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Fate of chaotic binaries
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A typical stellar mass black hole with a lighter companion is shown to succumb to a chaotic precession of
the orbital plane. The chaotic behavior is identified in the conservative system since there is no clear way to do
so when dissipation is included and all binaries merge. The precession and the subsequent modulation of the
gravitational radiation depend on the mass ratio, eccentricity, and spins. The smaller the mass of the compan-
ion, the more prominent the effect of the precession. The most important parameters are the spin magnitudes
and misalignments. If the spins are small and nearly aligned with the orbital angular momentum, then there will
be no chaotic precession, while increasing both the spin magnitudes and misalignments increases the erratic
precession. A large eccentricity can be induced by large, misaligned spins but does not seem to be required for
chaos. When dissipation due to gravitational radiation is included chaos is damped, but a further study is
needed to determine if dissipation will erase all traces of chaos or if an imprint of irregularity survives.
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I. INTRODUCTION

Merging black hole binaries are potent sources of gra
tational waves and are among the most promising targets
direct detection by the future interferometric observatori
Black hole mergers, if sufficiently abundant, are likely to
the most common compact binary merger to be detecte
the black holes are rapidly spinning, then the orbit can
extremely irregular, even chaotic, bearing significant imp
cations for gravitational wave searches@1–7#. An earlier Let-
ter @2# identified chaos in relativistic, spinning binaries in
somewhat abstract discussion. In this article, the intentio
instead to provide a more concrete discussion with less
phasis on formal chaos. What is observationally importan
visibly irregular motion. Taking this attitude, a specific astr
physical model is followed through successive stages in
der to gauge when irregular motion will occur within th
Laser Interferometric Gravitational Wave Observato
~LIGO! or VIRGO bandwidth. Specifically, we investiga
the orbits of a maximally spinning black hole with a light
companion.

Certain binary star systems are fated to evolve into bl
hole binaries. The orbits of these long lived binaries ha
sufficient time to circularize before entering the LIGO
VIRGO bandwidth as angular momentum is lost to gravi
tional waves. An archive of circular templates is accruing
various binary parameters. Yet the merger rates of th
evolved binaries are predicted to be too low to ensure de
tion by the first two generations of LIGO detectors. A mo
promising detection rate is predicted for dynamical bina
black holes; that is, binaries formed by the dynamical c
ture of one black hole~BH! by another in dense stellar sy
tems @10#. The merger rate is expected to be about
31027/yr/Mpc3, which exceeds neutron star~NS! merger
rates as well. Dynamically formed black hole binaries sho
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have a distribution of eccentricities and short orbital perio
with masses in the range of;(5 – 15)M ( @10#. A binary
with massesm1515M ( and m255M ( , for instance, will
emit gravitational waves with a frequency within the optim
LIGO bandwidth of f ;10– 102 Hz for radial separationsr
&50m where units of total massm5m11m2 are used.
These provide natural values for the mass and radius ra
to investigate. The heavier black hole is taken to have ma
mal spin S15m1

2 ~spin periodP;331024 s for a 15M (

black hole!. Unlike pulsars, black holes are expected to
sentially maintain the spin they are born with@11# through
most of the inspiral. This canonical BH-BH pair can prece
chaotically any time the trajectory transits near the unde
ing homoclinic orbits of Refs.@4,12#. Homoclinic orbits are
purely relativistic, a consequence of nonlinearity, and u
stable. They have the essential features for the onset of c
when the bodies spin. Still, having said this, it is not cle
that chaos will be confined to this region of phase space

A BH-NS binary with typical parameter values ofm1
510M ( and m251.4M ( follows trends similar to the
BH-BH binaries. The explosive evolution of stellar progen
tors which populate BH-NS pairs delivers large kicks to t
objects and leads to large spin misalignments@13#. It is still
unclear whether the population of such pairs is too spars
expect detection. Since it is only the mass ratio that en
the equations, either of these cases can be scaled to repr
the dynamics of much more massive systems which will
visible to the Laser Interferometer Space Antenna~LISA!
@14#.

There is no clear way to identify irregular behavior
merging binaries when dissipation is included. For this r
son, we look for chaotic behavior when energy is conser
and the radiation reaction is turned off. Along an individu
orbit, chaos manifests itself as the unpredictable preces
of the orbital plane. When considering all possible orb
chaos manifests itself as an extreme sensitivity of the orb
precession to initial conditions, so two neighboring orb
may live out very different precessional histories. The imp
©2003 The American Physical Society13-1
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cation is that there is a theoretical limit on how well we c
predict the orbit and therefore the waveform of the emit
gravitational radiation@1,2#. Dissipation from the emission
of gravitational waves is then included. Dissipation m
damp chaos so efficiently that the gravitational wave exp
ments will be unaffected. Irregular motion in the dissipati
system is understood in terms of the number of windings
pair executes in a region of phase space which is chaotic
the underlying conservative system. An imprint of chaos c
be seen in the dissipative system although a more thoro
investigation at higher orders in the post-Newtonian appro
mation ~when they become available! is still required@8,9#.

The regularity of the orbit will be affected by sever
parameters: the mass ratiob5m2 /m1 , the magnitudes of the
spins, the spin alignment with respect to the orbital plane,
eccentricity of the orbit, and the radius of the orbit at t
time of detection. As is already clear from Ref.@2#, motion in
the conservative system becomes more irregular the la
the angle the spin makes with the perpendicular to the orb
plane. The importance of three other parameters is evalu
here:~1! the binary mass ratiob5m2 /m1 , ~2! the magnitude
of the second spinSW 2 , and~3! the eccentricity of the orbit.

The conclusions in brief for the three parameters var
below are the following.~1! The mass ratio primarily effect
the cone of precession. The smaller the mass ratiob
5m2 /m1 , the larger the angle subtended by the orbital pla
and the larger the modulation of the gravitational wav
@15,16#. ~2! There can be chaotic motion when the mass
black hole spins rapidly even if the companion has no sp
Still, the larger the magnitude of the second spin~and the
misalignment!, the more irregular the motion.~3! Eccentric-
ity is a consequence of large, misaligned spins and there
it is difficult to separate cause and effect here. Still, it is cl
that eccentricity alone is not responsible for chaos.

II. EQUATIONS OF MOTION AND SPIN PRECESSION

The post-Newtonian~PN! expansion of the relativistic
two-body problem leads to a system of equations describ
the fate of spinning binaries@17#. The PN expansion con
verges slowly to the fully relativistic description@18#. For
this reason, it is a poor approximation at small separatio
Despite its shortcomings, the PN expansion does give
qualitative features of a relativistic system such as nonline
ity, the existence of unstable circular orbits@18#, homoclinic
orbits @12#, and spin precession. Since these are the ingr
ents for chaotic dynamics, the qualitative behavior sho
persist in a more accurate approximation, although the qu
titative conclusions are subject to change~see, for instance
the improved technique of Ref.@19#!.

It is worth emphasizing that approximations can introdu
chaos when the exact system is truly regular. One m
worry that the error at 2PN order has introduced chaos wh
would be removed if we knew the full equations of motio
without approximation. However, the relativistic two-bod
problem is likely to be more irregular at higher orders as
nonlinearities of general relativity are more accurately rep
sented, not less. One might even be inclined to take the
treme resistance of the relativistic two-body problem to
04401
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lution as evidence, or at least confirmation,
nonintegrability.

The validity of the PN expansion is not questioned furth
and the equations are treated as a self-contained dynam
system. In the PN scheme, the orbit evolves according to
force equation

r¢̈5a¢PN1a¢SO1a¢SS1a¢RR ~2.1!

in center of mass harmonic coordinates@16#. The accelera-
tion is due to post-Newtonian~PN! effects, spin-orbit~SO!
and spin-spin~SS! coupling, and radiative reaction~RR!. The
explicit form of a¢ can be found in the Appendix. The spin
also precess due to the relativistic frame dragging and Le
Thirring effect. The precession equations are

S¢̇15V¢ 13S¢1 , S¢̇25V¢ 23S¢2 ~2.2!

with

V¢ 15
1

r 3 F S 21
3

2

m2

m1
DL¢ N2S¢213~ n̂•S¢2!n̂G ~2.3!

and

V¢ 25
1

r 3 F S 21
3

2

m1

m2
DL¢ N2S¢113~ n̂•S¢1!n̂G . ~2.4!

The spins precess with constant magnitude although the
spin S¢5S¢11S¢2 may not have constant magnitude.

The orientation of the orbital plane is defined by the Ne
tonian orbital angular momentum

L¢ N[m~r¢3v¢! ~2.5!

with the reduced massm5m1m2 /m and the total massm
5m11m2 . Spin precession generates a precession of
orbital plane~Fig. 1!. This can most easily be seen by notin
that to 2PN order the total angular momentumJ¢ is conserved
with J¢5L¢ 1S¢ . The orbital angular momentumL¢ can be split
into two pieces,L¢ 5aL¢ N1L¢ SO as in Eqs.~A15! and ~A19!.

FIG. 1. A schematic drawing of the inclination anglei

5arccos(L̂N• Ĵ) and the angleuS5arccos(L̂N•Ŝ). The orbital plane
traces out a band as in Figs. 2 and 3 below as the Newto

angular momentum precesses aboutJ¢.
3-2
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FATE OF CHAOTIC BINARIES PHYSICAL REVIEW D67, 044013 ~2003!
The termL¢ SO is due to spin-orbit coupling anda contains

post-Newtonian corrections. To 2PN orderJ¢̇50 and so

L¢̇ ;2S¢̇ . ~2.6!

The magnitude of the orbital angular momentum isnot con-
stant. Further, the precession of the orbital plane can
much more complicated than the precession ofS¢ : (aL¢ N)•

;2S¢̇2L¢̇ SO. The orbital plane therefore does not just car
out a simple cone as it precesses around the direction oJ¢.
Instead the plane tilts back and forth as it precesses.
motion becomes chaotic as the tilting back and forth
comes highly irregular in the Hamiltonian system. When
diation reaction is included, the degree of irregularity in t
precession of the orbital plane can be estimated in term
how many windings the pair spends near the chaotic reg
of the underlying conservative system.

Figure 2 shows an example of the trajectory for the cen
of mass of a BH-NS pair. The motion is plotted in thr
dimensions to illustrate the precession of the orbital plan

The precession, whether regular or irregular, modula
the emitted gravitational waves. The response of a dete
on Earth to an impinging gravitational wave can be para
etrized as

h5F1h11F3h3 ~2.7!

whereh1 andh3 are the two gravitational wave polarizatio
states andF1 and F3 are the antenna patterns. A radiatio
coordinate system can be defined such that the polariza
axes are fixed even in the presence of precession@20#. In
such a coordinate system,F1 andF3 are constant. However
the polarization statesh1 andh3 depend on the inclination
of the orbit and the precessional frequency in a complica
way @16#. For a circular orbit, the detector response can
written

h5A cos~2F2d!, ~2.8!

FIG. 2. A three-dimensional view of a regular orbit withb
5m2 /m151.4/10, S15m1

2, and S250. The initial angle u1

5arccos(L̂N•Ŝ1)545°. The initial conditions for the orbit are

r /m520 andr ḟ50.209.
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where the higher harmonics have been ignored for simplic
The amplitudeA and polarization phased depend on the
binary’s location, orientation, and precession@15,16#. For an
elliptical orbit, h has terms of the form cos(F), cos(2F), and
cos(3F) at quadrupole order so the gravitational wave sp
trum shows oscillations at once, twice, and three times
orbital frequency.

Precession of the orbital plane will~1! modulate the am-
plitude in Eq. ~2.8!, ~2! modulate the polarization phased
and therefore the frequency of the gravitational waves,
~3! contribute to the overall accumulated phase by chang
the inspiral lifetime. Any extreme sensitivity to initial cond
tions will most likely have the largest effect on the modu
tion of the amplitude and frequency of the gravitation
waves. The overall accumulated contribution to the num
of cycles in the observed waveform will certainly be affect
by the general bulk precession but may be less sensitiv
the irregularity of the precession until the very final stages
coalescence. The reason for this is that, at the radii acces
to the interferometers, the irregularity seems to predo
nantly affect the orientation of the orbit with a lesser effe
on the net orbital velocityvW 5 u̇ û1sinuḟf̂. LIGO-VIRGO
aim to observe gravitational waves by accurately measu
the accumulated phase defined as

C5E v dt5E v

v̇
dv, ~2.9!

which may only have a small correction from the irregular
of the precession. Irregular motion will affect the phasin
that is, the gravitational wave frequency, and the amplitu
of the wave. The number of cycles in the accumulated ph
may therefore be determined by the average bulk behavio
the precession. Although this conjecture requires furt
scrutiny, we can use the approximations of Refs.@15,16# to
provide a rough figure for the number of wave cycles. In R
@15#, circular Newtonian orbits were studied. The effect
spin precession was isolated without including spin-orbit
celeration terms in the equations of motion in Ref.@15#. This
separation of the spin precession equations and the equa
of motion removed any possibility of chaotic coupling. How
ever, the gross features can be fairly represented by this
proach. They estimate that the change in the total numbe
cycles amounts to about twice the total number of prec
sions. For binary black holes of size 15M (15M ( , there
can be;10–15 precessions in the observable band and
there can be;20–30 additional cycles~depending on the
spin orientation, magnitude, and eccentricity of the orbit!. In
Ref. @16#, the contribution to the total number of orbits ov
the entire LIGO bandwidth was also estimated to be;O~20!
for black hole binaries with total mass;20M ( . The num-
ber of additional cycles could quadruple for NS-NS mas
@16#.

It has been argued that matched filtering will be a po
means by which to observe BH-BH orbits in the chao
regime @2,21# and that other cruder methods will be em
ployed. We contribute to this debate only by indicating wh
irregularity will influence detectability. It has also been em
phasized in Ref.@21#, that the PN expansion is not sufficien
3-3



is
nl
id
,

to
f

es
iti

e

ed

d
an
a

ion
fir
d
VI
a

il-
s
sy
re
ed
m

u

he
h
he
b
t
s

at
n
i-

lit

u

e
ro
to

ely

to a
are
ss
to

rdi-
oth
te-
has

case

f
If
tes
s
re-
ri

as

3
m

ly
nce

di-
the

5.
nd-
tive
am-
set.
r of
es
is a
aos
nce
is
d

ies

e:
ast
ts
l

-
f
eri-
eir

JANNA LEVIN PHYSICAL REVIEW D 67, 044013 ~2003!
to accurately model templates forr &15m. Nonetheless, the
higher order contributions will incorporate stronger relativ
tic effects and therefore more nonlinearity which should o
lead to more irregular motion. Since we are trying to prov
a physical picture of the general trends and dependences
continue to use the PN expansion.

III. CHAOS

Chaos in relativistic systems is notoriously difficult
quantify @22,23#. While formal definitions of chaos are o
little interest to data analysts when irregularity regardl
poses a hindrance, the tools of chaos are nonetheless cr
to survey the system for endemic irregularity. In Ref.@2#,
chaos in the spinning black hole problem was identifi
through the method of fractal basin boundaries@5,6,2#. In
this section irregularity of an individual orbit is discuss
and the power of the fractal basin boundary technique
utilized. It is worth emphasizing that the fractal basin boun
ary method allows one to scan huge numbers of orbits
therefore provides an invaluable tool to survey phase sp
for chaos.

The equations of motion and spin precession equat
are treated as in any other dynamical system. In the
instance radiation reaction is omitted and chaos is handle
the conservative system. Dissipation is treated in Sec.
The 2PN equations of motion can be derived from a L
grangian@24,25# and therefore can be derived from a Ham
tonian. The coordinatesS¢1(t) and S¢2(t) can be treated a
external time-dependent perturbations to the integrable
tem with the equations of motion supplemented by the p
cession equations~2.2!. The system can therefore be treat
as a time-dependent Hamiltonian syste
H„r¢,v¢,S¢1(t),S¢2(t)….

Chaos is well defined for Hamiltonian systems. Chaos
synonymous with nonintegrability. Regularity is synonymo
with integrability. In a Hamiltonian system withN degrees of
freedomq andN conjugate momentap, integrability prevails
when there areN independent constants of the motion. T
constants of motion must also be in involution; that is, t
Poisson bracket of any constant with the others vanis
@Ci ,Cj #50. The 2N-dimensional phase space can then
reduced to motion on anN-dimensional torus. This is mos
easily represented with a canonical change of coordinate
action angle variables (I ,Q) such that each of theN mo-
mentaI is set equal to one of theN constants of motionC.
The motion can then be made periodic in the coordin
variableQ. For N51 degree of freedom, the motion lies o
a circle. ForN52, the motion lies on a torus and for arb
trary N the motion lies on anN-dimensional torus@26,27#. In
any other set of canonical variables, the mark of integrabi
is that the motion is confined to a smooth closed curve in~p,
q! and does not diffuse off that line. If the motion in (r , ṙ )
has diffused off a smooth line it is not restricted to a tor
and the motion must be nonintegrable.

For coalescing binaries, there areN53 degrees of free-
dom, (r ,u,f). When there are no spins, the phase spac
2N56 dimensional. The energy and angular momenta p
vide enough constants of the motion to restrict the trajec
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ries to tori and there is no chaos to 2PN order@2,12#. Beyond
2PN order, on the other hand, the two-body problem is lik
to be chaotic even in the absence of spin.

When the bodies spin, the dynamics can be reduced
time-independent Hamiltonian system by taking a Poinc´
surface of section. This method of identifying chaos is le
than ideal here. For the record, we will take the time
explain the method and its shortcomings. The Poincare´ sur-
face of section involves plotting a point in (r , ṙ ) each time
the orbit crosses a surface on which all of the other coo
nates are fixed. If the collection of points defines a smo
curve, then the motion is confined to a torus and is in
grable. If the points speckle the plane, then the motion
diffused off a torus and is nonintegrable. The Poincare´ reduc-
tion of phase space is most easily demonstrated for the
of only one spinning body so thatS¢5S¢1 . Including spin, the
phase space is 2N1359 dimensional. The four constants o
motion E, J¢ restrict motion to a five-dimensional surface.
we treat the Hamiltonian as periodic in the three coordina
S¢(t), we can plot a point in (r , ṙ ) each time the orbit crosse
S¢(t)5S¢(0) so that there are only two free coordinates
maining. In this way we can look for the destruction of to
and test for nonintegrability.

A regular BH-BH binary with mass ratiob5m2 /m1
51/3 is shown in Fig. 3. The more massive black hole h
spin S15m1

2 with arccos(L̂N•Ŝ1)545° initially. The second
spin is set to zero for this figure. The top panel in Fig.
shows a three-dimensional view of the orbit. The botto
panel shows a projection of the orbit in the (r , ṙ ) plane. This
orbit is very nearly circular. Note that if the orbit is exact
circular with only one spin then there can be no chaos si
the dimensionality of the phase space reduces to 2@2#, which
is not enough to support chaos. This orbit is regular as in
cated by the absence of spreading in the projection onto
(r , ṙ ) plane.

By contrast, chaotic orbits are shown in Figs. 4 and
Chaos is first identified by the method of fractal basin bou
aries. A fractal basin boundary is an unambiguous, defini
indicator of chaos. In a conservative system, chaotic dyn
ics is defined by the existence of a nonattracting chaotic
This is the conservative analogue of the strange attracto
dissipative systems. In the way of analogy it is sometim
refered to as the strange repellor. The strange repellor
fractal set of unstable, periodic orbits. The presence of ch
in a conservative dynamical system amounts to the existe
of such a set@27#. The method of fractal basin boundaries
the most powerful tool for isolating the fractal set an
thereby identifying the presence of chaos.

To build the basin boundary, 40 000 black hole binar
are evolved by varying only the initial velocities (ṙ ,r ḟ). The
initial condition is then color coded according to outcom
black if the pair merge and white if the pair execute at le
50 or more orbits.~Increasing the required number of orbi
will shrink the white basins but will not eliminate fracta
structure at the boundaries.! A fractal boundary signifies ex
treme sensitivity to initial conditions and a mixing o
orbits—i.e., chaos. By scattering the more generic nonp
odic orbits together and filtering them on the basis of th
3-4
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FATE OF CHAOTIC BINARIES PHYSICAL REVIEW D67, 044013 ~2003!
outcome, the underlying fractal set of periodic orb
emerges in the fractal structure of the boundaries. In esse
we have gleaned an imprint of the skeletal strange repe
@23#. The power of the fractal basin boundary method a
survey of large collections of orbits is clear. Orbits near

FIG. 3. A regular orbit withb5m2 /m151/3, S15m1
2, andS2

50. The initial angleu15arccos(L̂N•Ŝ1)545°. The initial condi-

tions for the orbit arer /m520 and r ḟ50.209. Top: three-
dimensional view of the orbit. Bottom: a projection of the orbit on
the (r , ṙ ) plane.

FIG. 4. A fractal basin boundary scan in (ṙ ,r ḟ) varying over

initial values in 0, ṙ ,0.035 and 0.425,r ḟ,0.443125. All 40 000
orbits have a maximally spinning black hole and a lighter comp
ion with no spin (b5m2 /m151/3,S15m1

2, andS250). The initial

angle is u15arccos(L̂N•Ŝ1)595° and initial separationr /m55.
2003200 orbits shown.
04401
ce,
or
a
e

boundary will be chaotic although the method does not
you definitively about orbits deep in the basin.

It might be worth mentioning at this point that there w
some concern that other methods, such as the metho
Lyapunov exponents which measure instability, did not co
firm the chaos of the fractal basin boundaries@28#. This is
not possible. The fractal basin boundaries are built on
unstable, fractal set of periodic orbits. By their very natu
these must have positive Lyapunov exponents. As confirm
in Refs. @29,9#, orbits near the fractal boundary do indee
have positive Lyapunov exponents. The fractal basin bou
ary method powerfully delivers a survey of 40 000 orb
allowing one to hone in on conspicuous regions of chao
behavior. By contrast, the Lyapunov exponents vary fr
orbit to orbit and a similar survey of 40 000 binaries wou
amount to a draining exercise of trial and error.

An irregular orbit selected near the fractal boundary
shown the top panel of Fig. 5. The bottom panel of Fig. 5
a detail of the projected motion in the (r , ṙ ) plane which
shows some threading of the orbit. A full Poincare´ section
taken as described above confirms that this is not an illus
from the projection. However, the numerical burden is e
treme and impractical in nearly all cases of interest. For t
reason, we continue to rely on the fractal basin bounda
and only take the projection onto the (r , ṙ ) plane as a crude
guide and not as proof of chaos.

In theory, the surface of section technique can also

-

FIG. 5. Top: A three-dimensional plot of an irregular orbit ne
the basin boundary of Fig. 4 with initial velocitiesṙ 50.00105 and

r ḟ50.43075. Bottom: A projection of the orbit onto (r , ṙ ).
3-5
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JANNA LEVIN PHYSICAL REVIEW D 67, 044013 ~2003!
implemented in the case of two spinning bodies since b
are periodic under the precession. In practice this can
difficult since one might have to wait a very long time befo
S¢1(t)5S¢1(0) at the same time asS¢2(t)5S¢2(0). Alterna-
tively, we can cheat and simply look at the projection
(r , ṙ ) in the full phase space without taking a Poincare´ sec-
tion. This is only used as a crude survey tool. If the projected
motion lies on a simple closed curve, the motion is decide
integrable. If the motion lies on a threaded orbit~such as that
of Fig. 5!, then this indicates the motionmighthave diffused
off of a torus.1

Another major shortcoming of the Poincare´ surface of
section method in this setting is that the 2PN constants
motion are only approximately conserved. Therefore, eve
one is cautious, the spreading may be a result of the appr
mation and not a true mark of the destruction of tori. Sin
this projection is ambiguous, it is only used as a rough gu
For a firm identification of chaos we rely on the unambig
ous fractal basin boundaries.

There are other outcomes that could be used to color c
a plane in phase space and study the basin boundaries.
of outcomes based on the number of windings a pair exe
would be relevant to the search for gravitational waves.
Fig. 6, basin boundaries for the same set of initial conditio
are compared. The binaries all have the same initial co
tion except for the initial angular displacement of the spi
The top panel was originally published in@2#. For that top
panel, stable and merger outcomes are used. The initial
dition in the (u1 ,u2) plane is color coded white if the pa
executes at least 50 orbits and black if the pair merge
under 50 orbits. The lower panel uses a winding criteri
the initial condition in the (u1 ,u2) plane is color coded white
if the pair execute more than 50 orbits before merger, blac
they merge after executing more than 36 orbits~but less than
50!, dark gray if the pair merge having executed 36 orb
and light gray if the pair merge having executed less than
orbits. The mixed basin boundaries show that there is so
unpredictability in the number of orbits executed in the co
servative system.

We discuss dissipation in Sec. VII. We point out here t
when dissipation is included the fractal structure will be c
off at a certain scale@8#. The damping will allow a certain
number of decades before any self-affine structure trunca
The number of decades over which there is some self-af
structure is a measure of the degree to which chaos in
conservative system leaves an imprint in the dissipative
namics. We note here that there is less ‘‘fractal’’ structu
when the critical windings are used as outcomes. This in
cates that with dissipation included the number of windin
executed by a binary might be predictable. However, ther
still structure in the basin boundaries when other outcom

1A fruitful analytic approach may be to treat the motion as

instance of Arnol’d diffusion@26#. Even if ṙ is small andS¢ changes

slowly, their presence induces a coupling betweenu̇ and ḟ which
can lead to chaotic resonances and hence stochastic behavio
future direction of this work is to interpret the chaotic motion
terms of this slow modulation diffusion@26#.
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are used, indicating that not all features of the waveform w
evolve predictably.

IV. THE BINARY MASS RATIO

The binary mass ratiob5m2 /m1 primarily affects the
cone of precession. The lighter the relative mass of the c
panion, the larger the band in which the orbital plane w
precess and the larger the corresponding modulation of
waveform @15,16#. The orbital plane will precess aroundJ¢
with an angle of inclination

cosi 5L̂N• Ĵ5
11~S/LN!cosuS

A11~S/LN!212~S/LN!cosuS

~4.1!

where cosuS[L̂N•Ŝ as in Fig. 1 and the total angular mo
mentum has been used to lowest order,Ĵ;L̂N1Ŝ. The angle

The

FIG. 6. All orbits havem2 /m151/3, r 55m, andr ḟ50.45. The
initial angles are varied in the (u1 ,u2) plane over the ranges
140.375°<u1<157.5635° and 45.8367°<u2<63.025411°. Top:
Figure from the fractal basin boundaries built up using the sta
and merger criteria. Bottom: The fractal basin boundaries built
using a critical winding criterion. Resolution is 2003200 orbits.
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subtended changes as the angle betweenL¢ N andS¢ changes.
This leads to the additional tilting back and forth on top
the simple precession. The ratioS/LN can be estimated by
takingLN;m(mr)1/2 for a nearly circular orbit. Consider th
extremes when the more massive object spins withS15m1

2

to get an upper range and the opposite regime when
lighter star spins withS25m2

2 to get a lower range:

S m2

m1
D ~m/r !1/2<

S

LN
<S m1

m2
D ~m/r !1/2. ~4.2!

For very smallS/LN , the precession cone angle is so tig
that modulations of the gravitational wave signal will not
substantial. Notice from the left-hand side of Eq.~4.2! that if
only the lighter object spins thenS/LN is small for allr. This
may explain why Ref.@1# found chaos for a test particl
around a Schwarzschild black hole only if the light compa
ion had a spinS2.0.64m2m1 for m1@m2 , which exceeds
r
g

o
b

le
n
u

s
ty
e

e
en
eg

04401
f

he

t

-

the maximal spin ofS25m2
2. The 2PN expansion to the two

body problem allows both black holes to spin and prece
When the more massive object spins maximally, thenS/LN is
large for m1@m2 . For a 10:1 mass ratio,S/LN;1 for r
;100m. As a result, for large mass ratios, the orbital pla
subtends a larger angle at a given radius and modulation
be correspondingly larger@15,16#. Consider Fig. 2 versus
Fig. 3. In both figures, the more massive BH spins ma
mally (S15m1

2) with a spin displacement ofL̂N•Ŝ
5cos(45°)51/&. In both figures, the companion has n
spin. The difference between the two figures is the m
ratio. In Fig. 2, the mass ratio isb51.4/10 and the angle
subtended atr 520 is i;28°. In Fig. 3, the mass ratio isb
51/3 and the angle subtended atr 520 is i;18°. The band
subtended by the precessing plane is larger for the sm
mass ratio, although it is substantial in both cases.

We can invert Eq.~4.1! using the right-hand side of Eq
~4.2! to write the radius at a given inclination,
S r

mD 1/2

;S m1

m2
D F cos2 i 2cos2 u1

cosu1~12cos2 i !1Acos2 i ~12cos2 i !~12cos2 u1!
G

ous

fre-

ny
ha-
e a

ion

. As
with cosu1[L̂N•Ŝ1 . We could take this as an indicator fo
the radius at which precession becomes important. Lettini
;15° andu1;45°, then

r

m
;43S m1

m2
D 2

. ~4.3!

For circular motion,L;m(mr)1/2 andmḟ;(m/r )3/2 and the
frequency of the emitted wave,f ;ḟ/p, is roughly

f ;93103b3S M (

m D Hz. ~4.4!

For a BH-BH binary withb;1/3 andm520M ( , then f
;O(10) Hz when the spin precession angle opens ti
;15° and the effects on the gravitational wave should
noticeable. For a BH-NS binary withb;1.4/10 andm
511.4, then f ;O(1) Hz when the spin precession ang
opens toi;15°. To emphasize, precession will be importa
for these and larger frequencies as the pairs sweep thro
the interferometer’s bandwidth.

While we can conclude that a smaller mass ratio mean
wider precessional angle, the dependence of the regulari
the motion onb within that band is not yet clear. Within th
bulk precession, the orbital plane tilts back and forth, som
times regularly and sometimes erratically. Orbits can subt
roughly the same cone but some occupy the band more r
larly than others. A hint of the effect ofb on regularity
e

t
gh

a
of

-
d
u-

comes from a comparison of frequencies. An instantane
orbital frequency can be defined roughly as

v;
LN

mr 2 ~4.5!

for comparison with the instantaneous spin precession
quency of the larger object~neglecting spin-spin coupling
just for the crude estimate!

V1;S 21
3m2

2m1
D LN

r 3 ~4.6!

so that

v

V1
.

~b11!2

b~213b/2! S r

mD . ~4.7!

Thereforev/V1 is always large. The pair executes ma
orbital windings per spin precession. This hints that the c
otic behavior may be related to modulation diffusion wher
slowly varying parameter, in this caseS¢1 , facilitates chaotic
resonances between coordinates, in this caseu andf @26#.

However, if we compare to the instantaneous precess
frequency of the spin of the lighter object

v

V2
.

~b11!2

~2b13/2! S r

mD , ~4.8!

this ratio is not as large for smallb so the lighter companion
always precesses much more than the heavy black hole
3-7
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argued in Sec. V, the spin of the companion encourage
regularity and the fact thatV2 /V1,1 may account for some
of this effect.

In general, the mass ratiob5m2 /m1 seems to affect the
bulk shape of the precession and gravitational wave mod
tion. By Eqs.~4.7! and ~4.8!, b may determine the radii a
which chaotic resonances will occur. Still, it is unclear ho
much the mass ratio impacts the details of the motion.

For comparison with later cases, the waveform emitted
the BH-BH binary of Fig. 3 is shown in the top panel of Fi
7. Even though the precession is fairly regular, it does mo
late the wave amplitude and frequency. The modulation
the waveform has been minimized by placing the binary
rectly above the detector. Tail effects are neglected throu
out. A three-dimensional view of the precession of the s
S¢1 is shown in the lower panel of Fig. 7.

V. SECOND SPIN

The effect of spinning up the lighter companion can
studied by starting with the orbits of Fig. 4. Even a sm
second spin will cause further diffusion in phase spa
When the second spin is maximal, the fraying of the proj

FIG. 7. The waveform, Newtonian angular momentum, and s
for the orbit of Fig. 3. Top: the waveformh1 . Bottom: three-

dimensional view of the precession ofS¢1 .
04401
ir-
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tion in (r , ṙ ) increases. Figure 8 shows an irregular thre
dimensional orbit, the projected motion in (r , ṙ ), and the
waveform when both objects spin maximally. Figure 9 sho
the precession of both spin vectors.

The fraying of the orbit in (r , ṙ ) indicates that the motion
might not be confined to a torus. As discussed in Sec. III,
projection is a hint of nonintegrability; that is, of chao
However, as already mentioned, the projection alone is
enough to conclude there is chaos. A full basin bound
analysis shows that this orbit occurs near a fractal bound

n

FIG. 8. An irregular orbit withb5m2 /m151/3,Si5mi
2. The

initial conditions for the orbit arer /m56 and ṙ 50.025, r ḟ
50.365. Top: three-dimensional view of the orbit. Middle: a pr
jection of the orbit onto the (r , ṙ ) plane. Bottom: the waveform.
3-8
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giving every indication the orbit is chaotic. Notice in Fig.
that the spin of the lighter star precesses more than the
of the heavier object as expected from Eqs.~4.7!, ~4.8!.

VI. ECCENTRICITY

Binary black holes formed in dense stellar regions
thought to have a roughly thermal distribution in eccentric
with a slight enhancement of highe at the time of formation
@10#. While many of these may still have time to circulariz
before merger, it is worth investigating the role of eccentr
ity on the regularity of the orbit. Large misaligned spi
necessarily induce eccentricity. Chaos seems to occur w
angular momentum sloshes between spins and the orbit.
difficult to separate cause and effect. Still, it is obvious t
eccentricity alone is not the culprit.

Consider Fig. 10 where only one of the holes is spinni
The top panel shows the three-dimensional orbit which d
have irregular features. However, this is deceptive. It is w
known that Keplerian orbits are closed ellipses while rela
istic, elliptical orbits precess within the orbital plane. T
entire plane then precesses due to the spins. What is b
witnessed in the top panel of Fig. 10 is this double prec
sion. The middle panel shows complete regularity of the
bit in (r , ṙ ). Motion in this coordinate is confined to a toru
The waveform shown in the bottom panel shows several
pected features. Since the orbit is elliptical, the gravitatio

FIG. 9. The spins for the orbit of Fig. 8. Top: three-dimension

view of the precession ofS¢1 . Bottom: three-dimensional view o

the precession ofS¢2 .
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waves oscillate at once, twice, and three times the orb
frequency which changes the spectrum from that for a cir
lar orbit. The double precession then modulates the am
tude and phase on top of these oscillations. Even though
motion is regular~for S250), in the sense of being predic
able, the modulation of the waveform from the double p
cession must certainly impact observations gained thro
the method of matched filtering.

Eccentric orbits do show chaotic precession when

l

FIG. 10. A regular but eccentric orbit withb5m2 /m151/3,

S15m1
2, and S250. The initial angleu15arccos(L̂N•Ŝ1)545°.

The initial conditions for the orbit arer /m520 andr ḟ50.2. Top:
three-dimensional view of the orbit. Middle: a projection of th
orbit onto the (r , ṙ ) plane. Bottom: the waveform.
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JANNA LEVIN PHYSICAL REVIEW D 67, 044013 ~2003!
companion spins rapidly as well.~Note that when both star
spin there are no circular orbits@16#.!

VII. DISSIPATION

The emission of gravitational waves dissipates energy
angular momentum. The spins are not strongly affected
the loss of gravitational waves which carry away orbital a
gular momentum and circularize the orbit. The irregularity
a dissipative binary can be evaluated in terms of how m
orbits the pair executes as it passes through the succe
regions in the conservative system@8#. The most efficient
way to do this is again using the fractal basin boundaries
pointed out in Ref.@8#, when dissipation is included th
boundaries will never be truly fractal. Like a snowflake, t
self-similar structure will be cut off at some physical lim
However, if a color coded basin boundary shows substan
structure, it is fair to say that the participating orbits a
influenced by irregularity. The smaller the scale at which

FIG. 11. Coalescing orbits with radiative reaction forb51/3
with r /m525. The slice through phase spans scans over initial
entation of the spins2180°<u1<180° and2180°<u2<180°.
Upper panel: spins are maximalSi5mi

2. Lower panel: spins are ten
times smaller,Si50.1mi

2. 3003300 orbits shown in each panel.
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cutoff occurs, the more irregular the history of that set
orbits.

Figure 11 illustrates the dissipative inspiral of 90 0
maximally spinning black hole pairs withb51/3. The orbits
all coalesce due to energy lost to gravitational waves. T
initial condition in (u1 ,u2) is color coded black if the pair
merges from above thez axis and white if the pair merge
from below thez axis @2#. The top panel of Fig. 11 shows th
basin boundaries for maximal spinsSi5mi

2. The figure
shows that there is some sensitivity to the initial spin ang
A small change in initial angle can lead to a different end
the merging pair. This is a pale imprint of the fractal from t
fully chaotic conservative system. The lower panel of Fig.
shows substantially less sensitivity to initial conditions wh
the spins are lowered to 0.1mi

2. Incidentally, an even more
intricate dependence on initial spin angle is seen for BH-
binaries withb51.4/10@2#.

The orbits begin fairly regularly although the precessi
modulates the waveform. Given unlimited access to theo
ical templates, matched filtering could in principle glean
confident signal, at least until the pair drew near the unsta
orbits. The orbit becomes more irregular as the separa
closes and the pair passes near the underlying conserv
trajectory in Fig. 8 just before plunge. Since matched filt
ing relies on the template remaining in phase with the d
for many cycles, one might hope that a disruption of the l
few cycles would not be serious. Many authors have alre
argued for the use of other methods at these close separa
~see@21# and the references therein!. However, others have
argued@30# that these last few orbits are heavily weight
and therefore critical for successful detection. More imp
tant than the visually obvious amplitude modulation the p
cession modulates the gravitational wave frequency. A
quency space analysis is still required to determine if
modulation inhibits detectability of such irregular waves.

VIII. SUMMARY

It is reasonable to conclude for a typical stellar ma
BH-BH system that if the primary black hole spins rapid
the orbital plane will precess unpredictably for very clo
orbits. For the conservative binary system, the dependenc
the precessional motion was tested as a function of th
parameters.

b5m2 /m1 : As was already known, the smaller the ma
ratio, the thicker the band occupied by the precessing o
@15,16#. A ratio of b51/3 is small enough for precession
modulate observable gravitational waves. The mass r
may also determine the radius at which chaotic resonan
occur by affecting the relative orbital and spin frequencie

Spin magnitudes: The transition to chaos occurs as
spin magnitudes and misalignments are increased. There
be chaotic motion even if only one body spins. If it is a lig
companion spinning, then the magnitude of the spin has to
larger than maximal@1#. If it is the heavier object, then chao
can occur for rapid but physically allowed black hole spin
This is true for both BH-BH and BH-NS pairs. For a give
eccentricity and radial separation, a transition to chaos
occur as the spin of the companion is increased.

i-
3-10
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FATE OF CHAOTIC BINARIES PHYSICAL REVIEW D67, 044013 ~2003!
Eccentricity: Large misaligned spins cause eccentric
which may therefore be a feature common to chaotic orb
However, large eccentricity alone certainly does not ca
chaos. If chaos is indeed occurring near the unstable
moclinic orbits of Ref.@12#, then we might expect a fai
spread in eccentricities for chaotic orbits since the
moclinic orbits occur with a broad range of eccentricitie
Importantly, even for a completely regular orbit the usu
relativistic precession of an elliptic orbit in the plane b
comes superposed on the precession of the orbital plane.
combination, although not an indication of chaos, does l
to a complicated modulation of the gravitational wave sign

The most pressing question remains: Will irregular orb
of coalescing binaries hinder observations? With dissipa
included a faint imprint of chaos during the final orbits b
fore merger can be found although it is unclear if it is stro
enough to alter observations. We investigate dissipation
ing very different methods in Ref.@9# although a complete
resolution of the question of the efficiency of damping w
require going to higher orders in the post-Newtonian exp
sion when available. A detailed study of the modulated gra
tational wave is also needed. What we can conclude is
chaos plays some role in the dynamics of conservative, r
tivistic binaries—a testament to the nonlinearity of gene
relativity.
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APPENDIX: 2PN EQUATIONS OF MOTION

In the notation of Ref.@16#, the center of mass equation
of motion in harmonic coordinates are

r¢̈5a¢PN1a¢SO1a¢SS1a¢RR ~A1!

with r¢5r r̂ . The right-hand side is the sum of the contrib
tions to the relative acceleration from the post-Newton
~PN! expansion, the spin-orbit~SO! and spin-spin~SS! cou-
pling, and the radiative reaction~RR!. The explicit terms are
quoted from Ref.@16#. The following notation is used:v¢
5dr¢/dt, n̂[r¢/r , m[m1m2 /m, h[m/m, dm[m12m2 , S¢

[S¢11S¢2 , andD¢ [m(S¢2 /m22S¢1 /m1). The a¢PN5a¢N1a¢1PN
1a¢2PN with
04401
y
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.
,
d
at

n

a¢N52
m

r 2 n̂, ~A2!

a¢1PN52
m

r 2 H n̂F ~113h!v222~21h!
m

r
2

3

2
h ṙ 2G

22~22h! ṙv¢J , ~A3!

a¢2PN52
m

r 2 H n̂F3

4
~12129h!S m

r D 2

1h~324h!v4

1
15

8
h~123h! ṙ 42

3

2
h~324h!v2ṙ 2

2
1

2
h~1324h!

m

r
v22~2125h12h2!

m

r
ṙ 2G

2
1

2
ṙv¢Fh~1514h!v22~4141h18h2!

m

r

23h~312h! ṙ 2G J . ~A4!

The radiative reaction term is due to terms to 5/2PN or
and can be expressed as

a¢RR5
8

5
h

m2

r 3 H ṙ n̂F18v21
2

3

m

r
225ṙ 2G

2v¢F6v222
m

r
215ṙ 2G J . ~A5!

The spin-orbit acceleration is

a¢SO5
1

r 3 H 6n̂F ~ n̂3v¢!•S 2S¢1
dm

m
D¢ D G2Fv¢3S 7S¢13

dm

m
D¢ D G

13ṙ F n̂3S 3S¢1
dm

m
D¢ D G J ~A6!

and the spin-spin acceleration is

a¢SS52
3

mr 4 $n̂~S¢1•S¢2!1S¢1~ n̂•S¢2!1S¢2~ n̂•S¢1!

25n̂~ n̂•S¢1!~ n̂•S¢2!%. ~A7!

1. Constants of the motion

E5EPN1ESO1ESS ~A8!

whereEPN5EN1E1PN1E2PN and

EN5mH 1

2
v22

m

r J , ~A9!
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E1PN5mH 3

8
~123h!v41

1

2
~31h!v2

m

r
1

1

2
h

m

r
ṙ 2

1
1

2 S m

r D 2J , ~A10!

E2PN5mH 5

16
~127h113h2!v62

3

8
h~123h!

m

r
ṙ 4

1
1

8
~21223h227h2!

m

r
v41

1

8
~14255h14h2!

3S m

r D 2

v21
1

4
h~1215h!

m

r
v2ṙ 22

1

4
~2115h!

3S m

r D 3

1
1

8
~4169h112h2!S m

r D 2

ṙ 2J , ~A11!

ESO5
1

r 3 L¢ N•S S¢1
dm

m
D¢ D , ~A12!

ESS5
1

r 3 $3~ n̂•S¢1!~ n̂•S¢2!2~S¢1•S¢2!%. ~A13!

The total angular momentum is given by

J¢5L¢ 1S¢ ~A14!
v.

1

ne

.

ne

04401
where

L¢ 5L¢ PN1L¢ SO ~A15!

with L¢ PN5L¢ N1L¢ 1PN1L¢ 2PN and

L¢ N[m~r¢3v¢!, ~A16!

L¢ 1PN5L¢ NH 1

2
v2~123h!1~31h!

m

r J , ~A17!

L¢ 2PN5L¢ NH 3

8
~127h113h2!v42

1

2
h~215h!

m

r
ṙ 2

1
1

2
~7210h29h2!

m

r
v2

1
1

4
~14241h14h2!S m

r D 2J , ~A18!

and

L¢ SO5
m

m H m

r
n̂3F n̂3S 3S¢1

dm

m
D¢ D G

2
1

2
v¢ 3Fv¢3S S¢1

dm

m
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nn
lso

r. 2

y

s,
@1# S. Suzuki and K. Maeda, Phys. Rev. D55, 4848~1997!.
@2# J. Levin, Phys. Rev. Lett.84, 3515~2000!.
@3# G. Contopolous, Proc. R. Soc. LondonA431, 183 ~1990!;

A435, 551 ~1990!.
@4# L. Bombelli and E. Calzetta, Class. Quantum Grav.9, 2573

~1992!.
@5# C. P. Dettmann, N. E. Frankel, and N. J. Cornish, Phys. Re

50, R618~1994!; Fractals3, 161 ~1995!.
@6# N. J. Cornish and N. E. Frankel, Phys. Rev. D56, 1903~1997!.
@7# J. Levin, Phys. Rev. D60, 064015~1999!.
@8# N. J. Cornish, Phys. Rev. Lett.85, 3980~2000!.
@9# N. J. Cornish and J. Levin, gr-qc/0207016.

@10# S. F. Portegies-Zwart and S. L. McMillan, astro-ph/991006
astro-ph/9912022.

@11# A. I. MacFadyen and S. E. Woosley, Astrophys. J.524, 262
~1999!; A. I. MacFadyen, S. E. Woosley, and A. Heger,ibid.
550, 410 ~2001!.

@12# J. Levin, R. O’Reilly, and E. J. Copeland, Phys. Rev. D62,
024023~2000!.

@13# V. Kalogera, Astrophys. J.541, 319 ~2000!.
@14# For reviews on gravitational wave astronomy see K. S. Thor

gr-qc/9704042; B. F. Schutz, Class. Quantum Grav.16, A131
~1999!; L. P. Grishchuk, V. M. Lipunov, K. A. Postnov, M. E
Prokhorov, and B. S. Sathyaprakash, Usp. Fiz. Nauk171, 3
~2001! @Sov. Phys. Usp.44, 1 ~2001!#.

@15# T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thor
Phys. Rev. D49, 6274~1994!.

@16# L. Kidder, Phys. Rev. D52, 821 ~1995!.
D

;

,

,

@17# L. Blanchet and T. Damour, Ann. I.H.P. Phys. Theor.50, 377
~1989!; T. Damour and B. R. Iyer,ibid. 54, 115 ~1991!.

@18# L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev. D47,
3281 ~1993!.

@19# T. Damour, Phys. Rev. D64, 124013~2001!.
@20# L. S. Finn and D. F. Chernoff, Phys. Rev. D47, 2198~1993!.
@21# S. A. Hughes, Phys. Rev. Lett.85, 5480~2000!.
@22# N. J. Cornish, in Proceedings of the Eighth Marcel Grossma

Meeting, Jerusalem, 1992, gr-qc/9709036; see a
gr-qc/9602054.

@23# N. J. Cornish and J. J. Levin, Phys. Rev. Lett.78, 998 ~1997!;
Phys. Rev. D55, 7489~1997!.

@24# T. Damour and N. Deruelle, C. R. Seances Acad. Sci., Se
293, 537 ~1981!; 293, 877 ~1981!; L. P. Grishchuk and S. M.
Kopejkin, inRelativity in Celestial Mechanics and Astrometr,
edited by J. Kovalevsky and V. A. Brumberg~Reidel, Dor-
drecht, 1986!, p. 19.

@25# L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev. D47,
4183 ~1993!.

@26# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic
Dynamics~Springer-Verlag, New York, 1992!.

@27# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, England, 1993!.

@28# J. D. Schnittman and F. A. Rasio, Phys. Rev. Lett.87, 121101
~2001!.

@29# N. J. Cornish and J. Levin, Phys. Rev. Lett.89, 179001~2002!.
@30# R. P. Croce, Th. Demma, V. Pierro, I. M. Pinto, D. Churche

and B. S. Sathyaprakash, Phys. Rev. D62, 121101~R! ~2000!.
3-12


