,~3.8!.

The gravitational field equations are derived from the to
LagrangianV1Lmat by independent variations with respe
to the coframeqa and connectionGb

a 1-forms. The corre-
sponding so-calledfirst andsecondfield equations read

DHa2Ea5Sa , ~3.11!

DHa
b2Ea

b5Da
b . ~3.12!

The covector-valued forms appearing in the left-hand side
Eq. ~3.11! are given by

Ha ª2
]V

]Ta
52

1

k
* S (

I 51

3

aI
(I )TaD , ~3.13!

Ea ªeacV1~eacTb!`Hb5
1

2
@~eacTb!`Hb2Tb

`~eacHb!#. ~3.14!

In the last expression we have taken into account thatV5
2 1

2 Ta`Ha , in view of Eqs.~3.13! and ~3.4!.
The matter sources in the right-hand sides of~3.11! and

~3.12! are the canonical energy-momentum current and
canonical spin current. For the minimally coupled mat
field CA(p-form, in general!, we have explicitly

Sa ª
]Lmat

]qa
5eacLmat2~eacDCA!`

]Lmat

]DCA
1~eacCA!

`
]Lmat

]CA
, ~3.15!

Da
b ª

]Lmat

]Ga
b

5~,a
b

A
BCB!`

]Lmat

]DCA
. ~3.16!

We will assume that the matter fieldCA realizes some rep
resentation of the Lorentz group, and then,ab52,ba are
the corresponding generators of infinitesimal Lorentz tra
formations. Accordingly, the hypermomentum current
duces to the spin current,

Dab5tab52tba . ~3.17!

The tensor-valued forms appearing in the left-hand side
the field equation~3.12! are given by
6-3
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Mab
ª22

]V

]Qab
5mab, ~3.18!

Ha
b ª2

]V

]Ra
b

5na
b , ~3.19!

Ea
b ª2qa`Hb2Ma

b52qa`Hb2ma
b .
~3.20!

Substituting all this into Eq.~3.12!, we find the equation

ma
b1Dna

b52qa`Hb1Da
b . ~3.21!

The left-hand side of this equation is evidently invariant u
der the transformations~3.7!,~3.8!. Correspondingly, the field
equation~3.21! offers maximum of the possible: It dete
mines the gauge invariant piece of the Lagrange multiplie
namelyma

b1Dna
b , in terms of the spin currentDa

b and
of the translational field momentumHa .

It is important to notice that the Lagrange multipliersmab

and na
b decouple from the first field equation~3.11!. As a

result, technically we can simply discard the second fi
equation~3.12! because it merely determines the Lagran
multipliers, whereas the dynamics of the gravitational field
governed by Eq.~3.11!.

IV. EFFECTIVE EINSTEIN EQUATION

In @9# it was demonstrated that a certain quadratic met
affine Lagrangian has very special properties. This Lagra
ian reads

V(0)5
1

2k H 2Rab`hab2 (1)Ta` * (1)Ta12 (2)Ta` * (2)Ta

1
1

2
(3)Ta` * (3)Ta1 (2)Qab`qb` * (1)Ta22 (3)Qab

`qb` * (2)Ta22 (4)Qab`qb` * (2)Ta1
1

4
(1)Qab

` * (1)Qab2
1

2
(2)Qab` * (2)Qab2

1

8
(3)Qab

` * (3)Qab1
3

8
(4)Qab` * (4)Qab1~ (3)Qag`qa!

` * ~ (4)Qbg`qb!J . ~4.1!

The definition of the four irreducible parts of the nonmetr
ity (J)Qab , J51, . . . ,4 isgiven in @8,9#; we do not need
them here though because the linear and quadratic
metricity terms are zero anyway, in view of the telepara
constraint~3.2!.

The gravitational gauge field momenta for the Lagrang
~4.1! are given by
04401
-
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Ha
(0)
ª2

]V(0)

]Ta
[2

1

2k
Nmn`hamn , H (0)a

bª2
]V(0)

]Ra
b

5
1

2k
ha

b , ~4.2!

and the corresponding field equations coincide comple
with Einstein’s equations of general relativity:

DHa
(0)2Ea

(0)[
1

2k
R̃mn`hamn , DH (0)a

b2E(0)a
b[0.

~4.3!

We can use this fact andidenticallyrewrite the teleparallel
Lagrangian~3.4! as the sum

V52a1V(0)1V̂, ~4.4!

where

V̂5
1

2k
~a2Ta` * (2)Ta1a3Ta` * (3)Ta!1

1

2
mab`Qab

2na
b`Ra

b, ~4.5!

and the new ‘‘shifted’’ coupling constants are defined by

a25a212a1 , a35a31
1

2
a1 . ~4.6!

Correspondingly, the field momenta can be rewritten in
form

Mab52a1M (0)ab1M̂ab, Ha52a1Ha
(0)1Ĥa ,

Ha
b52a1H (0)a

b1Ĥa
b , ~4.7!

Ea52a1Ea
(0)1Êa , Ea

b52a1E(0)a
b1Êa

b .
~4.8!

We easily find thatM̂ab
ª22]V̂/]Qab5Mab, andĤa

bª

2]V̂/]Ra
b5Ha

b , whereas

Ĥaª2
]V̂

]Ta
52

1

k
* ~a2

(2)Ta1a3
(3)Ta!

52
1

3k
@a2 * ~qa`T!1a3qa`P#. ~4.9!

Here, we explicitly used the irreducible decompositions~2.1!
and ~2.2! of the torsion, in terms of the trace 1-formT and
the axial trace 1-formP. Then, with the help of the identitie
~4.3!, one can transform the field equations~3.11! and~3.12!
of MAG into

2a1

2
R̃mn`hamn5k~Sa2DĤa1Êa!, ~4.10!
6-4
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ma
b1Dna

b52qa`Ĥb1Da
b .

~4.11!

Accordingly, we can view the teleparallel field equations
the Einstein general relativity theory~4.10! with the effective
energy-momentum currentSa

eff5(1/2a1)(Sa2DĤa1Êa).

Recall also thatÊa5eacV̂1(eacTb)`Ĥb and DĤa5D̃Ĥa

2Na
b`Ĥb . Now, substituting Eqs.~4.9! and~2.7!, we find

explicitly

DĤa2Êa5
a2

3kF2hab`D̃~ebcT!1 * Ta`T2
1

2
qa`P`T

2
1

2
eac~T` * T!G1

a3

3k Fqa`dP22Ta`P1P

`eac * P1
1

2
eac~P` * P!G . ~4.12!

The effective Einstein equation~4.10! contains symmetric
and antisymmetric parts. It is convenient to consider th
separately. The antisymmetric piece is extracted by tak
the interior product ofeac with Eq. ~4.10!. Taking into ac-
count Eq.~4.12!, the result reads

2a3dP2a2~ * dT1P`T!1eac~a2 * Ta`T22a3Ta`P!

53keacSa . ~4.13!

We can now subtract the antisymmetric part from Eq.~4.10!,
which technically means substitutingdP from the above
equation into the effective Einstein equation. As a result,
finally obtain

2a1

2
R̃mn`hamn5kS Sa2

1

2
qa`ebcSbD1

a2

3 Fhab

`D̃~ebcT!2
1

2
qa` * dT2 * Ta`T

1
1

2
qa`ebc~ * Tb`T!1

1

2
eac~T` * T!G

1
a3

3 F2Ta`P2qa`ebc~Tb`P!2P

`eac * P2
1

2
eac~P` * P!G . ~4.14!

Analogously to the separation of the antisymmetric pa
we can also extract the trace of the effective Einstein fi
equation. For this purpose, we multiply Eq.~4.14! with qa

` from the left, and we find

a2~d * T1T` * T!1
a3

3
P` * P5kqa`Sa2a1Rh.

~4.15!

Here, RªRab
ba is the curvature scalar, and we used t

identities: qa` * Ta52 * T, qa`qb`hmn52(dm
adn

b

04401
s

g

e

t,
d

2dn
adm

b)h. Other useful formulas areeac * c5 * (c`qa) for
any formc; alsoqa`hb5db

ah, qa`hmn5dn
ahm2dm

ahn ,
andqa`hmnl5dm

ahnl1dn
ahlm1dl

ahmn .

V. GENERAL RELATIVITY LIMIT: A PROBLEM WITH
SPINNING MATTER?

When the coupling constants are chosen as

a1521, a252, a35
1

2
, ~5.1!

we find from Eq.~4.6! that alla I50. @In terms of the tensor
reformulation ~3.5!, the relations~3.6! yield c152 1

2 ,c2
52, and c351. These are the well-known values of th
teleparallel equivalent of GR, as used in@3–5#, e.g.# Conse-
quently,V̂50, and thusĤa50 andÊa50. The teleparallel
field equations~4.10! reduce to the general relativity theor
except for the fact that the physical source in the right-ha
side of Eq.~4.10! is not the ‘‘metrical,’’ but the canonica
energy-momentum currentSa . Thus one should be carefu
when the matter field has nontrivial spin.

In order to check the consistency of the telepara
theory, we first notice that Eq.~4.11! forces the spin curren
to satisfy

tab5Dn [ab] . ~5.2!

Consequently, it must be conserved:

Dtab5DDn [ab]50. ~5.3!

As the next step, we multiply the Einstein equation~4.10!
from the left byqb . Then, making an antisymmetrization
we find that the antisymmetric piece of the energ
momentum current must vanish:

q [b`Sa]50. ~5.4!

This is a consequence of the symmetry of the Einstein ten
which is equivalent to the conditionR̃mn`q [b`ha]mn50.
The same conclusion is obtained directly from Eq.~4.13!, in
which a I50 leads to the vanishing left-hand side. Recalli
now the angular momentum conservation law,

q [b`Sa]1Dtba50, ~5.5!

we conclude that the spin current is separately conserve
full agreement with Eq.~5.3!.

Summarizing, the teleparallel gravity can consisten
couple either to a spinless matter or to a matter with a c
served spin tensor. Since, for example, the Dirac spinor fi
does not have such properties, the teleparallel descriptio
gravity is not applicable to that case.

‘‘New general relativity’’

The ‘‘new general relativity’’@1,2,12–14# model is de-
fined by choosing the coupling constants as follows:
6-5
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a1521, a252, a35”
1

2
. ~5.6!

With this choice, the above inconsistency problem
avoided.

Indeed, now we havea35” 0, and hence Eq.~4.13! re-
duces to the meaningful equation for the axial trace of t
sion:

dP2eac~Ta`P!5
3k

2a3
eacSa . ~5.7!

The right-hand side, which represents the antisymmetric
of the energy-momentum current, can be nontrivial now.

A different type of inconsistency which arises for th
model was first noticed by Kopczyn´ski @6# who has shown
the existence of an ‘‘extra symmetry’’ of the Lagrangia
which deforms the coframe~without touching the connec
tion! in such a way that the axial trace remains invaria
Such a symmetry makes the theory physically nonpredicta
because torsion is not determined uniquely by the field eq
tions. Later, Nester@7# clarified that point by establishing
conditions under which such a hidden symmetry can aris

VI. CONFORMAL TRANSFORMATIONS IN
TELEPARALLEL GRAVITY

Conformal transformation in gravity is usually understo
as the scaling of the line element

ds2→V2ds2, or equivalently, gi j →V2gi j . ~6.1!

The conformal factorV can be an arbitrary function of th
spacetime coordinates. In teleparallel gravity, the ab
transformation is naturally realized as the scaling of the c
rame:

qa→Vqa. ~6.2!

In terms of the componentsqa5q i
adxi , the conformal

transformation reads

q i
a→Vq i

a , and accordinglygi j 5q i
aq j

bgab→V2gi j .
~6.3!

The local metric, which in the case of the orthonorm
frames is equal to the Minkowski metricgab5oabªdiag
(21,11,11,11), is not affected by the scaling. The co
formal transformation of the coframe~6.2! induces the scal-
ing of the volume 4-form,hªq 0̂`q 1̂`q 2̂`q 3̂→V4h.
The dual frame vectorsea evidently transform toV21ea
under Eq.~6.2!.

It is natural to assume that the local linear connect
Gb

a is conformally invariant. This is what we encounter
the realization of conformal symmetry in the Poincare´ gauge
gravity @15–17#; see also the discussion in@18#. Then we
conclude that the Weitzenbo¨ck conditions~3.1! and~3.2! are
not changed by the conformal transformation. Conseque
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Eq. ~6.2! leaves the fundamental structure of the telepara
gravity untouched, and it describes a map between the
ferent teleparallel models.

Unlike curvature and nonmetricity, the torsion 2-for
~which plays the role of the gauge field strength in t
teleparallel theory! transforms in a nontrivial way under th
conformal scaling. Under the action of Eq.~6.2!, we find

Ta5Dqa→VTa1dV`qa. ~6.4!

As a result, the torsion trace 1-form changes asT→VT
23dV, and hence only the second part of torsion~2.1! has
the nontrivial transformation property

(2)Ta→V (2)Ta1dV`qa, ~6.5!

whereas the two other irreducible parts of torsion, given
Eqs.~2.2! and ~2.3!, transform covariantly:

(1)Ta→V (1)Ta, (3)Ta→V (3)Ta. ~6.6!

Accordingly, the class of models~3.4!, with a vanishing cou-
pling constanta250, will display the proper conformal be
havior in the sense that the teleparallel Lagrangian is
scaled as

V→V2V. ~6.7!

Notice that, since the action is changed, it is thereforenot
conformal invariant.

We can use the general Lagrange-Noether machinery@8#
developed for MAG to derive the corresponding propert
of an arbitrary model with a proper conformal behavior. L
us consider a model with the most general LagrangianL
5L(c,Dc,gab ,qa,Ga

b,Ta) for an arbitrary matter fieldc
interacting with the teleparallel gravitational field. Under t
action of the above defined~infinitesimal! conformal trans-
formation, the Lagrangian changes by

dL5dqa`Sa1dc`
]L

]c
1dFdqa`

]L

]Ta
1dc`

]L

]DcG .

~6.8!

Here, we took into account the conformal invariance of t
metric and connection,dgab50 and dGa

b50. Suppose
now that the matter field and the Lagrangian have the pro
conformal behavior in the sense that, under the infinitesim
rescaling (V511v), we have

dc5kvc, dL5,vL, ~6.9!

with the numbersk and, giving the conformal weight of the
matter field and of the Lagrangian, respectively. Substitut
this into Eq.~6.8!, we find the two identities:

qa`
]L

]Ta
1kc`

]L

]Dc
50, ~6.10!

,L2qa`Sa1qa`D
]L

]Ta
2Ta`

]L

]Ta
6-6
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2Dc`
]L

]Dc
2k

dL

dc
50. ~6.11!

These arise, as usual@8#, by considering the terms propo
tional to v anddv separately.

Specializing now to the case of the purely gravitation
LagrangianL5V, which does not depend onc and has the
conformal weight,52 @see Eq.~6.7!#, we obtain the two
identities

qa`
]V

]Ta
50, 2V5qa`

]V

]qa
1Ta`

]V

]Ta
. ~6.12!

Turning to the teleparallel model~3.4! under consideration
we can verify explicitly that these identities are indeed va
for the casea250 ~note thatHa52]V/]Ta).

Every extra invariance of the Lagrangian means that th
is a certain arbitrariness in the classical solutions of the fi
equations. In particular, the above analysis shows that
solutions of the teleparallel models witha250 can only be
determined up to an arbitrary scale factorV of the coframe
field. Correspondingly, in order to have a predictable telep
allel theory, we will mainly confine ourselves to the class
Lagrangians witha25” 0.

VII. SPHERICAL SYMMETRY AND GEOMETRIC
INVARIANTS

Let us now proceed with the analysis of the classical
lutions of the general teleparallel model. As a first step,
naturally turn our attention to the compact object configu
tions, and specifically to the case of spherical symmetry.
worthwhile to note that such a study was never performe
full generality for the models with the three arbitrary co
pling constantsa1 ,a2 ,a3. A partial analysis was done in@2#.

As usual in the study of exact solutions, we have t
complementary aspects. The first one concerns the co
nient choice of the local coordinates and of the correspo
ing ansatz for the dynamical fields. The second aspect i
provide the invariant characterization of the resulting geo
etry. Roughly speaking, the choice of an ansatz helps to s
the field equations more easily, whereas the invariant
scription provides the correct understanding of the phys
contents of a solution.

We look for a spherically symmetric solution with the lin
element

g52A2dt21B2~dr21r 2du21r 2 sin2udf2!. ~7.1!

The two functionsA5A(r ) andB5B(r ) depend on the ra
dial variabler. It is, however, not so trivial to come up wit
the ansatz for a tetrad. A convenient choice reads

q 0̂5Adt, q 1̂5Bdr, q 2̂5Brdu, q 3̂5Br sinudf.
~7.2!

In addition, for the~non-Riemannian! connection we choose

G2
152G1

252du, G3
152G1

352sinudf,
04401
l
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G3
252G2

352cosudf. ~7.3!

It is easy to see that Eq.~7.3! is the pure gauge configuration
and the curvature is indeed vanishing,Rb

a5dGb
a1Gg

a

`Gb
g50. One can certainly perform a linear transform

tion which yields the Weitzenbo¨ck gauge, but the resulting
tetrad ansatz becomes somewhat obscure, see@19#, e.g. This
point demonstrates the convenience of the metric-affine
proach, which offers a greater flexibility in the choice of th
ansatz for a solution.

Hereafter, derivatives with respect to the radial coordin
will be denoted by a prime. Although the curvature is ze
the torsion of the configuration~7.2!,~7.3! is nontrivial and
reads

T0̂52
A8

AB
q 0̂`q 1̂, T2̂5

B8

B2
q 1̂`q 2̂, T3̂5

B8

B2
q 1̂`q 3̂.

~7.4!

Correspondingly, the irreducible pieces of torsion are giv
by

(1)Ta52
~A8B2B8A!

3AB2
~2d 0̂

a
q 0̂`q 1̂1d 2̂

a
q 1̂`q 2̂1d 3̂

a
q 1̂

`q 3̂!, ~7.5!

and

(2)Ta5
~A8B12B8A!

3AB2
~2d 0̂

a
q 0̂`q 1̂1d 2̂

a
q 1̂`q 2̂1d 3̂

a
q 1̂

`q 3̂!. ~7.6!

The axial torsion vanishes identically:(3)
Ta50.

The above ansatz is clearly a coordinate- and fram
dependent statement. In order to have a correct underst
ing of the resulting solution, we need to construct invaria
of the curvature and torsion. The total~Riemann-Cartan! cur-
vature is identically zero in the teleparallel gravity. Howev
the Riemanniancurvature of the Christoffel connection fo
the metric~7.1! is nontrivial. In particular, computation o
the Weyl 2-form yields

W̃0̂1̂5
W

3
q 0̂`q 1̂, W̃0̂2̂52

W

6
q 0̂`q 2̂,

W̃0̂3̂52
W

6
q 0̂`q 3̂, ~7.7!

W̃1̂2̂52
W

6
q 1̂`q 2̂, W̃3̂1̂52

W

6
q 3̂`q 1̂,

W̃2̂3̂5
W

3
q 2̂`q 3̂, ~7.8!

with
6-7
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W5
r

AB F1

r S A

BD 8G8. ~7.9!

The components of this 2-form represent the Weyl ten
W̃ab5 1

2 Cmn
ab qm`qn. The Weyl quadratic invariant thu

reads

W̃ab` * W̃ab5
W2

3
h, ~7.10!

and consequently we can consistently use Eq.~7.9! for the
description of the resulting geometry.

Besides the Riemannian Weyl tensor, the spacetime
ometry is naturally characterized by the quadratic invaria
of the torsion. For the spherically symmetric configuratio
~7.4!, we have explicitly

Ta` * Ta5
1

B2 F S A8

A D 2

22S B8

B D 2Gh. ~7.11!

These two invariants—the Riemannian curvature and
quadratic torsion—provide the sufficient tools for unde
standing the contents of the classical solutions.

VIII. COUPLED GRAVITATIONAL AND
ELECTROMAGNETIC FIELDS

As we discovered above, the material sources with s
may lead to certain inconsistencies in the framework
teleparallelism. Correspondingly, in order to be on the s
side, we will limit ourselves to the case of the spinless ma
when the teleparallel gravity appears to be totally applica
Of all the possible spinless matter, the Maxwell field clea
represents a very interesting and physically important ca

Accordingly, in our study of the spherically symmetr
solutions, we will investigate the case when matter is rep
sented by the electromagnetic field. The spin current of
electromagnetic field is trivial, whereas its energy mom
tum reads

Sa5
l

2
@~eacF !` * F2~eac * F !`F#. ~8.1!

Here, the electromagnetic vacuum constant~the ‘‘vacuum
impedance’’!

l5A«0

m0
, ~8.2!

is defined in terms of the electric«0 and magneticm0 con-
stants of the vacuum.

Using the standard spherically symmetric ansatz for
electromagnetic potential 1-form,

A5
f

A
q 0̂5 f dt, ~8.3!

with f 5 f (r ), we have for the field strength
04401
r,
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F5dA52
f 8

AB
q 0̂`q 1̂, * F5

f 8

AB
q 2̂`q 3̂. ~8.4!

Then, we derive the Maxwell equation:

d * F5
1

r 2B3

d

dr H r 2B

A
f 8J q 1̂`q 2̂`q 3̂50. ~8.5!

On the other hand, a direct computation yields for t
left-hand side of the teleparallel gravitational field equatio

DH 0̂2E0̂5
~U01U122U2!

6kB2
q 1̂`q 2̂`q 3̂, ~8.6!

DH 1̂2E1̂5
U1

6kB2
q 0̂`q 2̂`q 3̂, ~8.7!

DH 2̂2E2̂5
~U22U1!

6kB2
q 0̂`q 3̂`q 1̂, ~8.8!

DH 3̂2E3̂5
~U22U1!

6kB2
q 0̂`q 1̂`q 2̂. ~8.9!

Here, we have denoted

U0ª
2

ABr2

d

dr H ABr2F ~4a12a2!
A8

A
22~2a11a2!

B8

B G J ,

~8.10!

U1ª
4

r S ~a12a2!
A8

A
2~a112a2!

B8

B D2~2a11a2!S A8

A D 2

22~a112a2!S B8

B D 2

14~a12a2!
A8

A

B8

B
, ~8.11!

U2ª
2

ABr3

d

dr H ABr3F ~a12a2!
A8

A
2~a112a2!

B8

B G J .

~8.12!

Substituting Eq.~8.4! into Eq. ~8.1!, we get explicitly the
components of the electromagnetic energy-momentum
rent 3-form:

S 0̂52
l

2 S f 8

ABD 2

q 1̂`q 2̂`q 3̂, ~8.13!

S 1̂5
l

2 S f 8

ABD 2

q 0̂`q 2̂`q 3̂, ~8.14!

S 2̂52
l

2 S f 8

ABD 2

q 0̂`q 3̂`q 1̂, ~8.15!

S 3̂52
l

2 S f 8

ABD 2

q 0̂`q 1̂`q 2̂. ~8.16!
6-8



w
in

t i
d.
,

th
s
rc

-

y,

s

m
e

-

ere

the
ee

lly

ns,
n.

METRIC-AFFINE APPROACH TO TELEPARALLEL GRAVITY PHYSICAL REVIEW D67, 044016 ~2003!
In the presence of a nontrivial electromagnetic field,
need, in addition to the above geometric invariants, an
variant description of the matter source configuration. As i
well known, there are two invariants of the Maxwell fiel
For the spherical ansatz~8.4!, one of the invariants is trivial
F`F[0, whereas the other reads

F` * F52S f 8

ABD 2

h. ~8.17!

IX. ANALYZING THE FIELD EQUATIONS

The Maxwell equation~8.5! can be straightforwardly in-
tegrated. This yields

f 85
qA

r 2B
, ~9.1!

with q an integration constant. Its value is determined by
total electric chargeQ of the source which is calculated a
usual from the integral over the 2-sphere around the sou

Q5E
S2

l * F5E
S2

l
f 8

AB
q 2̂`q 3̂5E

S2

lq sinudu`df

54plq. ~9.2!

Inserting Eq.~9.1! into Eq. ~8.17!, we find for the Maxwell
invariant

F` * F52
q2

r 4B4
h. ~9.3!

From Eqs.~8.6!–~8.9! and Eqs.~8.13!–~8.16! we find,
after making use of Eq.~9.1!, and of some simple rearrange
ments:

U052
6klq2

r 4B2
, U15

3klq2

r 4B2
, U250. ~9.4!

Using Eq.~8.10! in Eq. ~9.4!, we obtain the equation

d

dr H ABr2F ~4a12a2!
A8

A
22~2a11a2!

B8

B G J 5
23klq2A

r 2B

523klq f8, ~9.5!

where we have used Eq.~9.1! in the last step. Consequentl
the first integral is straightforwardly obtained:

~4a12a2!
A8

A
22~2a11a2!

B8

B
5

k123klq f

r 2AB
, ~9.6!

with k1 an integration constant. Analogously, from Eq
~8.12! and ~9.4! we find another first integral:

~a12a2!
A8

A
2~a112a2!

B8

B
5

k2

r 3AB
, ~9.7!
04401
e
-

s

e

e:

.

with k2 a second integration constant.
Let us introduce a new variable by

wªk123klq f . ~9.8!

Differentiating this and using Eq.~9.1!, we find the equation

w852
3klq2A

r 2B
. ~9.9!

Supposea1a25” 0 ~the special casea1a250 will be consid-
ered separately!. Then, combining Eqs.~9.6! and ~9.7!, we
finally get the system of first order equations

A8

A
5

1

9a1a2r 2AB
F ~a112a2!w22~2a11a2!

k2

r G ,
~9.10!

B8

B
5

1

9a1a2r 2AB
F ~a12a2!w2~4a12a2!

k2

r G .
~9.11!

Together with Eq.~9.9!, these equations comprise a syste
of three first order ordinary differential equations for th
three unknown functionsA,B, f . As an immediate conse
quence, the sum of Eqs.~9.10! and ~9.11! yields

~AB!85
1

9a1a2r 2 F ~2a11a2!w2~8a11a2!
k2

r G .
~9.12!

For the sake of completeness, we should recall that th
is one more equation, which is derived by using Eq.~8.11! in
Eq. ~9.4!:

3klq2

r 4B2
5

4

r S ~a12a2!
A8

A
2~a112a2!

B8

B D2~2a11a2!

3S A8

A D 2

22~a112a2!S B8

B D 2

14~a12a2!
A8

A

B8

B
.

~9.13!

However, this last equation is satisfied automatically for
solutions~9.9!–~9.11! of the system. The easiest way to s
this is to substitute Eqs.~9.10!,~9.11! into Eq. ~9.13!. We
then find

~a112a2!w224~2a11a2!
k2

r
w12~8a11a2!

k2
2

r 2

29a1a2~4k2AB23klq2A2!50. ~9.14!

Now, if we differentiate this equation, the result is identica
zero by virtue of Eqs.~9.9!, ~9.12! and ~9.10!. However,
since not only the equation itself vanishes for the solutio
but also its derivative, we still have to keep this equatio
Ultimately it will turn out that Eq.~9.14! imposes certain
relation between the various integration constants.
6-9
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X. CONFORMALLY FLAT SOLUTIONS

Let us study a very special case, when the metric fu
tions are proportional. Namely,

A5a0B, ~10.1!

with a constant coefficienta0. Then, the metric~7.1! de-
scribes the conformally flat spacetime geometry. The pai
equations~9.6! and ~9.7! reduce to the system

3a2

B8

B
52

w

a0r 2B2
, ~10.2!

3a2

B8

B
52

k2

a0r 3B2
. ~10.3!

Notice that the Lagrangian with the vanishing coupling co
stant a250 belongs to the class of conformally covaria
teleparallel gravity models~see Sec. VI!. As a result, the
overall factor of the tetrad, and hence of the metric, is un
termined. This is manifested in our spherically symmet
case as well: If we puta250 in Eqs.~10.2!,~10.3!, we find a
vanishing electromagnetic fieldw50, whereas the confor
mal metric factorB remains completely arbitrary.

We will assume that the teleparallel model isnot confor-
mally covariant. Thena25” 0, and the system~10.2!,~10.3!
yields the explicit electromagnetic function

w5
k2

r
. ~10.4!

Substituting this, together with Eq.~10.1!, into Eq.~9.9!, we
get

a05
k2

3klq2
. ~10.5!

Furthermore, the integration of Eq.~10.3! yields

B25
klq2

a2r 2
1k3 . ~10.6!

The new integration constant is fixed to be equal to zerok3
50, which follows from Eq.~9.13! after all the above is
substituted. Thus, we obtain finally the conformally flat s
lution

A25
k2

2

9klq2a2r 2
, B25

klq2

a2r 2
. ~10.7!

In order to understand this spacetime geometry, we h
to compute the corresponding Riemannian curvature~recall
that thetotal Riemann-Cartan curvature is identically zero!.
A direct calculation yields

R̃0̂1̂5
a2

klq2
q 0̂`q 1̂, R̃2̂3̂52

a2

klq2
q 2̂`q 3̂, ~10.8!
04401
-

f

-

-
c

-

ve

with all other components of the curvature 2-form trivial. A
we see, the curvature is everywhere regular, and the Riem
tensor has the double-duality property,

R̃ab
gd5

1

4
hgdrshabmnR̃rs

mn. ~10.9!

The Riemannian Weyl tensor vanishes identically, as it
clearly seen from Eq.~7.8!. This is consistent with the fac
that the metric is conformally flat. Geometrically, the resu
ing spacetime is the direct product of the two 2-dimensio
spaces of constant curvature, a hyperbolic space an
sphere. A solution of that type was originally described
Bertotti and Robinson@10,11# in the framework of genera
relativity theory.

In the teleparallel gravity, we have torsion as the ba
field variable. It is straightforward to see that in the gener
ized Bertotti-Robinson solution~10.7!, torsion is also con-
stant with the quadratic invariant~7.11! given by

Ta` * Ta52
a2

klq2
h. ~10.10!

Note that the constant magnitude of the torsion is again
scribed by the same combination of the coupling consta
which determine the constant Riemannian curvature~10.8!
of that solution.

The electromagnetic invariant~9.3!, when using Eq.
~10.7!, demonstrates that the source is likewise represen
by the ‘‘constant’’ electromagnetic field configuration:

F` * F52S a2

klqD 2

h. ~10.11!

Vanishing coupling constanta1Ä0

Before we proceed to consider the general case, we h
to analyze the special case whena1a250; see Sec. IX.
Whena250, we have the conformally covariant theory, a
consequently, the conformal factor of the metric remains
determined. We will not consider such models which la
physical predictability.

When, however,a150, the pair of equations~9.6! and
~9.7! reduce to the system

A8

A
12

B8

B
52

w

a2r 2AB
, ~10.12!

A8

A
12

B8

B
52

k2

a2r 3AB
. ~10.13!

This system yields the explicit electromagnetic function

w5
k2

r
. ~10.14!

Substituting this into Eq.~9.9!, we find the proportionality of
the metric functions:
6-10
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B5
3klq2

k2
A. ~10.15!

This brings us then back to the results of the previous s
section.

XI. UNCHARGED SOLUTIONS

From now on, we will confine our attention to the gene
teleparallel models witha1a25” 0. Let us first obtain the con
figurations with zero charge,q50. Then, from Eq.~9.8! we
havew5k1, and Eq.~9.12! can be immediately integrated

AB5
1

9a1a2r F2~2a11a2!k11~8a11a2!
k2

2r G1k3 .

~11.1!

When we substitute this into Eq.~9.14!, we find the value of
the new integration constant explicitly:

k35
~a112a2!k1

2

36a1a2k2
. ~11.2!

A. Special case: 8a1¿a2Ä0

Suppose the coupling constants satisfy

8a11a250. ~11.3!

Then, Eqs.~11.1! and ~11.2! yield

AB5
k1

12a1
S 5k1

8k2
2

1

r D . ~11.4!

Using this in Eq.~9.10!, we derive the ordinary differentia
equation:

A8

A
5

2k2

k1r 2S 12

5k1

8k2

1

r
2

5k1

8k2

D . ~11.5!

The integration is straightforward, and the final solution
the metric function can be written in the form

A25A0
2e25r 0/2r S r 0

r
21D 5/2

, ~11.6!

B25B0
2e5r 0/2r S r 0

r
21D 21/2

. ~11.7!

Here,A0 ,B0 and r 0 are arbitrary constants. For the sake
completeness, let us give their relation to the original~cou-
pling and integration! constants:

r 058k2/5k1 , A0B055k1
2/96k2a1 .

This spacetime isnot a black hole. The curvature tensor is
singular atr 50 and atr 5r 0, so although the metric com
ponentg0052A2 vanishes at the finite radiusr 5r 0, this is
04401
b-

r

f

not a horizon. Indeed, substitutingA andB into Eq.~7.8!, we
get the Riemannian Weyl curvature:

W52
r 0~48r 32136r 2r 01110rr 0

2225r 0
3!

4r 6B0
2e5r 0/2r~r 0 /r 21!3/2

. ~11.8!

It is easy to see that it diverges atr 5r 0. Analogously, for the
torsion invariant~7.11!, we find

Ta` * Ta

5
r 0

2~172r 42564r 3r 01687r 2r 0
22370rr 0

3175r 0
4!

16r 8B0
2e5r 0/2r~r 0 /r 21!7/2

h.

~11.9!

Thus, from both Riemannian and teleparallel viewpoints,
resulting geometry is singular atr 50 and atr 5r 0.

B. General case: 8a1¿a2Ä” 0

When 8a11a25” 0, we can use Eq.~11.2! to rewrite Eq.
~11.1! as

AB5
k1

2~8a11a2!

18a1a2k2
S k2

k1r
2

a

2 D S k2

k1r
2

b

2 D , ~11.10!

where we have introduced the constant parameters

a5
2~2a11a2!1A218a1a2

8a11a2
, ~11.11!

b5
2~2a11a2!2A218a1a2

8a11a2
. ~11.12!

In particular, we can easily see that

a1b

2
5

2~2a11a2!

8a11a2
,

ab

4
5

a112a2

2~8a11a2!
.

~11.13!

From Eqs.~11.11!,~11.12! we conclude that the producta1a2
must be negative. Substituting Eq.~11.10! into Eq.~9.10!, we
find the equation

A8

A
52

k2

k1r 2 F a

k2

k1r
2

a

2

1
b

k2

k1r
2

b

2
G . ~11.14!

Integration yields

A5A0S k2

k1r
2

a

2 D aS k2

k1r
2

b

2 D b

. ~11.15!

Using then Eq.~11.10!, we find

B5B0S k2

k1r
2

a

2 D 12aS k2

k1r
2

b

2 D 12b

. ~11.16!
6-11
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The integration constants are originally related byA0B0

5k1
2(8a11a2)/18a1a2k1. However, taking into account th

possibility of scaling both the time and the radial coordin
by two arbitrary factors, the constantsA0 and B0 can have
any real value. In order to simplify the notation, it will b
convenient to introducem5k2 /k1.

Performing a differentiation in Eq.~7.8!, we find the non-
trivial Riemannian Weyl curvature:

W5
mw

r 6B0
2 S m

r
2

a

2 D 2a24S m

r
2

b

2 D 2b24

, ~11.17!

where we denoted the polynomial

wª

1

8
$32m3~a1b!~a1b21!14m2r @~a1b!„322~a

1b!216ab…112ab#12mr2@8ab~2ab1a1b21!

2~a1b!2#13r 3ab~a1b24ab!%

5
23a2

~8a11a2!2
@a1~r 24m!~3r 228mr18m2!12a2~r

2m!2~3r 28m!#. ~11.18!

Analogously, for the quadratic torsion invariant~7.11!, we
find

Ta` * Ta5
m2T
r 6B0

2S m

r
2

a

2 D 2a24S m

r
2

b

2 D 2b24

h,

~11.19!

where we have another polynomial defined as

Tªm2@3~a1b!218~12a2b!#12mr@~a1b!22~a1b!

3~213ab!14ab#1r 2@~a1b!2/21ab„3ab22~a

1b!…#5
12

~8a11a2!2
@a1

2~r 24m!212a2
2~r 2m!2#.

~11.20!

XII. COUPLING CONSTANTS, INVARIANTS, AND
SINGULARITIES

The values of the constantsa and b are crucial for un-
derstanding the spacetime geometry of the solutions obta
above, since they determine the behavior of the metric fu
tions ~11.15! and ~11.16!. A straightforward analysis of Eqs
~11.11!,~11.12! shows that we can simplify those formulas
the following equivalent ones:

a5
2~a11A22a1a2!

4a11A22a1a2

, ~12.1!

b5
2~a12A22a1a2!

4a12A22a1a2

. ~12.2!
04401
e
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Moreover, one can eliminateA22a1a2 from Eqs.
~12.1!,~12.2!, and express one constant directly in terms
the other:

a5
425b

524b
, or equivalently, b5

425a

524a
. ~12.3!

From these simple derivations, we can immediately estab
a number of important consequences. Sincea1a2,0 ~in or-
der to have real solutions!, we have to analyze the two case
for the original coupling constants:~a! a1.0,a2,0, and~b!
a1,0,a2.0.

For a1.0,a2,0, we see from Eq.~12.1! that a is posi-
tive. Moreover,

1

2
,a,2 for all a1 ,a2 . ~12.4!

At the same time, Eq.~12.2! shows that

0,b,
1

2
for a1.22a2 , ~12.5!

b.2 for a1,2a2/8, ~12.6!

b,0 for 2a2/8,a1,22a2 . ~12.7!

For a1522a2, we see thatb50, whereas whena15
2a2/8, we return to the exceptional case considered in S
XI A ~then,b formally diverges!.

For a1,0,a2.0, we analogously find from Eq.~12.2!
that nowb is positive,

1

2
,b,2 for all a1 ,a2 , ~12.8!

whereas Eq.~12.1! yields

0,a,
1

2
for a1,22a2 , ~12.9!

a.2 for a1.2a2/8, ~12.10!

a,0 for 22a2,a1,2a2/8. ~12.11!

For a1522a2, we see thata50, whereas whena15
2a2/8, we again obtain the exceptional case considered
Sec. XI A ~thena becomes infinite!.

It is important to find the zeros of the metric coefficie
g0052A2, since these values determine the position o
possible horizon. For the solutions under considerationA
always has one or two zeros:~a! at r 52m/a when a.0,
and/or~b! at r 52m/b if b.0. The function~11.15! would
not have zeros only in the case whenboth a<0 andb<0,
but this never happens according to the above analysis.

In order to decide whether a zero ofg00 corresponds to a
horizon, we have to study the behavior of the curvature a
torsion invariants at that value of the radial coordinate. A
6-12
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is clear from Eq.~11.17!, the Riemannian curvature diverge
at the zeros ofA, unless the polynomial~11.18! also vanishes
there. Hence, it is important to find the value of the polyn
mial ~11.18! at the zeros of the functionA. A direct substitu-
tion yields

w~2m/a!52m3~a2b!2
2a223a11

a2
,

~12.12!

w~2m/b!52m3~a2b!2
2b223b11

b2
.

Sincea can never be equal tob ~for any nonzero coupling
constantsa1 ,a2), we conclude from Eq.~12.12! that the
polynomial w can have common zeros withA only when
either a or b is equal to 1 or 1/2. Equations~12.1!,~12.2!
show that this is possible only when 2a11a250 ~then either
a or b is equal to 1!, or when one of the two constantsa1 or
a2 vanishes.

Analogously, for the torsion quadratic invariant we find

T~2m/a!5m2~a2b!2
3a224a12

a2
,

T~2m/b!5m2~a2b!2
3b224b12

b2
.

~12.13!

As one can easily see, these quantities are nonvanishin
any choice of the constantsa,b. Correspondingly, the tor
sion invariant is always singular at the zeros ofg00 in all
teleparallel gravity models.

A. General relativity limit: Schwarzschild black hole

As we have mentioned in Sec. V, the specific choice~5.1!
of the coupling constants gives rise to a teleparallel mo
which is called the teleparallel equivalent of GR. Accor
ingly, when a1521 and a252, we find from Eqs.
~11.11!,~11.12! that

a521, b51. ~12.14!

Consequently, the metric functions reduce to

A5A0S m

r
2

1

2D S m

r
1

1

2D 21

, B5B0S m

r
1

1

2D 2

.

~12.15!

Furthermore, the polynomial~11.18! now reads

w52
3r

2
~2m2r !2526r 3S m

r
2

1

2D 2

, ~12.16!

and consequently, the Riemannian Weyl curvature is
scribed by
04401
-

for

el
-

e-

W52
6mr3

B0
2~m1r /2!6

. ~12.17!

The most important observation is that the Riemannian c
vature is thus regular at the zeror 52m of the metric func-
tion A(r ), which means that we have a horizon here. T
resulting geometry then describes the well known Schwa
child black hole with the horizon atr 52m. The singularity
at r 522m is the usual point-mass source singularity at t
origin.

Since we are dealing with teleparallel gravity, it is nece
sary also to analyze the behavior of torsion. A direct sub
tution of Eq.~12.14! into Eqs.~11.19!,~11.20! yields

Ta` * Ta5
m2~3r 228mr18m2!r 2

B0
2~m1r /2!6~m2r /2!2

h. ~12.18!

As we see, the torsion invariant diverges not only at
origin r 522m, but also at the Schwarzschild horizonr
52m. Unlike the ‘‘regularizing’’ effect of the polynomial
~12.16! in the curvature invariant, the analogous polynom
in the numerator of Eq.~12.18! does not help to remove th
singularity of the torsion invariant.

We emphasize this fact as the main difference between
standard general relativistic description of the Schwarzsc
black hole and its teleparallel counterpart. The horizon i
regular surface from the viewpoint of the Riemannian geo
etry, but it is singular from the viewpoint of teleparallel gra
ity.

B. No black holes in teleparallel gravity?

Returning to the case of the general teleparallel Lagra
ian, we may ask if a~class of! model exists with a specific
choice of the coupling constants for which the above so
tions describe a black hole. As we see from Eq.~11.17!, the
curvature is singular at both zeros of the metric functionA,
i.e., atr 52m/a and at r 52m/b, when

a,2 and b,2. ~12.19!

Correspondingly, recalling the results of the beginning of
current section, the teleparallel Lagrangians withua1u
.ua2u/8 do not have spherically symmetric solutions d
scribing black holes.

There is, in principle, a possibility that the configuratio
with

a.2 or b.2 ~12.20!

may turn out to be black holes. Note that botha and b
cannot be simultaneously greater than 2, as was shown a
in this section. When these conditions are satisfied, the
vature becomes regular either atr 52m/a or at r 52m/b.
However, the problem is that the corresponding surfacer
52m/a or r 52m/b) would have an infinite area. This i
different from what we usually expect from a horizon su
face.
6-13
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Consequently, we come to the conclusion thatfor all pos-
sible values of the coupling constants a1 and a2—except for
the special case a1521 and a252—the uncharged spher
cally symmetric solutions~11.6!,~11.7!, as well as Eqs.
~11.15!,~11.16! of the general teleparallel model~3.4!, do not
describe black hole configurations. In this sense, the
called teleparallel equivalent of GR is distinguished amo
all other teleparallel models as the only theory which adm
black holes.

XIII. CHARGED SOLUTIONS: GENERAL RELATIVITY
LIMIT

Let us now return to the charged solutions determined
the system~9.9!–~9.11!. In view of the above result, one ca
expect that the most physically interesting case, within
class of the general teleparallel theories~3.4!, corresponds to
the teleparallel equivalent of GR. Accordingly, we will co
fine our attention now to the casea1521,a252, or equiva-
lently to Eq.~12.14!. Then, Eqs.~9.11!,~9.12! are reduced to

A8

A
52

w

6r 2AB
, ~13.1!

B8

B
5

1

6r 2AB
S w2

2k2

r D , ~13.2!

~AB!852
k2

3r 3
. ~13.3!

The last equation is easily integrated, yielding

AB5
1

6 S k2

r 2
1k3D , ~13.4!

wherek3 is a new integration constant. Combining Eqs.~9.9!
and ~13.1!, we can eliminateB to find

A8A5
w8w

18klq2
. ~13.5!

This immediately yields the first integral

A25
w21k4

18klq2
. ~13.6!

The new integration constantk4 can have any sign, as well a
be equal to zero. Each case will be studied separately be
Substituting Eqs.~13.6! and ~13.4! into the additional equa
tion ~9.14!, we find the following relation between the inte
gration constants:

4k2k35k4 . ~13.7!

The final step is to find the functionw(r ) explicitly. Substi-
tuting Eqs.~13.6! and ~13.4! into Eq. ~9.9!, and taking into
account the condition~13.7!, we obtain the differential equa
tion
04401
o-
g
s

y

e

w.

w852
k41w2

k2@11k4~r /2k2!2#
, ~13.8!

The form of the solution depends crucially on the value
k4.

A. Negative constantk4

For negative integration constant,k452uk4u, the solution
of Eq. ~13.8! reads

w~r !5Auk4u
@k5~r 1r 0!21~r 2r 0!2#

@k5~r 1r 0!22~r 2r 0!2#
, ~13.9!

wherek5 is a new integration constant, and we denoted

r 0ª
2k2

Auk4u
. ~13.10!

Substituting Eq.~13.9! into Eqs.~13.6! and ~13.4!, we find
the metric functions:

A25
2k5uk4u

9klq2 F r 22r 0
2

k5~r 1r 0!22~r 2r 0!2G 2

, ~13.11!

B25
klq2

32k5r 0
2r 4

@k5~r 1r 0!22~r 2r 0!2#2.

~13.12!

In order to have a correct signature of the metric~7.1!, we
must assume thatk5.0.

As we see, the metric coefficientg0052A2 has zeros at
r 56r 0. These values can qualify for the positions of a h
rizon, and in order to clarify this we have to study the b
havior of the geometric and electromagnetic invariants. T
quadratic torsion invariant~7.11! is as follows:

Ta` * Ta5
128k5r 0

4r 2Ť
klq2~r 22r 0

2!2@k5~r 1r 0!22~r 2r 0!2#4
h,

~13.13!

where the polynomial reads

Ť5k5
2~3r 224rr 012r 0

2!~r 1r 0!412k5~3r 222r 0
2!~r 22r 0

2!2

1~3r 214rr 012r 0
2!~r 2r 0!4. ~13.14!

On the other hand, for the Maxwell invariant~9.3! we find

F` * F52
1024k5

2r 0
4r 4

~klq!2@k5~r 1r 0!22~r 2r 0!2#4
h.

~13.15!

As far as the Riemannian curvature is concerned, everyth
becomes more transparent if we make the coordinate tr
formation defined by
6-14
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r5Aklq2

8k5
Fk5~r 1r 0!22~r 2r 0!2

2r 0r G , ~13.16!

t̄ 52
1

3c~k521!
A2k5uk4u

klq2
t. ~13.17!

Then, the line element transforms into the standard Reiss
Nordström form:

ds252h2c2d t̄21
1

h2
dr21r2~du21sin2udf2!,

~13.18!

with

h2512
2Gm

c2r
1

GQ2

4p«0c4r2
. ~13.19!

The mass parameter is here introduced by

Gm

c2
5~k511!Aklq2

8k5
, ~13.20!

whereas the chargeQ of the source is given, as usual, by E
~9.2!.

It is easy to see that the valuesr 56r 0 correspond to the
two zeros of the metric functionh2(r). As a result, we con-
clude that these values give the position of the horizon
cause both the Maxwell invariant~13.15! and the Riemann-
ian curvature ~as it is well known! are regular there
However, it is remarkable that the torsion~13.13! is again
singular at those surfaces, just like in the uncharged solut
considered earlier.

B. Positive constantk4

For a positive integration constantk45uk4u, the integra-
tion of Eq. ~13.8! is also straightforward, yielding

w~r !5Auk4u
@k5~r 22r 0

2!12rr 0#

@r 22r 0
222k5rr 0#

. ~13.21!

Here, k5 is a new integration constant~which is different
from the constantk5 introduced in the previous subsection!,
and we use the samer 0 as defined in Eq.~13.10!. We then
easily find the metric functions, using Eqs.~13.6! and~13.4!:

A25
~11k5

2!uk4u

18klq2 F r 21r 0
2

r 22r 0
222k5rr 0

G 2

, ~13.22!

B25
klq2

8~11k5
2!r 0

2r 4
@r 22r 0

222k5rr 0#2. ~13.23!

Now, we may notice that the coordinate transformation
04401
er-

-

ns

r5A klq2

2~11k5
2!

F r 22r 0
222k5rr 0

2r 0r G , ~13.24!

t̄ 5
1

3c
A~11k5

2!uk4u

2klq2
t, ~13.25!

again brings the line element to the Reissner-Nordstro¨m form
~13.18!, where this time the mass is introduced via

Gm

c2
52k5A klq2

2~11k5
2!

. ~13.26!

This shows thatk5 should be negative in this case.
We will not give the curvature, torsion, and Maxwell in

variants explicitly, but their qualitative behavior is the sam
as in the previous case: The torsion invariant is again sin
lar on a Riemannian horizon of the corresponding Reissn
Nordström black hole.

C. Vanishing constantk4

For the sake of completeness, it remains to consider
case of vanishing integration constantk450. Then, as fol-
lows from Eq.~13.7!, one should also have eitherk250 or
k350.

1. Case: k4Ä0, k2Ä0

In this case, Eq.~13.8! is easily solved to give

w5
k3r

k5r 21
, ~13.27!

with an arbitrary integration constantk5. Correspondingly,
Eq. ~13.6! and ~13.4! yield

A25
k3

2r 2

18klq2~k5r 21!2
, ~13.28!

B25
klq2~k5r 21!2

2r 2
. ~13.29!

The coordinate transformation

r52Aklq2

2
~k5r 21!, ~13.30!

t̄ 5
k3t

3ck5A2klq2
, ~13.31!

brings the metric to the extremal Reissner-Nordstro¨m line
element
6-15
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ds252S 12

Aklq2

2

r
D 2

d t̄21S 12

Aklq2

2

r
D 22

dr2

1r2~du21sin2udf2!. ~13.32!

2. Case: k4Ä0, k3Ä0

Analogously, Eq.~13.8! is integrated,

w5
k2

r 1k5
, ~13.33!

with an integration constantk5. Then, Eqs.~13.6! and~13.4!
yield the metric functions:

A25
k2

2

18klq2~r 1k5!2
, ~13.34!

B25
klq2~r 1k5!2

2r 4
. ~13.35!

The coordinate transformation

r5Aklq2

2 S 11
k5

r D , ~13.36!

t̄ 5
k2 t

3ck5A2klq2
, ~13.37!

again yields the extremal Reissner-Nordstro¨m metric~13.32!.
In both cases, the torsion diverges atr5Aklq2/2,

whereas this surface appears to be regular from the Riem
ian point of view.

XIV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the general telepara
gravity model within the framework of the MAG theory. A
similar analysis of ‘‘embedding’’ teleparallelism into th
Poincare´ gauge theory was performed in@6# within the
framework of the Lagrangian formalism, and also by us
the Hamiltonian methods in@20,21#. Generalizing the previ-
ous work, we consider the full 3-parameter teleparallel L
grangian withouta priori restricting the coupling constant
a1 ,a2 ,a3. The main motivation for this was to determine th
ys

ys

04401
n-

el

g

-

place and significance of the so-called teleparallel G
equivalent model which is specialized by the values~5.1!. It
is well known that, for obvious reasons, the GR-equival
teleparallel theory is satisfactorily supported by observatio

Our study reveals a qualitative feature which dist
guishes the teleparallel GR equivalent among other mod
The spherically symmetric solutions~charged and un-
charged! describe black hole configurations only for the sp
cial choice ~5.1! of the coupling constants. We have thu
demonstrated that a generic teleparallel model does not
mit black holes. There exists, though, a family of complete
regular solutions which appears to be a direct generaliza
of the Bertotti-Robinson solution.

Another result obtained concerns the behavior of the c
vature and torsion invariants in the general telepara
model. We find that the quadratic torsion invariant display
much worse singularity structure than one could expect fr
the analysis of the Riemannian curvature invariants. In p
ticular, even in the teleparallel GR-equivalent model, t
black hole solutions have torsion singularities on a horiz
surface which is, however, regular from the point of view
the curvature. This striking result raises a question about
geometrical and physical meaning of the torsion singulari
in teleparallel gravity.

Finally, it seems worthwhile to note that, although t
teleparallel GR-equivalent model has a number of nice f
tures which distinguishes it among the general telepara
theories, it still has a consistency problem of coupling
matter with spin to the teleparallel gravitational field. As
matter of fact, one can argue that there is no such prob
because, being a gauge theory of the group of translati
teleparallelism is thus, by definition, related only to t
energy-momentum current. And indeed, teleparallelism tu
out to be completely consistent for the case of spinless m
ter, which is characterized solely by the energy momentu
From this point of view, teleparallelism appears to be n
applicable to matter sources with spin, and our analysis
clearly demonstrated that point.

Note added in proof. The spherically symmetric solution
in teleparallel gravity were also studied in Ref.@22# and Ref.
@23#. Our results do not agree with the latter reference.
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