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Quasinormal modes for massless topological black holes
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An exact expression for the quasinormal modes of scalar perturbation on a massless topological black hole
in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature,
and the horizon geometry is assumed to have a negative constant curvature.
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I. INTRODUCTION S=H%TI with T'cO(2,1),

In a black hole geometry, the event horizon acts as a sinlyhere T is a freely acting discrete subgroupe., without
that drains the linearized perturbations of the geometry ofixed points.
matter fleld_s, damping the os_cnlatlons. _These are the_ SO- The configurations(1) are asymptotically locally AdS
called quasinormal modes, which are typically characterizedpacetimes. These spacetimes can admit Killing spinors for
by a spectrum that is independent of the initial conditions.,,— o provideds is a noncompact surfadd]. In this case
The quasmqrmal modes_ are a sort of fingerprint of the blaclq (1) describes a warped black string with a supersymmet-
hole depending only on its parameters and on the fundamen;. ground state foru=0, and therefore expected to be
tal constants of the system. _ ~_ stable. On the other hand, it has been recently shown in Ref.
Quasinormal modes have been extensively studied in 8$23] that the massless configurations wh&réhas negative
ymptotically flat spacetimessee, e.g., Refl1], and refer-  constant curvature are stable under gravitational perturba-
ences therein The inclusion of a negative cosmological con- tjons.
stant adds a new angle of interest to the prob[@s18]. In this paper, the exact expression for the quasinormal
Through the AdS_ conformal field theolCFT) correspon-  odes of a massive scalar field in the geométiywith u
dence, the quasinormal modes can be related to the relax( js presented. Since this geometry has constant curvature,
ation time scale of the associated thermal stg2esd]. Re- e inclusion of a conformal coupling amounts just to a shift
cently, a connection has also been conjectured between thie the mass parameter of the scalar field. The generalization

quasinormal modes and critical phenomena of black holgy he expression for the quasinormal modes in higher di-
formation in an asymptotically AdS backgrouf®l. In three 1 ansions is also obtained.

dimensions analytic results supporting these conjectures

have been established recenftf~10. In four dimensions,

however, the quasinormal frequencies on black holes have !l QUASINORMAL MODES IN FOUR DIMENSIONS

been obtained by numerical methods only. , Consider the exterior region of the black ha@lB in the
A negative cosmological constant allows the existence of,5ssless case

black holes with a topologyR?>X 3, where is a two-

dimensional manifold of constant curvatuf&9—21. The

2 2
simplest solution of this kind wheB has negative constant d<2= — r__l dt2+ dr +r2do?.
curvature, reads 12 r?
7 1
2 2

r< 2 dr
d32=—< —1+—-— Elae+ T tride?

| r r< 2up This is a manifold of negative constant curvature possessing

2 r an event horizon at=I. A massive scalar field with a non-

(1) minimal coupling satisfies

where the constanf. is proportional to the mass and is y

bounded from below ag= —1/3y/3. Herel is the AdS ra- (D—mz— 5R) $=0, 2
dius, anddo? is the line element oF, which must be locally
isomorphic to the hyperbolic manifold2. By virtue of the

Killing-Hopf theorem,S must be of the form which becomes conformally invariant fon=0 and y=1.

Here O stands for the Laplace-Beltrami operator. Since the
scalar curvature iR=—12~2, this equation reduces to
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The solution of Eq(3) can be readily found making the andc cannot be an integer.

following coordinate transformation=1—12/r? andt—It,
so that the metric reads

2

dg= | _q¢

el +do?|, (4)

* 4z(1-2)
where O<z<1, and adopting the following ansatz
p=R(z)e”"'Y(3). (5

Here Y is a normalizable harmonic function an, i.e., it
satisfiesV2Y=—QY, whereV? is Laplace operator oX.
The eigenvalues for the hyperbolic manifdtf are

1
sz+§2, (6)

whereé is any real number, see, e.g., Rg¥4]. SinceX is a
quotient of the formH?/T", the spectrum has the fori6),
but the parameteg becomes restricted depending bn In-

deed, if2 is a closed manifold the spectrum is discrete. Note

that the zero modeQ =0, is not in the spectrum.
The radial functionR(z) satisfies
R(z)=0.

z w?> Q méﬁlz)
1‘5)3z+(5‘2‘4<1_z>
(@)

Under the decompositioR(z) =z%(1—2z)#K(z), Eq.(7) be-
comes the hypergeometric equation Kar

2(1-2)9>+

2(1-2)K"+[c—(1+a+b)z]K'—abK=0,  (8)

provided

a=-—>, 9

31
B=B.=7 tz\/9+4m§ﬁ| 2,

(10
The solution of Eq(8) takes the form
K=C;F(a,b,c,z2)+C,z} " °F(a—c+1b—c+1,2—c,2),

(11
where the coefficients are defined as
_ 1 +a+B.+ ¢
a= Z a+ B E'
b= L +a+ ¢ 12
- Z o Bi ?l ( )
c=1+2a,

On physical grounds$ must be restricted to be a purely
ingoing wave at the horizon. Furthermore, since the space-
time is locally AdS, the energy-momentum flux density at the
asymptotic region should vanish.

The behavior of the scalar field near the horizar Q) is
given by

b~ Cle—iw[t+|n(z)/2] + Czefiw[tfln(Z)/Zl_

Then, ¢ is purely ingoing at the horizon fo€,=0, and
therefore the radial function is

R(z)=z%1-2)PF(a,b,c,z). (13

The energy-momentum tensor for the scalar field is given by

1 . m?2 )
TMVZ&,(Ldjavd)_ Eg,uva ¢aa¢_ 7g,u,v¢

Y
+ g[g,uvD - V/LVVJ’_ G,uv] 4)21

where G,, is the Einstein tensor. The current”
=\/—g&"T#, which is conserved it* is a Killing vector,
allows to define the energy choosirif= 5. Thus, the
energy-momentum  flux density V—gT,0g?? at the
asymptotic region vanishes if

lim—— (1 2
im—| [ 1— —=
Z~>l\/1_z 3

A detailed analysigsee the Appendjxshows that this last
condition is satisfied only if

y 1 )
Z9,+ 3 (1_2)}(1) —0.

9

2
Mef=— >
412

which agrees with the Breitenlohner-Freedman bound for the
positivity of energy in global Ad$[25,2€. In this case, the
expression for the scalar field is given by E¢S. and (13),

with 8= B, as defined in Eq(10). The quasinormal fre-
quencies are determined by the conditiald%:—n or

blg, =—n, withn=0,1,2 ..., in Eq.(12) yielding

9, 2,2
2n+1+ Z+meﬁl . (14

As shown in the Appendix, in analogy with the normal
modes for Adg, if the mass and the coupling constant

satisfy
9 3 y
- 212~ _
\/4+meﬁl 2 3-2y (15

w=*&—i

IActually @= *iw/2, and without loss of generality the negative there exists an alternative set of modes for the range of ef-

sign can be chosen.

fective mass
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9 - where forHY™? the parameteg takes all real values, and
- Z< Mgl “<— E (16) upon identifications, the parametéis generically restricted,
becoming a discrete set¥,_, is a closed surface.
for which the scalar field is obtained from Eqs),(13) but Now, the radial functiorR(z) satisfies
with 8=pB_. In this case, the quasinormal frequencies are d—5
found analogously by|; =—n orb|z =—n, so that [z(l—z)a§+ 1+(T)Z d,

w=* &I

9 2 2|2
2n+1— \[Z‘f‘mgﬁlz) (17) —I—(%—%—%)}R(Z):O,

Note that a massless scalar fiel<0) satisfies the condi- and if we choosd&R=z%(1—2)?K(z) the functionK satisfies
tion (15 only for conformal coupling f=1). Actually, the hypergeometric equatidB) whose solution is also given
there are two other values of which satisfy Eq.(15) for by Eq.(11) where hypergeometric parameters are now
m=0, namely,y=0, 9/8. These two roots, however, yield
an effective mass which lies outside the rarig). _[d=3 1§

Remarkably, the damping time scale is independent of the a=-\"z2- 2
parametei, which determines the eigenvalue of the Laplac-
ian in 3. This is contrary to the observation in the d-3
Schwarzschild-AdS case, where surprisingly, the damping b—_(T
time scale increases with the angular momentum of the mode
[2]. In the next section, the generalization of these results for c=1+2a,
higher dimensions is discussed.

+a+pB.+

-f—a-i—,Bi—E (20)

wherec is not an integer and
IIl. HIGHER DIMENSIONS

Black holes with topologically nontrivial transverse sec- =" 5
tions of negative constant curvature exist tbr-4 dimen-
sions[27-29 and also for gravity theories containing higher
powers of the curvaturg30,31]. Following the procedure of d-1 1 912
Refs.[32,33, the mass can be obtained from a surface inte- B=P.=——*-1 /(_ +mZ 2.
gral at infinity. From this, it can be seen that, for all cases, -4 2 2 ¢
the massless solution is described by a metric of the same ) ) ) o
general form as in Eq4), but nowdo? stands for the line In analogy with the four-dimensional case, requirshgo
element of a @— 2)-dimensional surfac& ,_, of negative be pl_Jrer ingoing at the horizon, fixes the form of the radial
constant curvature. In this case, the configuraiignis a  function as
locally AdS spacetime

Spacetimes of the forng4) in d dimensions admitting
Killing spinors were classifief22], where it was shown that

global supersymmetry can be attained oni.if, is a non- momentum flux density implies that if the effective mass

compact surface. -
X . isfies th n
Topological black holes have scalar curvature given bySats es the bound

R=—d(d—1)I 2 and therefore the massive scalar field with (d— 1) 2

(21)

R(z)=z%1-2)PF(a,b,c,z). (22)

As shown in the Appendix, the vanishing of the energy-

a nonminimal coupling satisfies the Klein-Gordon equation ml 2= —
with an effective mass given by

(23

the scalar field is given by Eg&5), (22) with 8= 3. in Eq.
, dd—2) (19 (2D. The quasinormal frequencies are determinedafyy,
4)? =-norbls =-n, withn=0,1,2..., in Eq.(20), which

yields

This equation can be solved for the massless background
with the same ansatz as for the four-dimensional ¢asédut _
now, Y is a harmonic function of finite norm with eigenvalue o=*=f—i
—QonXy ,. SinceX,_, is surface of constant curvature it

must beH "~ or a quotient thereof, and hence, the spectrumrpg bound(23) coincides with the one obtained by Mezinc-

_ 2
2n+1+ T) +m§ﬁ|2} (24)

of the Laplace operator takes the fof&4] escu and Townsend for the normal modes in global AdS
[35].
_ d-3)? 2 If the mass and the coupling constaptsatisfy the rela-
Q=|——| +&, 19 on
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for the range of effective mass given by

there is another set of modes for which the scalar field is
obtained from Eq95),(22) but now for3=_ . This second APPENDIX
set of quasinormal frequencies is given by

2n+1— \/(d;—l +m§ﬁ|2}. (27)

As it occurs in four dimensions, the massless scalar field | . . _
(m=0) satisfies the conditiof25) only for conformal cou-  Which becomes conformally invariant for=1 andm=0.
pling (y=1). Also, the damping time scale is independent of ' '€ €Nergy-momentum tensor is given by

the eigenvalue of the laplacian @n

Consider a massive real scalar fielddnlimensions non-
minimally coupled to the background geometry

w=*+ &

d-1

D—mz—% R|¢$=0, (A1)

1 . m? 5
T}LV:&M¢0V¢_ Eg,u.va ¢aa¢_ 7gp,v¢
IV. DISCUSSION AND COMMENTS

+0[g,,0-V,V,+G,,]¢°
The scalar perturbations on the massless black hole geom- (9. H wrl$

etry (4) have been described in four and higher dimensions. . o
As the transverse sectid®y , is a quotient ofH9=2, the ~ With 0=(»/4)(d—2)/(d—1). The currenj”= \/—_gg T, is
imaginary part ofw is non-negative, and therefore stability is cOnserved provided” is a Killing vector. Thie vanishing of
always guaranteed. The expressions for the quasinormal fréhe energy-momentum flux density/—gTod3; in the
quencies and eigenfunctions are explicitly found. To thes@symptotic region of Eq4) is expressed as
authors’ knowledge, this is the only analytic result for a
black hole in four and higher dimensions. _ 1

The advantage of working with analytic expressions is ~ lim————-—" (1—49)23#29@ $*—0.
that it is possible to impose the vanishing of the energy- z-1(1-2)
momentum flux at infinity, which is more general than re- (A2)
quiring the vanishing ofp at infinity as is usually done in o ) _ _
numerical computations. As can be seen from @), the The scalar field is given by Eq5) with R(z) defined in
vanishing of the scalar field at infinity leads to the sameEd. (22). The behavior oR(2) in the asymptotic regionz(
modes as those found here fo2,=0. However, for the —1) IS given by
range— (d— 1)%/4<m2?<0, the field vanishes identically

at infinity so that this condition does not yield information R, .1~ (1-2)PA[1+O(1-2)]+(1—z)(d- Dk
about the modes.
A numerical analysis of the quasinormal modes for topo- XBl1+0(1-2)], (A3)
logical black holes was done in Rgfl6] assuming the ei-
genvalue of the Laplacian oB to be Q=0. This value, Where
however, is not in the spectrum of the Laplacian and, accord-
ing to our result, would give rise to damping without oscil- _I'(c)I'(c—a—b)
lations, or even to unstable modes for certain values of the " T'(c—a)T(c—h)’

effective mass.

According to the AdS/CFT correspondence, the quasinor- r

; - (c)T'(a+b—c)

mal modes are related to the relaxation time scale of a per- =7 - - 7
turbation in the associated thermal states at the boundary. In F@I'(b)
this case, the thermal CFT is defined 8hx 2 ,_,, and the
characteristic time scale is given by (Im[w]) ~%, wherew  wherea, b, ¢, and 8 are defined in Eqs20) and (21), and
can be given by Eq(24) or (27). Following Ref.[2], it c—a—b=(d—1)/2—2p cannot be an integer. Substituting
would be interesting to compare our results against the critithe asymptotic form of) in Eq. (A2), the following condi-
cal exponents of the formation process for these black holesion is obtained:
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AB(1—d+46d)+2A%(6— B+46B)(1—z)?F~(d-1)2
+B2(1—-d—26+28—808+40d)(1—z)d /228
+A2C(1—2)B-D2+264 B2p (1 —7)[@+1)2-28

+ABE(1-2)=0, (A4)

whereC,D,E are of the formconst+O(1-2z)].

If the effective mass does not satisfy the boy@8d), the
condition (A4) can only be satisfied if the scalar field iden-
tically vanishes. Hence, nontrivial solutions requii¢o be a
real number.

Since @—1)/2—28 cannot be an integer, the condition
(A4) can only be satisfied foh=0 or B=0. In the case of
B=0, the condition(A4) is always met if

d-1

7 (A5)

B> ,

which is only satisfied for the brancB= 3. . This means
that the quasinormal frequencies are found thromj;}!;\+

=-—nor b|3+= —n, wheren is a non-negative integer.

PHYSICAL REVIEW D 67, 044014 (2003

If the condition
0—B+46B=0,

holds, then Eq(A4) requiresp>(d—3)/4, which can also
be satisfied for the brancB= 3_ in the range
d-3
4

d-1
4

which gives rise to the boun@6), and the quasinormal fre-
quencies are determineds, =—norbl; =—n.

The case withA=0 is equivalent to the former, because
of the relations

A|ﬁi:B|BI )
b, =(c—a)lg=,
a|ﬁi:(c_b)|,31 ,

(¢9—B+4a9,8)|ﬁi=(1—d—2¢9+2,8—8¢9,B+46d)|ﬁI .
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