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Consistent deformations of dual formulations of linearized gravity: A no-go result
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The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor
field in the exotic representation of the Lorentz group with Young symmetry tipe3,1) (one column of
lengthD —3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge
algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives

of the fields.
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I. INTRODUCTION (see[6] and the more recent workls7,8] for systematic

analyses Because dualization is a non-local process, one
The electric-magnetic duality is one of the most fascinat-does not expect the Einstein interaction vertex to have a local
ing symmetries of theoretical physics. Recefffly; dual for-  counterpart on the dudl, ...\, ,,-side. This does nod

mulations of linearized gravitj2] have been systematically priori preclude the existence of other local interaction verti-
investigated withM-theory motivations in mind3,4] (see  ces, which would lead to exotic self-interactions of “spin-2”
also[5]). These dual formulations involve tensor fields in particles. Our main—and somewhat disappointing—resuilt is,
“exotic” representations of the Lorentz group characterizednhowever, that this is not the case.

by a mixed Young symmetry type. There exist in fact three  The first instance for whichi
different dual formulations of linearized gravity in generic
spacetime dimensioB. The first one is the familiar Pauli-
Fierz description based on a symmetric tertspy. The sec-
ond one is obtained by dualizing on one index only and

Ay hp_qu transformsin a

true exotic representation of the Lorentz group occurs for
D=5, where one has

involves a tensofmy, ...\, ., With Ty =~ g o
T =T , 1.1 . . L .
Mho - Ap_ge T[MAp - hp-gle @D The action of this dual theory is given if2] (see also
_ [9-11)). We shall explicitly investigate thd,g, case in
T, apgm =0 1.2 this paper and comment on general gauge fields

h brackets denote anti trizati th M2+ -Ao—ou 8t the end.
where square brackets denote antisymmetrization wi : : .
strength one. Finally, the third one is obtained by dualizing Our precise result is that the free field dual theory based

on both indices and is described by a tensor = M2’ .admi_ts no corjsistent I_ocal deformation whi¢h
with Young symmetry type 3—3D 1S Lorentz invariant, andii) contains no more than two de-
rivatives of the fieldi.e., the allowed interaction terms under
consideration contains at mo#tT or (4T)?]. No restriction
is imposed on the polynomial degree of the interaction. Our
sult confirms previous unsuccessful attenjit®,13. We

)\1..A)\D73/L1A../LD73
—3) (two columns withD—3 boxes. Although one can
write equations of motion for this theory which are equiva-
lent to the linearized Einstein equations, these do not seem

fqllow (whgn D>4) from a Lor_entz.-lnvarlant action prin- - 51so demonstrate the rigidity, to first order in the deformation
ciple in which the only varied field i€y, ..\, .., u5 5 parameter, of the algebra of the gauge symmetries without
For this reason, we shall focus here on the dual theory basqqaking any assumption on the number of derivatives.
ON Ty hy Ap_gu- Besides their occurrence in dual formulations of linear-
The purpose of this paper is to determine all the consisized gravity, tensor fields in exotic representations of the
tent, local, smooth interactions that this dual formulation addLorentz group arise in the long-standing related problem of
mits. It is well known that the only consistefibcal, smooth ~ constructing consistent interactions among patrticles with
deformation of the Pauli-Fierz theory is—under quite generahigher sping13—17. A further motivation for the analysis of
and reasonable assumptions—given by the Einstein theomxotic higher spin gauge fields come from recent develop-
ments in M theory, where a matching between e 11
supergravity equationgl8] and theEjq10/K(E;g) coset

*Electronic address: xavier.bekaert@pd.infn.it model equation§K(E;g) being the maximal compact sub-

"Electronic address: nboulang@ulb.ac.be group of the split form ok | 1o 0f E;¢] was exhibited up to

*Electronic address: henneaux@ulb.ac.be Also at Centro de Estireight 30 in theE;, roots[19] (the relevance oE, in the
dios Cientiicos, Casilla 1469, Valdivia, Chile. supergravity context was indicated much earlier[20]).
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One possibility for going beyond this height would be to 1 5 N
introduce additional higher spin fields, most of which would L=— E(F[aﬁy]aF[“M —3Ff,5gFL™M), (2.2
be in exotic representations of the Lorentz group. Indeed, a

quick argument shows that such fields might yield the expowhereF is the tensor

nentials associated with the higher hei@ht roots—if they B .

can be consistently coupled to gravity, an unsolved problem Flagns=daTian st IpT a5t Iy T1ap1s=391aT s

so far. The introduction of such additional massless fields 23
would also be in line with what one expects from string The gauge invariances are

theory(in the high energy limit where the string tension goes

to zero[21]). The same motivations come from the covariant So.aT1aply=2(0[aT gy T Ola®p)y = 0yQap),  (2.4)

coset construction d22] whereD=11 supergravity is con-  whereo,; anda,,; are arbitrary symmetric and antisymmet-
jectured to provide a non-linear realizationtf;. The dual ric tensor fields. The tensét is invariant under ther-gauge
tensor ﬁe|d-|—)\1}\z,_)\81M has actually already been identified symmetries, but not under the-ones. To get a completely

in connection with both theE;; [22] and theE;, roots gauge-invariant object, one must take one additional deriva-
[19,23. Note that mixed symmetry fields appear also in thetive. The tensor

models of[24,25.

In order to investigate the consistent, local, smooth defor-
mations of the theory, we shall follow the cohomological
approach of26], based on the antifield formalisf27-29.

An alternative, Hamiltonian based deformation point of view
has been developed [80]. One advantage of the cohomo-
e approach, pesites s siemlc aspect, = Ul Bervatves ony hough he “curvaur . and i
) . . - ferivatives. It is convenient to define the Ricci-like tensor

necessary computations are either already in the literatur . )

. . o ) and its trace:
[31] or are direct extensions of existing developments carried [*#17
out for 1-forms[32,33, p-forms[34] or gravity[8,35] (see Eraply= 7" °Eapoiier):  Ea= 7" Elapy. (2.6
also[36,37] for recent developments on the 1-forp-form ) )
case. To a large extent, our no-go theorem is obtained by'he €quations of motion are then
putting together, in a standard fashion, various cohomologi- SC

1
Elapoien=5(9cFraps)y = 9yFrapss) (2.9

is easily verified to be gauge invariant. Moreover its vanish-
ing implies thatT |, , is pure gaugé38]. The most general
auge invariant object depends on the fiflg;, and its

cal computations which have an interest in their own right 5T =3[ElAlY+ plephfl]=0, 2.7
and which have been already published or can be obtained [aBly
through by-now routine techniques. Because the action is gauge-invariant, the equations of mo-
tion satisfy the “Bianchi identities”
Il. THE FREE THEORY
8 (ELeBlY  prlephly=q, (2.9

A. Lagrangian, gauge symmetries ) o
] ] o . One easy way to check these identities is to observe that one
As stated above, we first restrict the explicit analysis top5¢

the case of a tensor with 3 indices, T=T,gz,, which is

dual to linearized gravity i =5 (but we shall carry the oL _ 5 G 2.9
analysis without specifyin®, taken only to be stricly greater STy O (2.9
than 4,D>4, so that the theory carries local degrees of

freedom. The symmetry properties read where the tensoG“** is completely antisymmetric in its

first three indicesG*#*? =G "1 Explicitly,
Tapy=Tiapyr Tiaplyt Tignat Tyap=0- (2.1 3 | |
Nuvp — — ( g[ATuvlp — o\ glpral _ pu glvAe
As shown in[38,39, the appropriate algebro-differential G 2(& T 7T T,
language for discussing gauge theories involving exotic rep-
resentations of the Lorentz group is that of multiforms, or
more accurately, that of hyperfornj88,41,43. Multiforms
were discussed recently {@0] as an auxiliary tool for in-
vestigating questions concerning complexes associated 05T apy=0 (2.11)
with higher spin gauge theories. It turns out that hyperforms
have been introduced much earlier in the mathematical ”tyvhen
erature by Olver in the analysis of higher order Pfaffian sys-
tems with integrability criteria(Olver, unpublished work
[41]). We shall not use here the language of multiforms orwhere y, are arbitrary fields There is no further local re-
hyperforms, however, because the relevant tensors involvgucibility identity.
only a few indices. The problem of introducingsmooth consistent interac-
The Lagrangian for the gauge tensor fiﬁlglxzﬂ reads tions is that of smoothly deforming the Lagrangi@n?2),

— pPrgh ), (2.10

The gauge symmetrid2.4) are reducible. Indeed,

}aﬁZGa(aYB) ’ aaﬁzza[ayﬁ] (212
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L—L+gLi+9%Lo+ - - -, (2.13 a’'=a+sm+dn (2.16

. should be identified as they define the same interactions up

the gauge transformatiori2.4), to field redefinitions. The cochairgs b, etc. that appear de-
SoaTiaply=2A+9 0N Tapy+ 9202 Trapy - - pend polynomially on the field variablgéncluding ghosts

(2.19 and antifields and their derivatives up to some finite order

. . . , (“local polynomialg. Given a non trivial cocyclea of

and the reducibility relation2.12) in such a way thati) the  po(g|q), the corresponding first-order interaction vertex

new action is invariant under_the new gauge symmetries; ang1 is obtained by setting the ghosts equal to zero.

(i) the new gauges symmetries reduce to zero on-shell when” o ¢cqrding to the general rules, the spectrum of fields and

the gauge parameters fulfill the new reducibility relations. BYantifields is given by the field$ |, with ghost number

devgloping these requirements c_)rd_er by order in the dgforZero and antifield number zero; the ghoStg, and A,
mation paég_meteg, one getshan énflmte number of consis- ith ghost number one and antifield number zero; the ghosts
tency C%n ”'t!ons’ onehatfeaﬁ oraer. hat the fi of ghostsC, with ghost number two and antifield number
We shall impose the further requirement that the first or-¢ '\ hich appear because of the reducibility relations; the
der vertexZ, be Lorentz-invariant. Under this sole condition antifields T*[“#17, with ghost number minus one and anti-
(together with consistengywe show that one can aways fia|q number one; the antifields* (*#) and A*[*#]: ghost
redefine the fields and the gauge parameters in such a way,mper minus two and antifield number two: the antifields
that the gauge structure is unaffected by the deformdtmn C*“ with ghost number three and antighost number three.

first order ing). That is, the gauge transformations remain The antifield number is also called “antighost number.”

abelian and the reducibility relations remain unchanged Since the theory at hand is a free theory, the BRST differen-
gidity of the gauge algebra” We next restrict the deforma- tial takes the simple form
e

tions to contain at most two derivatives of the fields, as th
original free Lagrangian. This still leave a priori an infinite
number of possibilities, of the schematic forff(aT)?
wherek is arbitrary[a termT'9°T is of course equivalent to
'|'|_:I-((§’T)2 upon integration by par]:sWe show, however, The decompOSition ok into & plUS b2 is dictated by the
that within this infinite class, there is no non-trivial deforma- antifield number :5 decreases the antifield number by one

tion. Any deformation can be redefined away by a localunit, while y leaves it unchanged. Combining this property
change of field variables. with s?=0, one concludes that

s=6+y (2.1

B. BRST differential 8°=0, dy+y5=0, y*=0. (2.189

As shown in[26], the first-order consistent local interac- o _ _ o
tions correspond to elements of the cohomoldtfy°(s|d) A grading is assoqlated to each of these differentiglén-
of the Becchi-Rouet-Stora-TyutifBRST) differential s ~ Creases by one unit the “pure ghost number” dengieegh
modulo the spacetime exterior derivatige in maximum ~ While 6 increases the “antighost numbeeintigh by one
form degreeD and in ghost number 0. That is, one mustunit. The ghost numbegh is defined by
compute the general solution of the cocycle condition

h= puregh- antigh 21
sa+db=0, 2.15 gh=puregh—antg (219

where a is a D-form of ghost number zero anth a  The action of the differentialy and § on all the fields of the
(D—1)-form of ghost number one, with the understandingformalism is displayed in the following array which indicates
that two solutionsa and a’ of Eq. (2.15 that differ by a  also the pureghost number, antighost number and Grassman-

trivial solution nian parity of the various fields:
Z v(2) 8(2) puregh{Z) antigh(2) parity
Tlaply 2(91aSpyy T IaP g1y~ Iy ap) 0 0 0 0
S(ep) 6d(,Cp) 0 1 0 1
Alup 201,Cg 0 1 0 1

o 0 0 2 0 0
T*[aBlY 0 3[El*Aly4 prleghl 0 1 1
S*ab 0 — 9 (T*LyalBy Tx[vhla 0 2 0
Axap 0 —39,(T*lralf_T*lyBle) 0 2 0
c*« 0 69,S*#*+29,A* 1« 0 3 1
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It is convenient to perform a change of variables in the

antigh=2 sector in order for the Koszul-Tate differential to

take a simpler expression when applied on all the antifields

of antigh=2. We define

Cr*B=3g* B p*ab, (2.20
It leads to the following simple expressions

5C* *P=—6g,T* 1748, (2.22)

SC*H*=29,C*"H (2.22

C. Strategy

To computeHP(s|d), one proceeds as i82,33: one
expands the cocycle conditisa+db=0 according to the

antifield number. To analyze this resulting equations, ong,

needs to know the cohomological groud$y), H(y|d) in
strictly positive antighost numbel (5|d) andH'™(5|d).

Ill. STANDARD RESULTS

PHYSICAL REVIEW D67, 044010(2003

do'=ye' (3.9

for someaw'.

B. General properties ofH (y]d)

The cohomological spadé(y|d) is the space of equiva-
lence classes of formes such thatya+db=0, identified by
the relationa~a’ <a’=a+ yc+df. We shall need proper-
ties of H(y|d) in strictly positive antighosi(= antifield)
number. To that end, we first recall the following theorem on
invariant polynomialgpure ghost numbet=0):

Theorem 111.1 In form degree less than n and in antifield
number strictly greater than 0, the cohomologydas$ trivial
in the space of invariant polynomials.

The argument runs as j82,33, to which we refer for the
tails.

Theorem IIl.1, which deals witld-closed invariant poly-
nomials that involve no ghostene considers only invariant
polynomialg, has the following useful consequence on gen-
eral y-mod-d-cocycles withantigh>0.

Of the cohomologies just listed, some are already known

while some can be computed straightforwardly.

A. Cohomology of y

The cohomology ofy (space of solutions ofya=0
modulo trivial coboundaries of the formb) has been ex-

plicitly worked out in[31] and turns out to be generated by
the following variables: the antifields and all their deriva-

Consequence of Theorem IIl.1

If a has strictly positive antifield numbéand involves
possibly the ghosjsthe equationya+db=0 is equivalent,
up to trivial redefinitions, toya=0. That is,

I

ya+db=0,
antigh(a)>0

a'=0,
7 (35

a’'=a+dc.

tives, denoted bj®* ], the undifferentiated ghosts of ghosts

C,, the following “field strength” components of the ghosts
Arag): Hiwgy=01Agy (but not their derivatives, which are

exac}, the T-field strength components defined in Eg.5
and all their derivatives denoted B¥|,z,;; 551 ]-

Therefore, the cohomology of is isomorphic to the al-
gebra

A
[aBY]

{f([E[aBy][és]]v[q)*]vcp.1H )} (31)

of functions of the generators. The ghost-independent pol
nomialsa ([ Ejagy15:1.[ P* 1) are called “invariant polyno-
mials.”

Comments

_Let.{w'(CM ,I—_|[AQB7])} be a b/iisis of the algebra of polyno-
mials in the variable€ , andHi,z,; . Any element oH(y)
can be decomposed in this basis, hence for grmpcycle «

ya=0ea= al([E[aBV][ae]]a[q’*])wl(cu'H'[Aaﬁvl)—'— VB
(3.2

where they, are invariant polynomials. Furthermom,w' is
vy exact if and only if all the coefficienta, are zero:

aqw'=yB,ea =0, for alll. (3.3
Another useful property of the' is that their derivatives are

vy exact and thus, in particular,

Thus, in antighost number 0, one can always choose rep-
resentatives oH(y|d) that are strictly annihilated byy.
Again, sed32,33.

C. Characteristic conomologyH (6]d)

We now turn to the groupbi(45|d), i.e., to the solutions
of the conditionda+db=0 modulo trivial solutions of the
form ém+dn. As shown in[32], these groups are isomor-

yE)hic to the group#i(d|d) of the characteristic cohomology,
describing ordinary and higher order conservation léves,
n-forms built out of the fields and their derivatives that are
closed on-shell Without loss of generality, one can assume
that the solutiona of sda+db=0 does not involve the
ghosts, since any solution that vanishes when the ghosts are
set equal to zero is trividé2]. By applications of the results
and methods 0f32], one can establish the following theo-
rems(in Hg(éld), D is the form degree and the antighost
(=antifield numbey:

Theorem II.1 The cohomology grouphi(s|d) vanish
in antifield numbem strictly greater than 3,

Hg(sld)=0 for g>3. (3.6)

Theorem 1.2 A complete set of representatives of
H?'?(5|d) is given by the antifields<C*# conjugate to the
ghost of ghosts, i.e.,

044010-4
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sal+dal t=0=al=),C*#dx®AdxIA .. AdxO IV. RIGIDITY OF THE GAUGE ALGEBRA
(3.7 We can now proceed with the derivation of the cohomol-
o ogy of s modulod in form degreeD and in ghost number
where the\ , are constants and modulo trivial terms. zero. A cocycle oH%?(s|d) must obey
Theorem 111.3 In antighost number 2, the general solution
of sat+db=0 4.1
D D-1_ . .
da; +da; "=0 (3.9 (besides being of form degré&®and of ghost number 0). To
analyze Eq(4.1), we expanda andb according to the anti-
reads, modulo trivial terms, field number,a=ag+a;+---+ay, b=by+by+---+b,

where, the expansion stops at some finite antifield number
a2D=C*‘”tM,,px"dx°/\dx1/\ AdXPTE (3190 [33]. We recall[26] (i) that the antifield-independent pieag
is the deformation of the Lagrangiafii) thata,;, which is
wheret,,,, is an arbitrary, completely antisymmetric, con- linear in the antifigldsT*[“ﬁ]V contains the information
stant tensort,,,,,=t(,,,,; - If one considers cochairs that about the deformation of the gauge transformations of the
have no expﬁcftx dependencéas it is necessary for con- fi€lds, given by the coefficients greL«#1; (iii) thata, con-

structing Poincarénvariant Lagrangians one thus find that tains the infOfmatiSnAabOButcthe_ defo*rmati(ir;3 oi ng gauge
the cohomological groupl5(s|d) vanishes. algebra(the termC3f’5cC°C™ with Cx=S**" A**" and

Ch= Sus:Asp gives the deformation of the structure func-
tions appearing in the commutator of two gauge transforma-
) ) ) tions, while the ternT* T* CC gives the on-shell termsnd

The cycle C** is associated to the conservation law ghout the deformation of the reducibility functiofierms
d*G~0 for the @ —3)-form *G dual toGI**")* (the equa-  ¢ontaining the ghosts of ghosts and the antifields conjugate
tions of motion read), G*"*~0). The cyi:IeC*“VthxP IS to the ghostg and (iv) that thea, (k>3) give the informa-
associated to the conservation lawl"“#""~0 where tjon about the deformation of the higher order structure func-
I"reis equal to the tensorGM#'x?+37 T  fions, which appear only when the algebra does not close
—3nM 77" T4P completely antisymmetrized in the three in- off-shell. Thus, if one can show that the most general solu-
dicesu, v, p and in the pair\, o. The above theorems tion a of Eq. (4.1) stops ata,, the gauge algebra is rigid: it
provide a complete description ¢12(8|n) for k>1 and  does not get deformed to first order.
show that these groups are finite-dimensional. In contrast, Writing s as the sum ofy and &, the equationrsa+db
the groupH?(&ld), which is related to ordinary conserved =0 is equivalent to the system of equatiods;+ ya;
currents, is infinite-dimensional since the theory is free. It is+db;_,=0 fori=1, ... Kk, andya,+db,=0.
not computed here.

Comment

A. Terms a,, k>3

D. Invariant characteristic cohomology: H'*(5]d) To begin with, let us assumie>3. Then, using the con-
The crucial result that underlies all consistent interactionsequence of theorem 1ll.1 , one may redefajeand by so
deals not with the general cohomology &fmodulod but  that b,=0, i.e., ya,=0. Then, a,=aj0’ (up to trivial
rather with theinvariant conomology of§ modulod. The terms, where thea; are invariant polynomials and where
groupH™(5|d) is important because it controls the obstruc-the {»”} form a basis of the algebra of polynomials in the
tions to removing the antifields fromscocycle modulod,  variablesC,, andHfaM . Acting with y on the second to last

as we shall see explicitly below. equation and using’=0, ya,=0 , we getdyb,_,=0 i.e.,
The central theorem that gived'"’(4|d) in antighost b, _;+dm,_;=0; and then, thanks again to the conse-
number=2 is guence of theorem 1.1 b,_; can also be assumed to be

Theorem I11.1 Assume that the invariant polynomiaf invariant,b,_;=8;w’. Substituting these expressions &g
(p= form-degreek= antifield numberis é-trivial modulo  andb,_; in the second to last equation, we get

d,
Sl ayw’]+d[ By 1= y(- - ). 4.2
af=ouf tduf b (k=2). (3.10
This equation implies

Then, one can always choog§, ; anduf ! to be invariant.

Hence, we have H'"(§|d)=0 for k>3 while [Say+dB;la’=y(--) (4.3
H3'""(5]d) is given by theorem I11.2 andi}'"’(5|d) van-
ishes (in the space of translation-invariant cochajnby  because the exterior derivative ofed is equivalent to zero
theorem 111.3. in H(vy). Then, as dicussed at the end of Sec. Il A, this leads

The proof of this theorem proceeds exactly as the prooféo
of similar theorems established for vector field33],
p-forms[34] or gravity [8]. We shall therefore skip it. Sa;+dp;=0, V J. (4.9
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If the antifield number ofe; is strictly greater than 3, the the corresponding,). The computation is direct but not
solution is trivial, thanks to our results on the cohomology ofvery illuminating and so will not be reproduced here.

6 modulod : aj;=d6u;+dv;. Furthermore, theorem Ill.1

tells us thatu; and v; can be chosen invariants. This is the C. Computation of a,

crucial place where we need theorem IIl.1 . Tlays (du;

+dvy) 0'=5(iy0°) + d(vs0%) = vyde’. The last term Continuing with our analysis, we ses=0 and get the

v;dw’ is equal tov;sw’ and differs from thes-exact term system

s(* vjw”) by the term= Sv;w”, which is of lowest antifield da, + yap+dby=0, (4.11
number. Trivial redefinitions enable one to sgtto zero.

Once this is doneB; must satisfyd ;=0 and is then exact dap+ ya; +db; =0, (4.12
in the space of invariant polynomialg;=dp,, andby_,

can be removed by appropriate trivial redefinitions. One can ya,=0. (4.13

next repeat the argument for antifield numkerl, etc, until
one reaches antifield number 3. This case deserves moNoW a, has to be found irH3(8/d), but this latter group
attention, but what we can stress already now is Wetan Vvanishegin the space of translation-invariant deformations
assume that the expansion of a in‘sdb=0 stops at anti- as shown in theorem I11.3. We can thus conclude that there is
field number3 and takes the formaag+a;+a,+az with ~ no possibility of deforming the free theory to obtain an in-
b=by+b;+b,. Note that this result is independent of any teracting theory whose gauge algebra is non-Abelian. To ob-
condition on the number of derivatives or of Lorentz invari- tain this no-go result we just asked for locality, Lorentz in-
ance. These requirements have not been used so far. TMariance and the assumption that the deformed theory
crucial ingredient of the proof is that the cohomological reduces smoothly to the free one as the deformation param-
groupsH"(8|d), which control the obstructions to remove €ter goes to zero.
a, from a, vanish fork>3.

V. NO-GO THEOREM

B. Computation of a With a,=0 fori>1, the cocycle conditiori4.1) reduces

We have now the following descent: to
das+ yap+dby=0, (4.9 Sa,+ yag+dby=0, (5.1
da,+ ya;+db;=0, (4.6 ya;=0. (5.2
daz+ ya,+db,=0, 4.7

The last equation forcesa; to take the schematic forra;
=T*Hp(E,dE, ...) where the constant term ip is zero
ya3=0. 48 pecausa**FIH «py (the onlyE-independent possibility al-
We write a;= o' andb,=3,e'. Proceeding as before we Iow_ed by Lorentz inviri[an]oeis identically zero due to op-
find that a necessarfout not sufficient condition fora; to  POSite symmetries for “l7 andH,,4,. But all these can-
be a non-trivial solution of E¢(4.7), so thata, exists, is that didatesa; |n\_/ol\’(e at least four derivative§wo in E,:)ne in
@, be a non-trivial element of5(5|d). The theorem 111.2 H, and one inT™ —which counts for one becaugd™ con-
imposes thery, ~C*“. We then have to complete thig tains two derivatives, see e[$3]), so we reject this possi-

Wi an o' ofghost rumber 3 in order to b 2 candicate 1Y O, 1€ assumptn it e etacion tene i the
aj0' for ag. There area priori a lot of possibilities to grang ' '

achieve this, but if one demands Lorentz invariance, onl 1=0 and the deformations not only do not modify the
two possibilities emerge gauge algebra, but actually also leave unchanged the gauge

transformations of the field |z, -

a3:C*uHW3HavaBVP' (4.9 We are then reduced to look far, solutions of yag
+dby=0, i.e., for deformations of the Lagrangian which
az=C** e, ,H vPNCO, (4.10 must be gauge invariant up to a total derivative. Because

these deformations are gauge invariant up to a total deriva-
where we recall thatl , ,s=d[,A.p €H(7) at ghost num- tive, their Euler-Lagrange derivatives are strictly gauge in-
ber one, andC? e H(y) at ghost number two. Sinc€*#*  variant. These Euler-Lagrange derivatives contains two de-
has antighost number thrg¢ee. ghost number {)3], we rivatives of the fields and satisfies Bianchi identities of the
indeed have two ghost-number-zexg candidates. The first type (2.8) (because of the gauge invariance [afy). It is
is quartic in the fields and, if consistent, would lead to aeasy to see that the only gauge-invariant object satisfying
quartic interaction vertex. The second is cubic and, if consisthese conditions are the Euler-Lagrange derivatives of the
tent, would lift to anag which breaksP T invariance. original Lagrangian itself, so we conclude they~ L: the
However, neither of these candidates can be lifted all theleformation only changes the coefficient of the free Lagrang-
way toagy. Both get obstructed at antighost number omge: ian and is not essential. In fact, allowing for agpcontaining
exists, but there is na; that solves Eq(4.6) (givenas and  three derivatives would not change the conclusions. Indeed,
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starting from the first derivative of the curvatus;, there is  takes into account the additional reducibility identities that
no way to contract the indices in order to form a candidateappear then. There are more candidates analogoas (fout
X[«B17 with the symmetries of the field!*1”. Hence, ac- now in higher antighost numbebut we have checked that
ceptablea, (other than the original Lagrangiashould in-  all these candidates are eliminated if one restricts the deriva-
volve at least four derivatives. This completes the proof oftive order to two(in fact, the higher derivative terms are in

the rigidity of the free theory. any case probably obstructed, but we have not verified this
explicitly, the derivative argument being sufficient to rule
VI. COMMENTS AND CONCLUSIONS them ouj. In the end(going though all;’s), one finds again
that there is no deformation with no more than two deriva-

We can summarize our results as follows: under the hyiives
grontggtsr:S ngorkr)nC;lig)rq’ ;nt(:]el‘?r;eenttzhég;/awg}gﬁ rtr?c?c;ﬁ‘ielg t?]g Finally, we note that the same techniques can be used to
y analyze consistent deformations of more general exotic

gauge algel_)ra._ If one furthe_r excludes defprmatlons 'nVOh.gqauge fields. We plan to return to this question in the future.
ing four derivatives or more in the Lagrangian, then there i

just no smooth deformation of the free theory at all.
Without this extra condition on the derivative order, one
can introduce Born-Infeld-like interactions that involve pow-

ers of the gauge-invariant curvatuteg, g, ,) - Such defor- We are grateful to Peter Olver for sending us a copy of his
mations modify neither the gauge algebra nor the gaug@npublished papgi1]. The work of N.B. and M.H. is sup-
transformations. . ported in part by the “Actions de Recherche Concesteof
~ The same no-go result can easily be extended to a colleg¢he “Direction de la Recherche Scientifique—Communaute
tion of fieldsTy,g,, as in[8], or to a system of on&,5,  Franaise de Belgique,” by a “Ple d’Attraction Interuniver-
and one Pauli-Fierz field ,,, . sitaire”  (Belgium), by [ISN-Belgium (convention
We have considered here explicitly the dual formulationg 4505.86, by Proyectos FONDECYT 1970151 and
of gravity in D=5 dimensions, with a 3-index tens®fz,.  7960001(Chile) and by the European Commission RTN pro-
The general case of exotic representatidis,,. ..., ..  gram HPRN-CT-00131, in which they are associated to K. U.
with more indices in the first row, which is relevant by  Leuven. The work of X.B is supported in part by the Euro-
spacetime dimensions, is dealt with similarly, provided onepean Commission RTN program HPRN-CT-00131.
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