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Consistent deformations of dual formulations of linearized gravity: A no-go result
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The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor
field in the exotic representation of the Lorentz group with Young symmetry type (D23,1) ~one column of
lengthD23 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge
algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives
of the fields.
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I. INTRODUCTION

The electric-magnetic duality is one of the most fascin
ing symmetries of theoretical physics. Recently@1#, dual for-
mulations of linearized gravity@2# have been systematicall
investigated withM-theory motivations in mind@3,4# ~see
also @5#!. These dual formulations involve tensor fields
‘‘exotic’’ representations of the Lorentz group characteriz
by a mixed Young symmetry type. There exist in fact thr
different dual formulations of linearized gravity in gener
spacetime dimensionD. The first one is the familiar Pauli
Fierz description based on a symmetric tensorhmn . The sec-
ond one is obtained by dualizing on one index only a
involves a tensorTl1l2•••lD23m with

Tl1l2•••lD23m5T[l1l2•••lD23]m , ~1.1!

T[l1l2•••lD23m]50 ~1.2!

where square brackets denote antisymmetrization w
strength one. Finally, the third one is obtained by dualiz
on both indices and is described by a tens
Cl1•••lD23m1•••mD23

with Young symmetry type (D23,D

23) ~two columns withD23 boxes!. Although one can
write equations of motion for this theory which are equiv
lent to the linearized Einstein equations, these do not see
follow ~when D.4) from a Lorentz-invariant action prin
ciple in which the only varied field isCl1•••lD23m1•••mD23

.
For this reason, we shall focus here on the dual theory ba
on Tl1l2•••lD23m .

The purpose of this paper is to determine all the con
tent, local, smooth interactions that this dual formulation
mits. It is well known that the only consistent~local, smooth!
deformation of the Pauli-Fierz theory is—under quite gene
and reasonable assumptions—given by the Einstein th
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~see @6# and the more recent works@7,8# for systematic
analyses!. Because dualization is a non-local process, o
does not expect the Einstein interaction vertex to have a lo
counterpart on the dualTl1l2•••lD23m-side. This does nota
priori preclude the existence of other local interaction ve
ces, which would lead to exotic self-interactions of ‘‘spin-2
particles. Our main—and somewhat disappointing—resul
however, that this is not the case.

The first instance for whichTl1l2•••lD23m transforms in a
true exotic representation of the Lorentz group occurs
D55, where one has

The action of this dual theory is given in@2# ~see also
@9–11#!. We shall explicitly investigate theT[ab]g case in
this paper and comment on general gauge fie
Tl1l2•••lD23m at the end.

Our precise result is that the free field dual theory ba
on Tl1l2m , admits no consistent local deformation which~i!
is Lorentz invariant, and~ii ! contains no more than two de
rivatives of the field@i.e., the allowed interaction terms unde
consideration contains at most]2T or (]T)2]. No restriction
is imposed on the polynomial degree of the interaction. O
result confirms previous unsuccessful attempts@1,2,12#. We
also demonstrate the rigidity, to first order in the deformat
parameter, of the algebra of the gauge symmetries with
making any assumption on the number of derivatives.

Besides their occurrence in dual formulations of line
ized gravity, tensor fields in exotic representations of
Lorentz group arise in the long-standing related problem
constructing consistent interactions among particles w
higher spins@13–17#. A further motivation for the analysis o
exotic higher spin gauge fields come from recent devel
ments in M theory, where a matching between theD511
supergravity equations@18# and theE10u110/K(E10) coset
model equations@K(E10) being the maximal compact sub
group of the split form ofE10u110 of E10] was exhibited up to
height 30 in theE10 roots @19# ~the relevance ofE10 in the
supergravity context was indicated much earlier in@20#!.

tu-
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One possibility for going beyond this height would be
introduce additional higher spin fields, most of which wou
be in exotic representations of the Lorentz group. Indee
quick argument shows that such fields might yield the ex
nentials associated with the higher heightE10 roots—if they
can be consistently coupled to gravity, an unsolved prob
so far. The introduction of such additional massless fie
would also be in line with what one expects from stri
theory~in the high energy limit where the string tension go
to zero@21#!. The same motivations come from the covaria
coset construction of@22# whereD511 supergravity is con-
jectured to provide a non-linear realization ofE11. The dual
tensor fieldTl1l2•••l8m has actually already been identifie

in connection with both theE11 @22# and the E10 roots
@19,23#. Note that mixed symmetry fields appear also in t
models of@24,25#.

In order to investigate the consistent, local, smooth de
mations of the theory, we shall follow the cohomologic
approach of@26#, based on the antifield formalism@27–29#.
An alternative, Hamiltonian based deformation point of vie
has been developed in@30#. One advantage of the cohomo
logical approach, besides its systematic aspect, is tha
minimizes the work that must be done because most of
necessary computations are either already in the litera
@31# or are direct extensions of existing developments car
out for 1-forms@32,33#, p-forms @34# or gravity @8,35# ~see
also @36,37# for recent developments on the 1-form–p-form
case!. To a large extent, our no-go theorem is obtained
putting together, in a standard fashion, various cohomolo
cal computations which have an interest in their own rig
and which have been already published or can be obta
through by-now routine techniques.

II. THE FREE THEORY

A. Lagrangian, gauge symmetries

As stated above, we first restrict the explicit analysis
the case of a tensorT with 3 indices,T5Tabm , which is
dual to linearized gravity inD55 ~but we shall carry the
analysis without specifyingD, taken only to be stricly greate
than 4, D.4, so that the theory carries local degrees
freedom!. The symmetry properties read

Tabg5T[ab]g , T[ab]g1T[bg]a1T[ga]b50. ~2.1!

As shown in@38,39#, the appropriate algebro-differentia
language for discussing gauge theories involving exotic r
resentations of the Lorentz group is that of multiforms,
more accurately, that of hyperforms@38,41,43#. Multiforms
were discussed recently in@40# as an auxiliary tool for in-
vestigating questions concerningN complexes associate
with higher spin gauge theories. It turns out that hyperfor
have been introduced much earlier in the mathematical
erature by Olver in the analysis of higher order Pfaffian s
tems with integrability criteria~Olver, unpublished work
@41#!. We shall not use here the language of multiforms
hyperforms, however, because the relevant tensors inv
only a few indices.

The Lagrangian for the gauge tensor fieldTl1l2m reads
04401
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1

12
~F [abg]dF [abg]d23F [abj]

j Fl
[abl] !, ~2.2!

whereF is the tensor

F [abg]d5]aT[bg]d1]bT[ga]d1]gT[ab]d[3] [aTbg]d .
~2.3!

The gauge invariances are

ds,aT[ab]g52~] [asb]g1] [aab]g2]gaab!, ~2.4!

wheresab andaab are arbitrary symmetric and antisymme
ric tensor fields. The tensorF is invariant under thes-gauge
symmetries, but not under thea-ones. To get a completely
gauge-invariant object, one must take one additional der
tive. The tensor

E[abd][ «g][
1

2
~]«F [abd]g2]gF [abd]«! ~2.5!

is easily verified to be gauge invariant. Moreover its vanis
ing implies thatT[ab]g is pure gauge@38#. The most genera
gauge invariant object depends on the fieldTabm and its
derivatives only through the ‘‘curvature’’E[abd][ «g] and its
derivatives. It is convenient to define the Ricci-like tens
E[ab]g and its trace:

E[ab]g5h«dE[abd][ «g] , Ea5hbgE[ab]g . ~2.6!

The equations of motion are then

dL
dT[ab]g

53@E[ab]g1hg[aEb] #50. ~2.7!

Because the action is gauge-invariant, the equations of
tion satisfy the ‘‘Bianchi identities’’

]a~E[ab]g1hg[aEb] ![0. ~2.8!

One easy way to check these identities is to observe that
has

dL
dT[mn]r

[]lGlmnr ~2.9!

where the tensorGlmnr is completely antisymmetric in its
first three indices,Glmnr5G[lmn]r. Explicitly,

Glmnr5
3

2
~] [lTmn]r2hrl] [mTa

na]2hrm] [nTa
la]

2hrn] [lTa
ma] !. ~2.10!

The gauge symmetries~2.4! are reducible. Indeed,

ds̃,ãT[ab]g[0 ~2.11!

when

s̃ab56] (agb) , ãab52] [agb] ~2.12!

wherega are arbitrary fields. There is no further local re-
ducibility identity.

The problem of introducing~smooth! consistent interac-
tions is that of smoothly deforming the Lagrangian~2.2!,
0-2
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L→L1gL11g2L21•••, ~2.13!

the gauge transformations~2.4!,

ds,aT[ab]g5~2.4!1g ds,a
(1) T[ab]g1g2ds,a

(2) T[ab]g1•••

~2.14!

and the reducibility relations~2.12! in such a way that~i! the
new action is invariant under the new gauge symmetries;
~ii ! the new gauges symmetries reduce to zero on-shell w
the gauge parameters fulfill the new reducibility relations.
developing these requirements order by order in the de
mation parameterg, one gets an infinite number of consi
tency conditions, one at each order.

We shall impose the further requirement that the first
der vertexL1 be Lorentz-invariant. Under this sole conditio
~together with consistency!, we show that one can alway
redefine the fields and the gauge parameters in such a
that the gauge structure is unaffected by the deformation~to
first order ing). That is, the gauge transformations rema
abelian and the reducibility relations remain unchanged~‘‘ri-
gidity of the gauge algebra’’!. We next restrict the deforma
tions to contain at most two derivatives of the fields, as
original free Lagrangian. This still leave a priori an infini
number of possibilities, of the schematic formTk(]T)2

wherek is arbitrary@a termTl]2T is of course equivalent to
Tl 21(]T)2 upon integration by parts#. We show, however,
that within this infinite class, there is no non-trivial deform
tion. Any deformation can be redefined away by a lo
change of field variables.

B. BRST differential

As shown in@26#, the first-order consistent local intera
tions correspond to elements of the cohomologyHD,0(sud)
of the Becchi-Rouet-Stora-Tyutin~BRST! differential s
modulo the spacetime exterior derivatived, in maximum
form degreeD and in ghost number 0. That is, one mu
compute the general solution of the cocycle condition

sa1db50, ~2.15!

where a is a D-form of ghost number zero andb a
(D21)-form of ghost number one, with the understandi
that two solutionsa and a8 of Eq. ~2.15! that differ by a
trivial solution
04401
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should be identified as they define the same interactions
to field redefinitions. The cochainsa, b, etc. that appear de
pend polynomially on the field variables~including ghosts
and antifields! and their derivatives up to some finite ord
~‘‘local polynomials!. Given a non trivial cocyclea of
HD,0(sud), the corresponding first-order interaction vert
L1 is obtained by setting the ghosts equal to zero.

According to the general rules, the spectrum of fields a
antifields is given by the fieldsT[ab]g , with ghost number
zero and antifield number zero; the ghostsS(ab) and A[ab]
with ghost number one and antifield number zero; the gho
of ghostsCa with ghost number two and antifield numbe
zero, which appear because of the reducibility relations;
antifieldsT* [ab]g, with ghost number minus one and an
field number one; the antifieldsS* (ab) and A* [ab] : ghost
number minus two and antifield number two; the antifie
C* a with ghost number three and antighost number thre

The antifield number is also called ‘‘antighost numbe
Since the theory at hand is a free theory, the BRST differ
tial takes the simple form

s5d1g ~2.17!

The decomposition ofs into d plus g is dictated by the
antifield number :d decreases the antifield number by o
unit, while g leaves it unchanged. Combining this proper
with s250, one concludes that

d250, dg1gd50, g250. ~2.18!

A grading is associated to each of these differentials:g in-
creases by one unit the ‘‘pure ghost number’’ denotedpuregh
while d increases the ‘‘antighost number’’antigh by one
unit. The ghost numbergh is defined by

gh5puregh2antigh. ~2.19!

The action of the differentialsg andd on all the fields of the
formalism is displayed in the following array which indicate
also the pureghost number, antighost number and Grassm
nian parity of the various fields:
Z g(Z) d(Z) puregh(Z) antigh(Z) parity

T[ab]g 2(] [aSb]g1] [aAb]g2]gAab) 0 0 0 0
S(ab) 6] (aCb) 0 1 0 1
A[ab] 2] [aCb] 0 1 0 1
Ca 0 0 2 0 0
T* [ab]g 0 3@E@ab#g1hg[aEb] 0 1 1
S* ab 0 2]g(T* @ga#b1T* @gb#a 0 2 0
A* ab 0 23]g(T* @ga#b2T* @gb#a) 0 2 0
C* a 0 6]mS* ma12]mA* ma 0 3 1
0-3
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It is convenient to perform a change of variables in t
antigh52 sector in order for the Koszul-Tate differential
take a simpler expression when applied on all the antifie
of antigh>2. We define

C* ab53S* ab1A* ab. ~2.20!

It leads to the following simple expressions

dC* ab526]gT* [ga]b, ~2.21!

dC* m52]nC* nm. ~2.22!

C. Strategy

To computeHD,0(sud), one proceeds as in@32,33#: one
expands the cocycle conditionsa1db50 according to the
antifield number. To analyze this resulting equations, o
needs to know the cohomological groupsH(g), H(gud) in
strictly positive antighost number,H(dud) andHinv(dud).

III. STANDARD RESULTS

Of the cohomologies just listed, some are already kno
while some can be computed straightforwardly.

A. Cohomology of g

The cohomology ofg ~space of solutions ofga50
modulo trivial coboundaries of the formgb) has been ex-
plicitly worked out in @31# and turns out to be generated b
the following variables: the antifields and all their deriv
tives, denoted by@F* #, the undifferentiated ghosts of ghos
Cm , the following ‘‘field strength’’ components of the ghos
A[ab] : H [abg]

A [] [aAbg] ~but not their derivatives, which ar
exact!, the T-field strength components defined in Eq.~2.5!
and all their derivatives denoted by@E[abg][ d«] #.

Therefore, the cohomology ofg is isomorphic to the al-
gebra

$ f ~@E[abg][ d«] #,@F* #,Cm ,H [abg]
A !% ~3.1!

of functions of the generators. The ghost-independent p
nomialsa(@E[abg][ d«] #,@F* #) are called ‘‘invariant polyno-
mials.’’

Comments

Let $v I(Cm ,H [abg]
A )% be a basis of the algebra of polyno

mials in the variablesCm andH [abg]
A . Any element ofH(g)

can be decomposed in this basis, hence for anyg-cocyclea

ga50⇔a5a I~@E[abg][ d«] #,@F* # !v I~Cm ,H [abg]
A !1gb

~3.2!

where thea I are invariant polynomials. Furthermore,a Iv
I is

g exact if and only if all the coefficientsa I are zero:

a Iv
I5gb,⇔a I50, for all I . ~3.3!

Another useful property of thev I is that their derivatives are
g exact and thus, in particular,
04401
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for somev̂ I .

B. General properties ofH „gzd…

The cohomological spaceH(gud) is the space of equiva
lence classes of formsa such thatga1db50, identified by
the relationa;a8⇔a85a1gc1d f . We shall need proper
ties of H(gud) in strictly positive antighost~5 antifield!
number. To that end, we first recall the following theorem
invariant polynomials~pure ghost number50):

Theorem III.1. In form degree less than n and in antifie
number strictly greater than 0, the cohomology ofd is trivial
in the space of invariant polynomials.

The argument runs as in@32,33#, to which we refer for the
details.

Theorem III.1, which deals withd-closed invariant poly-
nomials that involve no ghosts~one considers only invarian
polynomials!, has the following useful consequence on ge
eral g-mod-d-cocycles withantigh.0.

Consequence of Theorem III.1

If a has strictly positive antifield number~and involves
possibly the ghosts!, the equationga1db50 is equivalent,
up to trivial redefinitions, toga50. That is,

ga1db50,

antigh~a!.0J ⇔H ga850,

a85a1dc.
~3.5!

Thus, in antighost number.0, one can always choose rep
resentatives ofH(gud) that are strictly annihilated byg.
Again, see@32,33#.

C. Characteristic cohomologyH „dzd…

We now turn to the groupsH(dud), i.e., to the solutions
of the conditionda1db50 modulo trivial solutions of the
form dm1dn. As shown in@32#, these groups are isomor
phic to the groupsH(dud) of the characteristic cohomology
describing ordinary and higher order conservation laws~i.e.,
n-forms built out of the fields and their derivatives that a
closed on-shell!. Without loss of generality, one can assum
that the solutiona of da1db50 does not involve the
ghosts, since any solution that vanishes when the ghosts
set equal to zero is trivial@42#. By applications of the results
and methods of@32#, one can establish the following theo
rems~in Hq

D(dud), D is the form degree andq the antighost
~5antifield! number!:

Theorem III.1. The cohomology groupsHq
D(dud) vanish

in antifield numberq strictly greater than 3,

Hq
D~dud!50 for q.3. ~3.6!

Theorem III.2. A complete set of representatives
H3

D(dud) is given by the antifieldsC* m conjugate to the
ghost of ghosts, i.e.,
0-4
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da3
D1da2

D2150⇒a3
D5lmC* mdx0`dx1` . . . `dxD21

~3.7!

where thelm are constants and modulo trivial terms.
Theorem III.3. In antighost number 2, the general soluti

of

da2
D1da1

D2150 ~3.8!

reads, modulo trivial terms,

a2
D5C* mntmnrxrdx0`dx1` . . . `dxD21 ~3.9!

where tmnr is an arbitrary, completely antisymmetric, co
stant tensor,tmnr5t [mnr] . If one considers cochainsa that
have no explicitx dependence~as it is necessary for con
structing Poincare´-invariant Lagrangians!, one thus find that
the cohomological groupH2

D(dud) vanishes.

Comment

The cycle C* m is associated to the conservation la
d* G'0 for the (D23)-form * G dual toG[lmn]r ~the equa-
tions of motion read]lGlmnr'0). The cycleC* mntmnrxr is
associated to the conservation law]lI lsmnr'0 where
I lsmnr is equal to the tensorGlsmnxr13hlmTnrs

23hlmhsnTa
ar completely antisymmetrized in the three i

dices m, n, r and in the pairl, s. The above theorem
provide a complete description ofHk

D(dun) for k.1 and
show that these groups are finite-dimensional. In contr
the groupH1

D(dud), which is related to ordinary conserve
currents, is infinite-dimensional since the theory is free. I
not computed here.

D. Invariant characteristic cohomology: H inv
„dzd…

The crucial result that underlies all consistent interactio
deals not with the general cohomology ofd modulo d but
rather with theinvariant cohomology ofd modulo d. The
groupHinv(dud) is important because it controls the obstru
tions to removing the antifields from as-cocycle modulod,
as we shall see explicitly below.

The central theorem that givesHinv(dud) in antighost
number>2 is

Theorem III.1. Assume that the invariant polynomialak
p

(p5 form-degree,k5 antifield number! is d-trivial modulo
d,

ak
p5dmk11

p 1dmk
p21 ~k>2!. ~3.10!

Then, one can always choosemk11
p andmk

p21 to be invariant.
Hence, we have Hk

n,inv(dud)50 for k.3 while
H3

n,inv(dud) is given by theorem III.2 andH2
n,inv(dud) van-

ishes ~in the space of translation-invariant cochains!, by
theorem III.3.

The proof of this theorem proceeds exactly as the pro
of similar theorems established for vector fields@33#,
p-forms @34# or gravity @8#. We shall therefore skip it.
04401
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IV. RIGIDITY OF THE GAUGE ALGEBRA

We can now proceed with the derivation of the cohom
ogy of s modulo d in form degreeD and in ghost number
zero. A cocycle ofH0,D(sud) must obey

sa1db50 ~4.1!

~besides being of form degreeD and of ghost number 0). To
analyze Eq.~4.1!, we expanda andb according to the anti-
field number,a5a01a11•••1ak , b5b01b11•••1bk ,
where, the expansion stops at some finite antifield num
@33#. We recall@26# ~i! that the antifield-independent piecea0
is the deformation of the Lagrangian;~ii ! that a1, which is
linear in the antifieldsT* [ab]g contains the information
about the deformation of the gauge transformations of
fields, given by the coefficients ofT* [ab]g; ~iii ! thata2 con-
tains the information about the deformation of the gau
algebra~the termCA* f BC

A CBCC with CA* [S* ab,A* ab and
CA[Sab ,Aab gives the deformation of the structure fun
tions appearing in the commutator of two gauge transform
tions, while the termT* T* CC gives the on-shell terms! and
about the deformation of the reducibility functions~terms
containing the ghosts of ghosts and the antifields conjug
to the ghosts!; and ~iv! that theak (k.3) give the informa-
tion about the deformation of the higher order structure fu
tions, which appear only when the algebra does not cl
off-shell. Thus, if one can show that the most general so
tion a of Eq. ~4.1! stops ata1, the gauge algebra is rigid: i
does not get deformed to first order.

Writing s as the sum ofg and d, the equationsa1db
50 is equivalent to the system of equationsdai1gai 21
1dbi 2150 for i 51, . . . ,k, andgak1dbk50.

A. Terms ak , kÌ3

To begin with, let us assumek.3. Then, using the con
sequence of theorem III.1 , one may redefineak and bk so
that bk50, i.e., gak50. Then, ak5aJv

J ~up to trivial
terms!, where theaJ are invariant polynomials and wher
the $vJ% form a basis of the algebra of polynomials in th
variablesCm andH [abg]

A . Acting with g on the second to las
equation and usingg250, gak50 , we getdgbk2150 i.e.,
gbk211dmk2150; and then, thanks again to the cons
quence of theorem III.1 ,bk21 can also be assumed to b
invariant,bk215bJv

J. Substituting these expressions forak
andbk21 in the second to last equation, we get

d@aJv
J#1d@bJv

J#5g~••• !. ~4.2!

This equation implies

@daJ1dbJ#v
J5g~••• ! ~4.3!

because the exterior derivative of avJ is equivalent to zero
in H(g). Then, as dicussed at the end of Sec. III A, this lea
to

daJ1dbJ50, ; J. ~4.4!
0-5
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If the antifield number ofaJ is strictly greater than 3, the
solution is trivial, thanks to our results on the cohomology
d modulo d : aJ5dmJ1dnJ . Furthermore, theorem III.1
tells us thatmJ andnJ can be chosen invariants. This is th
crucial place where we need theorem III.1 . Thusak5(dmJ
1dnJ)v

J5s(mJv
J)1d(nJv

J)6nJdvJ. The last term
nJdvJ is equal tonJsv̂J and differs from thes-exact term
s(6nJv̂

J) by the term6dnJv̂
J, which is of lowest antifield

number. Trivial redefinitions enable one to setak to zero.
Once this is done,bJ must satisfydbJ50 and is then exac
in the space of invariant polynomials,bJ5dr I , and bk21
can be removed by appropriate trivial redefinitions. One
next repeat the argument for antifield numberk21, etc, until
one reaches antifield number 3. This case deserves m
attention, but what we can stress already now is thatwe can
assume that the expansion of a in sa1db50 stops at anti-
field number3 and takes the form a5a01a11a21a3 with
b5b01b11b2. Note that this result is independent of an
condition on the number of derivatives or of Lorentz inva
ance. These requirements have not been used so far.
crucial ingredient of the proof is that the cohomologic
groupsHk

inv(dud), which control the obstructions to remov
ak from a, vanish fork.3.

B. Computation of a3

We have now the following descent:

da11ga01db050, ~4.5!

da21ga11db150, ~4.6!

da31ga21db250, ~4.7!

ga350. ~4.8!

We write a35a Iv
I andb25b Iv

I . Proceeding as before w
find that a necessary~but not sufficient! condition fora3 to
be a non-trivial solution of Eq.~4.7!, so thata2 exists, is that
a I be a non-trivial element ofH3

n(dud). The theorem III.2
imposes thena I;C* m. We then have to complete thisa I
with an v I of ghost number 3 in order to build a candida
a Iv

I for a3. There area priori a lot of possibilities to
achieve this, but if one demands Lorentz invariance, o
two possibilities emerge

a35C* mHmabHanrH nr
b , ~4.9!

a35C* m«mnrlsHnrlCs, ~4.10!

where we recall thatHmab[] [mAab] PH(g) at ghost num-
ber one, andCs PH(g) at ghost number two. SinceC* m

has antighost number three@i.e. ghost number (2)3], we
indeed have two ghost-number-zeroa3 candidates. The firs
is quartic in the fields and, if consistent, would lead to
quartic interaction vertex. The second is cubic and, if con
tent, would lift to ana0 which breaksPT invariance.

However, neither of these candidates can be lifted all
way to a0. Both get obstructed at antighost number one:a2
exists, but there is noa1 that solves Eq.~4.6! ~given a3 and
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the correspondinga2). The computation is direct but no
very illuminating and so will not be reproduced here.

C. Computation of a2

Continuing with our analysis, we seta350 and get the
system

da11ga01db050, ~4.11!

da21ga11db150, ~4.12!

ga250. ~4.13!

Now a2 has to be found inH2
n(dud), but this latter group

vanishes~in the space of translation-invariant deformation!,
as shown in theorem III.3. We can thus conclude that ther
no possibility of deforming the free theory to obtain an i
teracting theory whose gauge algebra is non-Abelian. To
tain this no-go result we just asked for locality, Lorentz i
variance and the assumption that the deformed the
reduces smoothly to the free one as the deformation par
eter goes to zero.

V. NO-GO THEOREM

With ai50 for i .1, the cocycle condition~4.1! reduces
to

da11ga01db050, ~5.1!

ga150. ~5.2!

The last equation forcesa1 to take the schematic forma1
5T* Hp(E,]E, . . . ) where the constant term inp is zero
becauseT* [ab]gHabg ~the onlyE-independent possibility al-
lowed by Lorentz invariance! is identically zero due to op-
posite symmetries forT* [ab]g andHabg . But all these can-
didatesa1 involve at least four derivatives~two in E, one in
H, and one inT* —which counts for one becausedT* con-
tains two derivatives, see e.g.@33#!, so we reject this possi
bility on the assumption that the interaction terms in t
Lagrangian should not have more than two derivatives. Th
a150 and the deformations not only do not modify th
gauge algebra, but actually also leave unchanged the g
transformations of the fieldT[ab]g .

We are then reduced to look fora0 solutions of ga0
1db050, i.e., for deformations of the Lagrangian whic
must be gauge invariant up to a total derivative. Beca
these deformations are gauge invariant up to a total der
tive, their Euler-Lagrange derivatives are strictly gauge
variant. These Euler-Lagrange derivatives contains two
rivatives of the fields and satisfies Bianchi identities of t
type ~2.8! ~because of the gauge invariance of*a0). It is
easy to see that the only gauge-invariant object satisfy
these conditions are the Euler-Lagrange derivatives of
original Lagrangian itself, so we conclude thata0;L: the
deformation only changes the coefficient of the free Lagra
ian and is not essential. In fact, allowing for ana0 containing
three derivatives would not change the conclusions. Inde
0-6
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starting from the first derivative of the curvature,]E, there is
no way to contract the indices in order to form a candid
X[ab]g with the symmetries of the fieldT[ab]g. Hence, ac-
ceptablea0 ~other than the original Lagrangian! should in-
volve at least four derivatives. This completes the proof
the rigidity of the free theory.

VI. COMMENTS AND CONCLUSIONS

We can summarize our results as follows: under the
pothesis of locality, and Lorentz invariance there is
smooth deformation of the free theory which modifies t
gauge algebra. If one further excludes deformations invo
ing four derivatives or more in the Lagrangian, then there
just no smooth deformation of the free theory at all.

Without this extra condition on the derivative order, o
can introduce Born-Infeld-like interactions that involve po
ers of the gauge-invariant curvaturesE[abg][ lm] . Such defor-
mations modify neither the gauge algebra nor the ga
transformations.

The same no-go result can easily be extended to a co
tion of fieldsT[ab]g , as in@8#, or to a system of oneT[ab]g
and one Pauli-Fierz fieldhmn .

We have considered here explicitly the dual formulati
of gravity in D55 dimensions, with a 3-index tensorTabg .
The general case of exotic representationsTl1l2•••lD23m

with more indices in the first row, which is relevant inD
spacetime dimensions, is dealt with similarly, provided o
ld
,

.
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s
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takes into account the additional reducibility identities th
appear then. There are more candidates analogous toa3 ~but
now in higher antighost number! but we have checked tha
all these candidates are eliminated if one restricts the der
tive order to two~in fact, the higher derivative terms are i
any case probably obstructed, but we have not verified
explicitly, the derivative argument being sufficient to ru
them out!. In the end~going though allai ’s!, one finds again
that there is no deformation with no more than two deriv
tives.

Finally, we note that the same techniques can be use
analyze consistent deformations of more general ex
gauge fields. We plan to return to this question in the futu
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