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Fate of chaotic binaries
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A typical stellar mass black hole with a lighter companion is shown to succumb to a chaotic precession of
the orbital plane. The chaotic behavior is identified in the conservative system since there is no clear way to do
so when dissipation is included and all binaries merge. The precession and the subsequent modulation of the
gravitational radiation depend on the mass ratio, eccentricity, and spins. The smaller the mass of the compan-
ion, the more prominent the effect of the precession. The most important parameters are the spin magnitudes
and misalignments. If the spins are small and nearly aligned with the orbital angular momentum, then there will
be no chaotic precession, while increasing both the spin magnitudes and misalignments increases the erratic
precession. A large eccentricity can be induced by large, misaligned spins but does not seem to be required for
chaos. When dissipation due to gravitational radiation is included chaos is damped, but a further study is
needed to determine if dissipation will erase all traces of chaos or if an imprint of irregularity survives.
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[. INTRODUCTION have a distribution of eccentricities and short orbital periods
with masses in the range of (5—15M [10]. A binary
Merging black hole binaries are potent sources of graviwith massean;=15M, and m,=5M, for instance, will
tational waves and are among the most promising targets f@mit gravitational waves with a frequency within the optimal
direct detection by the future interferometric observatoriesLIGO bandwidth off ~10—1¢ Hz for radial separations
Black hole mergers, if sufficiently abundant, are likely to be<=50m where units of total massn=m;+m, are used.
the most common compact binary merger to be detected. [Fhese provide natural values for the mass and radius ranges
the black holes are rapidly spinning, then the orbit can beo investigate. The heavier black hole is taken to have maxi-
extremely irregular, even chaotic, bearing significant impli-mal spin S;=m? (spin periodP~3x10 s for a 1M
cations for gravitational wave searchés-7]. An earlier Let-  black holg. Unlike pulsars, black holes are expected to es-
ter [2] identified chaos in relativistic, spinning binaries in a sentially maintain the spin they are born wi(thl] through
somewhat abstract discussion. In this article, the intention isnost of the inspiral. This canonical BH-BH pair can precess
instead to provide a more concrete discussion with less enehaotically any time the trajectory transits near the underly-
phasis on formal chaos. What is observationally important isng homoclinic orbits of Refg.4,12]. Homoclinic orbits are
visibly irregular motion. Taking this attitude, a specific astro-purely relativistic, a consequence of nonlinearity, and un-
physical model is followed through successive stages in orstable. They have the essential features for the onset of chaos
der to gauge when irregular motion will occur within the when the bodies spin. Still, having said this, it is not clear
Laser Interferometric Gravitational Wave Observatorythat chaos will be confined to this region of phase space.
(LIGO) or VIRGO bandwidth. Specifically, we investigate A BH-NS binary with typical parameter values ofi,
the orbits of a maximally spinning black hole with a lighter =10M, and m,=1.4M, follows trends similar to the
companion. BH-BH binaries. The explosive evolution of stellar progeni-
Certain binary star systems are fated to evolve into blackors which populate BH-NS pairs delivers large kicks to the
hole binaries. The orbits of these long lived binaries havenbjects and leads to large spin misalignmdnif). It is still
sufficient time to circularize before entering the LIGO- unclear whether the population of such pairs is too sparse to
VIRGO bandwidth as angular momentum is lost to gravita-expect detection. Since it is only the mass ratio that enters
tional waves. An archive of circular templates is accruing forthe equations, either of these cases can be scaled to represent
various binary parameters. Yet the merger rates of thesghe dynamics of much more massive systems which will be
evolved binaries are predicted to be too low to ensure detedsisible to the Laser Interferometer Space AnterfhiSA)
tion by the first two generations of LIGO detectors. A more[14].
promising detection rate is predicted for dynamical binary There is no clear way to identify irregular behavior in
black holes; that is, binaries formed by the dynamical capmerging binaries when dissipation is included. For this rea-
ture of one black hol¢BH) by another in dense stellar sys- son, we look for chaotic behavior when energy is conserved
tems [10]. The merger rate is expected to be about 1.6and the radiation reaction is turned off. Along an individual
X 10~ "/yr/Mpc®, which exceeds neutron stéNS) merger  orbit, chaos manifests itself as the unpredictable precession
rates as well. Dynamically formed black hole binaries shouldbf the orbital plane. When considering all possible orbits
chaos manifests itself as an extreme sensitivity of the orbital
precession to initial conditions, so two neighboring orbits
*Email address: j.levin@damtp.cam.ac.uk may live out very different precessional histories. The impli-
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cation is that there is a theoretical limit on how well we can
predict the orbit and therefore the waveform of the emitted
gravitational radiatior{1,2]. Dissipation from the emission

of gravitational waves is then included. Dissipation may
damp chaos so efficiently that the gravitational wave experi-
ments will be unaffected. Irregular motion in the dissipative
system is understood in terms of the number of windings the
pair executes in a region of phase space which is chaotic for
the underlying conservative system. An imprint of chaos can /
be seen in the dissipative system although a more thorough orbital plane

investigation at higher orders in the post-Newtonian approxi- initially

mation (when they become availables still required[8,9].

The regularity of the orbit will be affected by several ~FIG. 1. A schematic drawing of the inclination angie
parameters: the mass rafioc= m,/m, , the magnitudes of the =arccosly-J) and the anglés=arccos( y-S). The orbital plane
spins, the spin alignment with respect to the orbital plane, th&aces out a band as in Figs. 2 and 3 below as the Newtonian
eccentricity of the orbit, and the radius of the orbit at theangular momentum precesses abéut
time of detection. As is already clear from REgf], motion in
the conservative system becomes more irregular the largdution as evidence, or at least confirmation, of
the angle the spin makes with the perpendicular to the orbitahonintegrability.
plane. The importance of three other parameters is evaluated The validity of the PN expansion is not questioned further
here:(1) the binary mass ratiB=m,/m,, (2) the magnitude and the equations are treated as a self-contained dynamical
of the second spi,, and(3) the eccentricity of the orbit.  System. In the PN scheme, the orbit evolves according to the

The conclusions in brief for the three parameters variedOrce equation
below are the following(1) The mass ratio primarily effects .
the cone of precession. The smaller the mass r#io F=apnT sot Asst ke (0
=m,/mq, the larger the angle subtended by the orbital plane ) _
and the larger the modulation of the gravitational wavedn center of mass harmonic coordinafés$]. The accelera-
[15,16]. (2) There can be chaotic motion when the massivelion is due to post-Newtonia(PN) effects, spin-orbit(SO)
black hole spins rapidly even if the companion has no spin@nd Spin-spinSS coupling, and radiative reactidRR). The
Still, the larger the magnitude of the second sfand the ~ eXplicit form of & can be found in the Appendix. The spins
misalignmen, the more irregular the motioii3) Eccentric- ~ @lso precess due to the relativistic frame dragging and Lens-
ity is a consequence of large, misaligned spins and thereforEhirring effect. The precession equations are
it is difficult to separate cause and effect here. Still, it is clear

that eccentricity alone is not responsible for chaos. $=0,x3, $=0,%x3 (2.2
with

Il. EQUATIONS OF MOTION AND SPIN PRECESSION

The post-NewtonianPN) expansion of the relativistic - 1 3my|. . A 2 a
two-body problem leads to a system of equations describing @ r3 2 2m; Ln=S+3(R-S)f 23
the fate of spinning binariegl7]. The PN expansion con-
verges slowly to the fully relativistic descriptigri8]. For  and
this reason, it is a poor approximation at small separations.
Despite its shortcomings, the PN expansion does give the - 1 3my|. . A2 A
qualitative features of a relativistic system such as nonlinear- QZ_F 2+ 2m, Ly=Si+3(A-Sphj. (2.4

ity, the existence of unstable circular orlis8], homoclinic
orbits[12], and spin precession. Since these are the ingredifhe spins precess with constant magnitude although the total
ents for chaotic dynamics, the qualitative behavior shoulcgpin §=§1+§2 may not have constant magnitude.

persist in a more accurate approximation, although the quan- The grientation of the orbital plane is defined by the New-
titative conclusions are subject to changee, for instance, tonian orbital angular momentum

the improved technique of Ref19]).
It is worth emphasizing that approximations can introduce o= (FX

chaos when the exact system is truly regular. One might Ln=u(Fx9) 29

worry that the error at 2PN order has introduced chaos whic

would be removed if we knew the full equations of motion —m,+m,. Spin precession generates a precession of the

without a'lpp'roxmatlon. How'ever, the reIaﬂwstlc two-body orbital plane(Fig. 1). This can most easily be seen by noting
problem is likely to be more irregular at higher orders as theh 2PN order th | | di d
nonlinearities of general relativity are more accurately repre:[ _at t? FNor er the t_ota angular moment S conserve_

sented, not less. One might even be inclined to take the exvith J=L+S. The orbital angular momentutn can be split

treme resistance of the relativistic two-body problem to so-into two piecesJ:: aI:N-i- L so as in Egs(A15) and(A19).

U\/ith the reduced masg=m;m,/m and the total masm
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where the higher harmonics have been ignored for simplicity.
The amplitudeA and polarization phasé depend on the
binary’s location, orientation, and precess[d®,16. For an
elliptical orbit, h has terms of the form co®{, cos(2b), and

10 = ii‘\\ : . .
\_>\§§\\‘\‘f“§‘ R cos(3Db) at quadrupole order so the gravitational wave spec-
o[ \“m‘:‘§§§$‘§}:§ : trum shows oscillations at once, twice, and three times the
\‘w\\ N orbital frequency.
10 \\\\\“i‘t\‘i“‘ X Precession of the orbital plane will) modulate the am-

plitude in Eqg.(2.8), (2) modulate the polarization phase
and therefore the frequency of the gravitational waves, and
(3) contribute to the overall accumulated phase by changing
B the inspiral lifetime. Any extreme sensitivity to initial condi-
BRI NS tions will most likely have the largest effect on the modula-
tion of the amplitude and frequency of the gravitational
FIG. 2. A three-dimensional view of a regular orbit wih  waves. The overall accumulated contribution to the number
=m,/m;=1.4/10, S;=mi, and S,=0. The initial angle 6;  of cycles in the observed waveform will certainly be affected
=arccos( y-S;)=45°. The initial conditions for the orbit are by the general bulk precession but may be less sensitive to
r/m= 20 andr ¢=0.209. the irregularity of the precession until the very final stages of
coalescence. The reason for this is that, at the radii accessible
to the interferometers, the irregularity seems to predomi-
nantly affect the orientation of the orbit with a lesser effect

The termESO is due to spin-orbit coupling and contains

post-Newtonian corrections. To 2PN ordkt 0 and so on the net orbital velocitys= 89+ sin 6. LIGO-VIRGO
R R aim to observe gravitational waves by accurately measuring
L~-S. (2.6)  the accumulated phase defined as
The magnitude of the orbital angular momentunmds con- \P:J di= j 4 2.9
stant. Further, the precession of the orbital plane can be @ w0 '

much more complicated than the precessior‘fs:of (aEN)' ) ] ] )
sl which may only have a small correction from the irregularity

~ =S~ Lso. The orbital plane therefore does not just carveof the precession. Irregular motion will affect the phasing,
out a simple cone as it precesses around the directiah of that is, the gravitational wave frequency, and the amplitude
Instead the plane tilts back and forth as it precesses. Thef the wave. The number of cycles in the accumulated phase
motion becomes chaotic as the tilting back and forth bemay therefore be determined by the average bulk behavior of
comes highly irregular in the Hamiltonian system. When ra-the precession. Although this conjecture requires further
diation reaction is included, the degree of irregularity in thescrutiny, we can use the approximations of R¢i%,16| to
precession of the orbital plane can be estimated in terms qfrovide a rough figure for the number of wave cycles. In Ref.
how many windings the pair spends near the chaotic regiofi5], circular Newtonian orbits were studied. The effect of
of the underlying conservative system. spin precession was isolated without including spin-orbit ac-
Figure 2 shows an example of the trajectory for the centegeleration terms in the equations of motion in Hé&6). This
of mass of a BH-NS pair. The motion is plotted in three separation of the spin precession equations and the equations
dimensions to illustrate the precession of the orbital plane. of motion removed any possibility of chaotic coupling. How-
The precession, whether regular or irregular, modulategver, the gross features can be fairly represented by this ap-
the emitted gravitational waves. The response of a detectgroach. They estimate that the change in the total number of
on Earth to an impinging gravitational wave can be paramcycles amounts to about twice the total number of preces-
etrized as sions. For binary black holes of size NI%,+5Mg, there
can be~10-15 precessions in the observable band and so
h=F,h,+Fhy (2.7 there can be~20-30 additional cyclesdepending on the
spin orientation, magnitude, and eccentricity of the Qrbit
whereh . andhy are the two gravitational wave polarization Ref.[16], the contribution to the total number of orbits over
states and~, andF . are the antenna patterns. A radiation the entire LIGO bandwidth was also estimated to-@(20)
coordinate system can be defined such that the polarizaticior black hole binaries with total mass20M, . The num-
axes are fixed even in the presence of preces®26h In  ber of additional cycles could quadruple for NS-NS masses
such a coordinate systef, andF . are constant. However, [16].
the polarization statels, andh, depend on the inclination It has been argued that matched filtering will be a poor
of the orbit and the precessional frequency in a complicatedheans by which to observe BH-BH orbits in the chaotic
way [16]. For a circular orbit, the detector response can beegime [2,21] and that other cruder methods will be em-
written ployed. We contribute to this debate only by indicating when
irregularity will influence detectability. It has also been em-
h=Acog2® - 9), (2.9 phasized in Ref[21], that the PN expansion is not sufficient
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to accurately model templates fos 15m. Nonetheless, the ries to tori and there is no chaos to 2PN ord&d.2]. Beyond
higher order contributions will incorporate stronger relativis- 2PN order, on the other hand, the two-body problem is likely
tic effects and therefore more nonlinearity which should onlyto be chaotic even in the absence of spin.

lead to more irregular motion. Since we are trying to provide When the bodies spin, the dynamics can be reduced to a
a physical picture of the general trends and dependences, viene-independent Hamiltonian system by taking a Poincare

continue to use the PN expansion. surface of section. This method of identifying chaos is less
than ideal here. For the record, we will take the time to
. CHAOS explain the method and its shortcomings. The Poinsare

. L . . o face of section involves plotting a point im,f) each time
Chaos in relativistic systems is notoriously difficult to the orbit crosses a surface on which all of the other coordi-
quantify [22,23. While formal definitions of chaos are of nates are fixed. If the collection of points defines a smooth
little interest to data analyStS when Irregularlty regardles%urve’ then the motion is confined to a torus and is inte-
poses a hindrance, the tools of chaos are nonetheless criticgqlame_ If the points speckle the plane, then the motion has
to survey the system for endemic irregularity. In REfl,  diffused off a torus and is nonintegrable. The Poincatkic-
chaos in the spinning black hole problem was identifiedijon of phase space is most easily demonstrated for the case
through the method of fractal basin boundariés5,2. In of only one spinning body so thé‘t:él. Including spin, the

this section irregularity of an individual orbit is discussed hase space is\+ 3= 9 dimensional. The four constants of
and the power of the fractal basin boundary technique ig ]

utilized. It is worth emphasizing that the fractal basin bound-Totion E, J restrict motion to a five-dimensional surface. If

ary method allows one to scan huge numbers of orbits ant/® treat the Hamiltonian as periodic in the three coordinates

therefore provides an invaluable tool to survey phase spac®(t), we can plot a point inr(,i) each time the orbit crosses

for chaos. é(t)=§(0) so that there are only two free coordinates re-
The equations of motion and spin precession equationmaining. In this way we can look for the destruction of tori

are treated as in any other dynamical system. In the firshnd test for nonintegrability.

instance radiation reaction is omitted and chaos is handled in A regular BH-BH binary with mass ratigg=m,/m;

the conservative system. Dissipation is treated in Sec. VII=1/3 is shown in Fig. 3. The more massive black hole has

The 2PN equations of motion can be derived from a La-gpyi, S,=m? with arccos - ;) =45° initially. The second

grangian 24,29 and therefore can be derived from a Hamil- g5iny s set to zero for this figure. The top panel in Fig. 3

tonian. The coordinate§,(t) and Sy(t) can be treated as shows a three-dimensional view of the orbit. The bottom
external time-dependent perturbations to the integrable syganel shows a projection of the orbit in thei() plane. This
tem with the equations of motion supplemented by the preorbit is very nearly circular. Note that if the orbit is exactly
cession equation@.2). The system can therefore be treatedcircular with only one spin then there can be no chaos since
as a time-dependent Hamiltonian systemthe dimensionality of the phase space reduces[&],2vhich
H(E,V,5,(1),55(t)). is not enough to support chaos. This orbit is regular as indi-
Chaos is well defined for Hamiltonian systems. Chaos isated by the absence of spreading in the projection onto the
synonymous with nonintegrability. Regularity is synonymous(r,i) plane.
with integrability. In a Hamiltonian system witk degrees of By contrast, chaotic orbits are shown in Figs. 4 and 5.
freedomqg andN conjugate momentg, integrability prevails  Chaos is first identified by the method of fractal basin bound-
when there aréN independent constants of the motion. Thearies. A fractal basin boundary is an unambiguous, definitive
constants of motion must also be in involution; that is, theindicator of chaos. In a conservative system, chaotic dynam-
Poisson bracket of any constant with the others vanishescs is defined by the existence of a nonattracting chaotic set.
[Ci,C;]=0. The N-dimensional phase space can then beThis is the conservative analogue of the strange attractor of
reduced to motion on aN-dimensional torus. This is most dissipative systems. In the way of analogy it is sometimes
easily represented with a canonical change of coordinates tefered to as the strange repellor. The strange repellor is a
action angle variablesl () such that each of th&l mo-  fractal set of unstable, periodic orbits. The presence of chaos
mental is set equal to one of thi constants of motiorC. in a conservative dynamical system amounts to the existence
The motion can then be made periodic in the coordinat®f such a sef27]. The method of fractal basin boundaries is
variable®. For N=1 degree of freedom, the motion lies on the most powerful tool for isolating the fractal set and
a circle. ForN=2, the motion lies on a torus and for arbi- thereby identifying the presence of chaos.
trary N the motion lies on aiN-dimensional toru§26,27,. In To build the basin boundary, 40000 black hole binaries
any other set of canonical variables, the mark of integrabilityare evolved by varying only the initial velocitiek, ( ¢). The
is that the motion is confined to a smooth closed curvin initial condition is then color coded according to outcome:
g) and does not diffuse off that line. If the motion in,{)  black if the pair merge and white if the pair execute at least
has diffused off a smooth line it is not restricted to a torus50 or more orbits(Increasing the required number of orbits
and the motion must be nonintegrable. will shrink the white basins but will not eliminate fractal
For coalescing binaries, there axe=3 degrees of free- structure at the boundari¢# fractal boundary signifies ex-
dom, (,6,#). When there are no spins, the phase space igeme sensitivity to initial conditions and a mixing of
2N=6 dimensional. The energy and angular momenta proerbits—i.e., chaos. By scattering the more generic nonperi-
vide enough constants of the motion to restrict the trajectoedic orbits together and filtering them on the basis of their
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FIG. 3. A regular orbit withg=m,/m,=1/3, S;=mi, and$, FIG. 5. Top: A three-dimensional plot of an irregular orbit near
=0. The initial anglef,=arccost y-S;)=45°. The initial condi-  the basin boundary of Fig. 4 with initial velocitiés=0.00105 and
tions for the orbit arer/m=20 and r¢$=0.209. Top: three- | 4—0.43075. Bottom: A projection of the orbit onto, ).
dimensional view of the orbit. Bottom: a projection of the orbit onto
the (r,i) plane. boundary will be chaotic although the method does not tell
you definitively about orbits deep in the basin.
outcome, the underlying fractal set of periodic orbits It might be worth mentioning at this point that there was
emerges in the fractal structure of the boundaries. In essencggme concern that other methods, such as the method of
we have gleaned an imprint of the skeletal strange repellokyapunov exponents which measure instability, did not con-
[23]. The power of the fractal basin boundary method as dirm the chaos of the fractal basin boundari@s]. This is

survey of large collections of orbits is clear. Orbits near thenot possible. The fractal basin boundaries are built on the
unstable, fractal set of periodic orbits. By their very nature

these must have positive Lyapunov exponents. As confirmed
in Refs.[29,9], orbits near the fractal boundary do indeed
have positive Lyapunov exponents. The fractal basin bound-
ary method powerfully delivers a survey of 40000 orbits
allowing one to hone in on conspicuous regions of chaotic
behavior. By contrast, the Lyapunov exponents vary from
orbit to orbit and a similar survey of 40 000 binaries would
amount to a draining exercise of trial and error.

An irregular orbit selected near the fractal boundary is
shown the top panel of Fig. 5. The bottom panel of Fig. 5 is
a detail of the projected motion in the,{) plane which
shows some threading of the orbit. A full Poincasection
_ taken as described above confirms that this is not an illusion

FIG. 4. A fractal basin boundary scan in,{¢) varying over  from the projection. However, the numerical burden is ex-
initial values in 0< <0.035 and 0.425r < 0.443125. All 40000 treme and impractical in nearly all cases of interest. For this
orbits have a maximally spinning black hole and a lighter companteason, we continue to rely on the fractal basin boundaries
ion with no spin 8=m,/m,=1/3,S,=mZ, andS,=0). The initial  and only take the projection onto the,{) plane as a crude
angle is 6;=arccos{ y-S;)=95° and initial separation/m=5.  guide and not as proof of chaos.
200x 200 orbits shown. In theory, the surface of section technique can also be
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implemented in the case of two spinning bodies since both
are periodic under the precession. In practice this can be
difficult since one might have to wait a very long time before
S, (t)=5,(0) at the same time aS,(t)=S,(0). Alterna-
tively, we can cheat and simply look at the projection of
(r,f) in the full phase space without taking a Poincaee-
tion. This is only used as a crude survey tdbthe projected
motion lies on a simple closed curve, the motion is decidedly
integrable. If the motion lies on a threaded oisitich as that

of Fig. 5), then this indicates the motianighthave diffused

off of a torus?

Another major shortcoming of the Poincasarface of
section method in this setting is that the 2PN constants of
motion are only approximately conserved. Therefore, even if
one is cautious, the spreading may be a result of the approxi-
mation and not a true mark of the destruction of tori. Since
this projection is ambiguous, it is only used as a rough guide.
For a firm identification of chaos we rely on the unambigu-
ous fractal basin boundaries.

There are other outcomes that could be used to color code
a plane in phase space and study the basin boundaries. A set
of outcomes based on the number of windings a pair execute
would be relevant to the search for gravitational waves. In
Fig. 6, basin boundaries for the same set of initial conditions
are compared. The binaries all have the same initial condi-
tion except for the initial angular displacement of the spins.
The top panel was originally published j@&]. For that top
panel, stable and merger outcomes are used. The initial con-
dition in the (f4,6,) plane is color coded white if the pair
executes at least 50 orbits and black if the pair merge in
under 50 orbits. The lower panel uses a winding criterion:
the initial condition in the ¢, 6,) plane is color coded white
if the pair execute more than 50 orbits before merger, black if
they merge after executing more than 36 orflitst less than )
50), dark gray if the pair merge having executed 36 orbits, FIG. 6. All orbits havem,/m;=1/3,r =5m, andr ¢=0.45. The
and light gray if the pair merge having executed less than 3@itial angles are varied in thedg,6,) plane over the ranges
orbits. The mixed basin boundaries show that there is som&#0-375% 61<157.5635° and 45.836%¢,=<63.025411°. Top:
unpredictability in the number of orbits executed in the con-Figure from th_e fractal basin boundaries bu!lt up using the s_table
servative system. anq merggr cnterla.. Botto.m:.The fractal .baslln boundarle§ built up

We discuss dissipation in Sec. VII. We point out here thatising a critical winding criterion. Resolution is 20@00 orbits.
when dissipation is included the fractal structure will be cut o )
off at a certain scalg8]. The damping will allow a certain &€ used, m_dlcatlng that not all features of the waveform will
number of decades before any self-affine structure truncate§V0!ve predictably.

The number of decades over which there is some self-affine

structure is a measure of the degree to which chaos in the IV. THE BINARY MASS RATIO

conservative system leaves an imprint in the dissipative dy- _ ) .

namics. We note here that there is less “fractal” structure 1N€ binary mass ratigg=m,/m, primarily affects the
when the critical windings are used as outcomes. This indi€0n€ of precession. The lighter the relative mass of the com-
cates that with dissipation included the number of windingg®@nion, the larger the band in which the orbital plane will
executed by a binary might be predictable. However, there i8"€C€SS and the larger the corresponding modulation of the

still structure in the basin boundaries when other outcomewaveform[15,16. The orbital plane will precess arourd
with an angle of inclination

IA fruitful analytic approach may be to treat the motion as an a4
instance of Arnol'd diffusior{26]. Even ifi is small andS changes cosi=Ly-J

slowly, their presence induces a coupling betw@eand ¢ which

can lead to chaotic resonances and hence stochastic behavior. Th?1 A oA . .
future direction of this work is to interpret the chaotic motion in WNere co¥ls=Ly-S as in Fig. 1 and the total angular mo-

terms of this slow modulation diffusiof26]. mentum has been used to lowest order[ y+S. The angle

3 1+ (S/Ly)cosfg
V1+(S/Ly)?+2(S/Ly)cosbs

4.9
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subtended changes as the angle betwiagrand S changes.  the maximal spin of,=mj. The 2PN expansion to the two-
This leads to the additional tilting back and forth on top of Pody problem allows both black holes to spin and precess.
the simple precession. The rat®L can be estimated by When the more massive object spins maximally, tBér, is
takingLy~ m(mr)¥2 for a nearly circular orbit. Consider the large form;>m,. For a 10:1 mass raticG/Ly~1 for r
extremes when the more massive object spins Bith mi ~100m. As a result, for large mass ratios, the orbital _plane_:
to get an upper range and the opposite regime when th%gb::eo??;zéar‘]gﬁgI?/n?;?gz{rlasgll\éenc:rgglsl:gea:ngignogU\I/itrIgSsWI”
. . . 2 . y . .
lighter star spins witf8,=m; to get a lower range: Fig. 3. In both figures, the more massive BH spins maxi-
" mally (S;=m3) with a spin displacement ofly-S
(m/r)~=. (42 —cos(45°)=1n2. In both figures, the companion has no
spin. The difference between the two figures is the mass
For very smallS/Ly, the precession cone angle is so tightratio. In Fig. 2, the mass ratio i8=1.4/10 and the angle
that modulations of the gravitational wave signal will not be subtended at =20 isi~28°. In Fig. 3, the mass ratio |8
substantial. Notice from the left-hand side of E4.2) that if =1/3 and the angle subtendedrat 20 isi~18°. The band
only the lighter object spins the®/L, is small for allr. This  subtended by the precessing plane is larger for the smaller
may explain why Ref[1] found chaos for a test particle mass ratio, although it is substantial in both cases.
around a Schwarzschild black hole only if the light compan- We can invert Eq(4.1) using the right-hand side of Eq.
ion had a spinS,>0.64n,m,; for m;>m,, which exceeds (4.2 to write the radius at a given inclination,

[ (5

m2 va_ S _[M
(ml)(m/r) sLNs -~

cogi—cog 6,
cosf;(1—cog i)+ cosi(1—cosi)(1—cos ;)

with C05915|:N'A3_L- We could take this as an indicator for comes from a comparison of frequencies. An instantaneous
the radius at which precession becomes important. Letting Orbital frequency can be defined roughly as
~15° and#,~45°, then

Ln
0w~ —73 (4.9
2 mr
r my
E~4X<E) ' 4.3 for comparison with the instantaneous spin precession fre-

guency of the larger objedineglecting spin-spin coupling
just for the crude estimate

For circular motionL ~ u(mr)*2 andme¢~ (m/r)*?2 and the
frequency of the emitted wavé,~ ¢/, is roughly 3m,| Ly

Ql~(2+ 2—ml)r—3 (4.6)

M
f~9x10°8°

21 Hz. (4.4 so that
m

0 1)2
s,

For a BH-BH binary withg~1/3 andm=20M, then f Q, B(2+3pB12) \m

~@(10) Hz when the spin precession angle opensi to

~15° and the effects on the gravitational wave should belhereforew/€); is always large. The pair executes many

noticeable. For a BH-NS binary witiB~1.4/10 andm  orbital windings per spin precession. This hints that the cha-

=11.4, thenf~O(1) Hz when the spin precession angle otic behavior may be related to modulation diffusion where a

opens ta ~15°. To emphasize, precession will be importantslowly varying parameter, in this caé@, facilitates chaotic

for these and larger frequencies as the pairs sweep throughsonances between coordinates, in this ¢aaed ¢ [26].

the interferometer’s bandwidth. However, if we compare to the instantaneous precession
While we can conclude that a smaller mass ratio means #iequency of the spin of the lighter object

wider precessional angle, the dependence of the regularity of

the motion ong within that band is not yet clear. Within the o (Bt 1)? (r

bulk precession, the orbital plane tilts back and forth, some- Q_Z_ (2B+3/2) m/’

times regularly and sometimes erratically. Orbits can subtend

roughly the same cone but some occupy the band more regthis ratio is not as large for smafl so the lighter companion

larly than others. A hint of the effect oB on regularity always precesses much more than the heavy black hole. As

4.9
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“

Q 2x10*  4x10* 6x10*  8x10

0.05

0

-0.05

0.2

FIG. 7. The waveform, Newtonian angular momentum, and spin
for the orbit of Fig. 3. Top: the waveforrh, . Bottom: three-
dimensional view of the precession 8f.

0.1

argued in Sec. V, the spin of the companion encourages ir-
regularity and the fact th&d, /() ;<1 may account for some
of this effect.

In general, the mass ratfe=m,/m; seems to affect the
bulk shape of the precession and gravitational wave modula-
tion. By Egs.(4.7) and (4.8), 8 may determine the radii at
which chaotic resonances will occur. Still, it is unclear how 0 2x10" 4x10" 6x10" 8x10* 10°
much the mass ratio_impacts the details of the motio_n. FIG. 8. An irregular orbit withB=m,/m,=1/35=m? The

For comparison with later cases, the waveform emitted b){ . . . = L .
the BH-BH binary of Fig. 3 is shown in the top panel of Fig nitial conditions for the orbit arer/m=6 and r=0.025, r¢

T . - " =0.365. Top: three-dimensional view of the orbit. Middle: a pro-
7. Even though the precession 1S fairly regular, it does mOdu'ection of the orbit onto ther(r) plane. Bottom: the waveform.
late the wave amplitude and frequency. The modulation 0+
the waveform has been minimized by placing the binary di-

rectly above the det_ector. Tail effects are negllected througrﬁon in (r,i) increases. Figure 8 shows an irregular three-
out. A three-dimensional view of the precession of the spiryimensional orbit, the projected motion im,§), and the

0
L B B

-0.1

N
o
|

él is shown in the lower panel of Fig. 7. waveform when both objects spin maximally. Figure 9 shows
the precession of both spin vectors.
V. SECOND SPIN The fraying of the orbit in K,) indicates that the motion

might not be confined to a torus. As discussed in Sec. lll, the

The effect of spinning up the lighter companion can beprojection is a hint of nonintegrability; that is, of chaos.
studied by starting with the orbits of Fig. 4. Even a smallHowever, as already mentioned, the projection alone is not
second spin will cause further diffusion in phase spaceenough to conclude there is chaos. A full basin boundary
When the second spin is maximal, the fraying of the projec-analysis shows that this orbit occurs near a fractal boundary

044013-8
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FIG. 9. The spins for the orbit of Fig. 8. Top: three-dimensional
view of the precession (fB_L Bottom: three-dimensional view of S

the precession 05, .

0.05

giving every indication the orbit is chaotic. Notice in Fig. 9
that the spin of the lighter star precesses more than the spin
of the heavier object as expected from E@s7), (4.9).

VI. ECCENTRICITY &
o
[

Binary black holes formed in dense stellar regions are
thought to have a roughly thermal distribution in eccentricity
with a slight enhancement of highat the time of formation
[10]. While many of these may still have time to circularize 0 ”x10*  4x10* 6x10*  8x10*
before merger, it is worth investigating the role of eccentric-
ity on the regularity of the orbit. Large misaligned spins ) e .2 N
necessarily induce eccentricity. Chaos seems to occur whept— M1, and S;=0. The initial angle #,=arccosfy-S,) =45°.
angular momentum sloshes between spins and the orbit. It {Eh€ initial conditions for the orbit are/m= 20 andr ¢=0.2. Top:
difficult to separate cause and effect. Still, it is obvious thathree-dimensional view of the orbit. Middle: a projection of the
eccentricity alone is not the culprit. orbit onto the ¢,i) plane. Bottom: the waveform.

Consider Fig. 10 where only one of the holes is spinning.

The top panel shows the three-dimensional orbit which does

have irregular features. However, this is deceptive. It is wellwaves oscillate at once, twice, and three times the orbital
known that Keplerian orbits are closed ellipses while relativ-frequency which changes the spectrum from that for a circu-
istic, elliptical orbits precess within the orbital plane. Thelar orbit. The double precession then modulates the ampli-
entire plane then precesses due to the spins. What is beitigde and phase on top of these oscillations. Even though this
witnessed in the top panel of Fig. 10 is this double precesmotion is regularfor S,=0), in the sense of being predict-
sion. The middle panel shows complete regularity of the orable, the modulation of the waveform from the double pre-
bit in (r,r). Motion in this coordinate is confined to a torus. cession must certainly impact observations gained through
The waveform shown in the bottom panel shows several exthe method of matched filtering.

pected features. Since the orbit is elliptical, the gravitational Eccentric orbits do show chaotic precession when the

FIG. 10. A regular but eccentric orbit witg=m,/m;=1/3,
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[ J cutoff occurs, the more irregular the history of that set of

J orbits.

Figure 11 illustrates the dissipative inspiral of 90000

maximally spinning black hole pairs witB=1/3. The orbits
all coalesce due to energy lost to gravitational waves. The
initial condition in (64, 6,) is color coded black if the pair
merges from above the axis and white if the pair merges
from below thez axis[2]. The top panel of Fig. 11 shows the
basin boundaries for maximal spir§=m?. The figure
shows that there is some sensitivity to the initial spin angle.
A small change in initial angle can lead to a different end for
the merging pair. This is a pale imprint of the fractal from the
fully chaotic conservative system. The lower panel of Fig. 11
shows substantially less sensitivity to initial conditions when
the spins are lowered to Ovf. Incidentally, an even more
intricate dependence on initial spin angle is seen for BH-NS
binaries withg=1.4/10[2].

The orbits begin fairly regularly although the precession
modulates the waveform. Given unlimited access to theoret-
ical templates, matched filtering could in principle glean a
confident signal, at least until the pair drew near the unstable
orbits. The orbit becomes more irregular as the separation
closes and the pair passes near the underlying conservative
trajectory in Fig. 8 just before plunge. Since matched filter-
ing relies on the template remaining in phase with the data
for many cycles, one might hope that a disruption of the last
few cycles would not be serious. Many authors have already
argued for the use of other methods at these close separations
(see[21] and the references thergirHowever, others have
argued[30] that these last few orbits are heavily weighted

and therefore critical for successful detection. More impor-
tant than the visually obvious amplitude modulation the pre-
cession modulates the gravitational wave frequency. A fre-

FIG. 11. Coalescing orbits with radiative reaction f=1/3 ~ quency space analysis is still required to determine if the
with r/m=25. The slice through phase spans scans over initial oriinodulation inhibits detectability of such irregular waves.
entation of the spins-180°<60,<180° and —180°<#,<180°.
Upper panel: spins are maximgl= miz. Lower panel: spins are ten
times smallersizo.:lmiz. 300x 300 orbits shown in each panel.

VIlIl. SUMMARY

It is reasonable to conclude for a typical stellar mass
BH-BH system that if the primary black hole spins rapidly,
companion spins rapidly as we(Note that when both stars the orbital plane will precess unpredictably for very close

spin there are no circular orbif46].) orbits. For the conservative binary system, the dependence of
the precessional motion was tested as a function of three
VII. DISSIPATION parameters.

B=m,/my: As was already known, the smaller the mass

The emission of gravitational waves dissipates energy anthtio, the thicker the band occupied by the precessing orbit
angular momentum. The spins are not strongly affected by15,16. A ratio of 8= 1/3 is small enough for precession to
the loss of gravitational waves which carry away orbital an-modulate observable gravitational waves. The mass ratio
gular momentum and circularize the orbit. The irregularity ofmay also determine the radius at which chaotic resonances
a dissipative binary can be evaluated in terms of how manyccur by affecting the relative orbital and spin frequencies.
orbits the pair executes as it passes through the successive Spin magnitudes: The transition to chaos occurs as the
regions in the conservative systei®]. The most efficient spin magnitudes and misalignments are increased. There can
way to do this is again using the fractal basin boundaries. A®e chaotic motion even if only one body spins. If it is a light
pointed out in Ref.[8], when dissipation is included the companion spinning, then the magnitude of the spin has to be
boundaries will never be truly fractal. Like a snowflake, thelarger than maximdl1]. If it is the heavier object, then chaos
self-similar structure will be cut off at some physical limit. can occur for rapid but physically allowed black hole spins.
However, if a color coded basin boundary shows substantiarhis is true for both BH-BH and BH-NS pairs. For a given
structure, it is fair to say that the participating orbits areeccentricity and radial separation, a transition to chaos can
influenced by irregularity. The smaller the scale at which theoccur as the spin of the companion is increased.
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Eccentricity: Large misaligned spins cause eccentricity
which may therefore be a feature common to chaotic orbits.
However, large eccentricity alone certainly does not cause
chaos. If chaos is indeed occurring near the unstable ho-
moclinic orbits of Ref.[12], then we might expect a fair
spread in eccentricities for chaotic orbits since the ho-
moclinic orbits occur with a broad range of eccentricities.
Importantly, even for a completely regular orbit the usual
relativistic precession of an elliptic orbit in the plane be-
comes superposed on the precession of the orbital plane. This
combination, although not an indication of chaos, does lead
to a complicated modulation of the gravitational wave signal.

The most pressing question remains: Will irregular orbits
of coalescing binaries hinder observations? With dissipation
included a faint imprint of chaos during the final orbits be-
fore merger can be found although it is unclear if it is strong
enough to alter observations. We investigate dissipation us-
ing very different methods in Ref9] although a complete
resolution of the question of the efficiency of damping will
require going to higher orders in the post-Newtonian expan-
sion when available. A detailed study of the modulated gravi-
tational wave is also needed. What we can conclude is that
chaos plays some role in the dynamics of conservative, rela-

tivistic binaries—a testament to the nonlinearity of generaLI-he radiative reaction term is due to terms to 5/2PN order
and can be expressed as

relativity.
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APPENDIX: 2PN EQUATIONS OF MOTION

In the notation of Ref[16], the center of mass equations
of motion in harmonic coordinates are

F=apy+ dsot asst agg (A1)

with F=rf. The right-hand side is the sum of the contribu-
tions to the relative acceleration from the post-Newtonian
(PN) expansion, the spin-orb{S0O) and spin-spinSS cou-
pling, and the radiative reactidiRR). The explicit terms are
quoted from Ref[16]. The following notation is used:V

=df/dt, A=F/r, p=mym,/m, p=pw/m, Sm=m;—m,, S

=3,+5,, andA=m(S,/m,—3,/m;). The dpn=3ay+ a1pn
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2> m’\
aN=—r7n, (A2)
. mi ) m 3
EST N AL (1+3n)v—2(2+ U)T_Eﬂr
—2(2—77)?\7], (A3)
R m( [3 2 .
aQPN:_r_Z n 1(124'2977) T +7](3_477)U

15 3 -
+ g (1=8n)i =5 (3—anu

1 m , oM,
—577(13—47])TU —(2+259+27y )Tr

1 m
— 5tV 7(15+4n)v2—(4+41y+87?) -

—37;(3+277)'r2”. (A4)

. 8 mf 18,2 2m 052
SeRTg M | TR T
m
-V 6v2—27— 1&2“. (A5)
c]’he spin-orbit acceleration is
Ao ., om. . . _om.
— 1 6A| (AXV)-| 25+ —A | |—|VX|7S+3—A
r m m
. . om.
+3r|AX| 3S+ WA (AB)
and the spin-spin acceleration is
. 3 L. s s s s
ass=—m{n(51 $)+S1(M-$) +S(A-S)
—5A(A-8)(A- )} (A7)
1. Constants of the motion
E=EpntEsotEss (A8)
WhereEpN: EN+ Ele+ EZPN and
En= L M A9
NT M EU T ’ ( )
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3 4 1 ,M 1 m,
Eipn=p)g (=3 + 53+ v+ 5T

(A10)

5 2 69 m 4
Eapn= ) 751 =79+ 13970 = g n(1=37) T

1 m 1
+g(21- 239—277?) Tv4+ g (14~ 557+ 47°)

2

X 2+1 1-157) D242 L 2+15
vt 7 7)o = 2 ( )
3 1 m 2-
x| — +§(4+6977+127]2) - %, (AlD)
1. (. om.
Eso= 3Ln- S+—A>, (A12)
r m
T L s o
Ess= r—3{3(n-S_L)(n~%)—(Sl-Sz)}- (A13)
The total angular momentum is given by
J=L+S (A14)
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where
L=Lpn+Lso (A15)
with Cpy=Ln+ L1pnt Lopy and
Ly=up(FXV), (A16)
E1PN=EN[%v2(1—3n>+<3+n>? . (A17)

. . |3 o 4 1 m._,
Lopn=Ln §(1_777+1377 Jv _577(2+577)Tr

1 PN
+§(7—1077—977 )TU

1 m) 2
+Z(14_41’7+4’72) = 1 (A18)
and
i mlm_ | L. om.
LSO:_ —nX|nXx 3S+_A
mir m
1. |, [- om,
— ZUX|UX| S+ —A] |{. (A19)
2 m
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