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Metric-affine approach to teleparallel gravity
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The teleparallel gravity theory, treated physically as a gauge theory of translations, naturally represents a
particular case of the most general gauge-theoretic model based on the general affine group of spacetime. On
the other hand, geometrically, the Weitzeokaspacetime of distant parallelism is a particular case of the
general metric-affine spacetime manifold. These physical and geometrical facts offer a new approach to
teleparallelism. We present a systematic treatment of teleparallel gravity within the framework of the metric-
affine theory. The symmetries, conservation laws and the field equations are consistently derived, and the
physical consequences are discussed in detail. We demonstrate that the so-called teleparallel GR-equivalent
model has a number of attractive features which distinguishes it among the general teleparallel theories,
although it has a consistency problem when dealing with spinning matter sources.
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[. INTRODUCTION metric-affine spacetime after we impose two constraints by
putting curvature and nonmetricity equal to zero. In this
Theories of gravity based on the geometry of distant parsense, teleparallelism can be treated, both physically and
allelism[1-7] are commonly considered as the closest altergeometrically, as a particular case of the general MAG
native to general relativityGR) theory. Teleparallel gravity theory.
models possess a number of attractive features both from the In the present paper we will study teleparallel gravity
geometrical and physical viewpoints. Teleparallelism natuwithin the MAG approach. A similar analysis was previously
rally arises within the framework of the gauge theory of thedeveloped in6] for the Poincaregauge approach. We will
spacetime translation group. Translations are closely relatecbnsider the general class of teleparallel models which are
to the group of general coordinate transformations which uneharacterized by three dimensionless coupling constants. Af-
derlies GR. Accordingly, the energy-momentum current repter recalling some basic facts about MAG in Sec. Il, we
resents the matter source in the field equations of teleparallelerive the field equations of the general teleparallel theory in
gravity, as in GR. Sec. lll. Then in Sec. IV we show that the teleparallel gravity
Geometrically, teleparallel models are described by thenodel can be reduced to an effective Einstein theory with
Weitzenbak spacetime. The latter is characterized by asome modified energy-momentum current as a source. When
trivial curvature and nonzero torsion. The tetrad a co- the coupling constants have specific valigd), the exact
frame field is the basic dynamical variable which can beequivalence between general relativity and teleparallel grav-
treated as the gauge potential corresponding to the group ity is established for spinless sources. However, in Sec. V we
local translations. Then the torsion is naturally interpreted aslemonstrate certain consistency problems for the sources
the corresponding gauge field strength. As a result, a graviwith spin. Among the general teleparallel models, there is a
tational teleparallel Lagrangian is straightforwardly con-class of theories with the proper conformal properties. We
structed, in a Yang-Mills manner, from the quadratic torsiondiscuss the definition of conformal symmetry in teleparallel-
invariants. ism in Sec. VI. Finally, we analyze the spherically symmetric
Teleparallel gravity belongs naturally to the class of thesolutions for general teleparallel gravity coupled to the elec-
metric-affine gravitational theorie@MAG). Quite generally tromagnetic field. We pay special attention to the behavior of
[8], MAG can be understood within the framework of the the (Riemanniai curvature and torsion invariants. This as-
gauge approach for the affine group, a semidirect product gbect was not studied in detail before. The formulation of the
the general linear group and the translation group. The corspherically symmetric problem and its preliminary analysis
responding gauge field potentials are the linear connectioi given in Secs. VII-IX. A number of new solutions is ob-
and the coframe, whereas the curvature and the torsion turmained, both charged and uncharged. In Sec. X we present the
out to be the gauge gravitational field strengths. In additionclass of conformally flat solutions that generalizes the solu-
the metric represents one more fundamental field with theions of Bertotti and Robinson. The corresponding geometry
nonmetricity as the corresponding field strength. appears to be regular from both the Riemannian curvature
From the gauge-theoretic point of view, teleparallel grav-and the teleparallel torsion points of view. The complete set
ity is distinguished among the other MAG models by reduc-of uncharged solutions is presented in Sec. XI. This is done
ing the affine symmetry group to the translation subgroup. Irfor all possible choices of the three coupling constants of
geometric language, teleparallelism arises from the generatleparallel gravity. We analyze in Sec. XlI the correspond-
ing spacetime geometries, and find that the generic solutions
are no black holes. In Sec. XIIl we show that only in the
*On leave from Department of Theoretical Physics, Moscow Stat@bove mentioned general relativity limit, i.e., for the specific
University, 117234 Moscow, Russia. values of the coupling constant$.1), we recover the
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Schwarzschild and the Reissner-Nordstrblack hole con- 1
figurations. This fact can be considered as an argument fa- €uT=Tua™ eaJP=§T““ Nuna - (2.9
voring the choice of the rigid structure of the teleparallel
Lagrangian with the fixed values of the three coupling con-
stants. The analysis of the torsion invariants reveals, how.
ever, that even for the case of the teleparallel equivalent o

the general relativity, the horizon of a black hole represents §onmetricity: D9“=0 andDg,z=0. The Riemannianop-
singular surface for the torsion. This latter fact was not no-€7ators and geometrical objects, constructed from the Christ-

ticed in the literature previously. offfal connectiqn, will be denoted by a tilde. _The g_eneral
Our basic notations and conventions are thosSbfIn f'ifflne connection can f'ilways be decomposed into Riemann-
particular, the signature of the metric is assumed tobe ( 'an @nd post-Riemannian parts,
+,+,+). Spacetime coordinates are labeled by the Latin
indices,i,j, ...=0,...,3(for example,dx'), whereas the
Greek indices,a,B, ...=0,...,3, label the local frame
componentgfor example, the coframe 1-forn¥*). Along
with the coframe 1-forms}®, we will widely use the so-

Given the metriag,z, the Christoffel connectioﬁﬁa is
efined as a unique connection with vanishing torsion and

FBQZFBQ+NBH, (26)

where thedistortion 1-form N, ; can be expressed in terms
of torsion and nonmetricity as

called n-basis of the dual coframes. Namely, we define the 1

Hodge dual such thap:= *1 is the volume 4-form. Further- Nog=—€alTg+ E(eaJeBJTy)ﬁy+ (€[alQp1y) 7
more, denoting bye, the vector frame, we have thaj,

::eaJn: * ﬁa ’ naﬁ::eﬁj Na= * (ﬁa/\ﬁﬁ)v naﬁ'y

=€, | ap, ANA7,5,5:=€4|7,4,. The last expression is thus + EQaﬁ- 2.7

the totally antisymmetric Levi-Civita tensor.

The MAG Lagrangian of the gravitational field is con-
Il. PRELIMINARIES: METRIC-AEFINE APPROACH structed from the forms of curvature, torsion, and nhonmetric-
ity. In [9] the method of irreducible decompositions was ap-
In this section we recall some basic facts concerninglied to the most general quadratic Lagrangian, revealing the
metric-affine geometry in four dimensions. For a more depossibility of reformulating the MAG field equations as an
tailed discussion in arbitrary dimensions, $8k The metric-  effective Einstein equation. Here we will use the results of
affine spacetime is described by the metrig, the coframe  [9] to obtain an analogous reformulation of teleparallel grav-
1-forms 3¢, and the linear connection 1-fornks; “. These ity.
are interpreted as the generalized gauge potentials, while the

corresponding field strengths are the nonmetricity 1-form IIl. FIELD EQUATIONS
Qus=—Dg,p, and the 2-forms of torsioT“=Dd* and
curvatureR, “=dI" 3 “+ T, “AT' 5 7. In the teleparallel theory, we have two geometrical con-

In our analysis of the teleparallel gravity we will heavily straints:
use the results related to the irreducible decompositions of
the fundamental geometric and physical objects in MAG. Rp“=dl'g*+1I', “/\I's7=0, 3.1
The details about this method can be found 8h and[9].
Here, we will mainly need to recall the irreducible parts of Qup="DYap=~0dGaptI's7Gayt1'a"9ay=0.
the torsion 2-formT“ which are defined by 32

1 These equations mean that there is a distant parallelism in
2ra._ > qa . . a spacetime. The result of a parallel transport of a vector does
T 3 GENT,  with - Te=e,JT7, @D not depend on the path. Moreover, the lengths and angles are
not changed during a parallel transport.
1 One may wonder, what actually we do gain when we
CITei=— —*(9°AP), with P:=*(T*A9,), “embed” teleparallel gravity into the MAG theory. After all,
3 Eqg. (3.1) may be solved trivially by performing a linear

(22 transformation of the frame and connection
(DTe=Te— (Ao G2, (2.3 ea—LPes, T PoLY, I 0L 1 L7 dLY,.
3.3
In tensor components, the torsion 2-form ) o .

P In view of Egs.(3.1),(3.2), it is always possible to choose the

matrix L? , of the linear transformation in such a way that
1 . 1 .

Te=_T, “dX/Adxi= =T, “9*\ 9" (2.4y  the transformed local metric becomes the standard

2" 2 # Minkowski, g,s=0,4:=diag(— 1,+ 1,+1,+ 1), whereas the

transformed local connection becomes trivia):’=0. Then
gives rise, through the above decomposition, to the vectorthe (co)frame is left over as the only dynamical variable. We
of trace and axial trace of torsion: will call such a choice awWeitzenbok gauge The visible
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disadvantage of such an approach is the resulting rigid struc- 1 1 1

ture of the tetrad field which cannot be altered at one’s wish. E(DS“B)/\Qa,ﬁ & BARaﬁZEd(faﬂ/\Qaﬁ)— Efaﬁ
To a great extent, this is contrary to the very spirit of rela-

tivity theory, which treats all coordinates and frame systems AN(DQups—2R(up))-

on an equal footing basis. By embedding teleparallelism into (3.10
MAG, we remove the unwarranted rigidity of the tetrad field )

and return to the far more physically ngtural situation, wherey ain, as a total derivative, the first term can be neglected,
we can choose a reference and coordinate system at our bggtereas the last term vanishes by virtue of the Bianchi iden-

convenience. . tity DQ,s=2R,p - As a result, the field equations derived
Now We can formulgte teleparallel gravity as the MAG from Eq. (3.4) will determine the Lagrange multipliers only
model with the constraint€3.1),(3.2). Correspondingly, the up to the ambiguity imposed by the symmet8/7),(3.9).
Lagrangian of the teleparallel theory quite generally can be ™ ¢ gravitational field equations are derived fr,om the total
written as LagrangianV + L, by independent variations with respect
to the coframed* and connectiod’; “ 1-forms. The corre-
sponding so-callefirst and secondfield equations read

1
+ EIL‘L“B/\QQB_ Va B/\Ra B

1 3

V= —T"‘/\*( > a1,
=1

(3.4 DH,—E,=%,, (3.11

2K

Here a,,a,,a; are the three dimensionless coupling con- DH® g—E* p=A%3. (3.12
stants, and the gravitational coupling constant is, as usual, o )
xk=8mG/c3, with G the Newton’s gravitational constant. In- The covector-valued forms appearing in the left-hand side of

serting Egs.(2.1)—(2.4) into the first term in Eq(3.4), we  Ed.(3.1D) are given by

find 3
Y 1
3 at=T =—=" 2 q (I)Ta ' (313)
* (n v v T K =1
TaN*| D a OT, | =(cyT,, “TH 4T, “T"?,
=1
1
+C3TMV aTa/“/) 7, (35) Ea ::eaJV+(eaJTﬂ)/\Hﬁ:§ (eaJTB)/\Hﬁ_TIB

where the new coefficients are the following combinations of A(e.JHp)]. (3.19

the original coupling constants:
In the last expression we have taken into account Yhat
2a,+ag 2(a,—a;) 2(azg—a;) —1T*/\H,, in view of Egs.(3.13 and(3.4).
=73 CTT3— CGT T3 The matter sources in the right-hand sideg®1f.1) and
(3.6) (3.12 are the canonical energy-momentum current and the
canonical spin current. For the minimally coupled matter
Variation of the teleparallel action with respect to the field W*(p-form, in general, we have explicitly

Lagrange multipliersu®? and v® 5 yields the constraints

(3.1) and (3.2 of the geometry of distant parallelism. The L mat A n lmat A
Lagrangian(3.4) is invariant under the redefinition IS ge =€4/Lmar (€,/D¥ )/\—aD‘IfA +(e,¥")
uP—pf+DEP, (3.7 Lo
g (3.19
Vaﬁ—’Vaﬂ+ DXa‘B_gaﬁ (38)
of the Lagrange multiplier fields. He_ref“ﬁ=§é“ is an arbi- « (7|-mat:(€a A PPN IL mat (3.16
trary symmetric 2-form, wheregg® 4 is an arbitrary 1-form. B ar, P B B JDWA” ’

The proof of the invariance is based on the three Bianchi
identities of MAG. Indeed, we have for the additionalerm  \we will assume that the matter fiell* realizes some rep-
arising from Eq.(3.8) in the Lagrangian resentation of the Lorentz group, and thég,=— ¢ 4, are
the corresponding generators of infinitesimal Lorentz trans-
(Dx* AR, P=d(x* g/ AR )+ x* s/ADR,?. (3.9  formations. Accordingly, the hypermomentum current re-
duces to the spin current,
Being a total differential, the first term in the right-hand side

can be discarded. The last term vanishes in view of the Bi- Awg=Top="Tpa- (3.19
anchi identityDR,, #=0. As for the& terms which appear in

the Lagrangian when we make the transformat®&),(3.9), The tensor-valued forms appearing in the left-hand side of
we find the field equatior(3.12 are given by
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i NO VO
M*Fi=—2 =u“b, (3.18 0, Z7  — T~ N#A O —
07QaB M Ha aT 2KN 77a,uvr H B (?RQ'B
1
oV _ a
a = — & - 77 ﬁa (42)
H B aRa,B 14 '3, (319) 2K
and the corresponding field equations coincide completely
EYp=—0"\Hg—M® g=—3*\Hgz— u® 53 20 with Einstein’s equations of general relativity:

DHO—g®= %ﬁ“”/\ Napn, DHO ;—EO@ ;=0
4.3

Substituting all this into Eq(3.12, we find the equation

m gt DV p=— 9/ \Hg+ A% 4. (3.21 _ _ _ _
We can use this fact aridentically rewrite the teleparallel
The left-hand side of this equation is evidently invariant un-L@grangian(3.4) as the sum
der the transformation8.7),(3.8). Correspondingly, the field .
equation(3.21) offers maximum of the possible: It deter- V=—-a,VO+V, (4.9
mines the gauge invariant piece of the Lagrange multipliers,
namelyu® g+Dv® g, in terms of the spin current® ; and where
of the translational field momentui,, .
It is important to notice tha_t the_ Lagrange_ multipligr&? V= i(azTa/\ * DT 4 ToNA* OT )+ EMQBAQM

and v 5 decouple from the first field equatid8.11). As a 2k 2
result, technically we can simply discard the second field
equation(3.12 because it merely determines the Lagrange

multipliers, whereas the dynamics of the gravitational field IS1d the new “shifted” coupling constants are defined by
governed by Eq(3.1J).

— % 5AR, 5, (4.5

1
IV. EFFECTIVE EINSTEIN EQUATION ay=a,+t2a;, ag=aztza;. (4.9

In [9] it was demonstrated that a certain quadratic metric—C dinalv. the field ¢ b itten in th
affine Lagrangian has very special properties. This Lagrangf- orrespondingly, the field momenta can be rewritten in the
: orm
ian reads
MP=—a M@y Map  H =-a HO+A,,

v(0>=2i —R,p\ = MTeN* T 42 ATan* AT
K HaB:_alH(O)aﬁ+Haﬁ, (47}
1
+@Tan*C)T 4+ (@) BN *(L)Ta_2(3) ~ .
2 AT Tt T AIPA T2 Q0 Eo=—aEQ+E,, E*g=—a,E@,+E,.
1 (4.9
NIPN*ATe—24Q NN * ATy Q4 . . .
“ 4 =« We easily find thatl “#:= — 20V/9Q,,z=M*#, andH* z:=
1 1 — VIR, P=H" ;, whereas
A *(DQab— E(Z)Q“ﬁ/\ *(2)Qah - g(a)Qaﬁ

N Y, 1 5 3
3 Ho=— Ta:_;*(a2( Tt as®T,)
A * (3)Qaﬁ+ §(4)Qa/3/\ * (4)Q“ﬁ+( (S)Qay/\ﬁa) J
1
== golax* (9,/\T)+a39,/\P]. (4.9

N*(DQPYN ) | (4.1

Here, we explicitly used the irreducible decompositi¢4)
The definition of the four irreducible parts of the nonmetric- and(2.2) of the torsion, in terms of the trace 1-forfnand
ity (J)Qaﬁv J=1,... 4 isgiven in[8,9]; we do not need the axial trace 1-fornfP. Then, with the help of the identities
them here though because the linear and quadratic not4.3), one can transform the field equatiof3s11) and(3.12
metricity terms are zero anyway, in view of the teleparallelof MAG into
constraint(3.2).

The gravitational gauge field momenta for the Lagrangian —ai~ . ~ 2
(4.1 arg given by M grang 5 R N Dgpur=K(2,—DH,+E,), (4.10
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pe gDV 5= _ﬁa/\ﬂﬁ+ A% —é‘j&,‘i)n. cher usaeful foimlilas a[leaj*z//i *ng,/;/\{z‘alz for
(4.1  any formy; also N\ ng=gn, Y*/N\n,,= 8, 1n,— 5.,

and N\ 1,0 = St 8 Mt KN M-
Accordingly, we can view the teleparallel field equations as a a pooR e

the Einstein general reIan?f/r theo(¥.10 with thei eﬁef:nve V. GENERAL RELATIVITY LIMIT: A PROBLEM WITH
energy-momentum curret;'=(1/—a,)(%,—DH,+E,). SPINNING MATTER?

Recall also tha€,=e,|V+(e,|]T)/\H, andDH,=DH,
—N,#/\H . Now, substituting Eqs4.9) and(2.7), we find
explicitly

When the coupling constants are chosen as

al:_l, 32:2, az=z= (51)

5
DA, — EC,:g—j — 7ag/\D(EFT) + *T AT %ﬁa/\P/\T
we find from Eq.(4.6) that all ;= 0. [In terms of the tensor
ag reformulation (3.5), the relations(3.6) yield ¢;=—3,c,
+§[ﬁa/\dp—2Ta/\P+P =2, andcz=1. These are the well-known values of the

teleparallel equivalent of GR, as used[8+5], e.g] Conse-

quently,V=0, and thuH,=0 andE_,=0. The teleparallel
field equationg4.10 reduce to the general relativity theory,
except for the fact that the physical source in the right-hand

The effective Einstein equatidd.10 contains symmetric  side of Eq.(4.10 is not the “metrical,” but the canonical
and antisymmetric parts. It is convenient to consider thenenergy-momentum currei,. Thus one should be careful
separately. The antisymmetric piece is extracted by takingvhen the matter field has nontrivial spin.

J(TA*T)

_Eea

/\eaJ*P+%eaJ(P/\*P)} (4.12

the interior product oe“] with Eq. (4.10. Taking into ac- In order to check the consistency of the teleparallel
count Eq.(4.12), the result reads theory, we first notice that Eq4.11) forces the spin current
to satis
2a3dP— ay( *dT+PAT)+e,|(a* T*AT—2a5T4/\P) bt
=3ke’3,. (4.13 Tap=DViap - (5.2

We can now subtract the antisymmetric part from @q10,  Consequently, it must be conserved:
which technically means substitutingP from the above
equation into the effective Einstein equation. As a result, we D7,p=DDv[45=0. (5.3

finally obtain . _ . .
As the next step, we multiply the Einstein equati@hl0

a, from the left by 45. Then, making an antisymmetrization,
+ 3| a8 we find that the antisymmetric piece of the energy-
momentum current must vanish:

—ap. 1 s
5 RAYA D = K Ea—iﬂa/\e 125

- 1
AD(PIT) = 5 9 A *dT— *T,AT 95/ \2 0 =0. (5.4

This is a consequence of the symmetry of the Einstein tensor

which is equivalent to the conditioﬁ””/\ﬁ[ﬁ/\ Najur=0.

The same conclusion is obtained directly from E413), in

o ; - L . .

L3 2T, A\P— ﬁa/\eﬁJ(Tﬁ/\P)— p which «;=0 leads to the vanishing Ieft-_hand side. Recalling
now the angular momentum conservation law,

1 1
+ Ei}a/\eﬁj( *T’B’/\T)'F EeaJ(T/\ *T)}

1 _
Ne*P—5e,(PA*P) (4.14 O/ \2 0+ D7pa=0, (5.5

) ) ) we conclude that the spin current is separately conserved, in
Analogously to the separation of the antisymmetric partfy|| agreement with Eq(5.3).

we can also extract the trace of the effective Einstein field Summarizing, the te'epara”e' gravity can Consistent|y
equation. For this purpose, we multiply E@.14 with 4“  couple either to a spinless matter or to a matter with a con-

/\ from the left, and we find served spin tensor. Since, for example, the Dirac spinor field
does not have such properties, the teleparallel description of
a(d*T+TA*T)+ % PA*P=k9°AS ,—a;R7. gravity is not applicable to that case.
(4.19 “New general relativity”

Here, R:=R 4 B« is the curvature scalar, and we used the The “new general relativity”[1,2,12—14 model is de-
identities: YN*T,=—*T, 9NIPN r;,w=2(5zﬁf fined by choosing the coupling constants as follows:
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1 Eq. (6.2 leaves the fundamental structure of the teleparallel
a=-1 a=2, a#s. (5.6)  gravity untouched, and it describes a map between the dif-
ferent teleparallel models.
- . . . . . Unlike curvature and nonmetricity, the torsion 2-form
Wlth this choice, the above inconsistency problem 's(which plays the role of the gauge field strength in the
avoided. . g

teleparallel theorytransforms in a nontrivial way under the

Indeed, now we haverz#0, and hence Eq4.13 re- . ) :
duces to the meaningful equation for the axial trace of tor_conformal scaling. Under the action of E@.2), we find

sion: T¢=DY*—=QT*+dQ/\ I (6.4

As a result, the torsion trace 1-form changesTas QT
—3d(, and hence only the second part of torsi@ril) has
the nontrivial transformation property

The right-hand side, which represents the antisymmetric part
of the energy-momentum current, can be nontrivial now.
A different type of inconsistency which arises for this
model was first noticed by Kopczgki [6] who has shown
the existence of an “extra symmetry” of the Lagrangian
which deforms the coframéwithout touching the connec- OTa_ DT, BTa_, () @7, (6.6)
tion) in such a way that the axial trace remains invariant.
Such a symmetry makes the theory physically nonpredictabl@ccordingly, the class of mode(8.4), with a vanishing cou-
because torsion is not determined uniquely by the field equapling constanta,=0, will display the proper conformal be-
tions. Later, Nestef7] clarified that point by establishing havior in the sense that the teleparallel Lagrangian is re-
conditions under which such a hidden symmetry can arise.scaled as

3k
dP—eaJ(T“/\P)=ge“J2a. (5.7
3

AT AT+ dON Y, (6.5

whereas the two other irreducible parts of torsion, given by
Egs.(2.2 and(2.3), transform covariantly:

2
VI. CONFORMAL TRANSFORMATIONS IN V= OOV 6.7

TELEPARALLEL GRAVITY Notice that, since the action is changed, it is therefooe

Conformal transformation in gravity is usually understood¢onformal invariant. .
as the scaling of the line element We can use the general Lagrange-Noether machir&ry
developed for MAG to derive the corresponding properties
ds2—-02ds?,  or equivalently, gijﬂﬂzgij . (6.1 of an arl?itrary model Wit_h a proper conformal behavior: Let
us consider a model with the most general Lagrandian

The conformal factof) can be an arbitrary function of the =L(#:D#.9qp 9T, £, T¢) for an arbitrary matter fields
spacetime coordinates. In teleparallel gravity, the abovéntgractmg with the teleparalllell gra\(ltatlonal field. Under the
transformation is naturally realized as the scaling of the cof@ction of the above define@nfinitesima) conformal trans-
rame: formation, the Lagrangian changes by

CAttlas (62 5 599N, + oY +d| S9N 4 SN
| VG e VD
In terms of the components}*=9d{*dx', the conformal (6.8

transformation reads . . .
Here, we took into account the conformal invariance of the

@ ()9 . _ 92980 _.02q.. metric and connectiongg,;=0 and o' ,#=0. Suppose
di= 097, andaccordinglyg = 9 97'gas— g'éé 3 how that the matter field and the Lagrangian have the proper
' conformal behavior in the sense that, under the infinitesimal

The local metric, which in the case of the orthonormalrescallng (=1+w), we have

frames is equal to the Minkowski metrig,;=0,,:=diag _ _

(—1,+1,+1,+1), is not affected by the sgaling.ﬁThe con- oy=koy, oL=tol, ©.9
formal transformation of the cofrant€.2) induces the scal-  wjith the numbers and¢ giving the conformal weight of the
ing of the volume 4-form,z:=9°/\ AN —-0%. matter field and of the Lagrangian, respectively. Substituting
The dual frame vectorg, evidently transform taQ) e, this into Eq.(6.8), we find the two identities:

under Eq.(6.2).

It is natural to assume that the local linear connection wn OL dL
I'p* is conformally invariant. This is what we encounter in PN aT +ky/\ ﬁTl//: 0. (6.10
the realization of conformal symmetry in the Poincgesige
gravity [15-17); see also the discussion [i8]. Then we oL L

conclude that the Weitzenbl conditions(3.1) and(3.2) are CL— NS+ 9/ \D — — TN\
ﬁ [

not changed by the conformal transformation. Consequently, aTe
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I32=-T,%=—cosfAd¢. (7.3

It is easy to see that E7.3) is the pure gauge configuration,

These arise, as usuf8], by considering the terms propor- and the curvature is indeed vanishirgg “=dl's “+1T", “

tional to w anddw separately.

AT'p7=0. One can certainly perform a linear transforma-

Specializing now to the case of the purely gravitationaltion which yields the Weitzenlok gauge, but the resulting

LagrangianL =V, which does not depend af and has the
conformal weight¢ =2 [see Eq.(6.7)], we obtain the two

tetrad ansatz becomes somewhat obscure,1$ee.g. This
point demonstrates the convenience of the metric-affine ap-

proach, which offers a greater flexibility in the choice of the
ansatz for a solution.
oV oV oV Hereafter, derivatives with respect to the radial coordinate
JN—=0, 2V=9*N—+T*N—. (6.12  will be denoted by a prime. Although the curvature is zero,
aTe a9 aTe the torsion of the configuratiov.2),(7.3) is nontrivial and

reads
Turning to the teleparallel modéB.4) under consideration,

we can verify explicitly that these identities are indeed valid A/
for the casea,=0 (note thatH ,= —dV/dT?).

Every extra invariance of the Lagrangian means that there
is a certain arbitrariness in the classical solutions of the field
equations. In particular, the above analysis shows that the ) ) ) ) ) )
solutions of the teleparallel models wiga=0 can only be Correspondingly, the irreducible pieces of torsion are given
determined up to an arbitrary scale facforof the coframe by
field. Correspondingly, in order to have a predictable telepar-

identities

. . . . B' - . . B - .
0_ _ 0N 9l T2_ IN92 T3_ 1A 93
T = ABﬂ/\f},T Bzﬁ/\ﬂ,T 821‘}/\1‘}.

(7.9

allel theory, we will mainly confine ourselves to the class of (1)1a— _ (A'B—B'A) (259196/\191+ SEIN 92+ 5291
Lagrangians witha,# 0. 3AB? 0 2 3
3
VII. SPHERICAL SYMMETRY AND GEOMETRIC A7), (7.9
INVARIANTS
and

Let us now proceed with the analysis of the classical so-
lutions of the general teleparallel model. As a first step, we ,,_  (A'B+2B’A) @ N ol c@ain 4B @l
naturally turn our attention to the compact object configura- @Te= 3AB2 (= QNI+ 55N+ 639
tions, and specifically to the case of spherical symmetry. It is
worthwhile to note that such a study was never performed in /\,93). (7.6)

full generality for the models with the three arbitrary cou-

pling constants, ,a,,as. A partial analysis was done [2].  The axial torsion vanishes identicall{®)te=o.

As usual in the study of exact solutions, we have two The above ansatz is clearly a coordinate- and frame-
complementary aspects. The first one concerns the convgependent statement. In order to have a correct understand-
nient choice of the local coordinates and of the correspondng of the resulting solution, we need to construct invariants
ing ansatz for the dynamical fields. The second aspect is tgf the curvature and torsion. The tot&iemann-Cartancur-
provide the invariant characterization of the resulting geomvature is identically zero in the teleparallel gravity. However,
etry. Roughly speaking, the choice of an ansatz helps to solve Riemanniancurvature of the Christoffel connection for
the field equations more easily, whereas the invariant dethe metric(7.1) is nontrivial. In particular, computation of
scription provides the correct understanding of the physicajhe Weyl 2-form yields
contents of a solution.

We look for a spherically symmetric solution with the line

e W e s W .
element VV°1=§1‘}°/\{7‘1, \/\lozz—gﬁo/\ﬂz,

g=—A%dt?+B2(dr?+r2d#?+r2sirfed¢?). (7.1) W
/03_ _ "' 90 93
The two functionsA=A(r) andB=B(r) depend on the ra- W 6 REALE 7.7
dial variabler. It is, however, not so trivial to come up with
the ansatz for a tetradA convenient choice reads s W . - s W . -
Wiz=— =992 W= — 03N,
90=Adt, 9'=Bdr, 9°=Brdg, O>=Brsinédde.

7.2

" TTEIAPEIPE (7.9
In addition, for the(non-Riemannianconnection we choose 3 ' '

F21=—F12:—d0, F31=—F13=—Sin9d¢, W|th
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We r (1A’
~ AB[r|B
The components of this 2-form represent the Weyl tensorThen, we derive the Maxwell equation:
Web=3C,,“F 9*/\9”. The Weyl quadratic invariant thus

! ! A

(7.9 F=dA=—f—1‘}6/\,§}1 *F:f_ﬁé/\ﬂé 8.9
. AB ! AB : :

1 d(r°B s 5 A ah
reads d*Fzz__[_f’]al/\ﬁz/\ﬁ3=0. (8.5
r 83 dr A
~ ~ W2
W, /A *WB=— 5, 7.1
aB 37 (7.19 On the other hand, a direct computation yields for the

. left-hand side of the teleparallel gravitational field equations
and consequently we can consistently use &) for the

description of the resulting geometry. (UpgtU1—2U3) 5. 5. 3
Besides the Riemannian Weyl tensor, the spacetime ge- DHs—Ep= Tﬁ NFND?, (8.6
ometry is naturally characterized by the quadratic invariants K
of the torsion. For the spherically symmetric configurations U
(7.4), we have explicitly DH;— E;= 1 SON 92N 93, 8.7
6«B?
T,/\*T¢ 1“A,)2 2(8, 2} (7.1)
P === 2=/ |7 :
2l A B Uo,—Uy) » &
B DH5— E3= %190/\ 93N 01, 8.9
These two invariants—the Riemannian curvature and the “
quadratic torsion—provide the sufficient tools for under- (Uy—U;) - A A
standing the contents of the classical solutions. DH3—E3= Wﬁo/\i}l/\ 92, (8.9
K

VIIl. COUPLED GRAVITATIONAL AND

ELECTROMAGNETIC FIELDS Here, we have denoted

As we discovered above, the material sources with spin 2 d ) A’ B’
may lead to certain inconsistencies in the framework of UOz:_ABrza ABr (4ay—ap) - —2(2a1+az) 5|
teleparallelism. Correspondingly, in order to be on the safe (8.10

side, we will limit ourselves to the case of the spinless matter

when the teleparallel gravity appears to be totally applicable. A’ p A\ 2

Of all the possible spinless matter, the Maxwell field clearly y,:=—| (a;—a,)——(a;+ 2a2)—) —(2a;tay) —)

represents a very interesting and physically important case. r A B A
Accordingly, in our study of the spherically symmetric "2 A’ B’

solutions, we will investigate the case when matter is repre- —2(ay+2ay)| = | +t4a—ay))—+— =, (8.1

sented by the electromagnetic field. The spin current of the B A B

electromagnetic field is trivial, whereas its energy momen-

tum reads 2 d 3 A’ B’

Uz:_ABr3a ABr (al—az)K—(alﬂLZaz)E .

2a=%[(eaJF)/\*F—(eaJ*F)/\F]. (8.1 (8.12

_ Substituting Eq(8.4) into Eq.(8.1), we get explicitly the
Here, the electromagnetic vacuum constéhe “vacuum  components of the electromagnetic energy-momentum cur-
impedance) rent 3-form:

€p A f’
2

2 ~ ~ ~
= —_ ~ - 1 2 3
M= (8.2 S5 AB) FNAPN 3, (8.13

is defined in terms of the electric, and magnetiquy con- N{FN2 . .

stants of the vacuum. 3i= E(_) IONI2N 3, (8.14
Using the standard spherically symmetric ansatz for the

electromagnetic potential 1-form,

s5= - M o singt 8.1
- =~ 5| aB : (8.19
A=Kﬂ°=fdt, (8.3
Y r\2 . .
A 0 1 2
with f=1(r), we have for the field strength 5= 2 (AB) REOLRALE 8.19
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In the presence of a nontrivial electromagnetic field, wewith k, a second integration constant.

need, in addition to the above geometric invariants, an in-

Let us introduce a new variable by

variant description of the matter source configuration. As it is

well known, there are two invariants of the Maxwell field.
For the spherical ansat8.4), one of the invariants is trivial,
FAF=0, whereas the other reads

r\2
F/\*F=—(E) 7. (8.17)

IX. ANALYZING THE FIELD EQUATIONS
The Maxwell equatior(8.5) can be straightforwardly in-
tegrated. This yields

_9A

fr=—1,
r’B

9.7

with g an integration constant. Its value is determined by the

total electric charge&) of the source which is calculated as

usual from the integral over the 2-sphere around the source:

!

f . .
sz x*sz )\—192/\193:f Aqsingdo/\d ¢
S, s, AB S,

— 47\ Q. (9.2

Inserting Eq.(9.1) into Eq.(8.17), we find for the Maxwell
invariant

2

q

FAYF== =37 9.3

From Egs.(8.6)—(8.9 and Egs.(8.13—(8.16) we find,
after making use of Eq9.1), and of some simple rearrange-
ments:

6xkNQ°
I,482 ’

_3K)\q2

0= U,=0. 9.9

Using EQq.(8.10 in Eq. (9.4), we obtain the equation

! !

A —3Kk\g?A
(4a—a) - —2(2a+ &) 5| | = — 5

r’B
(9.5

where we have used E¢.1) in the last step. Consequently,
the first integral is straightforwardly obtained:

d
2
dr{ABr

—3kAqf’,

A’ B’ k;—3xk\qf
(4a1-8p) 1 —2(2artag) g = —

, (9.6
r’AB 99
with k; an integration constant. Analogously, from Egs.
(8.12 and(9.4) we find another first integral:

! !

Ko
(a;— aZ)K —(a;+2ay)

r3AB’

B 9.7

o:=k;—3kAqf. (9.9

Differentiating this and using E9.1), we find the equation

3KkNQ%A
r’B

¢'=— . (9.9

Supposea;a,#0 (the special casa,a,=0 will be consid-
ered separately Then, combining Eqs(9.6) and (9.7), we
finally get the system of first order equations

A ! >( +2a,)¢—2(2a;+ )kz}
—=———"—|(a;+2ay)¢—2(2a;+ay)—|,
A 9aa,r?ABl )¢ LTy

(9.10
> ol Yo (4 )kz}
== —|(ai—a)e—(4a;—a,)—|.
B 9a,a,r?AB| 20¢ T

(9.11)

Together with Eq(9.9), these equations comprise a system
of three first order ordinary differential equations for the
three unknown function®\,B,f. As an immediate conse-
guence, the sum of Eq89.10 and(9.1)) yields

(AB)'=

Ky
(2a;+ay)p—(8a;+ az)T} .
(9.12

For the sake of completeness, we should recall that there
is one more equation, which is derived by using 8311 in
Eq. (9.4):

9aja,r?

3kNG2 4 ‘ '
gz T (a1 —ay) 7 —(a+2a) 7| —(2a1+ay)
1\ 2 r\ 2 A’ B’
X N —2(a;+2a,) B +4(a1—a2)X B
(9.13

However, this last equation is satisfied automatically for the
solutions(9.9)—(9.11) of the system. The easiest way to see
this is to substitute Eq99.10,(9.11 into Eq. (9.13. We
then find

2

k
(a,+2a,) p?— 4(2a,+ a2)72<p+ 2(8a,+a,)—
.

—9a,a,(4k,AB—3kNq%A%)=0. (9.14
Now, if we differentiate this equation, the result is identically
zero by virtue of Egs(9.9), (9.12 and (9.10. However,
since not only the equation itself vanishes for the solutions,
but also its derivative, we still have to keep this equation.
Ultimately it will turn out that Eq.(9.14 imposes certain
relation between the various integration constants.
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X. CONFORMALLY FLAT SOLUTIONS with all other components of the curvature 2-form trivial. As
we see, the curvature is everywhere regular, and the Riemann

_ Let us study a very special case, when the metric funcfensor has the double-duality property,
tions are proportional. Namely,

-~ 1 ~
A=a,B, (10.2 Rap 75:ZﬂyﬁpvnaBWRpgwl (10.9

with a constant coefficiendy. Then, the metriq7.1) de- _ _ _ o o
scribes the conformally flat spacetime geometry. The pair of he Riemannian Weyl tensor vanishes identically, as it is

equations9.6) and (9.7) reduce to the system clearly seen from Eq(7.8). This is consistent with the fact
that the metric is conformally flat. Geometrically, the result-
B’ @ ing spacetime is the direct product of the two 2-dimensional
3a2§= - ﬁ’ (10.2 spaces of constant curvature, a hyperbolic space and a

sphere. A solution of that type was originally described by

Bertotti and Robinsoi10,1] in the framework of general

B" ka (103 relativity theory.

B ' In the teleparallel gravity, we have torsion as the basic
field variable. It is straightforward to see that in the general-

Notice that the Lagrangian with the vanishing coupling con-ized Bertotti-Robinson solutio10.7), torsion is also con-

stanta,=0 belongs to the class of conformally covariant stant with the quadratic invariaff.11) given by

teleparallel gravity modelgsee Sec. V)l As a result, the

overall factor of the tetrad, and hence of the metric, is unde- e a,

termined. This is manifested in our spherically symmetric TATTO=— N

case as well: If we put,=0 in Egs.(10.2,(10.3, we find a d

vanishing electromagnetic field=0, whereas the confor- Ngte that the constant magnitude of the torsion is again de-
mal metric factorB remains completely arbitrary. scribed by the same combination of the coupling constants
mally covariant. Thera,#0, and the systeni1l0.2,(10.3  of that solution.

yields the explicit electromagnetic function The electromagnetic invariant9.3, when using Eq.
(10.7, demonstrates that the source is likewise represented

57 (10.10

o= % (10.4 by the “constant” electromagnetic field configuration:
a, |2
Substituting this, together with E¢10.1), into Eq.(9.9), we FA*F=-— a7 (10.1
get
K, Vanishing coupling constanta;=0
aO_SK)\qZ' (103 Before we proceed to consider the general case, we have
to analyze the special case whepa,=0; see Sec. IX.
Furthermore, the integration of E¢L0.3 yields Whena,=0, we have the conformally covariant theory, and
consequently, the conformal factor of the metric remains un-
) KNQ? determined. We will not consider such models which lack
B = ar? +ks. (10.6  physical predictability.

When, howevera;=0, the pair of equation$9.6) and

The new integration constant is fixed to be equal to 2gro (9.7) reduce to the system
=0, which follows from Eq.(9.13 after all the above is

substituted. Thus, we obtain finally the conformally flat so- A_,+ZB_': 4 (10.12
lution A "B a,r2AB’ '
kg K)\q2 ’ '
A= 2 g2 (10.9 AlLB ke
9x1g2a,r2 a,r? A +2 B a2r3AB' (10.13

In order to understand this spacetime geometry, we hav%

. ; . his system yields the explicit electromagnetic function
to compute the corresponding Riemannian curvatteeall y y P 9

that thetotal Riemann-Cartan curvature is identically zero K,
A direct calculation yields =" (10.19
U a 9ON ﬂi, R2- _ a2 92N\ ﬁé, (10.  Substituting this into E(9.9), we find the proportionality of

2 2

K\( K\Q the metric functions:
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3k\G?
B= A. (10.15
ka

This brings us then back to the results of the previous sub-

section.

Xl. UNCHARGED SOLUTIONS

From now on, we will confine our attention to the generic

teleparallel models witl,a,+# 0. Let us first obtain the con-
figurations with zero charge,=0. Then, from Eq(9.8) we
havep=k,, and Eq.(9.12 can be immediately integrated:

ka
2r

[
(11.1

When we substitute this into E¢R.14), we find the value of
the new integration constant explicitly:

B= 9ala2r - (2a1+ az) k1+ (8a1+ a2)

(a;+2a,)k3

37 36a,ayk, (11.2

A. Special case: &;,+a,=0

Suppose the coupling constants satisfy

8a;+a,=0.

(11.3
Then, Egs(11.1) and(11.2 yield

K, (5|<l 1)

“12a,8k,

AB 8k, r)°

(11.9

Using this in Eq.(9.10, we derive the ordinary differential
equation:

5k,
A 2k, 8k,
A i 1T 5, (11.5
r 8k,

PHYSICAL REVIEW D67, 044016 (2003

not a horizon. Indeed, substitutidgandB into Eq.(7.8), we
get the Riemannian Weyl curvature:

ro(48r3—136r2ry+110r2—25r3)
We — of 0 0 o 11g

4r683e5r0/2|’(r0/r _ 1)3/2

It is easy to see that it divergesrat ry. Analogously, for the
torsion invariant(7.11), we find

T\ *T®
ra(172r*—564 3o+ 687 2r3— 3701 3+ 75rg)

16,8Bge5r0/2r(ro /r— 1)7/2

n.

(11.9

Thus, from both Riemannian and teleparallel viewpoints, the
resulting geometry is singular at=0 and atr =r,.

B. General case: &;+a,+0

When 8;+a,#0, we can use Eq11.2 to rewrite Eq.
(11.1) as

B ki(8a;+ay)

18a1a2k2 ' (1110

k2 o kz B
ki 2) ko 2

where we have introduced the constant parameters

2(2a;+ay)++—18a,a,
CY: b

8a,+a, (11.13
B 2(2a;+ay)—V—18a,a, 111
= 8a;+a, ' (1112
In particular, we can easily see that
a+,3_2(2a1+a2) aB  a;t2a
2  8ayta, ' 4 2(8a;tay)’
(11.13

The integration is straightforward, and the final solution forFrom Eqs.(11.11),(11.12 we conclude that the produata,

the metric function can be written in the form

(11.9

ro 5/2
A2:A(2)e—5r0/2r(?_1) '

Mo -1/2
BZZ B(2)e5r0/2r T_ 1) )

(117

Here,Ay,By andr are arbitrary constants. For the sake of

completeness, let us give their relation to the origifzalu-
pling and integrationconstants:

r0=8k2/5k1, AOBo=5k§/96k2a1.

This spacetime isot a black holeThe curvature tensor is
singular atr=0 and atr=r, so although the metric com-

ponentgg,= — A2 vanishes at the finite radius=r, this is

must be negative. Substituting E41.10 into Eq.(9.10, we
find the equation

Akl o« B (11.14
A ket ke ok B '
kir 2 kgr 2
Integration yields
k2 o @ k2 IB)B
nonli -3l gl s
Using then Eq(11.10, we find
k2 o 1-a kz B 1-8
a3 legal - s
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The integration constants are originally related AyB,
= k§(8a1+ a,)/18a;a,k,. However, taking into account the
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Moreover, one can eliminatey—2a;,a, from Eqgs.
(12.1,(12.2, and express one constant directly in terms of

possibility of scaling both the time and the radial coordinatethe other:

by two arbitrary factors, the constamds and By can have
any real value. In order to simplify the notation, it will be
convenient to introducen=Kk, /k;.

Performing a differentiation in Eq7.8), we find the non-
trivial Riemannian Weyl curvature:

|

where we denoted the polynomial

mw

réB3

m B

m a 2a—4
r 2

2p-4
r 2 )

. (1117

W:=%{32m3(a+,8)(a+ﬁ— 1) +4m%r[(a+B)(3—2(a

+B)—16aB)+ 12aB]+2mr’[8aB(2aB+ a+B—1)
—(a+B)?]+3r3aB(a+B—4ap)}

(8a,+a,)?

—m)?(3r—8m)].

[a;(r—4m)(3r?—8mr+8m?) + 2a,(r

(11.18

Analogously, for the quadratic torsion invariafit.11), we
find

TA*Te=
réB3

m?T]
r

where we have another polynomial defined as
T=m?[3(a+ B)*+8(1—a—B)]+2mr[(a+ B)*— (a+B)
X(2+3apB)+4aBl+r(a+B)*2+ aBBaB—2(a

[a2(r —4m)2+2a3(r —m)?].

+B)]=

(8a;+ay)?

(11.20
XIl. COUPLING CONSTANTS, INVARIANTS, AND
SINGULARITIES

The values of the constants and 8 are crucial for un-

5_

5a

4a

4-58
“=5-ap’

. (12.3

or equivalently, B=

From these simple derivations, we can immediately establish
a number of important consequences. Siaga,<0 (in or-
der to have real solutiopswe have to analyze the two cases
for the original coupling constant&a) a;>0,a,<0, and(b)
a:<0,a,>0.

For a;>0,a,<0, we see from Eq(12.1) that « is posi-
tive. Moreover,

1
§<a<2 forall ajp,a,. (12.49
At the same time, Eq.12.2 shows that
1
O<,8<§ for a;>-—2a,, (12.5
B>2 for a;<—a,l8, (12.6
B<0 for —ay/8<a;<—2a,. (12.7

For a;=—2a,, we see that3=0, whereas whera;=
—a,/8, we return to the exceptional case considered in
XI A (then, B formally diverges.

For a;<0,a,>0, we analogously find from Eq12.2
that nowg is positive

Sec.

1
§<,8<2 forall a;,a,, (12.8
whereas Eq(12.1) yields
1
0<a<§ for a;<-—2a,, (12.9
a>2 for a;>-—a,l8, (12.10
a<0 for —2a,<a;<-—a,/8. (12.11

For a; 2a,, we see thate=0, whereas whema,=

derstand_ing the spacetim_e geometry of_the solutions (_)btaineg a,/8, we again obtain the exceptional case considered in
above, since they determine the behavior of the metric funcgge XI A (then @ becomes infinite

tions (11.15 and(11.16. A straightforward analysis of Egs.
(11.12,(11.12 shows that we can simplify those formulas to
the following equivalent ones:

_ 2(a;+V—2aay)

= , 12.
¢ da;++\—2a,a, (123
2(a;—V—2
B (a a;ay) (12.2

4a,——2aja,

It is important to find the zeros of the metric coefficient
goo= —A?2, since these values determine the position of a
possible horizon. For the solutions under consideratin,
always has one or two zero&) at r=2m/a when a>0,
and/or(b) atr=2m/g if >0. The function(11.15 would
not have zeros only in the case whieoth «<0 and3<0,
but this never happens according to the above analysis.

In order to decide whether a zero @f, corresponds to a
horizon, we have to study the behavior of the curvature and
torsion invariants at that value of the radial coordinate. As it
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is clear from Eq(11.17, the Riemannian curvature diverges emre
at the zeros oA, unless the polynomidll1.18 also vanishes W=— ————. (12.19
there. Hence, it is important to find the value of the polyno- Bo(m+r/2)

mial (11.18 at the zeros of the functioA. A direct substitu- _ o _ _
tion yields The most important observation is that the Riemannian cur-

vature is thus regular at the zere-2m of the metric func-
202—3a+1 tion A(r), which means that we have a horizon here. The
2 o 03

w(2m/a)=2m3*(a— ) resulting geometry then describes the well known Schwarzs-

a? , child black hole with the horizon at=2m. The singularity
(12.12 atr=—2m is the usual point-mass source singularity at the
262-3p+1 origin. . _—
w(2m/B)= 2m3(a—B)2—2 Since we are dealing with teleparallel gravity, it is neces-
B sary also to analyze the behavior of torsion. A direct substi-

tution of Eq.(12.14 into Egs.(11.19,(11.20 yields
Sincea can never be equal {8 (for any nonzero coupling

constant;al,az), we conclude from Eq(1_2.12; that the m2(3r2—8mr+8m2)r2
polynomial w can have common zeros with only when TN\ T= > 5 > - (12.18
either o or B is equal to 1 or 1/2. Equationd2.1),(12.2 Ba(m+r/2)°(m—r/2)

show that this is possible only whem2+a,= 0 (then either o ) )

a or B is equal to 1, or when one of the two constargg or ~ AS We see, the torsion invariant diverges not only at the

a, vanishes. origin r=—2m, but also at the Schwarzschild horizen
Analogously, for the torsion quadratic invariant we find =2m. Unlike the “regularizing” effect of the polynomial

(12.16 in the curvature invariant, the analogous polynomial

in the numerator of Eq12.18 does not help to remove the

2_
3a’—4at2 singularity of the torsion invariant.

T2mla)=m?(a—B)?

a? ’ We emphasize this fact as the main difference between the
standard general relativistic description of the Schwarzschild
(12.13 ' ; :
3B%—48+2 black hole and its teleparallel counterpart. The horizon is a
T2m/ B)=m?(a— B)? ) regular surface from the viewpoint of the Riemannian geom-
B? etry, but it is singular from the viewpoint of teleparallel grav-
ity.
As one can easily see, these quantities are nonvanishing for
any choice of the constants, . Correspondingly, the tor- B. No black holes in teleparallel gravity?
sion invariant is always singular at the zerosggf, in all )
teleparallel gravity models. Returning to the case of the general teleparallel Lagrang-

ian, we may ask if dclass of model exists with a specific
o . choice of the coupling constants for which the above solu-
A. General relativity limit: Schwarzschild black hole tions describe a black hole. As we see from E..17), the
As we have mentioned in Sec. V, the specific chdgd) curvature is singular at both zeros of the metric function
of the coupling constants gives rise to a teleparallel modei€., atr =2m/« andatr=2m/g, when
which is called the teleparallel equivalent of GR. Accord-
ingly, when a;=—-1 and a,=2, we find from Egs.
(11.12,(11.12 that

a<2 and B<2. (12.19

Correspondingly, recalling the results of the beginning of the

a=—1, pB=1. (12.14 current section, the teleparallel Lagrangians withy|
>|a,|/8 do not have spherically symmetric solutions de-
Consequently, the metric functions reduce to scribing black holes.
There is, in principle, a possibility that the configurations
m 1 m 1 -1 m 1 2 with
LRI LI LI
ro2jir 2 r2 (12.15 =2 or B>2 (12.20

may turn out to be black holes. Note that bathand B
cannot be simultaneously greater than 2, as was shown above
2 in this section. When these conditions are satisfied, the cur-
. (12.19 Vature becomes regular either rat 2m/a or atr=2m/p.

However, the problem is that the corresponding surface (

=2m/a or r=2m/B) would have an infinite area. This is
and consequently, the Riemannian Weyl curvature is dedifferent from what we usually expect from a horizon sur-
scribed by face.

Furthermore, the polynomidll1.18 now reads

_ 3r2 - 63m 1
W——7( m—r)“=—6r T3

044016-13
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Consequently, we come to the conclusion tloatall pos- Kyt @2
sible values of the coupling constants @nd a,—except for o' =— o (13.8
the special case g= — 1 and a,=2—the uncharged spheri- Kol 1+K4(r/2kz)”]

cally symmetric solutions(11.6),(11.7), as well as Egs. ) )

(11.15,(11.16 of the general teleparallel mode.4), do not The form of the solution depends crucially on the value of
describe black hole configurations. In this sense, the sdsa-

called teleparallel equivalent of GR is distinguished among

all other teleparallel models as the only theory which admits A. Negative constantk,

black holes. For negative integration constakt,= — |Kk,|, the solution

of Eq. (13.9 reads
Xlll. CHARGED SOLUTIONS: GENERAL RELATIVITY

LIMIT Ke(r+r19)24(r—rg)?
(P(r)z\/m[ 5( O) ( O) ]

Let us now return to the charged solutions determined by [ks(r+10)?—(r=rg)?]’
the systen(9.9)—(9.11). In view of the above result, one can
expect that the most physically interesting case, within thévhereks is a new integration constant, and we denoted
class of the general teleparallel theori@s), corresponds to
the teleparallel equivalent of GR. Accordingly, we will con- 2k,
fine our attention now to the casg=—1,a,=2, or equiva- rO’zﬁ' (13.10
lently to Eq.(12.14. Then, Eqs(9.11),(9.12 are reduced to

(13.9

Substituting Eq.(13.9 into Egs.(13.6 and (13.4), we find

A e , (13.) the metric functions:
A 6r2aAB ,
2ks|k,| r2—rg ]
2_
B’ 1 2k A= . (13.11)
B (¢——2), 13.2 91N G? | Ke(r +70)2— (1—To)?
B 6r2AB r
K)\q2
k B2= 5 alks(r+ro)?—(r—ro)’)%
(AB)'=— —23 (13.3 32Kgrar®
3r (13.12
The last equation is easily integrated, yielding In order to have a correct signature of the meficl), we
must assume thdi;>0.
_ E ﬁ As we see, the metric coefficiegh,= —A? has zeros at
AB= +Kks |, (13.9 - o
612 r==*ry. These values can qualify for the positions of a ho-

. ' . o rizon, and in order to clarify this we have to study the be-
wherek; is a new integration constant. Combining E@9)  havior of the geometric and electromagnetic invariants. The

and(13.1), we can eliminate to find quadratic torsion invarian(.11) is as follows:
! 4 2v
AT A— (2 . (135 T A*Tee 12&sror <7 .
18ha KNGA(r2 =13 ks(1 +10)2— (1 —1g)?]"

This immediately yields the first integral (13.13

o o2k, 156 where the polynomial reads

18k q? ' T=K2(3r2—4rro+2r3)(r+ro)*+ 2kg(3r2—2r2)(r2—r3)?

The new integration constakj can have any sign, as well as +(3r2+4rr g+ 2r3)(r—rg)*. (13.19

be equal to zero. Each case will be studied separately below.
Substituting Eqs(13.6 and(13.4) into the additional equa- On the other hand, for the Maxwell invariaf®.3) we find
tion (9.14), we find the following relation between the inte-
gration constants: 10242r dr*
FA*F= 7
Akokz=Ky. (13.7 (kM)A [Ks(r+T1g)2—=(r —rp)?]*
(13.15

The final step is to find the functioa(r) explicitly. Substi-

tuting Egs.(13.6 and (13.4 into Eq. (9.9, and taking into  As far as the Riemannian curvature is concerned, everything
account the conditiofi13.7), we obtain the differential equa- becomes more transparent if we make the coordinate trans-
tion formation defined by

044016-14
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B /K)\qz[k5(r+ro)2—(r—ro)2
P~ N8k | 2ror . (1318
— 1 2ks|Ky|
=— t. 13.1
3c(ks—1) KNQ? (13.19

PHYSICAL REVIEW D67, 044016 (2003

kNQ2 [r2—r2—2kgrrg
p=1/ 2[ 5 . (1329
2(1+k3)! rof
1 sk )|k4|
3c 2KkNQ?

(13.29

Then, the line element transforms into the standard Reissner-

Nordstron form:

1
ds?=—h?c?dt’+ de2+p2(d02+ sirfad ¢?),

(13.18
with
2Gm GQ?
h?=1— Q (13.19
c’p  Ameyctp?
The mass parameter is here introduced by
m K\Q
—2=(k5+ 1) 8_ (13.20

ks’

whereas the charg@ of the source is given, as usual, by Eq.

(9.2.
It is easy to see that the values *r, correspond to the
two zeros of the metric functioh?(p). As a result, we con-

again brings the line element to the Reissner-Nordstiam
(13.18, where this time the mass is introduced via

. R (13.26
c? 2(1+k3) '

This shows thaks should be negative in this case.

We will not give the curvature, torsion, and Maxwell in-
variants explicitly, but their qualitative behavior is the same
as in the previous case: The torsion invariant is again singu-
lar on a Riemannian horizon of the corresponding Reissner-
Nordstran black hole.

C. Vanishing constantk,

For the sake of completeness, it remains to consider the
case of vanishing integration constdat=0. Then, as fol-
lows from Eq.(13.7), one should also have eithks=0 or
k3:O.

1. Case: k=0, k,=0

clude that these values give the position of the horizon be- |n this case, Eq(13.9 is easily solved to give

cause both the Maxwell invariait3.15 and the Riemann-
ian curvature (as it is well known are regular there.
However, it is remarkable that the torsi¢h3.13 is again

singular at those surfaces, just like in the uncharged solutions

considered earlier.

B. Positive constantk,

For a positive integration constaki=|k,|, the integra-
tion of Eq.(13.8 is also straightforward, yielding

[ks(r2=r)+2rr]
ry=+/\k .
e(N=lkd [r2—r2—2ksrr o]

(13.22)

Here, ks is a new integration constartvhich is different
from the constanks introduced in the previous subsectjpn
and we use the sanrg as defined in Eq(13.10. We then
easily find the metric functions, using Eq$3.6 and(13.4):

1+kd)|k 242 ]2
A2 ( LA i 0 ' (13.22
18kNg? | r2—rg—2ksIT,
KNQ?
B2= ——————[r2—r2—2ksrr,]% (13.2
8(1+12)r%r i 0 2KsIT ] 3

Now, we may notice that the coordinate transformation

L 13.2
? ker—1" (13.29

with an arbitrary integration constakt. Correspondingly,
Eqg. (13.6 and(13.9 yield

k2r2
A2= 3 (13.28
18kAg?(kgr —1)2

Ng2(ksr —1)?
BZ=%. (13.29

The coordinate transformation

T ker—1), (13.30
PR (13.3))
3cks\2kng?’ '

brings the metric to the extremal Reissner-Nordstrine
element

044016-15



YU. N. OBUKHOV AND J. G. PEREIRA

[kng?) 2 kNGZ\ 2
2 2

dt?+| 1—- ———]  dp?
p p P

+p2(d6?+sirf6d ?).

2. Case: k=0, kz=0
Analogously, Eq(13.8 is integrated,

ka

= m, (1333

¢

with an integration constamht. Then, Eqs(13.6) and(13.4)
yield the metric functions:

A%= < (13.39
18kAQ3(r +ksg)? '
KNQZ(r +kg)?
B?= ———>—. 13.3
ord (13.39
The coordinate transformation
K)\q k5
T ket (13.37
3cks\2xng?’ '

again yields the extremal Reissner-Nordstnmetric(13.32.
In both cases, the torsion diverges at=\k\g?/2,

PHYSICAL REVIEW D67, 044016 (2003

place and significance of the so-called teleparallel GR-
equivalent model which is specialized by the val(gd). It

is well known that, for obvious reasons, the GR-equivalent
teleparallel theory is satisfactorily supported by observations.

Our study reveals a qualitative feature which distin-
guishes the teleparallel GR equivalent among other models:
The spherically symmetric solutionscharged and un-
charged describe black hole configurations only for the spe-
cial choice (5.1) of the coupling constants. We have thus
demonstrated that a generic teleparallel model does not ad-
mit black holes. There exists, though, a family of completely
regular solutions which appears to be a direct generalization
of the Bertotti-Robinson solution.

Another result obtained concerns the behavior of the cur-
vature and torsion invariants in the general teleparallel
model. We find that the quadratic torsion invariant displays a
much worse singularity structure than one could expect from
the analysis of the Riemannian curvature invariants. In par-
ticular, even in the teleparallel GR-equivalent model, the
black hole solutions have torsion singularities on a horizon
surface which is, however, regular from the point of view of
the curvature. This striking result raises a question about the
geometrical and physical meaning of the torsion singularities
in teleparallel gravity.

Finally, it seems worthwhile to note that, although the
teleparallel GR-equivalent model has a number of nice fea-
tures which distinguishes it among the general teleparallel
theories, it still has a consistency problem of coupling of
matter with spin to the teleparallel gravitational field. As a
matter of fact, one can argue that there is no such problem
because, being a gauge theory of the group of translations,
teleparallelism is thus, by definition, related only to the
energy-momentum current. And indeed, teleparallelism turns

whereas this surface appears to be regular from the Riemananut to be completely consistent for the case of spinless mat-

ian point of view.

XIV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the general teleparallel

ter, which is characterized solely by the energy momentum.
From this point of view, teleparallelism appears to be not

applicable to matter sources with spin, and our analysis has
clearly demonstrated that point.

Note added in proofThe spherically symmetric solutions

gravity model within the framework of the MAG theory. A ip, teleparallel gravity were also studied in REZ2] and Ref.
similar analysis of “embedding” teleparallelism into the [23]. Our results do not agree with the latter reference.

Poincare gauge theory was performed ii6] within the

framework of the Lagrangian formalism, and also by using

the Hamiltonian methods if20,21]. Generalizing the previ-
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