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SU„2… loop quantum gravity seen from covariant theory
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Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac
brackets arising from dealing with the second class constraints~‘‘simplicity’’ constraints!. Within this frame-
work, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections.
We show the existence of a Lorentz connection generalizing the Ashtekar-Barbero connection and we loop
quantize the theory showing that it leads to the usualSU(2) loop quantum gravity and to the area spectrum
given by theSU(2) Casimir operator. This covariant point of view allows us to analyze closely the drawbacks
of theSU(2) formalism: the quantization based on the~generalized! Ashtekar-Barbero connection breaks time
diffeomorphisms and physical outputs depend nontrivially on the embedding of the canonical hypersurface into
the space-time manifold. On the other hand, there exists a true space-time connection, transforming properly
under all diffeomorphisms. We argue that it is this connection that should be used in the definition of loop
variables. However, we are still not able to complete the quantization program for this connection giving a full
solution of the second class constraints at the Hilbert space level. Nevertheless, we show how a canonical
quantization of the Dirac brackets at a finite number of points leads to the kinematical setting of the Barrett-
Crane model, with simple spin networks and an area spectrum given by theSL(2,C) Casimir operator.
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I. INTRODUCTION

Loop quantum gravity as developed today seems to b
promising approach for quantizing general relativity~for re-
views see@1,2#!. Although it gives some interesting result
such as discrete quanta of area and volume@3,4# and a deri-
vation of the black hole entropy@5#, several problems appea
First of all, it is based on the use of a space triad and
SU(2) connection, whereSU(2) is the gauge group fo
three-dimensional space. This particular choice of variab
loses the explicit covariance of the theory and a space-t
geometrical interpretation@6#. Moreover, there exists an ad
ditional puzzle: a free parameter in the theory, the so-ca
Immirzi parameter@7#. This parameter comes out of a c
nonical transformation but creates a full one-parameter f
ily of quantizations which are not unitarily equivalent@8#. It
was an open problem to understand the physical relevanc
the Immirzi parameter and how it effectively influences t
dynamics of the quantum theory. It turned out that this pr
lem can be studied from a new point of view in the fram
work of an explicitly covariant formalism@9#. The obtained
results suggest that the Immirzi parameter should disap
from the physical output of a path integral formulation
quantum gravity@9# as well as of its canonical quantizatio
based on this covariant formulation@10,11#. The goal of the
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present paper is to explain how one can derive theSU(2)
Loop quantum gravity~LQG! from the covariant canonica
quantization. This will allow us to tackle the issues of LQ
from this different point of view, and discuss the drawbac
of LQG.

Loop quantum gravity with the Immirzi parameter wa
shown to come from a canonical analysis of the generali
Hilbert-Palatini action in the so-called time gauge@12,13#.
An explicitly covariant canonical analysis of this action w
carried out in@9# and led to a proposal for its quantization
@11,14#. Although in @14# a Hilbert space for the quantum
theory has been proposed, it is not clear whether it is
right solution or not. A rigorous construction of such a spa
of quantum states remains to be done and there are still m
questions to be answered within this new formalism. In a
dition to the issues related to the noncompactness of
Lorentz gauge group@15#, the situation is complicated by th
nontrivial canonical structure of the theory. Indeed, since
covariant analysis was done through introducing the Di
brackets taking into account the second class constra
~also called simplicity constraints!, the commutation rela-
tions of the basic variables have changed. In particular,
connection becomes noncommutative which is a major
stacle to understanding the geometrical meaning of
theory and to building an appropriate Hilbert space.

Nevertheless, a strong result of the formalism is that th
exists a unique Lorentz connection in the theory which tra
forms properly under space-time diffeomorphisms. It is t
true space-time connection. Still, its geometrical interpre
tion in quantum theory is not straightforward since it is no
commutative. However, it is possible to write observab
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S. ALEXANDROV AND E. LIVINE PHYSICAL REVIEW D 67, 044009 ~2003!
and a Hilbert space of quantum geometry states using fu
tionals of the connection and of the foliation. This brings t
theory close in its formulation to the spin foam setting@16#.
Moreover, a nice feature of the resulting theory is that
physical output of the theory does not depend on the Imm
parameter. This quantization seems the most natural sin
respects all the classical symmetry and does not break
space-time diffeomorphism invariance.

Now, is there a place for the usualSU(2) loop quantum
gravity in the framework of the covariant theory? The a
swer is affirmative. It turns out there exists a natural cova
ant generalization of the Ashtekar-Barbero connection
makes it possible to derive LQG starting from the covari
quantization. Moreover, this connection is the only comm
tative one. This last feature simplifies a lot the quantizat
process. It yields exactly the same Hilbert space asSU(2)
LQG and reproduces the area spectrum of theSU(2) ap-
proach. This derivation establishes an exact correspond
between the covariant formalism and the usual one.
study of this case is interesting because it can be a guide
the ‘‘correct’’ diffeomorphism-preserving quantization sin
it is possible to solve explicitly the second class constra
at the quantum level using this generalized Ashtekar-Barb
connection. It also helps to look at the issues ofSU(2) LQG
from a new point of view since the problems encountered
this new ~covariant! approach are unavoidable inSU(2)
LQG. In particular, the scalar~Hamiltonian! constraint is
hard to understand and theSU(2) theory definitively breaks
the space-time diffeomorphism invariance, as it was fores
in @6#.

The paper is organized as follows. We begin in Sec. II
considering the basic features of possible ways to const
the canonical formulation of general relativity with th
Lorentz gauge group. We introduce several objects, gene
izing the Ashtekar-Barbero connection in different way
which are shown to be all related to each other. Then
introduce the covariant Ashtekar-Barbero connection
give a precise account of its properties. Using this conn
tion, we quantize the theory following the usual techniqu
of the loop approach. Namely, we construct the correspo
ing Hilbert space and show that, in a particular gauge
reproduces the Hilbert space of theSU(2) approach. In other
words, we deriveSU(2) LQG from covariant loop gravity a
the level of the Hilbert space. Then we explain differe
drawbacks of theSU(2) formalism; in particular, we poin
out that it breaks the diffeomorphism invariance at the qu
tum level. We argue that a correct quantization should
based on the covariant space-time connection describe
Sec. III. We also discuss the link of the canonical formali
with the spin foam approach. Spin foams should arise
models of the space-time resulting from LQG@17#. The cur-
rent model, the Barrett-Crane model, is shown to be clos
related to the present covariant approach and to share
same kinematical Hilbert space of quantum states. In Sec
we comment on the role of the Immirzi parameter in lo
quantum gravity. Section V is devoted to conclusions a
discussions.
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II. DERIVING THE SU„2… FORMALISM
FROM THE COVARIANT ONE

A. Canonical formulations and the Ashtekar-Barbero
connection

The action for general relativity that we study here is t
generalized Hilbert-Palatini action:

S(b)5
1

2E «abgdea`eb`S Vgd1
1

b
!VgdD , ~1!

whereea (a is an internal Lorentz index! is the tetrad field,
Vab is the curvature of the spin-connectionvab and the star
operator is the Hodge operator defined as!Vab

5 1
2 «ab

gdVgd. Under the restriction that the tetrade is not
degenerate, the equations of motion of this action lead to
usual Einstein equations and thus do not modify general r
tivity. Nevertheless, the addition of an extra term compa
to the original Palatini action leads to the introduction of
new coupling constantb. As was shown by Holst@12#, in the
so-calledtime gauge, this additional term leads to loop quan
tum gravity withb as the Immirzi parameter in the quantu
theory. Therefore, it was suggested thatb gives rise to a new
fundamental physical constant@8#.

A summary of the canonical analysis of the action~1!
without any gauge fixing can be found in Appendix A. The
are second class constraints in the theory. There are two m
ways to deal with such a system. We can either solve them
take them into account in the symplectic structure by mo
fying the Poisson bracket to the Dirac bracket.

The first alternative has been worked out by Barros e´
in @13#. After solving the second class constraints, the natu
configuration variables parametrizing the system are the fi
xa52eta/et0 @a being ansu(2) index andt the 0 space-
time index#, which is the space components of the time n
mal or internal time direction, and a generalization of t
Ashtekar-Barbero connection of LQG (i being a space in-
dex!:

Aia
(bar)5v i0a

(b)1v iab
(b)xb, ~2!

where we use the notationvab
(b)5vab21/b* vab . To show

the relation ofA(bar) with the Ashtekar-Barbero connection
one imposes the time gauge. In these variables, it is
scribed by the choicex50, which can be achieved by usin
the Gauss law constraints generating the internal Lore
boost transformations. In this gauge, one finds the ex
setup of LQG with the Immirzi parameterb, reproducing
Holst’s result@12#. In particular,bA(bar) coincides with the
usual Ashtekar-Barbero connection, when expressingv i

ab

through the triad by means of~a half of! the Gauss con-
straints.

The disadvantage of this formalism is that it breaks
covariance of the theory when solving explicitly the seco
class constraints. As a result, it becomes rather complic
and awkward for making calculations. To simplify the calc
lations, one imposes the time gauge, which breaks the b
part of the Lorentz symmetry and returns us to the us
9-2
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SU(2) formulation. Thus, this way can add nothing new
our understanding. Besides, the canonical variableA(bar) is in
fact neither a Lorentz nor anSU(2) connection. Therefore, i
turns out to be inappropriate for loop quantization, especi
if one seeks a quantization preserving the Lorentz symme

The other alternative, used by one of the authors, is to
the second class constraints to induce a Dirac bracket@9#.
This allows us to leave the Lorentz covariance untouc
and thus to construct an explicitly covariant theory. Doi
so, we can keep anSL(2,C) connection as a canonical var
able. However, due to the presence of the Dirac bracket,
canonical variables do not play a preferable role anym
and there exists many other Lorentz connections which
be constructed from the canonical variables. This gives
to a quantization ambiguity in the loop approach, since e
of them can be used in the definition of loop variables. Th
following the philosophy of LQG, if we require that the are
operator be diagonal on the Wilson loops defined by the c
nection, we end up with a two-parameter family of possi
SL(2,C) connections. Following the methods of LQG, o
can derive the corresponding family of area spectra~A23!,
which now contain the Casimir operators ofSL(2,C)
@10,11#. The main technical difficulty of this method is th
resulting noncommutativity of theSL(2,C) connection. An
expression of$A,A%D computed in@14# can be found in
Appendix C.

From this covariant approach, it is easy to reconstruct
variables of theSU(2) approach. Indeed, a suitable proje
tion of the canonicalSL(2,C) connection Ai

X@X is an
sl(2,C) index# gives an equivalent of the Ashtekar-Barbe
connection:

Ai
(ash)X5I (Q)Y

X ~dZ
Y2bPZ

Y!Ai
Z . ~3!

Namely, as is shown in Appendix B, its three nonvanish
componentsAi

(ash)a coincide~up to b) with the quantity~2!
and thus coincide with the Ashtekar-Barbero connection
the time gaugex50. Further, they form a connection of th
‘‘boosted’’ subgroupSUx(2) , constructed explicitly in Ap-
pendix B, whenx is constant over the canonical hypersu
face. Moreover, despite the fact that the canonical connec
A is noncommutative,A(ash) commutes with itself~see Ap-
pendix C!. Thus, takingA(ash) as a canonical variable, in an
gaugex5const, the phase space has the same structure
the usualSU(2) approach.

This consideration allows us to reproduce the phase sp
of the SU(2) approach at the classical level. However,
simply amounts to breaking the covariance of the theory
translating theSU(2) connection variables into the new fo
malism: it is not equivalent to deriving theSU(2) setting
from a covariant quantum theory. The reason is thatA(ash)

can be considered as anSU(2) connection, whereas the co
variant loop quantization should be based on a Lorentz c
nection. Remarkably, there exists such a Lorentz connec
which is a natural generalization of the Ashtekar-Barbero
@11#. We describe its properties and the results, which it le
to, in the next paragraph.
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B. The covariant Ashtekar-Barbero connection

The canonical analysis done in preserving covariance
described in Appendix A, leads to a two-parameter family
Lorentz connections~A15! with such commutation relation
that the corresponding Wilson lines are eigenstates of
area operator. As it had been noted in@11#, if we choose the
parameters of the connection,a andb in Eq. ~A15!, to be as
follows:

a52b, b51, ~4!

we obtain a connection, which reproduces the results of
SU(2) approach. Indeed, it takes the form

A i
X5I (Q)Y

X ~dZ
Y2bPZ

Y!Ai
Z2bRY

XL i
Y~Q̃!

5Ai
(ash)X2bRY

XL i
Y~Q̃!, ~5!

whereL i
X(Q̃) is a function ofx only:1

L i
X~Q̃!5S 2

«abcxb] ixc

12x2
,

] ix
a

12x2D . ~6!

This particular connection possesses the following prop
ties:

For x constant on the hypersurface it coincides withA(ash)

from Eq.~3! and, in particular, for the ‘‘time gauge’’x50, it
coincides with the Ashtekar-BarberoSU(2) connection, thus
being its Lorentz generalization:

A i
X 5

x50
S 0,

1

2
«a

bcv i
bc2bv i

0aD . ~7!

As the Ashtekar-Barbero connection, it is commutati
~see Appendix C!

$A i
X ,A j

Y%D50. ~8!

Its commutator with the triad multiplet is@see Eq.~A18!#

$A i
X ,Q̃Y

j %D5bd i
j I (Q)Y

X , ~9!

whereI (Q) is the projector on theSU(2)x part of the Lorentz
group.

Due to this last relation, the area spectrum given by t
SL(2,C) connection coincides exactly with the one comi
from loop quantum gravity given by the Casimir operator
SU(2):

S;\bAC„su~2!…. ~10!

C. SU„2… Hilbert space from covariant quantization

Having in hand a Lorentz connection reproducing clas
cally the properties of theSU(2) Ashtekar-Barbero connec

1Let us note that the same expression arises naturally when
extends the Ashtekar-Barbero connection by technics of differen
geometry~see Appendix E!.
9-3
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S. ALEXANDROV AND E. LIVINE PHYSICAL REVIEW D 67, 044009 ~2003!
tion, we can ask if this relation is maintained at the quant
level. It turns out that choosing the connection~5! as a basic
variable, the covariant theory can be relatively easy qu
tized. In particular, the second class constraints can be p
erly imposed at the quantum level. Then, in a particu
gauge, we actually recover the usualSU(2) spin network
Hilbert space of LQG. Thus, we are able to derive theSU(2)
LQG from the quantized covariant formulation.

Having a Lorentz connection, the natural objects to c
sider are the holonomies or the Wilson lines

Ua@A#5P expS E
a
dxiA i

XTXD , ~11!

wherea is an oriented path andTX are theSL(2,C) genera-
tors. Taking their trace for a closed loopa in a given repre-
sentation ofSL(2,C), we obtain gauge invariant objects. W
usually look at the representationsR(n,r) from the principal
series of unitary irreducible representations ofSL(2,C) ~see
Appendix D for details!, since they are the ones entering t
Plancherel formula. Such observables can be generalize
an arbitrary oriented graph and give rise to spin netwo
@15#. However, this construction is not enough in our ca
because these functionals are not eigenvectors of the
operator and do not have a direct physical interpretat
Indeed, at a given pointx of intersection of the loop and
small surface whose area we are computing, we need to
compose the representationR(n,r) of SL(2,C) into represen-
tationsVx(x)

j of the subgroupSUx(x)(2) , which leaves the
vectorx(x) invariant. According to Eq.~10!, each subspace
Vj will contribute bAj ( j 11) and the overall area operato
will not be simple multiplication on theSL(2,C) Wilson
line.

In order to get an eigenvector, we need to select a part
lar subspaceVx(x)

j . Since this subspace depends on the fi
x, this leads us to consider gauge invariant functionals
both the connectionA and the time normal fieldx. Notice,
that it is consistent due to the relation~A21!. Gauge invari-
ance will then read

f ~A,x!5 f ~gA5gAg211g]g21, gx5g•x!. ~12!

Such invariant functions are in fact entirely given by t
functions f x0

(A)5 f (A,x5x0) taken forx constant on the

hypersurface equal tox0. The remaining gauge symmetry o
f x0

is only anSU(2) gauge symmetry and is compact. T

choice of section ‘‘x5x0’’ will be called the time gauge.
Following the ideas of loop quantum gravity where o

considers cylindrical functions of the Ashtekar-Barbero co
nection, we introduce cylindrical functionsf G(A,x) which
will be constructed on an oriented graphG. They will de-
pend only on the holonomiesU1 , . . . ,UE of A along the
edges ofG and on the valuesx1 , . . . ,xV of the fieldx at the
04400
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vertices ofG. The gauge invariance will then read2

f G~U1 , . . . ,UE ,x1 , . . . ,xV!5 f G~gt(e)Uegs(e)
21 ,gvxv!

with gvPSL~2,C!,

~13!

wheres(e)@ t(e)# is the source~target! vertex of edgee. One
can use the Haar measure on@SL(2,C)#E to introduce a~ki-
nematical! scalar product on the space ofL2 gauge invariant
functions:

^ f ug&5E
[SL(2,C)] E

dUef G~Ue ,xv!gG~Ue ,xv!. ~14!

This scalar product does not depend on the choice
(x1 , . . . ,xV) due to the Lorentz invariance. We denoteH0
the resulting Hilbert space. Let us emphasize that this w
not be the physical Hilbert space since it is likely that w
will need to modify the scalar product~14! to take into ac-
count the second class constraints. Nevertheless, exhibiti
basis ofH0 sheds light on the structure of the theory.

To construct it, we take the usualSL(2,C) spin networks,
and insert a projectorI (xv)

( j ) :R(n,r)→Vxv

j at each edge aroun

every vertexv. This procedure is equivalent to the change
the Wilson lines~11! by Wilson linesprojected at the ends

U e
( j s(e) , j t(e))@A,x#5I (x t(e))

( j t(e)) Ue@A#I (xs(e))
( j s(e)) . ~15!

The projector can be written as

I (x)
( j ) 5~2 j 11!E

SUx(2)
dhCj~h!D~h!, ~16!

whereCj is the character of theSU(2) representationj and
D(h) is the representation matrix of the group elementh. It
is important that the projector depends onx. Due to this
dependence it transforms homogeneously under Lore
boosts

I (gx)
( j )

5D~g!I (x)
( j ) D21~g!, ~17!

2In fact, thex field is a vector field (1,xa), with x2<1. One can
normalize the time normal so it is represented by a vector living
the~upper! hyperboloid of the Minkovski space, as in the spin foa
context@16#. This defines a vector field

x5S 1

A12x2
,

xa

A12x2D .

Then, the transformation law ofx is simply the usual Lorentz trans
formation in the Minkovski space. This is what is implicit in th
definition of the new cylindrical functions and the projected sp
networks. Moreover, using this new field can simplify expressio
of some functions ofx such as

I(P)X
Y 5Sda

bx0
22xax

b «a
bcx0xc

«a
bcx0xc 2~da

bxW22xax
b!
D.
9-4
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as well as the Wilson lines~15!. Therefore, the resulting
projected spin networksare still gauge invariant and belon
to our Hilbert spaceH0. Due to the projections, they ar
labeled by oneSL(2,C) representation (ne ,re) for each
edgee, two SU(2) representations for each edge (j s(e) , j t(e))
~for the source and target vertices ofe) andSU(2) intertwin-
ers at all vertices@16#. It is straightforward to check that two
projected spin networks with different labels are orthogo
with respect to the scalar product~14!. Their completeness is
also evident. Thus, the projected spin networks realize
orthonormal basis inH0.

Moreover, such states are eigenvectors of the area op
tors of surfaces intersecting the spin networks at vertices,
the area attached to one edge at a vertex is given by
SU(2) representationj attached to the corresponding end
the edge:

S;bAj ~ j 11!. ~18!

Interestingly, this does not depend at all on theSL(2,C)
representations. What are they here for? For the mom
they give the way the projected spin networks change un
SL(2,C) gauge transformations. We can say that theSU(2)
representations define the space geometry while theSL(2,C)
representations give its space-time embedding and de
how it gets modified under boosts. However, we have
finished the job yet and we still need to take into account
second class constraints.

The second class constraints now correspond to the
straints satisfied by the connection~5!:

I (P)Y
X A i

Y5PY
XL i

Y~Q̃!. ~19!

Through this relation,A depends explicitly onx, and this
reduces the number of independent components ofA from
18 to 9. The physical meaning of the constraints becom
obvious in the time gauge, when one rotatesx to x0 on all
the hypersurface. Then we haveI (P)A50. As a resultA is
reduced to itsSUx0

(2) part and becomes simply anSU(2)

connection. Computing the holonomies ofA, we get group
elements belonging to theSUx0

(2) subgroup. This has a
immediate consequence that the projected Wilson lines~15!
are nonvanishing only forj s(e)5 j t(e) and produce the usua
SU(2) Wilson lines:

U e
( j s(e) , j t(e))@A,x0#5d j s(e) j t(e)

i~Ue@A(ash)# !, ~20!

wherei denotes the embedding of anSU(2) group element
into a representationR(n,r) of SL(2,C). In fact, since the
result does not depend on theSL(2,C) representation, we
can omit this embedding provided it was chosen so thaj
>n. Otherwise the representationj does not enter the de
composition ofR(n,r) over the subgroup and the projectio
~15! vanishes. Therefore, it is enough to restrict oursel
from the very beginning to one arbitrary simple represen
tion of typeR(0,r) since each of them contains in its decom
position the entire spectrum ofSU(2) representations.
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Thus, from Eq.~20! we obtain that each edge is labele
by only oneSU(2) representationj e and associated with an
SU(2) group element. Then, the projected spin networ
evaluated in the time gauge, reduce to the usualSU(2) spin
networks, which are actually the naturalSU(2) gauge invari-
ant objects. The scalar product, which takes into account
reduction of the configuration space induced by the sec
class constraints, is not anymore the kinematical one bu

^ f ug&5E
[SUx0

(2)]E
dUef x0

~Ue!gx0
~Ue!. ~21!

We have actually recovered the full~kinematical! structure of
SU(2) loop quantum gravity at the level of the Hilbe
space.

Up to now, we have described how covariant functions
the connection and the time normal field, which are solutio
to the second class constraints, look like in the time gau
However, we would like to be more ambitious and descr
the physical Hilbert space out of the time gauge, i.e., ch
acterize the space of all gauge invariant functionals of
Lorentz connection andx, which are nontrivial only for the
solutions of the constraints. This will complete the impl
mentation of the second class constraints at the quan
level.

Let us have a closer look at the situation in the tim
gauge. One can note that for the Lorentz connection sati
ing Eq.~19! the insertion of the projector on a representati
j in the middle of an edge has a trivial effect: ifj s(e)5 j t(e)
5 j we get identity, otherwise the result vanishes. Therefo
we can infinitely refine each edge of the initial graph
adding an infinite number of bivalent vertices. Each of the
introduces the corresponding projector so that the refinem
is equivalent to consider the followingfully projected Wilson
lines @14#:

Ua
( j )@A,x#5 lim

N→`

PH )
n51

N

I (x
vn11

)
( j ) Uan

@A#I (x
vn

)
( j ) J , ~22!

wherea5øn51
N an is a partition of the line into small pieces

As we just showed, this procedure does not change the
jected spin network for the connectionA:

U a
( j , j )@A,x#5Ua

( j )@A,x#. ~23!

Now we prove that provided each edge is associated w
a simple representationR(0,r) of SL(2,C), such infinitely
refined projected spin networks depend only on the solu
of the second class constraints~19!. This statement follows
from the property of the Lorentz generators:

I (x)
( j ) FaI (x)

( j ) 5b ( j )I (x)
( j ) HaI (x)

( j ) , b ( j )5
nr

j ~ j 11!
, ~24!

whereHa are generators of theSUx(2) subgroup,Fa are the
corresponding boost generators. For the simple represe
tionsb ( j )50, which implies that the projected boost gene
tors then vanish. On the other hand, the infinite refinem
9-5
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~22! is equivalent to such projection in the exponent of W
son lines~see@14#!, since for sufficiently fine partition, we
can write

Ua
( j )@A,x#5PH)

n
I (x

vn11
)

( j ) S 11E
an

dxiAi
XTXD I (x

vn
)

( j ) J
~25!

and the projectors act directly on the connectionAi
XTX .

Therefore, in the time gauge it has an effect to chang
projected Wilson line~15! with j s(e)5 j t(e)5 j by anSU(2)
Wilson line in the representationj dependent only on
SUx0

(2) components of the connection. This is just the sa

result as the connectionA gives. To leave the time gauge it
enough to make a gauge transformation. Due to the Lore
invariance the infinitely refined projected spin networks s
give a solution of our problem representing a basis of
physical Hilbert space.

It is important to note that the constructed states
eigenvectors of all area operators@14#. This result is pro-
vided by the infinite refinement: due to this, each point of
edge can be considered as a vertex. Thus, our states po
all properties of theSU(2) spin networks and are their Lor
entz generalization.

D. Drawbacks of theSU„2… formalism

Thus the SU~2! LQG can be rigorously derived from th
quantization of the covariant formalism based on the conn
tion ~5!. This allows us to look at its status from the point
view of the covariant quantization. First of all, let us eluc
date which problems the SU~2! LQG possesses and wheth
they can be solved in the covariant formalism.

Apart from the problem of implementing the right Ham
tonian operator, there are two main issues. The first one is
Immirzi parameterb @7#. It appears in the classical theor
parametrizing different Ashtekar–Barbero connections of
SU(2) approach, which all are related by a canonical tra
formation. However, this parameter enters the area spect
Therefore, that canonical transformation cannot be imp
mented by a unitary operator and the resulting quantum th
ries are inequivalent. We discuss the physical relevanc
the Immirzi parameter in Sec. IV. Nevertheless, let us n
that there does not exist any canonical transformation, re
ing theories with different values ofb, within our covariant
formalism.

The next problem is the loss of the space-time interpre
tion for the SU~2! connection@6#. Although it has not been
taken into account seriously, it has deep consequence
particular, this fact is probably the reason why the quant
constraint algebra does not reproduce the classical one
contains an anomaly@18,19,17#.

It turns out that the covariant formalism is very conv
nient to address this second problem. In terms of transfor
tion properties it means that the Ashtekar-Barbero conn
tion cannot be extended in such a way that it transforms
true space-time connection under four-dimensional diff
morphisms. And indeed, it was shown that its Lorentz ext
sion ~5! does not tranform correctly under the time diffe
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morphisms @11#. As a result, the implementation of thi
symmetry in quantum theory in the framework of loop qua
tization fails. The reason is that loop operators are
mapped to the time translated loop operators after symm
transformation.3 Hence the quantum diffeomorphism algeb
contains an anomaly.

However, may it not be a problem but an unavoidab
property of quantum gravity? The answer depends
whether one can find a quantization preserving the full d
feomorphism invariance. If such a quantization exists,
course, it should be considered as more preferable, since
whole history of quantum theory tells that one should try
preserve classical symmetries as much as possible, e
cially, when they are as fundamental as the diffeomorph
invariance is believed to be.

To answer this question, let us recall that the covari
Ashtekar-Barbero connection~5! is only one among the two
parameter family of Lorentz connections found in the cov
riant approach. In principle, each of the connections could
used in loop quantization and each would lead to differ
physics~for example, different area spectra!. Thus, they rep-
resent a real quantization ambiguity of the loop approa
Could this ambiguity be resolved? Is it possible to find
criterion which allows us to choose the right connection?

The answer is affirmative and the corresponding criter
is actually simply that it transforms properly under the tim
diffeomorphisms. Indeed, it turns out that if we impose th
additional restriction, there is only one connection satisfy
it @11#, i.e., possessing a genuine space-time interpretat
This means that there is auniqueloop quantization preserv
ing all classical symmetries of general relativity. Moreov
for this choice of connection the area spectrum does not
pend on the Immirzi parameter. This gives an additional e
dence in favor of such quantization and shows that all
problems appearing in SU~2! LQG are likely to find their
solutions in the covariant approach.

III. QUANTIZATION-PRESERVING DIFFEOMORPHISM
INVARIANCE

A. Canonical structure and area spectrum

In this section we describe the unique space-time Lore
connection diagonalizing the area operator and the resu
quantum picture. This connection corresponds to the cho
a5b50 in Eq. ~A15! that leads to the following shifted
connection@10,11#:

A i
X5Ai

X1
1

2S 11
1

b2D RS
XI (Q)

ST RT
Zf ZW

Y P> i
WGY . ~26!

In this case the Dirac brackets can be given in the sim
form

3The situation is essentially the same as it would be if the conn
tion does not transform correctly under the space diffeomorphis
Then there would not be an easy way to realize this symmetry
the space of loop states.
9-6
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$P̃X
i ,P̃Y

j %D50, ~27!

$A i
X ,P̃Y

j %D5d i
j I (P)Y

X , ~28!

whereas the commutator of two connections is much m
complicated~see Appendix C! except from the relation

$I (P)R
21A,I (P)R

21A%D50. ~29!

The area operator following from the commutation relatio
~28! is expressed as a combination of two Casimir operat

S;\AC„su~2!…2C1„so~3,1!…. ~30!

As the connection~5!, A satisfies some constraints reduci
the number of its independent components. There are t
such constraints@10#. However, we can use additional amb
guity to add to any quantity a combination of the seco
class constraints~A14! in order to remove six more compo
nents, without modifying any commutation relations. T
most natural choice is

Ãi
X5A i

X2
1

2
RY

XS Q
> l

Y~Q
>

Q
>

! ik2
1

2
Q
> i

Y~Q
>

Q
>

! lkDc lk

5S 11
1

b2D I (P)Y
X ~R21!Z

YAi
Z1RY

XG i
Y , ~31!

where

G i
X5

1

2
f YZ

W I (Q)
XY Q

> i
Z] l Q̃W

l 1
1

2
f Y

ZW@~Q
>

Q
>

! i j I (Q)
XY 1Q

> j
XQ
> i

Y

2Q
> i

XQ
> j

Y#Q̃Z
l ] l Q̃W

j . ~32!

It is clear then that the connection~31! satisfies the con-
straints

I (Q)Y
X Ãi

Y5G i
X~Q̃!. ~33!

Let us note the most important differences in comparis
with the case of the Lorentz generalization of the Ashtek
Barbero connection described in Sec. II B.

The nontrivial part of the connection is contained in t
boost rather thanSU(2) components@see Eqs.~28! and
~33!#.

The nondynamical part of the connection given byG i
X(Q̃)

does not vanish in the time gauge. It gives actually a ge
alization of the Christoffel connection and it is defined by t
triad field.

The connection remains noncommutative.
The commutation relations~28! and the area spectrum

does not depend on the Immirzi parameter.
All these differences have deep consequences for qu

zation. First of all, the noncommutativity of the connecti
makes it harder to deal with the connection representa
04400
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and the loop functionals as configuration variables4 on both
the mathematical and the physical interpretation levels. N
ertheless, we can try to ignore this difficulty for a mome
with a hope to resolve it in the end of the way.5 Then we try
to carry out the same program which was realized in S
II C. And we do not encounter any problems in the first pa
The construction of the projected spin networks based
Wilson lines~15! does not refer to particular properties of th
used connection and it is still valid for any Lorentz conne
tion. In this way we end up with the same kinematical H
bert spaceH0.

However, we are not able to carry out the second par
the program and solve the second class constraints on
Hilbert space as we had done for the connectionA. Indeed,
we should somehow take into account at the quantum le
that we fix theSU(2) components of the connection. More
over, this fixed value should be determined by the triadẼ,
which is difficult to realize using only functionals of conne
tion. Maybe this problem can be solved in a triad repres
tation as done with the reality conditions for the self-du
~complex! Ashtekar formulation corresponding to the ca
b5 i @21#. This will be investigated in future work. Thus, th
problem of a solution for the second class constraints for
space-time connection at the level of Hilbert space loo
quite nontrivial and remains to be done.

Nevertheless, it is possible to sidestep this problem
impose the second class constraints at a finite numbe
points. Indeed, as explained in the next paragraph, it tu
out that projected spin networks projected onto the triv
SU(2) representationj 50 solve the second class constrain
at their vertices and give the same Hilbert space of quan
states as obtained from the spin foam approach.

B. Recovering the spin foam basis

Spin foam models are the space-time models correspo
ing to the evolving spin networks from LQG. Up to now
there has been lacking an explicit link between the exist
spin foam models, which are based onSL(2,C), and the
canonical framework, which is based on theSU(2) symme-
try group. The present covariant canonical framework bui
a bridge between these two pictures and this may help
build a consistent quantum space-time picture.

The most promising spin foam model for both Euclide
and Lorentzian gravity is the Barrett-Crane model@22,23#.
Its construction relies on methods from geometrical qua
zation @22,24#, but can also be related to the generaliz

4In fact, the loop functionals can still be good configuration va
ables even at the presence of the noncommutativity. An examp
such a situation can be found in quantization of the Chern-Sim
theory@20#. However, the noncommutativity in our case is differe
and much more complicated than the one appearing in the ana
of that theory. Nevertheless, the possibility of applying the ideas
@20# to the present problem should be investigated in a future wo

5An example of such a sitation, when we end up with commu
tive spin networks, can be found in@14#. Another way would be to
look for a triad representation.
9-7
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S. ALEXANDROV AND E. LIVINE PHYSICAL REVIEW D 67, 044009 ~2003!
Palatini action~with the Immirzi parameter! through a gen-
eralized constrained BF theory@25–27#. From the point of
view of canonical quantization, it can be interpreted as qu
tizing the system without imposing the second class c
straints and imposing them only afterwards at the quan
level. They can then be translated into the so-called simp
ity constraints restricting the usedSL(2,C) representations
to simple ones, which have a vanishing quadratic Casi
operator@28,26,27#.

More precisely, when carrying out the canonical analy
@9#, we get second class constraints of two typesf i j

5PXYQ̃X
i Q̃Y

j ~A13! and c i j @see~A14! for an explicit ex-
pression#. These constraints give rise to Dirac brackets. No
an interesting property of the Dirac brackets is that it is eq
to the initial Poisson brackets when both the conside
quantities commute with only thef i j constraints:

$K,f%5$L,f%50⇒$K,L%D5$K,L%. ~34!

This leads us to think that considering only quantities t
commute with thef constraints allows us to ignore thec
constraints. The advantage of such a viewpoint is that thf
constraints seem much easier to implement than thec con-
straints. Moreover, it coincides exactly with the simplici
constraint used in spin foam models. More precisely, let
consider a spin network based on the initialSL(2,C) con-
nection A and pick a point on a given link of the graph
Imposing that it commutes withf leads to an equation o
the Casimir operators of the representation living on the c
sen link:

2

b
C1„SL~2,C!…5S 12

1

b2D C2„SL~2,C!…, ~35!

where C15gXYTXTY and C25PXYTXTY are the two Ca-
simir operators ofSO(3,1). This equation is exactly th
same as the one arising in the construction of spin fo
models from the generalized Palatini action@26#. Within the
spin foam context, it was argued that such an equatio
meaningless and it turned out that there exists an ambig
in the quantization procedure which allows us to rotate
constraint to the usual simplicity oneC250 @27#. This am-
biguity is to be compared to the two-parameter ambigu
A(a,b) in the choice of aSL(2,C) connection in the cova
riant canonical frame~A15!: does taking full account of the
second class constraints through the Dirac brackets
choosing the space-time connectionA5A(0,0) cancel the
rotation introduced byb and lead to the same result obtain
for spin foams?

The answer to this question is the affirmative. Indeed,
using the Dirac brackets obtained with the full second cl
constraints and the space-time connection described p
ously, we are able to quantize the theory and solve the
ond class constraints~at a finite number of points! and we
obtain the exact same Hilbert space of quantum states a
Barrett-Crane model. This link, which we explicitate belo
is a much stronger statement that the simpler one consis
of noticing ~as above! that thef constraints looks like the
simplicity constraints.
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To start with, let us look at the caseb→`. This corre-
sponds to the usual Palatini action without the extra te
introduced by the Immirzi parameter, and we have the f
lowing Poisson bracket relations:

$I (P)A,I (P)A%D50,

$P̃,P̃%D50,

$A i
X ,P̃Y

j %D5d i
j I (P)Y

X . ~36!

We would like to ignoreI (Q)A ~which does not come in the
commutation relation with theP field, and could be com-
pletely constructed as an operator from theP operator at the
quantum level! and construct functionals depending only o
I (P)A. To this purpose, we consider simple spin networ
which are thej 50 case of the projected spin networks i
troduced in II C@16#. We choose a fixed~oriented! graph,
whose edges we label withSL(2,C) representations (ne ,re).
We construct the holonomiesUe of the connectionA along
these edges. We consider their trace on theSU(2) invariant
subspace of the edge representation. This is thej 50 sub-
space, and its existence selects out the simple represent
(ne50,re) which we will note simply asre . Finally, the
simple spin network functionals are

s$re%~Ue!5)
e

^rexs(e) j 50uUeurex t(e) j 50&, ~37!

where xv is the value of the fieldx at the vertexv and
urxv j 50& is the vector in ther representation which is in
variant underSU(2)xv

. These are cylindrical functionals o

the connectionA and depend only onI (P)A at the vertices.
Therefore, the Poisson brackets of two such function
whose graphs intersect only at some common vertices v
ishes. This is understandable within the spin foam cont
where we have a complete discrete view of space-time. O
the vertices are~space-time! points, then an edge is a relatio
between two points and is not considered as a continu
line of points. Indeed only at the vertices, we do know t
time normal. From this point of view, considering two simp
spin networks, if their graphs intersect, then the intersec
point is to be defined, and so it should be a vertex of the t
graphs. Thus, either it is already a common vertex, or
should refine the graph~add a bivalent vertex in the middl
of the edges! so that it becomes one. Moreover, we can co
pute the action of the area operator of a surface intersec
the graph at the end of an edge~at the vertex!. The simple
spin network is its eigenvector with eigenvalue:

S;A2C1~SL~2,C!!5Are
211. ~38!

This spectrum is always well defined, corresponds truly t
space-like surface and is, in fact, exactly the same area s
trum as obtained through the spin foam approach. To sum
we can choose an initial set of points on the manifold wh
will be the vertices of all the considered graphs, then
consider the simple spin networks based on such graphs
we obtain a representation of the initial commutation re
9-8
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SU(2) LOOP QUANTUM GRAVITY SEEN FROM . . . PHYSICAL REVIEW D67, 044009 ~2003!
tions and quantum structure which reproduces exactly
kinematical setting and the boundary states of the Barr
Crane model@16#. This representation takes into accou
only the commutation relations~36! at the chosen points. In
principle, we could build a delicate ladder of operators ta
ing into account the necessity of considering the commut
of two simple spin networks only when their graphs inters
at common points, then it would be possible to get a co
plete representation of the Poisson brackets~36!.

This shows that the second class constraints build a th
based on the cosetSO(3,1)/SO(3) or SL(2,C)/SU(2) just
as in the spin foam scheme. This result opens the door
generalization to higher dimensions: it seems possible to
produce, within the canonical approach, the spin foam re
that simplicity conditions impose aSO(D)/SO(D21) coset
structure to the quantum theory@29#.

Now let us look at the general case withb arbitrary. The
Poisson algebra reads

$I (P)R
21A,I (P)R

21A%D50, ~39!

$P̃,P̃%D50, ~40!

$A i
X ,P̃Y

j %D5d i
j I (P)Y

X . ~41!

The situation is complicated by theR change of basis. And i
is not obvious how the above quantization procedure ge
alizes in this case. Indeed the commutation relations betw
A and P̃ invite us to consider the same functionals as pre
ously. Nevertheless, the commutation relationsA and itself
tell us that the operator forI (P)A will then not be trivial. The
solution to the problem is to use the~second class! constraint
I (Q)Y

X Ãi
Y5G i

X(Q̃).

First, we can changeA to Ã without modifying anything
in the Poisson brackets. Then, asI (Q)Ã commutes withP̃,
we get

$I (P)R
21Ã,P̃%D5H I (P)Ã2

1

b
PI (Q)Ã,P̃J

D

5I (P) .

~42!

Then, one has the same structure as previously repla
I (P)A of the caseb→` by I (P)R

21Ã. One considers simple
spin networks constructed with the connectionÃ. The op-

eratorP̂̃ is still the derivation with respect toÃ and its action
is the insertion of the generatorsT of SL(2,C) . The operator
I (Q)
ˆ Ã can be deduced as the Christofel symbolG(Q̃) con-

structed with theQ̂̃ operator. Then, we can choose the o

eratorI (P)R
21̂Ã to be the multiplication byI (P)Ã. This op-

erator commutes with itself as any multiplication, whic
realizes~39!. Moreover, the commutator of the multiplicatio

I (P)Ã3 with the derivation operatorP̂̃ gives the identity, so
that this choice of quantizaion realises the Dirac bracket~42!
and thus the bracket~41!. Therefore, we have a comple
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realization of the Dirac brackets of the connection and
triad. Finally, we can deduce the operator forI (P)Ã from the
operator forI (P)R

21Ã:

I (P)R
21̂Ã5I (P)

ˆ Ã2
1

b
PI (Q)
ˆ Ã⇒I (P)

ˆ Ã5I (P)Ã1
1

b
PG~ Q̂̃!.

~43!

This concludes the spin foam quantization in the canon
framework and shows that the Immirzi parameterb is not an
obstacle to the quantization as the modified simplicity co
dition ~35! had suggested.

IV. PHYSICAL RELEVANCE OF THE IMMIRZI
PARAMETER

From the very beginning we introduced the parameteb
in the theory. It was identified as the Immirzi parameter
SU(2) LQG through the canonical analysis in the tim
gauge@12#. At the classical level it does not change the equ
tions of motion and, therefore, it does not influence the
namics. Does it play any role at the quantum level? T
SU~2! LQG says it does. The main reason is that the phys
spectra of geometrical operators, like the area spectrum~10!,
depend on it. Besides, it comes in the Hamiltonian constr
and thus modifiesa priori the dynamics of the theory. As
result, the Immirzi parameter should become physical an
should be considered as a new fundamental constant@8#. It is
usually argued that it can be fixed by looking at the bla
hole entropy.

But we argued that the SU~2! approach is based on
wrong choice of the connection and there is another cho
which seems to be the only correct one. Does the Imm
parameter become physical in this second quantization?
results of Sec. III say it does not. The main reason is tha
does not appear in the commutation relations of the conn
tion and triad mutliplet~28!. It is this commutator from
which we derive the spectrum of area and other geometr
operators. Of course, the Immirzi parameter appears in
commutator of two connections~C1!, but only in the univer-
sal form in the prefactors. Therefore, even if this commuta
contributes to some physical results, it is very likely that t
Immirzi parameter will be cancelled.

One more evidence that the Immirzi parameter rema
unphysical is given by the path integral quantization. It w
shown that the formal path integral constructed for the g
eralized Hilbert-Palatini action does not depend onb @9#.
Note that the path integral does not refer to any choice
connection but relies only on the Becchi-Rouet-Stora-Tyu
~BRST! analysis based on the classical symmetry algeb
Similarly, the spin foam quantization, which can be und
stood as a discrete path integral, of the generalized Hilb
Palatini action was shown not to depend on the Immirzi
rameter@26,27#. These two results point to the nonrelevan
of the Immirzi parameter in the space-time dynamics.

All this allows us to conclude that the appearence of
Immirzi parameter in the results of the SU~2! LQG is a con-
sequence of the quantum anomaly in the four-dimensio
diffeomorphism invariance. Instead, once the quantizat
9-9
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S. ALEXANDROV AND E. LIVINE PHYSICAL REVIEW D 67, 044009 ~2003!
preserving this symmetry is chosen, it remains unphysica
it was at the classical level.

Moreover, the covariant formalism reveals that actua
there are two ambiguities in the theory: the choice ofb due
to the additional term in the generalized Palatini action, a
the choice of connection@the parameters (a,b)] which is
used in the definition of loop variables.~This is also true in
the spin foam context@26,27#, where we have an ambiguit
at the level of theBF action and an ambiguity when quan
tizing bivectors.! The first ambiguity is a classical one
whereas the latter is trully quantum. It is explicily seen fro
the commutation relations~A18! and the area spectrum
~A23! found for the arbitrary connection of the family~A15!.
They depend only on the perimetersa andb from the defi-
nition of the connection but not onb. The dependence on th
Immirzi parameter in theSU(2) case appears only after th
identification (a,b)5(2b,1) ~4!.6 In any case, this quantum
ambiguity is fixed by the requirement to retain the classi
symmetry.

V. CONCLUSIONS AND OUTLOOKS

In the present work we have derived the framework
SU(2) loop quantum gravity from the explicitly Lorentz co
variant formalism. It was done not only at the classical lev
but quantizing the covariant theory, so that we were able
reproduce the Hilbert space structure ofSU(2) LQG from
the Hilbert space of covariant quantization. This was p
sible due to the existance of a Lorentz generalization of
Ashtekar-Barbero connection. Choosing this connection
basic quantum variable, the quantization program can be
ily carried out. In particular, one can accomlish the m
important step: to implement the second class constrain
the Hilbert space level.

This derivation allows a new viewpoint on the dynami
of LQG. Indeed, the covariant approach makes easy to s
the space-time symmetries and whether or not they are
served through the quantization process. Because the co
ant Ashtekar-Barbero connection does not transform c
rectly under time diffeomorphisms, it is not a space-tim
connection. Therefore, there seems to be a preferred fr
defined by the time gauge and the theory seems to b
diffeomorphism invariance.

We have also underlined the existence of a true spa
time connection, the unique Lorentz connection which tra
forms properly under space-time diffeomorphisms. We
scribed its properties, how to quantize the theory with t
connection, and the problems which appear. In particular,

6In fact, we can obtain theSU(2) area spectrum even in the lim
b→`. In this limit the covariant formalism still exists and po
sesses the same (a,b) ambiguity in the choice of connection
Choosingb51, we get the spectrum~10! given by the Casimir
operator ofSU(2) with b replaced bya. The only difference of this
formulation from the previous one is that the connection rema
noncommutative. We need to have a finiteb to get commutativity.
From this point of view, the introduction ofb and the extra term in
the Palatini action appears like a regularization.
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suggested a quantization procedure which leads to the re
ing picture of quantum geometry states similar to one o
particular spin foam model—the Barrett-Crane model. T
hints toward an explicit link between the space-time form
ism given by spin foams and the canonical frame given
LQG and spin network states. Moreover, our analysis reve
that the right canonical theory for the Barrett-Crane mode
the presented covariant LQG and not theSU(2) LQG. One
may hope to better understand the geometry defined by
foams and find the right dynamics of the theory.

Therefore, it would be very interesting to study the imp
mentation of the Hamiltonian constraint within this covaria
theory, an issue which we will investigate in future wor
Nevertheless, this quantization procedure linking the cano
cal theory to the spin foam setting is based on solutions
finite number of points to the second class constraints, re
ing the ~space-like part of the! connection to the triad. It
should be investigated whether it would be possible to
pose them entirely, maybe using a triad representation
done in the self-dual complex Ashtekar formulation to de
with the reality conditions.

The covariant approach also opens the door to the st
of Lorentz boosts and related covariance issues in loop qu
tum gravity, as already discussed in@30#. Finally, the present
analysis should be generalized to higher dimensions an
should be possible to prove the same link at the kinemat
level between the canonical approach and the spin fo
model as described in@29#.
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APPENDIX A: LORENTZ COVARIANT CANONICAL
FORMULATION

In this appendix we review the covariant formalism d
veloped in@9#. It is a canonical formulation of general rela
tivity based on the generalized Hilbert-Palatini action~1!. We
use the following 311 decomposition of the fields

e05Ndt1xaEi
adxi , ea5Ei

adxi1Ei
aNidt,

Ẽa
i 5h1/2Ea

i , N> 5h21/2N, Ah5detEi
a . ~A1!

HereEa
i is the inverse ofEi

a . The fieldxa describes devia-
tion of the normal to the hypersurface$t50% from the time
direction. Let us change the lapse and shift variables as
lows:

Ni5N D
i 1Ẽa

i xaN> , N> 5N> 1E> i
axaN D

i ~A2!

and introduce the multiplets which play the role of canoni
variables: the connection multiplet,

Ai
X5S v i

0a ,
1

2
«a

bcv i
bcD , ~A3a!

the first triad multiplet,

s

9-10
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P̃X
i 5~Ẽa

i ,«a
bcẼb

i xc!, ~A3b!

the second triad multiplet,

Q̃X
i 5~2«a

bcẼb
i xc ,Ẽa

i !, ~A3c!

and the canonical triad multiplet,

P̃(b) X
i 5 P̃X

i 2
1

b
Q̃X

i . ~A3d!

All triad multiplets are related by numerical matrices

P̃X
i 5PX

YQ̃Y
i , P̃X

i 5
RX

Y

11
1

b2

P̃(b) Y
i , ~A4!

gXY5S 1 0

0 21D da
b , PXY5S 0 1

1 0D da
b ,

RXY5gXY2
1

b
PXY5S 1 2

1

b

2
1

b
21

D da
b . ~A5!

Also one can introduce theinverse triad multiplets P> i
X and

Q
> i

X andprojectors

I (P)X
Y [ P̃X

i P> i
Y5S da

b2xaxb

12x2

«a
bcxc

12x2

«a
bcxc

12x2
2

da
bx22xaxb

12x2

D , ~A6!

I (Q)X
Y [Q̃X

i Q
> i

Y5S 2
da

bx22xaxb

12x2
2

«a
bcxc

12x2

2
«a

bcxc

12x2

da
b2xaxb

12x2

D . ~A7!

These projectors are functions of the fieldx only and can be
considered, respectively, as projectors in the Lorentz alge
on the su(2) subalgebra defined byx and its orthogonal
boost part~see Appendix B for more details!.

The decomposed action reads

S(b)5E dtd3x~ P̃(b) X
i ] tAi

X1A0
XGX1N D

i Hi1N> H !,

~A8!

GX5] i P̃(b) X
i 1 f XY

Z Ai
YP̃(b) Z

i , ~A9!

Hi52 P̃(b) X
j Fi j

X , ~A10!
04400
ra

H52
1

2S 11
1

b2D P̃(b) X
i P̃(b) Y

j f Z
XYRW

Z Fi j
W , ~A11!

Fi j
X5] iAj

X2] jAi
X1 f YZ

X Ai
YAj

Z . ~A12!

The action ~A8! gives rise to ten first class constrain
GX , Hi , H and also two sets of second class constrain

f i j 5PXYQ̃X
i Q̃Y

j 50, ~A13!

c i j 52 f XYZQ̃X
l Q̃Y

$ j] l Q̃Z
i %22~Q̃Q̃! i j Q̃Z

l Al
Z12~Q̃Q̃! l $ i Q̃Z

j } Al
Z

50, ~A14!

where

~Q̃Q̃! i j 5gXYQ̃X
i Q̃Y

j ,

which lead to Dirac brackets. They change the commuta
relations of the canonical variables so that the connec
becomes noncommutative. Another consequence is tha
area operator is not diagonal in the basis of Wilson lin
defined with the connectionAi

X , since the bracket$Ai
X ,P̃Y

j %D

is not diagonal in spatial indices. The action of the area
erator on such a Wilson line depends on the details of e
bedding of the surface and line into three-dimensional sp
@10#.

However, one can redefine the connection in such a w
that the area operator would be diagonal on Wilson lin
defined with the new connection. It has been shown@11# that
there is a two-parameter family of such Lorentz connectio
i.e., transforming correctly under the Gauss and diffeom
phism constraints. They are written as

A i
X~a,b!5Ai

X1
1

2 F S 11
a

b DgXX82
1

b
~12b!PXX8G

3I (Q)X8
T RT

Y

11
1

b2

f YZ
W P> i

ZGW1~adX8
X

1bPX8
X

!

3@ I (Q)
X8WPWZAi

Z1L i
X8~Q̃!#, ~A15!

where we introduced

L i
X~Q̃!5gXX8PR

ZS I (Q)X8
R f YZ

W Q
> i

Y] l Q̃W
l

1
1

2
f YZ

W Q̃X8
k Q

> i
YQ̃W

l ]kQ> l
RD . ~A16!

Using the explicit expressions~A3a!–~A3d!, one can show
that actuallyL i

X(Q̃) depends only on the fieldx:
9-11
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L i
X~Q̃!52gXY

Q̃X
j E> j

a] ixa

12x2
5S 2

«abcxb] ixc

12x2
,

] ix
a

12x2D .

~A17!

The connections~A15! possess the following properties:

$A i
X~a,b!,P̃Y

j %D5d i
j@~12b!dX8

X
2aPX8

X
#I (P)Y

X8 ,
~A18!

$A i
X~a,b!,I (P)

YZ%D50, ~A19!

$$A i
X~a,b!,A j

Y~a,b!%D ,P̃Z
k%D50. ~A20!
r
-

th

04400
From ~A19! it follows that

$A i
X~a,b!,xa%D50. ~A21!

Note also that they can be represented as follows:

A i
X~a,b!5A i

X1~adX8
X

1bPX8
X

!@ I (Q)
X8WPWZA i

Z1L i
X8~Q̃!#,

~A22!

whereA i
X[A i

X(0,0) is the unique true space-time conne
tion diagonalizing the area operator@11#. More precisely, it is
the only connection from the family~A15!, which transforms
correctly under the time diffeomorphisms.

The resulting area spectrum for generic (a,b) is
S;\A@a21~12b!2#C„su~2!…2~12b!2C1„sl~2,C!…1a~12b!C2„sl~2,C!… ~A23!
o-

n

r-
tz

a
re
whereC15gXYTXTY andC25PXYTXTY are the Casimir op-
erators ofSL(2,C) andC5I (Q)

XY TXTY is the Casimir operato
of the SU(2) subgroup obtained from the canonically em
bedded one by a boost transformation with the parameterxa.

APPENDIX B: REDUCING SL„2,C… TO THE SUBGROUP
SUx„2…

Let us introduce mixed tensors:

qX
a5~«a

bcx
c,db

a!, pX
a5~db

a ,2«a
bcx

c!, ~B1!

qa
X5S 2

«a
bcxc

12x2
,
da

b2xaxb

12x2 D ,

pa
X5S da

b2xaxb

12x2
,
«a

bcxc

12x2 D . ~B2!

They relate the triad and the triad multiplets

Q̃X
i 5qX

aẼa
i , P̃X

i 5pX
aẼa

i , ~B3!

Q
> i

X5qa
XE> i

a , P> i
X5pa

XE> i
a ~B4!

and possess the following properties:

qX
apb

X5pX
aqb

X50, ~B5!

qX
aqb

X5pX
apb

X5db
a , ~B6!

qX
aqa

Y5I (Q)X
Y , pX

apa
Y5I (P)X

Y . ~B7!

One can say that the set of six-dimensional vectors (pa,qa)
describes a basis in the Lorentz algebra obtained from
standard one by a Lorentz boost with parameterx.
e

It is trivial to show that the quantity~3! satisfies
pX

aAi
(ash)X50. Then one can show that the remaining comp

nents of the connection coincide with the quantity~2!:

Ai
(ash)a[qX

aAi
(ash)X5bAi

(bar)a . ~B8!

Thus,Ai
(ash)X gives an embedding ofAi

(bar)a into the Lorentz
algebra.

To proceed further, we introduce the ‘‘boosted’’SU(2)
subgroup@let us call itSUx(2) # with generators

G a
(x)5qa

XGX . ~B9!

They formsu(2) algebra with the structure constantsf ab
c 5

2«abd$d
dc1@xdxc/(12x2)#%: $G a

(x) ,G b
(x)%D5 f ab

c G c
(x) .7 It

turns out that ifx5const, Ai
(ash)a transforms as a connectio

with respect to the transformations generated byG a
(x) :

$G (x)~n!,Ai
(ash)a%D5] in

a1 f bc
a nbAi

(ash)c . ~B10!

As a result, in this restricted situation,Ai
(ash)a is a connection

of the gauge groupSUx(2) and generalizes the Ashteka
Barbero connection. Similarly, the restriction of the Loren
covariant connectionA i

X ~5! to SUx(2) given by

A i
(ash)a5qX

aA i
X ~B11!

transforms according to Eq.~B10! sinceG a
(x) commute with

x.

7In the case of constantx, one can redefine the generators by
matrix constructed fromx to get the algebra with the usual structu
constants«ab

c.
9-12
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APPENDIX C: COMMUTATOR OF TWO CONNECTIONS

The commutator of the space-time connectionA i
a with

itself can be calculated and is given by a horrible express
@14#:

H E d3x f~x!A i
X~x!,E d3yg~y!A j

Y~y!J
D

5
1

2S 11
1

b2D RS
XRT

YE d3z@~Ki j
ST,lg] l f 2K ji

TS,l f ] lg!

1 f g~Li j
ST2L ji

TS!#, ~C1!

where

Ki j
ST,l5PSS8 f S8

PQ$Q̃P
l @~Q

>
Q
>

! i j I (Q)Q
T 1Q

> i
TQ
> j

Q2Q
> j

TQ
> i

Q#

1d i
l I (Q)Q

T Q
> j

P%,

Li j
ST5PS8

S f Z
PQ@Q

> j
S8Q
> n

TQ
> i

Z1~Q
>

Q
>

! inQ
> j

S8I (Q)
TZ1Q

> i
TQ
> n

S8Q
> j

Z

2Q
> i

TQ
> j

S8Q
> n

Z1~Q
>

Q
>

! i j Q> n
S8I (Q)

TZ2Q
> j

TQ
> n

S8Q
> i

Z#Q̃P
l ] l Q̃Q

n

1PS8
S f ZP

Q @Q
> n

TQ
> j

P1~Q
>

Q
>

! jnI (Q)
TP

2Q
> j

TQ
> n

P#I (Q)
ZS8] i Q̃Q

n 1PZ
Z8 f Z8

PQ
@~Q

>
Q
>

! inQ
> j

ZI (Q)
ST

2~Q
>

Q
>

! inQ
> j

TI (Q)
SZ2~Q

>
Q
>

! i j Q> n
TI (Q)

SZ#Q̃P
l ] l Q̃Q

n

1PS8
S f PQ

Z Q
> j

S8Q
> i

QI (Q)
TP] l Q̃Z

l

1 f PQ
Z Q

> i
PQ
> j

QI (Q)Z
TI (Q)

SWPW
W8] l Q̃W8

l . ~C2!

Nevertheless, using this expression one can obtain sev
important properties. First of all, note that from Eq.~C1! it is
straightforward to check the following fact:

I (P)S
X ~R21!Z

S$A i
Z ,A j

W%D~R21!W
T I (P)T

Y 50. ~C3!

Then, since the quantity~3! can be written as a similar pro
jection of the space-time connectionA i

a ,

Ai
(ash)X52bS 11

1

b2D PY
XI (P)T

Y ~R21!Z
TA i

Z , ~C4!

it commutes with itself. Moreover, from Eq.~A21! it follows
that anyA(a,b) commutes withx and, therefore, with the
function L(Q̃) ~A17!. This allows us to conclude that th
covariant generalization of the Ashtekar-Barbero connec
A given by Eq.~5! is also commuting.

Another property, which follows immediately from th
relation ~33!, is

I (Q)Z
X $A i

Z ,A j
W%DI (Q)W

Y 50. ~C5!
04400
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APPENDIX D: REPRESENTATIONS OF SL„2,C…

The generatorsTX form the sl(2,C) algebra with the
structure constantsf XY

Z :

@TX ,TY#5 f XY
Z TZ . ~D1!

Let us introduce the notationsTX5(Aa ,2Ba) and

H15 iB12B2 , H25 iB11B2 , H35 iB3 , ~D2!

F15 iA12A2 , F25 iA11A2 , F35 iA3 . ~D3!

These generators commute in the following way:

@H1 ,H3#52H1 , @H2 ,H3#5H2 , @H1 ,H2#52H3 ,

@H1 ,F1#5@H2 ,F2#5@H3 ,F3#50,

@H1 ,F3#52F1 , @H2 ,F3#5F2 ,

@H1 ,F2#52@H2 ,F1#52F3 , ~D4!

@F1 ,H3#52F1 , @F2 ,H3#5F2 ,

@F1 ,F3#5H1 , @F2 ,F3#52H2 ,

@F1 ,F2#522H3 .

An irreducible representation of the Lorentz group is char
terized by two numbers (n,m), wherenPN/2 andmPC. In
the spaceHn,m of this representation one can introduce
orthonormal basis

$j j ,m%, m52 j ,2 j 11, . . . ,j 21,j , l 5n,n11, . . .
~D5!

such that the generators introduced above act in the foll
ing way @31#:

H3j j ,m5mj j ,m,

H1j j ,m5A~ j 1m11!~ j 2m!j j ,m11 , ~D6!

H2j j ,m5A~ j 1m!~ j 2m11!j j ,m21 ,

F3j j ,m5g ( j )Aj 22m2j j 21,m1b ( j )mj j ,m

2g ( j 11)A~ j 11!22m2j j 11,m ,
~D7!

F1j j ,m5g ( j )A~ j 2m!~ j 2m21!j j 21,m11

1b ( j )A~ j 2m!~ j 1m11!j j ,m11

1g ( j 11)A~ j 1m11!~ j 1m12!j j 11,m11 ,

F2j j ,m52g ( j )A~ j 1m!~ j 1m21!j j 21,m21

1b ( j )A~ j 1m!~ j 2m11!j j ,m21

2g ( j 11)A~ j 2m11!~ j 2m12!j j 11,m21 ,
9-13
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where

b ( j )52
inm

j ~ j 11!
, g ( j )5

i

2 jA~ j 22n2!~ j 22m2!

S j 2
1

2D S j 1
1

2D . ~D8!

The unitary representations correspond to two cases:~1! the
principal series,

~n,m!5~n,ir!, nPN/2,rPR ~D9!

and ~2! the supplementary series,

~n,m!5~0,r!, uru,1, rPR. ~D10!

The principal series representations are the ones interve
in the Plancherel decomposition formula forL2 functions
overSL(2,C). Simple representations are the representati
of the principal series with the vanishing Casimir opera
C2(sl(2,C)) @22,23#. There are two types of such represe
tations: (n,0) and (0,ir). In both cases we haveb ( j )50 for
all j. However, the representations (0,ir) have the particu-
larity that they possess anSU(2) invariant vectorj0,0.

APPENDIX E: CREATING A LORENTZ CONNECTION
FROM AN SU„2… CONNECTION

Let us suppose that we have a hypersurface with
SU(2) connectiona. Now, we would like to extend the
SU(2) structure to aSL(2,C) one and the connectiona to a
SL(2,C) connectionA. For this purpose, we introduce on th
hypersurface a time normal fieldxPH15SL(2,C)/SU(2)
valued on the~upper part of the two-sheet! hyperboloid. We
choose a reference vectorx0 on the hyperboloid and defin
xPSL(2,C) rotating fromx0 to x. Let us define the isomor
phism

i x :su~2!→sux~2! ~E1!

and the projection

I x :sl~2,C!→sux~2!. ~E2!
-

m

at
aw

04400
ng

s
r
-

n

Then, we would like to define the Lorentz connection so t
I xA5 i xa. Let A5 i xa1b. Action of a gauge transformation
gPSL(2,C) is defined by splittingg into its SUx(2) part
acting with the initialSU(2) action ona and its pure boost
part acting on the fieldx. Good behavior ofA under gauge
transformation gives the following conditions onb:

;gPSUx~2!, gb5gbg211x~]x21!1g~]x!x21g21

~E3!

and

;g pure boost, gb5gbg211g~]g21!. ~E4!

A priori, there are many solutions to these equations. T
simplest solution isb5x(]x21). Thus, this procedure allow
us to create anSL(2,C) connection from anSU(2) one by
introducing the vector fieldx. It can be used to construct th
covariant generalization of the Ashtekar-Barbero connec
~5!. Indeed, one can start from theSU(2) loop gravity, with
a hypersurface provided with anSU(2) connectiona ~the
Ashtekar-Barbero connection!, and, following this proce-
dure, one can try to make the formalism explicitly covaria
First, we introduce a time normal fieldx ~which allows us to
go out of the time gauge! and then we constructA5 i xa
1x(]x21), which gives rise to anSL(2,C) structure with a
covariant connection on the canonical hypersurface. It tu
out that this result matches exactly what comes out of
direct covariant canonical analysis as described in Sec
Indeed, looking at Eq.~5!, i xa is Ai

(ash)X @anda is Ai
(ash)a as

in Eq. ~B8!# and b5x(]x21) is to be identified with the
function L(Q̃). However, it is easy to realize that this do
not exactly match Eq.~5! since the latter involves a rotatio
from L to RL. This can be explained from an ambiguity
our embedding procdure, more precisely in the definition
boosts: if the boosts are taken to beK1(1/b)J acting on
bothx anda, then it is straightforward to check that the rig
solution to the gauge transformation equations isb
5R(x]x21) and that we retrieve the correctR factor.
ct
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