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Quasinormal modes for massless topological black holes
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An exact expression for the quasinormal modes of scalar perturbation on a massless topological black hole
in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature,
and the horizon geometry is assumed to have a negative constant curvature.
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I. INTRODUCTION

In a black hole geometry, the event horizon acts as a s
that drains the linearized perturbations of the geometry
matter fields, damping the oscillations. These are the
called quasinormal modes, which are typically characteri
by a spectrum that is independent of the initial conditio
The quasinormal modes are a sort of fingerprint of the bl
hole depending only on its parameters and on the fundam
tal constants of the system.

Quasinormal modes have been extensively studied in
ymptotically flat spacetimes~see, e.g., Ref.@1#, and refer-
ences therein!. The inclusion of a negative cosmological co
stant adds a new angle of interest to the problem@2–18#.
Through the AdS conformal field theory~CFT! correspon-
dence, the quasinormal modes can be related to the re
ation time scale of the associated thermal states@2–4#. Re-
cently, a connection has also been conjectured between
quasinormal modes and critical phenomena of black h
formation in an asymptotically AdS background@2#. In three
dimensions analytic results supporting these conjectu
have been established recently@5–10#. In four dimensions,
however, the quasinormal frequencies on black holes h
been obtained by numerical methods only.

A negative cosmological constant allows the existence
black holes with a topologyR23S, where S is a two-
dimensional manifold of constant curvature@19–21#. The
simplest solution of this kind whenS has negative constan
curvature, reads

ds252S 211
r 2

l 2
2

2m

r D dt21
dr2

S 211
r 2

l 2
2

2m

r D 1r 2ds2,

~1!

where the constantm is proportional to the mass and
bounded from below asm>2 l /3A3. Herel is the AdS ra-
dius, andds2 is the line element ofS, which must be locally
isomorphic to the hyperbolic manifoldH2. By virtue of the
Killing-Hopf theorem,S must be of the form
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S5H2/G with G,O~2,1!,

where G is a freely acting discrete subgroup~i.e., without
fixed points!.

The configurations~1! are asymptotically locally AdS
spacetimes. These spacetimes can admit Killing spinors
m50 providedS is a noncompact surface@19#. In this case
Eq. ~1! describes a warped black string with a supersymm
ric ground state form50, and therefore expected to b
stable. On the other hand, it has been recently shown in
@23# that the massless configurations whereS has negative
constant curvature are stable under gravitational pertu
tions.

In this paper, the exact expression for the quasinorm
modes of a massive scalar field in the geometry~1! with m
50 is presented. Since this geometry has constant curva
the inclusion of a conformal coupling amounts just to a sh
in the mass parameter of the scalar field. The generaliza
of the expression for the quasinormal modes in higher
mensions is also obtained.

II. QUASINORMAL MODES IN FOUR DIMENSIONS

Consider the exterior region of the black hole~1! in the
massless case

ds252S r 2

l 2
21D dt21

dr2

S r 2

l 2
21D 1r 2ds2.

This is a manifold of negative constant curvature posses
an event horizon atr 5 l . A massive scalar field with a non
minimal coupling satisfies

S h2m22
g

6
RDf50, ~2!

which becomes conformally invariant form50 andg51.
Here h stands for the Laplace-Beltrami operator. Since
scalar curvature isR5212l 22, this equation reduces to

~h2meff
2 !f50, ~3!

with an effective mass given bymeff
2 5m222g l 22.
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The solution of Eq.~3! can be readily found making th
following coordinate transformationz512 l 2/r 2 and t→ l t ,
so that the metric reads

ds25
l 2

~12z! F2zdt21
dz2

4z~12z!
1ds2G , ~4!

where 0<z,1, and adopting the following ansatz

f5R~z!e2 ivtY~S!. ~5!

Here Y is a normalizable harmonic function onS, i.e., it
satisfies¹2Y52QY, where¹2 is Laplace operator onS.
The eigenvalues for the hyperbolic manifoldH2 are

Q5
1

4
1j2, ~6!

wherej is any real number, see, e.g., Ref.@24#. SinceS is a
quotient of the formH2/G, the spectrum has the form~6!,
but the parameterj becomes restricted depending onG. In-
deed, ifS is a closed manifold the spectrum is discrete. N
that the zero mode,Q50, is not in the spectrum.

The radial functionR(z) satisfies

Fz~12z!]z
21S 12

z

2D ]z1S v2

4z
2

Q

4
2

meff
2 l 2

4~12z!
D GR~z!50.

~7!

Under the decompositionR(z)5za(12z)bK(z), Eq. ~7! be-
comes the hypergeometric equation forK,

z~12z!K91@c2~11a1b!z#K82abK50, ~8!

provided1

a52
iv

2
, ~9!

b5b65
3

4
6

1

4
A914meff

2 l 2.

~10!

The solution of Eq.~8! takes the form

K5C1F~a,b,c,z!1C2z12cF~a2c11,b2c11,22c,z!,
~11!

where the coefficients are defined as

a52
1

4
1a1b61

i j

2
,

b52
1

4
1a1b62

i j

2
, ~12!

c5112a,

1Actually a56 iv/2, and without loss of generality the negativ
sign can be chosen.
04401
e

andc cannot be an integer.
On physical grounds,f must be restricted to be a pure

ingoing wave at the horizon. Furthermore, since the spa
time is locally AdS, the energy-momentum flux density at t
asymptotic region should vanish.

The behavior of the scalar field near the horizon (z50) is
given by

f;C1e2 iv[ t1 ln(z)/2]1C2e2 iv[ t2 ln(z)/2].

Then, f is purely ingoing at the horizon forC250, and
therefore the radial function is

R~z!5za~12z!bF~a,b,c,z!. ~13!

The energy-momentum tensor for the scalar field is given

Tmn5]mf]nf2
1

2
gmn]af]af2

m2

2
gmnf2

1
g

6
@gmnh2¹m¹n1Gmn#f2,

where Gmn is the Einstein tensor. The currentj m

5A2gjnTn
m , which is conserved ifjm is a Killing vector,

allows to define the energy choosingjm5d0
m . Thus, the

energy-momentum flux densityA2gTz0gzz at the
asymptotic region vanishes if

lim
z→1

1

A12z
F S 12

2g

3 D z]z1
g

3

1

~12z!Gf2→0.

A detailed analysis~see the Appendix! shows that this last
condition is satisfied only if

meff
2 >2

9

4l 2
,

which agrees with the Breitenlohner-Freedman bound for
positivity of energy in global AdS4 @25,26#. In this case, the
expression for the scalar field is given by Eqs.~5! and ~13!,
with b5b1 as defined in Eq.~10!. The quasinormal fre-
quencies are determined by the conditionsaub1

52n or

bub1
52n, with n50,1,2, . . . , in Eq.~12! yielding

v56j2 i S 2n111A9

4
1meff

2 l 2D . ~14!

As shown in the Appendix, in analogy with the norm
modes for AdS4, if the mass and the coupling constantg
satisfy

A9

4
1meff

2 l 25
3

2
2

g

322g
, ~15!

there exists an alternative set of modes for the range of
fective mass
4-2
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2
9

4
,meff

2 l 2,2
5

4
, ~16!

for which the scalar field is obtained from Eqs.~5!,~13! but
with b5b2 . In this case, the quasinormal frequencies
found analogously byaub2

52n or bub2
52n, so that

v56j2 i S 2n112A9

4
1meff

2 l 2D . ~17!

Note that a massless scalar field (m50) satisfies the condi
tion ~15! only for conformal coupling (g51). Actually,
there are two other values ofg which satisfy Eq.~15! for
m50, namely,g50, 9/8. These two roots, however, yie
an effective mass which lies outside the range~16!.

Remarkably, the damping time scale is independent of
parameterj, which determines the eigenvalue of the Lapla
ian in S. This is contrary to the observation in th
Schwarzschild-AdS case, where surprisingly, the damp
time scale increases with the angular momentum of the m
@2#. In the next section, the generalization of these results
higher dimensions is discussed.

III. HIGHER DIMENSIONS

Black holes with topologically nontrivial transverse se
tions of negative constant curvature exist ford.4 dimen-
sions@27–29# and also for gravity theories containing high
powers of the curvature@30,31#. Following the procedure o
Refs.@32,33#, the mass can be obtained from a surface in
gral at infinity. From this, it can be seen that, for all cas
the massless solution is described by a metric of the s
general form as in Eq.~4!, but nowds2 stands for the line
element of a (d22)-dimensional surfaceSd22 of negative
constant curvature. In this case, the configuration~4! is a
locally AdS spacetime

Spacetimes of the form~4! in d dimensions admitting
Killing spinors were classified@22#, where it was shown tha
global supersymmetry can be attained only ifSd22 is a non-
compact surface.

Topological black holes have scalar curvature given
R52d(d21)l 22 and therefore the massive scalar field w
a nonminimal coupling satisfies the Klein-Gordon equat
with an effective mass given by

meff
2 5m22g

d~d22!

4l 2
. ~18!

This equation can be solved for the massless backgro
with the same ansatz as for the four-dimensional case~5!, but
now, Y is a harmonic function of finite norm with eigenvalu
2Q on Sd22. SinceSd22 is surface of constant curvature
must beHd22 or a quotient thereof, and hence, the spectr
of the Laplace operator takes the form@34#

Q5S d23

2 D 2

1j2, ~19!
04401
e

e
-

g
de
r

-
,
e

y

n

nd

where forHd22 the parameterj takes all real values, and
upon identifications, the parameterj is generically restricted,
becoming a discrete set ifSd22 is a closed surface.

Now, the radial functionR(z) satisfies

H z~12z!]z
21F11S d25

2 D zG]z

1S v2

4z
2

Q

4
2

meff
2 l 2

4~12z!
D J R~z!50,

and if we chooseR5za(12z)bK(z) the functionK satisfies
the hypergeometric equation~8! whose solution is also given
by Eq. ~11! where hypergeometric parameters are now

a52S d23

4 D1a1b61
i j

2
,

b52S d23

4 D1a1b62
i j

2
, ~20!

c5112a,

wherec is not an integer and

a52
iv

2
,

~21!

b5b65
d21

4
6

1

2
AS d21

2 D 2

1meff
2 l 2.

In analogy with the four-dimensional case, requiringf to
be purely ingoing at the horizon, fixes the form of the rad
function as

R~z!5za~12z!bF~a,b,c,z!. ~22!

As shown in the Appendix, the vanishing of the energ
momentum flux density implies that if the effective ma
satisfies the bound

meff
2 l 2>2S d21

2 D 2

, ~23!

the scalar field is given by Eqs.~5!, ~22! with b5b1 in Eq.
~21!. The quasinormal frequencies are determined byaub1

52n or bub1
52n, with n50,1,2, . . . , in Eq.~20!, which

yields

v56j2 i F2n111AS d21

2 D 2

1meff
2 l 2G . ~24!

The bound~23! coincides with the one obtained by Mezin
escu and Townsend for the normal modes in global Add
@35#.

If the mass and the coupling constantg satisfy the rela-
tion
4-3
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AS d21

2 D 2

1meff
2 l 25

d21

2
2

g

2

d22

d212g~d22!
~25!

for the range of effective mass given by

2S d21

2 D 2

,meff
2 l 2,12S d21

2 D 2

, ~26!

there is another set of modes for which the scalar field
obtained from Eqs.~5!,~22! but now forb5b2 . This second
set of quasinormal frequencies is given by

v56j2 i F2n112AS d21

2 D 2

1meff
2 l 2G . ~27!

As it occurs in four dimensions, the massless scalar fi
(m50) satisfies the condition~25! only for conformal cou-
pling (g51). Also, the damping time scale is independent
the eigenvalue of the laplacian onS.

IV. DISCUSSION AND COMMENTS

The scalar perturbations on the massless black hole ge
etry ~4! have been described in four and higher dimensio
As the transverse sectionSd22 is a quotient ofHd22, the
imaginary part ofv is non-negative, and therefore stability
always guaranteed. The expressions for the quasinorma
quencies and eigenfunctions are explicitly found. To th
authors’ knowledge, this is the only analytic result for
black hole in four and higher dimensions.

The advantage of working with analytic expressions
that it is possible to impose the vanishing of the ener
momentum flux at infinity, which is more general than r
quiring the vanishing off at infinity as is usually done in
numerical computations. As can be seen from Eq.~A3!, the
vanishing of the scalar field at infinity leads to the sa
modes as those found here formeff

2 >0. However, for the
range2(d21)2/4<meff

2 l 2,0, the field vanishes identically
at infinity so that this condition does not yield informatio
about the modes.

A numerical analysis of the quasinormal modes for top
logical black holes was done in Ref.@16# assuming the ei-
genvalue of the Laplacian onS to be Q50. This value,
however, is not in the spectrum of the Laplacian and, acco
ing to our result, would give rise to damping without osc
lations, or even to unstable modes for certain values of
effective mass.

According to the AdS/CFT correspondence, the quasin
mal modes are related to the relaxation time scale of a
turbation in the associated thermal states at the boundar
this case, the thermal CFT is defined onS13Sd22, and the
characteristic time scale is given byt5(Im@v#)21, wherev
can be given by Eq.~24! or ~27!. Following Ref. @2#, it
would be interesting to compare our results against the c
cal exponents of the formation process for these black ho
04401
is

ld

f

m-
s.

re-
e

s
-

-

e

-

d-

e

r-
r-
In

i-
s.

ACKNOWLEDGMENTS

The authors are grateful to Jaime Vela´zquez for helpful
remarks. This work is partially funded by grants N
1010446, 1010449, 1010450, 1020629, 7010446, 7010
from FONDECYT and Grant No. DI 08-02~UNAB!. The
generous support of Empresas CMPC to the Centro de E
dios Cientı´ficos ~CECS! is gratefully acknowledged. CECS
is a Millennium Science Institute and is funded in part
grants from Fundacion Andes and the Tinker Foundation

APPENDIX

Consider a massive real scalar field ind dimensions non-
minimally coupled to the background geometry

S h2m22
g

4

d22

d21
RDf50, ~A1!

which becomes conformally invariant forg51 andm50.
The energy-momentum tensor is given by

Tmn5]mf]nf2
1

2
gmn]af]af2

m2

2
gmnf2

1u@gmnh2¹m¹n1Gmn#f2,

with u5(g/4)(d22)/(d21). The currentj m5A2gjnTn
m is

conserved providedjm is a Killing vector. The vanishing of
the energy-momentum flux densityA2gT0

i dS i in the
asymptotic region of Eq.~4! is expressed as

lim
z→1

1

~12z!~d23!/2 S ~124u!z]z12u
1

~12z! Df2→0.

~A2!

The scalar field is given by Eq.~5! with R(z) defined in
Eq. ~22!. The behavior ofR(z) in the asymptotic region (z
→1) is given by

Rz→1;~12z!bA@11O~12z!#1~12z!(d21)/22b

3B@11O~12z!#, ~A3!

where

A5
G~c!G~c2a2b!

G~c2a!G~c2b!
,

B5
G~c!G~a1b2c!

G~a!G~b!
,

wherea, b, c, andb are defined in Eqs.~20! and ~21!, and
c2a2b5(d21)/222b cannot be an integer. Substitutin
the asymptotic form off in Eq. ~A2!, the following condi-
tion is obtained:
4-4
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AB~12d14ud!12A2~u2b14ub!~12z!2b2(d21)/2

1B2~12d22u12b28ub14ud!~12z!(d21)/222b

1A2C~12z!(32d)/212b1B2D~12z!(d11)/222b

1ABE~12z!50, ~A4!

whereC,D,E are of the form@const1O(12z)].
If the effective mass does not satisfy the bound~23!, the

condition ~A4! can only be satisfied if the scalar field ide
tically vanishes. Hence, nontrivial solutions requireb to be a
real number.

Since (d21)/222b cannot be an integer, the conditio
~A4! can only be satisfied forA50 or B50. In the case of
B50, the condition~A4! is always met if

b.
d21

4
, ~A5!

which is only satisfied for the branchb5b1 . This means
that the quasinormal frequencies are found throughaub1

52n or bub1
52n, wheren is a non-negative integer.
Oz

ev

04401
If the condition

u2b14ub50,

holds, then Eq.~A4! requiresb.(d23)/4, which can also
be satisfied for the branchb5b2 in the range

d23

4
,b2,

d21

4
,

which gives rise to the bound~26!, and the quasinormal fre
quencies are determinedaub2

52n or bub2
52n.

The case withA50 is equivalent to the former, becaus
of the relations

Aub6
5Bub7 ,

bub6
5~c2a!ub7 ,

aub6
5~c2b!ub7 ,

~u2b14ub!ub6
5~12d22u12b28ub14ud!ub7 .
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