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Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac
brackets arising from dealing with the second class constréisitsiplicity” constraints). Within this frame-
work, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections.
We show the existence of a Lorentz connection generalizing the Ashtekar-Barbero connection and we loop
guantize the theory showing that it leads to the u&id(2) loop quantum gravity and to the area spectrum
given by theSU(2) Casimir operator. This covariant point of view allows us to analyze closely the drawbacks
of the SU(2) formalism: the quantization based on tigeneralizeflAshtekar-Barbero connection breaks time
diffeomorphisms and physical outputs depend nontrivially on the embedding of the canonical hypersurface into
the space-time manifold. On the other hand, there exists a true space-time connection, transforming properly
under all diffeomorphisms. We argue that it is this connection that should be used in the definition of loop
variables. However, we are still not able to complete the quantization program for this connection giving a full
solution of the second class constraints at the Hilbert space level. Nevertheless, we show how a canonical
guantization of the Dirac brackets at a finite number of points leads to the kinematical setting of the Barrett-
Crane model, with simple spin networks and an area spectrum given [§L{%C) Casimir operator.
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[. INTRODUCTION present paper is to explain how one can derive $tu2)
Loop quantum gravitfLQG) from the covariant canonical

Loop quantum gravity as developed today seems to be quantization. This will allow us to tackle the issues of LQG
promising approach for quantizing general relativiyr re-  from this different point of view, and discuss the drawbacks
views sed1,2]). Although it gives some interesting results, of LQG.
such as discrete quanta of area and vol(i8)4] and a deri- Loop quantum gravity with the Immirzi parameter was
vation of the black hole entrof¥], several problems appear. shown to come from a canonical analysis of the generalized
First of all, it is based on the use of a space triad and amilbert-Palatini action in the so-called time gaue,13.
SU(2) connection, whereSU(2) is the gauge group for An explicitly covariant canonical analysis of this action was
three-dimensional space. This particular choice of variablesarried out in9] and led to a proposal for its quantization in
loses the explicit covariance of the theory and a space-timgl1,14]. Although in[14] a Hilbert space for the quantum
geometrical interpretatiof6]. Moreover, there exists an ad- theory has been proposed, it is not clear whether it is the
ditional puzzle: a free parameter in the theory, the so-calledight solution or not. A rigorous construction of such a space
Immirzi parametef7]. This parameter comes out of a ca- of quantum states remains to be done and there are still many
nonical transformation but creates a full one-parameter famguestions to be answered within this new formalism. In ad-
ily of quantizations which are not unitarily equivald®. It ~ dition to the issues related to the noncompactness of the
was an open problem to understand the physical relevance abrentz gauge groufl5], the situation is complicated by the
the Immirzi parameter and how it effectively influences thenontrivial canonical structure of the theory. Indeed, since the
dynamics of the quantum theory. It turned out that this prob-covariant analysis was done through introducing the Dirac
lem can be studied from a new point of view in the frame-brackets taking into account the second class constraints
work of an explicitly covariant formalismi9]. The obtained (also called simplicity constraintsthe commutation rela-
results suggest that the Immirzi parameter should disappe#ions of the basic variables have changed. In particular, the
from the physical output of a path integral formulation of connection becomes noncommutative which is a major ob-
guantum gravity{9] as well as of its canonical quantization stacle to understanding the geometrical meaning of the

based on this covariant formulati¢®0,11]. The goal of the theory and to building an appropriate Hilbert space.
Nevertheless, a strong result of the formalism is that there

exists a unique Lorentz connection in the theory which trans-
*Email address: alexand@spht.saclay.cea.fr. Also at V.A. Fockorms properly under space-time diffeomorphisms. It is the

Department of Theoretical Physics, St. Petersburg University, Rustfue space-time connection. Still, its geometrical interpreta-
sia. tion in quantum theory is not straightforward since it is non-
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and a Hilbert space of quantum geometry states using func- Il. DERIVING THE SU(2) FORMALISM
tionals of the connection and of the foliation. This brings the FROM THE COVARIANT ONE
theory close in its formulation to the spin foam sett{dg).
Moreover, a nice feature of the resulting theory is that the
physical output of the theory does not depend on the Immirzi _ . _
parameter. This quantization seems the most natural since it 11'€ action for general relativity that we study here is the
respects all the classical symmetry and does not break tr€neralized Hilbert-Palatini action:
space-time diffeomorphism invariance.

Now, is there a place for the usuglJ(2) loop quantum 1
gravity in the framework of the covariant theory? The an- S(B):§ f saﬁwe“/\eﬁ/\
swer is affirmative. It turns out there exists a natural covari-
ant generalization of the Ashtekar-Barbero connection thajyheree® (« is an internal Lorentz indéxs the tetrad field,
makes it possible to derive LQG starting from the covariant()# is the curvature of the spin-connectiat? and the star
quantization. Moreover, this connection is the only commu-operator is the Hodge operator defined as)*?
tative one. This last feature simplifies a lot the quantization= %gaﬁw\Qﬁ_ Under the restriction that the tetradis not
process. It yields exactly the same Hilbert spacesag2) degenerate, the equations of motion of this action lead to the
LQG and reproduces the area spectrum of $1d(2) ap- usual Einstein equations and thus do not modify general rela-
proach. This derivation establishes an exact correspondentiity. Nevertheless, the addition of an extra term compared
between the covariant formalism and the usual one. Th&o the original Palatini action leads to the introduction of a
study of this case is interesting because it can be a guide férew coupling constang. As was shown by Holgt12], in the
the “correct” diffeomorphism-preserving quantization since so-calledime gaugethis additional term leads to loop quan-
it is possible to solve explicitly the second class constraintdum gravity with 3 as the Immirzi parameter in the quantum
at the quantum level using this generalized Ashtekar-Barberf€ory. Therefore, it was suggested tjsagives rise to a new
connection. It also helps to look at the issuesef(2) LQG ~ fundamental physical constaf&].

from a new point of view since the problems encountered in A Summary of the canonical analysis of the actid
this new (covariani approach are unavoidable BU(2) without any gauge fixing can .be found in Appendix A. There_
LQG. In particular, the scalatHamiltonian constraint is are second class constraints in the theory. There are two main

hard to understand and tis8J(2) theory definitively breaks ways to de‘.”ll with such gsystem. we can either solve them or
. . A ; . take them into account in the symplectic structure by modi-
the space-time diffeomorphism invariance, as it was forese

: eﬂ/ing the Poisson bracket to the Dirac bracket.

in (6], . . o The first alternative has been worked out by Barros e Sa
The paper is organized as follows. We begin in Sec. Il by, 13]. after solving the second class constraints, the natural

considering the basic features of possible ways to construglyntiguration variables parametrizing the system are the field

the canonical formulation of general relativity with the Y?=—¢e'%/e' [a being ansu(2) index andt the O space-

Lorentz gauge group. We introduce several objects, generajime index, which is the space components of the time nor-

izing the Ashtekar-Barbero connection in different ways,mal or internal time direction, and a generalization of the

which are shown to be all related to each other. Then Weshtekar-Barbero connection of LQG being a space in-
introduce the covariant Ashtekar-Barbero connection andjex):

give a precise account of its properties. Using this connec-
tion, we quantize the theory following the usual techniques
of the loop approach. Namely, we construct the correspond-

ing Hilbert space and show that, in a particular gauge, ityhere we use the notatian(cfi}:waﬁ—llﬁ* 5. TO show
reproduces the Hilbert space of t8&(2) approach. In other  yhe rejation ofA®™ with the Ashtekar-Barbero connection,
words, we derivesU(2) LQG from covariant loop gravity at  gne imposes the time gauge. In these variables, it is de-
the level of the Hilbert space. Then we explain differentgcrined by the choicg =0, which can be achieved by using
drawbacks of thesU(2) formalism; in particular, we point the Gauss law constraints generating the internal Lorentz
out that it breaks the diffeomorphism invariance at the quanpoost transformations. In this gauge, one finds the exact
tum level. We argue that a correct quantization should b&etup of LQG with the Immirzi parametes, reproducing
based on the covariant space-time connection described olst's result[12)]. In particular, BA®") coincides with the
Sec. lll. We also discuss the link of the canonical formalismysual Ashtekar-Barbero connection, when expressifi

with the spin foam approach. Spin foams should arise aghrough the triad by means @ half o) the Gauss con-
models of the space-time resulting from LQG7]. The cur-  straints.

rent model, the Barrett-Crane model, is shown to be closely The disadvantage of this formalism is that it breaks the
related to the present covariant approach and to share tlwvariance of the theory when solving explicitly the second
same kinematical Hilbert space of quantum states. In Sec. I\¢lass constraints. As a result, it becomes rather complicated
we comment on the role of the Immirzi parameter in loopand awkward for making calculations. To simplify the calcu-
quantum gravity. Section V is devoted to conclusions andations, one imposes the time gauge, which breaks the boost
discussions. part of the Lorentz symmetry and returns us to the usual

A. Canonical formulations and the Ashtekar-Barbero
connection
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SU(2) formulation. Thus, this way can add nothing new to B. The covariant Ashtekar-Barbero connection

our understanding. Besides, the canonical variale is in _ The canonical analysis done in preserving covariance, as

fact neither a Lorentz nor @U(2) connection. Therefore, it qescribed in Appendix A, leads to a two-parameter family of

turns out to be inappropriate for loop quantization, especiallf grentz connectiongA15) with such commutation relations

if one seeks a quantization preserving the Lorentz symmetrypa¢ the corresponding Wilson lines are eigenstates of the
The other alternative, used by one of the authors, is to usg g operator. As it had been noted 1], if we choose the

thg second class constraints to induce a I_Dirac brajKet parameters of the connectiomandb in Eq. (A15), to be as
This allows us to leave the Lorentz covariance untouchegqows:

and thus to construct an explicitly covariant theory. Doing

so, we can keep a8L(2,C) connection as a canonical vari- a=—-pf8, b=1, (4)

able. However, due to the presence of the Dirac bracket, the

canonical variables do not p|ay a preferab|e role anymoréve obtain a connection, which reproduces the results of the

and there exists many other Lorentz connections which caf®U(2) approach. Indeed, it takes the form

be constructed from the canonical variables. This gives rise X x v Ve 7 Yy

to a quantization ambiguity in the loop approach, since each A=l qyv(0z= BlIZ) AT = BRYA{ (Q)

of them can be used in the definition of loop variables. Then, (ash) e

following the philosophy of LQG, if we require that the area =A ~BRYAT(Q), ®)

operator be diagonal on the Wilson loops defined by the con-

nection, we end up with a two-parameter family of possible"

SL(2,C) connections. Following the methods of LQG, one abe a

can derive the corresponding family of area spe¢fas3), AXD)=| - e XpdiXc dix _ ®)

which now contain the Casimir operators &L(2,C) ! 1-x2 "1—x2

[10,11]. The main technical difficulty of this method is the

resulting noncommutativity of th&L(2,C) connection. An  This particular connection possesses the following proper-

expression of{ A, A}p computed in[14] can be found in ties:

Appendix C. For y constant on the hypersurface it coincides wiffs"
From this covariant approach, it is easy to reconstruct thérom Eq.(3) and, in particular, for the “time gaugey=0, it

variables of theSU(2) approach. Indeed, a suitable projec- coincides with the Ashtekar-Barbe®J(2) connection, thus

tion of the canonicalSL(2,C) connection AX[X is an being its Lorentz generalization:

sl(2,C) index| gives an equivalent of the Ashtekar-Barbero

hereA(Q) is a function ofy only:!

e 1
connection: AX = O,ESabchC_Bina ' @
x=0
AL = 176 (8Y — BITY) AL . (3) As the Ashtekar-Barbero connection, it is commutative
(see Appendix €
Namely, as is shown in Appendix B, its three nonvanishing {AiX,A,Y}D=0. (8

componentsA(®"™? coincide (up to B) with the quantity(2)

and thus coincide with the Ashtekar-Barbero connection in
the time gaugey=0. Further, they form a connection of the X i1 _ msitX
“boosted” subgroupSU, (2) , constructed explicitly in Ap- (AT, Qvio=B3dl{g)v, ©)

pendix B, wheny is constant over the canonu_:al hypers“?‘ wherel q, is the projector on th&U(2), part of the Lorentz
face. Moreover, despite the fact that the canonical connection oup X

. . (aSh) . . _
A Is noncommutativeA commutes with itsel{see Ap Due to this last relation, the area spectrum given by this

. . (ash) . . .
peelzdg C_)C-cr)zl;f tﬁle(mggse saZ:eCr?ar\??k:gaé;rineagtlfdcl?uraenzlss L(2,C) connection coincides exactly with the one coming
gaugex = ' P P dm loop quantum gravity given by the Casimir operator of

Its commutator with the triad multiplet {see Eq(A18)]

the usualSU(2) approach. SU(2):
This consideration allows us to reproduce the phase space '
of the SU(2) approach at the classical level. However, it S~ B\C(su(2)). (10)

simply amounts to breaking the covariance of the theory and
translating theSU(2) connection variables into the new for-
malism: it is not equivalent to deriving th8U(2) setting
from a covariant quantum theory. The reason is th&f" Having in hand a Lorentz connection reproducing classi-
can be considered as &U(2) connection, whereas the co- cally the properties of th&U(2) Ashtekar-Barbero connec-
variant loop quantization should be based on a Lorentz con-

nection. Remarkably, there exists such a Lorentz connectiom———

which is a natural generalization of the Ashtekar-Barbero one ! et us note that the same expression arises naturally when one
[11]. We describe its properties and the results, which it leadsxtends the Ashtekar-Barbero connection by technics of differential
to, in the next paragraph. geometry(see Appendix E

C. SU(2) Hilbert space from covariant quantization
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tion, we can ask if this relation is maintained at the quantunvertices ofl". The gauge invariance will then réad
level. It turns out that choosing the connecti@) as a basic
variable, the covariant theory can be relatively easy quan- fr(Us, - Ue,x1, - - xv)=Fr(die)Uese) 9oXo)
tized: In particular, the second class constrair)ts can b(_e prop- with g, eSL2C),
erly imposed at the quantum level. Then, in a particular
gauge, we actually recover the usi®&U(2) spin network (13
Hilbert space of LQG. Thus, we are able to derive $d(2)
LQG from the quantized covariant formulation.

Having a Lorentz connection, the natural objects to con
sider are the holonomies or the Wilson lines

wheres(e)[t(e)] is the sourcdtarge} vertex of edgee. One
can use the Haar measure [@L(2,C) ] to introduce aki-
nematical scalar product on the spacelof gauge invariant

functions:
U[A]= dX ATy |, 11 e
olA] Pex"( J xn X) 1 flo= [ aUfUerorUex,). (1
[SL(2,C)]
This scalar product does not depend on the choice of
whereq is an oriented path antly are theSL(2,C) genera-  (x1, - . .,xy) due to the Lorentz invariance. We dendig

tors. Taking their trace for a closed loapin a given repre- the resulting Hilbert space. Let us emphasize that this will
sentation ofSL(2,C), we obtain gauge invariant objects. We not be the physical Hilbert space since it is likely that we
usually look at the representatioRS™”) from the principal ~ Will need to modify the scalar produ€t4) to take into ac-
series of unitary irreducible representationssaf(2,C) (see ~ count the second class constraints. Nevertheless, exhibiting a
Appendix D for detaily since they are the ones entering the Pasis of/{, sheds light on the structure of the theory.
Plancherel formula. Such observables can be generalized to TO construct it, we take the usu8L(2,C) spin networks,
an arbitrary oriented graph and give rise to spin network@nd insert a projectdrEJX)U) ;R -V at each edge around
[15]. However, this construction is not enough in our caseevery vertex. This procedure is equivalent to the change of
because these functionals are not eigenvectors of the aréae Wilson lines(11) by Wilson linesprojected at the ends
operator and do not have a direct physical interpretation. Geer ) () Garer)

Indeed, at a given point of intersection of the loop and a U TAXI=1 VAT - (15
small surface whose area we are computing, we need to de-

compose the representati®¥™*) of SL(2,C) into represen- The projector can be written as

tationsvi((x) of the subgrougSU, (,y(2) , which leaves the

vector x(x) invariant. According to Eq(10), each subspace |EJ))=(2j + 1)J' dhCi(h)D(h), (16)
V! will contribute 8j(j+1) and the overall area operator X SU\(2)
will not be simple multiplication on the&sL(2,C) Wilson

whereC! is the character of th8U(2) representation and

LP(h) is the representation matrix of the group elemienit

ds important that the projector depends gn Due to this
gependence it transforms homogeneously under Lorentz
00sts

line.

In order to get an eigenvector, we need to select a partic
lar subspac@/i((x). Since this subspace depends on the fiel
X, this leads us to consider gauge invariant functionals o
both the connectio and the time normal fielgy. Notice,
that it is consistent due to the relatigA21). Gauge invari- wa): D(g)l&))D—l(g), (17)
ance will then read

_ _ 2In fact, they field is a vector field (3?), with y?<1. One can
f(Ax)=f(*A=gAg *+gig . %=g-x). (12 normalize the time normal so it is represented by a vector living on
the (upped hyperboloid of the Minkovski space, as in the spin foam
context[16]. This defines a vector field
Such invariant functions are in fact entirely given by the
functionstO(A)=f(A,X=X0) taken for y constant on the 1 @
hypersurface equal tp,. The remaining gauge symmetry of X:(

. ; \llfxil \/1*)(2
on is only anSU(2) gauge symmetry and is compact. TheThen, the transformation law afis simply the usual Lorentz trans-

choice of section = x," will be called the time gauge. formation in the Minkovski space. This is what is implicit in the
Following the ideas of loop quantum gravity where onedefinition of the new cylindrical functions and the projected spin

considers cylindrical functions of the Ashtekar-Barbero con-networks. Moreover, using this new field can simplify expressions

nection, we introduce cylindrical functiorfs-(A,x) which  of some functions o such as

will be constructed on an oriented graph They will de- 2 ) N

pend only on the holonomied,, ... ,Ug of A along the Y :( X ™ XaX £a X0Xe )

edges of” and on the valueg,, . . . ,xy of the fieldy at the EXN 6% —(%—xx))
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as well as the Wilson line$l5). Therefore, the resulting Thus, from Eq.(20) we obtain that each edge is labeled

projected spin networkare still gauge invariant and belong by only oneSU(2) representatiof, and associated with an

to our Hilbert spaceH,. Due to the projections, they are SU(2) group element. Then, the projected spin networks,

labeled by oneSL(2,C) representation r,pe) for each evaluated in the time gauge, reduce to the uSl1#2) spin

edgee, two SU(2) representations for each eddegy) ,j(e)) networks, which are actually the natug&l(2) gauge invari-

(for the source and target verticesgdfandSU(2) intertwin-  ant objects. The scalar product, which takes into account the

ers at all vertice$l6]. It is straightforward to check that two reduction of the configuration space induced by the second

projected spin networks with different labels are orthogonaklass constraints, is not anymore the kinematical one but

with respect to the scalar produdi). Their completeness is

also evident. Thus, the projected spin networks realize an —_—

orthonormal basis irH,,. (flo)= [SU (2)]EdUEon(Ue)gXo(Ue)' (21)
Moreover, such states are eigenvectors of the area opera- Yo

tors of surfaces intersecting the spin networks at vertices, an\ﬂ/e have actually recovered the fikinematical structure of

the area attached to one edge at a vertex is given by tl“u:‘(r;-U 2) loop quantum aravity at the level of the Hilbert
SU(2) representatiopattached to the corresponding end of spa(ce). P g y

the edge: Up to now, we have described how covariant functions of
the connection and the time normal field, which are solutions
S~Bj(j+1). (18)  to the second class constraints, look like in the time gauge.
However, we would like to be more ambitious and describe
Interestingly, this does not depend at all on tB&(2,C) the physical Hilbert space out of the time gauge, i.e., char-
representations. What are they here for? For the momenacterize the space of all gauge invariant functionals of the
they give the way the projected spin networks change unddrorentz connection angt, which are nontrivial only for the
SL(2,C) gauge transformations. We can say that $t¢(2) solutions of the constraints. This will complete the imple-
representations define the space geometry whil&ti{e,C) mentation of the second class constraints at the quantum
representations give its space-time embedding and defifevel.
how it gets modified under boosts. However, we have not Let us have a closer look at the situation in the time
finished the job yet and we still need to take into account theyauge. One can note that for the Lorentz connection satisfy-

second class constraints. ing Eq.(19) the insertion of the projector on a representation
The second class constraints now correspond to the cof-in the middle of an edge has a trivial effect:jife) =)
straints satisfied by the connecti¢h): =] we get identity, otherwise the result vanishes. Therefore,

we can infinitely refine each edge of the initial graph by
adding an infinite number of bivalent vertices. Each of them
introduces the corresponding projector so that the refinement
is equivalent to consider the followirfglly projected Wilson
lines[14]:

1TyAY =TIFAT(Q). (19

Through this relationA depends explicitly ory, and this
reduces the number of independent componentd @fom

18 to 9. The physical meaning of the constraints becomes N
obvious in the time gauge, when one rotageto y, on all uira, y1=tim2{ [] |gi) U, [A]|EJ) e (22
the hypersurface. Then we hatg)A=0. As a resultA is “ Neow (N1 Mo’ 07 Wy

reduced to itsSU, (2) part and becomes simply &1(2)

connection. Computing the holonomies &f we get group ~Wherea= Un_iaqis a partition of the line into small pieces.
elements belonging to th8U, (2) subgroup. This has an As we just showed, this procedure does not change the pro-

immediate consequence that the projected Wilson ljags ~ J€cted spin network for the connectidn

are nonvanishing only fojse) =] and produce the usual G0 -
SU(2) Wilson lines: Uy [AX]I=UTA X (23

Now we prove that provided each edge is associated with

W(UJAE]), (200 a simple representatioR(°”) of SL(2,C), such infinitely

refined projected spin networks depend only on the solution
where . denotes the embedding of &U(2) group element of the second class constraint). This statement follows
into a representatioR(™?) of SL(2,C). In fact, since the from the property of the Lorentz generators:
result does not depend on ti8(2,C) representation, we
can omit this embedding provided it was chosen so jhat 1D EID =B IDHID | B = _nP L @4
=n. Otherwise the representatigrdoes not enter the de- Fail) PO 00 PO (+1)
composition ofR(™?) over the subgroup and the projection
(15 vanishes. Therefore, it is enough to restrict ourselvesvhereH, are generators of th@U, (2) subgroupF, are the
from the very beginning to one arbitrary simple representacorresponding boost generators. For the simple representa-
tion of typeR(®”) since each of them contains in its decom- tions B(;y=0, which implies that the projected boost genera-
position the entire spectrum &U(2) representations. tors then vanish. On the other hand, the infinite refinement

(ise) -It(e)) -5
ue [A, xol 515(9)11(9)
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(22) is equivalent to such projection in the exponent of Wil- morphisms[11]. As a result, the implementation of this
son lines(see[14]), since for sufficiently fine partition, we symmetry in quantum theory in the framework of loop quan-
can write tization fails. The reason is that loop operators are not
mapped to the time translated loop operators after symmetry
) ) transformatior?. Hence the quantum diffeomorphism algebra
1+f dXIAiXTX)IEQ )] contains an anomaly.
“n " (25) However, may it not be a problem but an unavoidable
property of quantum gravity? The answer depends on
whether one can find a quantization preserving the full dif-
rIﬂeomorphism invariance. If such a quantization exists, of
course, it should be considered as more preferable, since the
Wilson line in the representation dependent only on whole history O.f quantum thgory tells that one shogld try to
preserve classical symmetries as much as possible, espe-

SU, (2) components of the connection. This is just the sam ; ;
0 ] . ) _ cially, when they are as fundamental as the diffeomorphism
result as the connectioh gives. To leave the time gauge itis ,yariance is believed to be.

enough to make a gauge transformation. Due to the Lorentz 14 answer this question, let us recall that the covariant
invariance the infinitely refined projected ;pin netwqus still oshtekar-Barbero connectidd) is only one among the two-
give a solution of our problem representing a basis of theé,srameter family of Lorentz connections found in the cova-
physical Hilbert space. riant approach. In principle, each of the connections could be
It is important to note that the constructed states argseq in loop quantization and each would lead to different
eigenvectors of all area operatdrs4]. This result is pro- physics(for example, different area spedirahus, they rep-

vided by the infinitfa refinement: due to this, each point of anggent a real quantization ambiguity of the loop approach.
edge can be considered as a vertex. Thus, our states possess;id this ambiguity be resolved? Is it possible to find a

all properties of thesU(2) spin networks and are their Lor- cyjterion which allows us to choose the right connection?

US’[A,x]=P[H TH
n

Un+1

and the projectors act directly on the connectiAﬁTX.
Therefore, in the time gauge it has an effect to change
projected Wilson ling15) with jge=je)=] by anSU(2)

entz generalization. The answer is affirmative and the corresponding criterion
is actually simply that it transforms properly under the time
D. Drawbacks of the SU(2) formalism diffeomorphisms. Indeed, it turns out that if we impose this

additional restriction, there is only one connection satisfying

guantization of the covariant formalism based on the connedit_h[illgr’1 "er']' F:ﬁstsfﬁs'rngi a gienwlne spaci—tglzmﬁ |rr11terrpretr?/t_|on.
tion (5). This allows us to look at its status from the point of in Sall il‘; S'caall ;rieff q(L)er Oeonpeq;Iarela? '(t) l?/lgseeo o
view of the covariant quantization. First of all, let us eluci- ng ssical sy res ot gener VILy. reover,

date which problems the SB) LQG possesses and whether for this choice of _co_nnectlon the area §pectrum dqgs not d.e'
they can be solved in the covariant formalism. pend on the Immirzi parameter. This gives an additional evi-

Apart from the problem of implementing the right Hamil- dence in favor of such quantization and shows that all the

tonian operator, there are two main issues. The first one is tH%robl_ems_appearmg in 39 LQG are likely to find their

Immirzi parameters [7]. It appears in the classical theory solutions in the covariant approach.

parametrizing different Ashtekar—Barbero connections of the

SU(2) approach, which all are related by a canonical trans- lll. QUANTIZATION-PRESERVING DIFFEOMORPHISM

formation. However, this parameter enters the area spectrum. INVARIANCE

Therefore, that canonical transformation cannot be imple- A. Canonical structure and area spectrum

mented by a unitary operator and the resulting quantum theo- . _ . . .

ries are inequivalent. We discuss the physical relevance of In th'§ section we_d_escrlbe the unique space-time Lorer_1tz

the Immirzi parameter in Sec. IV. Nevertheless, let us noté:onnectlon_d|agonal|.zmg the area operator and the result!ng

that there does not exist any canonical transformation, relafuantum 'plcture. This connection corresponds. to the' choice

ing theories with different values 8, within our covariant &—P=0 in Eq. (A15) that leads to the following shifted

formalism. connection10,11:
The next problem is the loss of the space-time interpreta-

tion for the SUW2) connection[6]. Although it has not been AX= X+

taken into account seriously, it has deep consequences. In ' '

particular, this fact is probably the reason why the quantum 2|1+ —

constraint algebra does not reproduce the classical one and B

contains an anomalp18,19,17. In this case the Dirac brackets can be given in the simple
It turns out that the covariant formalism is very conve-form

nient to address this second problem. In terms of transforma-

tion properties it means that the Ashtekar-Barbero connec=———

tion cannot be extended in such a way that it transforms as a3the situation is essentially the same as it would be if the connec-

true space-time connection under four-dimensional diffeotion does not transform correctly under the space diffeomorphisms.

morphisms. And indeed, it was shown that its Lorentz extenThen there would not be an easy way to realize this symmetry on

sion (5) does not tranform correctly under the time diffeo- the space of loop states.

Thus the SW2) LQG can be rigorously derived from the

R3I ?QT) R YPYGy.  (26)
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{"Isix ,T:‘jY}D:O, (27) and the loop f_unctionals as configqration var_iat‘)lea both
the mathematical and the physical interpretation levels. Nev-
gy Cx ertheless, we can try to ignore this difficulty for a moment
{AT PYo=4dl{p)y, (28)  with a hope to resolve it in the end of the waJhen we try
to carry out the same program which was realized in Sec.
whereas the commutator of two connections is much morg C. And we do not encounter any problems in the first part.

complicated(see Appendix Cexcept from the relation The construction of the projected spin networks based on
Wilson lines(15) does not refer to particular properties of the
{I(mR Al (R~ TA} 5 =0. (29)  used connection and it is still valid for any Lorentz connec-

tion. In this way we end up with the same kinematical Hil-

The area operator following from the commutation relationsP€rt spaceH,.

(28) is expressed as a combination of two Casimir operators; However, we are not able to carry out the second part of
the program and solve the second class constraints on this

= — Hilbert space as we had done for the connectlorindeed,
8~ \C(su(2))~Cy(s0(3,). (30 we should somehow take into account at the quantum level

. e . . that we fix theSU(2) components of the connection. More-
As the connectiort5), A satisfies some constraints reducing o ) ~
the number of its independent components. There are thre®/€"; this fixed value should be determined by the tiad
such constraintgl0]. However, we can use additional ambi- which is difficult to realize using only functionals of connec-
guity to add to any quantity a combination of the second!ion- Maybe this problem can be solved in a triad represen-
class constraintéA14) in order to remove six more compo- tation as done with the reality conditions for the self-dual

nents, without modifying any commutation relations. The(complex Ashtekar formulation corresponding to the case
most natural choice is B=i [21]. This will be investigated in future work. Thus, the

problem of a solution for the second class constraints for the
space-time connection at the level of Hilbert space looks
Q(QQ) | ' quite nontrivial and remains to be done.
-0 Nevertheless, it is possible to sidestep this problem and
impose the second class constraints at a finite number of
|E<P)Y(R*1)\Z/Aiz+ Rﬁl“iY, (31 points. Indeed, as explained in the next paragraph, it turns
out that projected spin networks projected onto the trivial
SU(2) representatiop=0 solve the second class constraints
where at their vertices and give the same Hilbert space of quantum
states as obtained from the spin foam approach.

N| =

~ 1
- ax- 3R oliQQue-

1
1+E

1 1
=|
=52 QraQuT 5 9" 1(QQ);l{g + Q!
B. Recovering the spin foam basis

- Q/Q/1Q%aQly. (32 Spin foam models are the space-time models correspond-
ing to the evolving spin networks from LQG. Up to now,
It is clear then that the connectioi31) satisfies the con- there has been lacking an explicit link between the existing
straints spin foam models, which are based 8 (2,C), and the
canonical framework, which is based on tB&(2) symme-
oA =TH(Q). (33 try group. The present covariant canonical framework builds
a bridge between these two pictures and this may help to

Let us note the most important differences in comparisorPUIIOI a consistent quantum space-time picture.

with the case of the Lorentz generalization of the Ashtekar- The MOst promising spin foam model for both Euclidean
Barbero connection described in Sec. Il B. and Lorentzian gravity is the Barrett-Crane mofi22,23.

The nontrivial part of the connection is contained in theIts construction relies on methods from geometrical quanti-

boost rather thar8U(2) componentgsee Egs.(28) and zation [22,24], but can also be related to the generalized
(33)]. ~

The nondynamlcal pqrt of the conneghon gNenﬂj&(Q) “In fact, the loop functionals can still be good configuration vari-
does not vanish in the time gauge. It gives actually a gener.

L . ; > . ables even at the presence of the noncommutativity. An example of
alization of the Christoffel connection and it is defined by theg,cp, 5 situation can be found in quantization of the Chern-Simons

triad field. _ _ ) theory[20]. However, the noncommutativity in our case is different
The connection remains noncommutative. and much more complicated than the one appearing in the analysis
The commutation relation§28) and the area spectrum of that theory. Nevertheless, the possibility of applying the ideas of

does not depend on the Immirzi parameter. [20] to the present problem should be investigated in a future work.

All these differences have deep consequences for quanti->An example of such a sitation, when we end up with commuta-
zation. First of all, the noncommutativity of the connectiontive spin networks, can be found j4]. Another way would be to
makes it harder to deal with the connection representatiofok for a triad representation.
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Palatini action(with the Immirzi parameterthrough a gen- To start with, let us look at the cagg—o. This corre-
eralized constrained BF theof25-27. From the point of sponds to the usual Palatini action without the extra term
view of canonical quantization, it can be interpreted as quanintroduced by the Immirzi parameter, and we have the fol-
tizing the system without imposing the second class conlowing Poisson bracket relations:

straints and imposing them only afterwards at the quantum

level. They can then be translated into the so-called simplic- {1y Al (pyAlp=0,
ity constraints restricting the usesiL(2,C) representations o
to simple ones, which have a vanishing quadratic Casimir {P,P}p=0,
operator{28,26,21. ‘ '
More precisely, when carrying out the canonical analysis {AF Pllp= 5{|{P)Y_ (36)

[9], we get second class constraints of two typg$

=1‘[XYQ‘X(~Q{( (A13) and /' [see(A14) for an explicit ex- We Wouldllike to ig_norel_(Q)A (wh.ich does not come in the
pressioll. These constraints give rise to Dirac brackets. Nowcommutation relation with thé> field, and could be com-
an interesting property of the Dirac brackets is that it is equaPletely constructed as an operator from theperator at the
to the initial Poisson brackets when both the considereduantum levgland construct functionals depending only on

guantities commute with only the¢'! constraints: l(p)A. To this purpose, we consider simple spin networks,
which are thej=0 case of the projected spin networks in-
{K,p}={L,¢}=0={K,L}p={K,L}. (34  troduced in Il C[16]. We choose a fixedoriented graph,

) ] o N whose edges we label withiL(2,C) representationsn, pe).
This leads us to think that considering only quantities thaiye construct the holonomids, of the connection4 along
commute with theg constraints allows us to ignore the  these edges. We consider their trace onS$h#2) invariant
constraints. The advantage of such a viewpoint is thaithe supspace of the edge representation. This isjth® sub-
constraints seem much easier to implement thanjten-  gpace, and its existence selects out the simple representation

straints. Moreover, it coincides exactly with the simplicity (n,=0,,) which we will note simply asp,. Finally, the
constraint used in spin foam models. More precisely, let ugjmple spin network functionals are

consider a spin network based on the init&l(2,C) con-
nection A and pick a point on a given link of the graph.

Imposing that it commutes witl® leads to an equation on 5{99}(Ue):1;[ (Pexs(e)] =0|Ue|pexi()i =0),  (37)
the Casimir operators of the representation living on the cho-
sen link: where x, is the value of the fieldy at the vertexv and

|px,j=0) is the vector in the representation which is in-
C,(SL(2,C))= ( 1— iz) C,(SL(2,C)), (35) variant und(?|SU(2)Xv. These are cylindrical function_als of

the connectiond and depend only ohpy.A at the vertices.

Therefore, the Poisson brackets of two such functionals
where C;=g*"TxTy and C,=11"YTyTy are the two Ca- \hose graphs intersect only at some common vertices van-
simir operators ofSQ(3,1). This equation is exactly the jshes. This is understandable within the spin foam context,
same as the one arising in the construction of spin foamyhere we have a complete discrete view of space-time. Only
models from the generalized Palatini acti@6]. Within the  the vertices aréspace-timgpoints, then an edge is a relation
spin foam context, it was argued that such an equation igetween two points and is not considered as a continuous
meaningless and it turned out that there exists an ambiguityne of points. Indeed only at the vertices, we do know the
in the quantization procedure which allows us to rotate th&ime normal. From this point of view, considering two simple
constraint to the usual simplicity or@,=0 [27]. This am-  spin networks, if their graphs intersect, then the intersection
biguity is to be compared to the two-parameter ambiguitypoint is to be defined, and so it should be a vertex of the two
A(a,b) in the choice of &L(2,C) connection in the cova- graphs. Thus, either it is already a common vertex, or we
riant canonical framéA15): does taking full account of the should refine the graptaedd a bivalent vertex in the middle
second class constraints through the Dirac brackets angf the edgesso that it becomes one. Moreover, we can com-
choosing the space-time connectigt¥.4(0,0) cancel the pute the action of the area operator of a surface intersecting
rotation introduced by and lead to the same result obtainedthe graph at the end of an ed¢a the vertex The simple

2
B

for spin foams? spin network is its eigenvector with eigenvalue:
The answer to this question is the affirmative. Indeed, by
using the Dirac brackets obtained with the full second class S~VJ—C4(SL(2,C))= \/p§+ 1. (38

constraints and the space-time connection described previ-

ously, we are able to quantize the theory and solve the sed-his spectrum is always well defined, corresponds truly to a
ond class constraint@t a finite number of poinfsand we  space-like surface and is, in fact, exactly the same area spec-
obtain the exact same Hilbert space of quantum states as th@im as obtained through the spin foam approach. To sum up,
Barrett-Crane model. This link, which we explicitate below, we can choose an initial set of points on the manifold which
is a much stronger statement that the simpler one consistingill be the vertices of all the considered graphs, then we
of noticing (as abovg that the ¢ constraints looks like the consider the simple spin networks based on such graphs and
simplicity constraints. we obtain a representation of the initial commutation rela-
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tions and quantum structure which reproduces exactly theealization of the Dirac brackets of the connection and the
kinematical setting and the boundary states of the Barretigiad. Finally, we can deduce the operator fg;);l from the
Crane model[16]. This representation takes into accoumoperator forl .o R™1A:

only the commutation relation@6) at the chosen points. In P '
principle, we could build a delicate ladder of operators tak- _ ¢ 1 X
ing into account the necessity of considering the commutatol (p)R’1A= I (p)A_Enl @A=1(pyA=1(p) A+ EHF(Q).

of two simple spin networks only when their graphs intersect 43)
at common points, then it would be possible to get a com-
plete representation of the Poisson brack8e. This concludes the spin foam quantization in the canonical

This shows that the second class constraints build a theorﬁ/amework and shows that the Immirzi paramegeis not an

based on the cos&((3,1)/SO(3) or SL(2,C)/SU(2) just  gpgiacle to the quantization as the modified simplicity con-
as in the spin foam scheme. This result opens the door t0 gion (35) had suggested.

generalization to higher dimensions: it seems possible to re-
produce, within the canonical approach, the spin foam result

that simplicity conditions impose 8Q(D)/SO(D —1) coset IV. PHYSICAL RELEVANCE OF THE IMMIRZI

structure to the quantum theof29]. PARAMETER
Now let us look at the general case wigharbitrary. The From the very beginning we introduced the paramgter
Poisson algebra reads in the theory. It was identified as the Immirzi parameter of
SU(2) LQG through the canonical analysis in the time
{l R Al ;R A} =0, (39  gaugd12]. At the classical level it does not change the equa-

tions of motion and, therefore, it does not influence the dy-
namics. Does it play any role at the quantum level? The
SU(2) LQG says it does. The main reason is that the physical
' ' spectra of geometrical operators, like the area spectiidn

{AF Plo=4l10b)y- (41)  depend on it. Besides, it comes in the Hamiltonian constraint

and thus modifies priori the dynamics of the theory. As a

The situation is complicated by tiiechange of basis. And it ésult, the Immirzi parameter should become physical and it
is not obvious how the above quantization procedure genehould be considered as a new fundamental conganit is

alizes in this case. Indeed the commutation relations betweérrj'ﬁt‘a”y targued that it can be fixed by looking at the black
ole entropy.

A andP invite us to consider the same func_tlonals as previ- “p e argued that the SB) approach is based on a
ously. Nevertheless, the commutation relatichand itself . X . .
tell us that the operator fdgp).A will then not be trivial. The wrong choice of the connection and there is another chqlc_e
solution to the problem is to use tigecond clagsconstraint which seems to be the pnly. correct one. Does Fhe _Imm|r2|
NV parameter become physical in this second quantization? The
oA =17(Q)- - results of Sec. Ill say it does not. The main reason is that it
First, we can changel to A without modifying anything does not appear in the commutation relations of the connec-
in the Poisson brackets. Then, Ré)j‘l commutes withP, tion and triad mutliplet(28). It is this commutator from
we get which we derive the spectrum of area and other geometrical
operators. Of course, the Immirzi parameter appears in the
commutator of two connection€1), but only in the univer-
AP =lp. sal form in the prefactors. Therefore, even if this commutator
B D contributes to some physical results, it is very likely that the
(42)  Immirzi parameter will be cancelled.
One more evidence that the Immirzi parameter remains
Then, one has the same structure as previously replacingnphysical is given by the path integral quantization. It was
| (p)A of the caseB— o by |(P)R*1,~4_ One considers simple ShOWﬂ tha’g the forma_l path _integral constructed for the gen-
spin networks constructed with the connectidn The op- eralized Hilbert-Palatini action does not depend @rn9].

{P,P}pr=0, (40)

-~ ~ 1
{lmR™TAPIp=1{1(p) A~ —

s . o . ~ . i Note that the path integral does not refer to any choice of
eratorP is still the derivation with respect td and its action  onnection but relies only on the Becchi-Rouet-Stora-Tyutin
is the insertion of the generatofof SL(2,C) . The operator  (BRST) analysis based on the classical symmetry algebra.
l(@)A can be deduced as the Christofel symbgR) con-  Similarly, the spin foam quantization, which can be under-
structed with thef) operator. Then, we can choose the op_stood_ as a.discrete path integral, of the generalized _HiI_bert-
-~ o ~ i Palatini action was shown not to depend on the Immirzi pa-
eratorl ()R "A to be the multiplication by ). A. This 0p-  amete26,27]. These two results point to the nonrelevance
erator commutes with itself as any muItlpI|cat|o_n,. wh|ch of the Immirzi parameter in the space-time dynamics.
realizes(39). Moreover, the commutator of the multiplication | this allows us to conclude that the appearence of the

I(p)llx with the derivation operatd% gives the identity, so Immirzi parameter in the results of the &) LQG is a con-
that this choice of quantizaion realises the Dirac bra¢gk8t  sequence of the quantum anomaly in the four-dimensional
and thus the bracke#l). Therefore, we have a complete diffeomorphism invariance. Instead, once the quantization
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preserving this symmetry is chosen, it remains unphysical asuggested a quantization procedure which leads to the result-
it was at the classical level. ing picture of quantum geometry states similar to one of a
Moreover, the covariant formalism reveals that actuallyparticular spin foam model—the Barrett-Crane model. This
there are two ambiguities in the theory: the choiceBadue  hints toward an explicit link between the space-time formal-
to the additional term in the generalized Palatini action, andsm given by spin foams and the canonical frame given by
the choice of connectiofithe parametersa(b)] which is  LQG and spin network states. Moreover, our analysis reveals
used in the definition of loop variableglhis is also true in  that the right canonical theory for the Barrett-Crane model is
the spin foam context26,27], where we have an ambiguity the presented covariant LQG and not B&(2) LQG. One
at the level of theBF action and an ambiguity when quan- may hope to better understand the geometry defined by spin
tizing bivectors. The first ambiguity is a classical one, foams and find the right dynamics of the theory.
whereas the latter is trully quantum. It is explicily seen from  Therefore, it would be very interesting to study the imple-
the commutation relationgA18) and the area spectrum mentation of the Hamiltonian constraint within this covariant
(A23) found for the arbitrary connection of the familf15).  theory, an issue which we will investigate in future work.
They depend only on the perimeteasand b from the defi- Nevertheless, this quantization procedure linking the canoni-
nition of the connection but not gB. The dependence on the cal theory to the spin foam setting is based on solutions at a
Immirzi parameter in th&U(2) case appears only after the finite number of points to the second class constraints, relat-
identification @,b)=(—3,1) (4).° In any case, this quantum ing the (space-like part of theconnection to the triad. It
ambiguity is fixed by the requirement to retain the classicashould be investigated whether it would be possible to im-
symmetry. pose them entirely, maybe using a triad representation as
done in the self-dual complex Ashtekar formulation to deal
with the reality conditions.

V. CONCLUSIONS AND OUTLOOKS The covariant approach also opens the door to the study
of Lorentz boosts and related covariance issues in loop quan-
tum gravity, as already discussed[B0]. Finally, the present
) : , analysis should be generalized to higher dimensions and it
variant formalism. It was done not only at the classical levelgp, 14 be possible to prove the same link at the kinematical

but quantizing the covariant theory, so that we were able tQ,, .o hetween the canonical approach and the spin foam
reproduce the Hilbert space structuref(2) LQG from o401 as described if29]. I PP P

the Hilbert space of covariant quantization. This was pos-
sible due to the existance of a Lorentz generalization of the
Ashtekar-Barbero connection. Choosing this connection as a
basic quantum variable, the quantization program can be eas- The research of S.A. has been supported in part by Euro-
ily carried out. In particular, one can accomlish the mostpean network EUROGRID HPRN-CT-1999-00161.
important step: to implement the second class constraints at
the Hilbert space level. _ _ ~ APPENDIX A: LORENTZ COVARIANT CANONICAL

This derivation allows a new viewpoint on the dynamics FORMULATION
of LQG. Indeed, the covariant approach makes easy to study
the space-time symmetries and whether or not they are pre- In this appendix we review the covariant formalism de-
served through the quantization process. Because the covareloped in[9]. It is a canonical formulation of general rela-
ant Ashtekar-Barbero connection does not transform cortivity based on the generalized Hilbert-Palatini acti@h We
rectly under time diffeomorphisms, it is not a space-timeuse the following 31 decomposition of the fields
connection. Therefore, there seems to be a preferred frame

In the present work we have derived the framework of
SU(2) loop quantum gravity from the explicitly Lorentz co-

ACKNOWLEDGMENT

defined by the time gauge and the theory seems to break e®=Ndt+ xEfdx, e*=Efdx +EN'dt,
diffeomorphism invariance. . _
We have also underlined the existence of a true space- EL=h"2EL, N=h"YN, ‘h=detE?. (A1)

time connection, the unique Lorentz connection which trans- . _ a _ _ )
forms properly under space-time diffeomorphisms. We deHereE; is the inverse oE;". The field , describes devia-
scribed its properties, how to quantize the theory with thistion of the normal to the hypersurfa¢e=0} from the time

connection, and the problems which appear. In particular, wélirection. Let us change the lapse and shift variables as fol-
lows:

8In fact, we can obtain th8U(2) area spectrum even in the limit N'=Np+EXN, N=N+EfxNp (A2)
B—c0. In this limit the covariant formalism still exists and pos- . . . .
sesses the samen,p) ambiguity in the choice of connection. anq introduce the muIt_lpIets Whlch play the role of canonical
Choosingb=1, we get the spectrurfl0) given by the Casimir Vvariables: the connection multiplet,
operator ofSU(2) with B replaced bya. The only difference of this
formulation from the previous one is that the connection remains AX= ( 02 Esa w-bc) (A33)
noncommutative. We need to have a finteo get commutativity. : P be®i
From this point of view, the introduction @& and the extra term in
the Palatini action appears like a regularization. the first triad multiplet,
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P=(EL.eaEbxo), (A3b)
the second triad multiplet,
Qk=(—#aEbxe . Ea), (A30)
and the canonical triad multiplet,
- o~ 1.
Ps) x=Px— EQIX . (A3d)

All triad multiplets are related by numerical matrices

Y
BTGy, Pl B! A4
x=IxQy, Px RACAS (Ad)
1+E
gxy: 1 0 5b HXY: 01 5b
o -1/ 1 0%
1 1
1 B
RXY=gXY— EHXY: 1 2. (A5)
—-—— -1
B

Also one can introduce thiaverse triad multiplets_P and
Qi andprojectors

b b
5a_XaXb 8ac)(c
) 1—)(2 1—)(2
Y B Y_
I(P)X=P|XE)i_ bc 5b 2 b |’ (A6)
€a Xc _ aX T XaX
1—)(2 1—)(2
LB xax X
. 1—)(2 1—)(2
IZ{Q)XEQIXQiY: be b o |- (AT
_8a Xc Sa™ XaX
1—)(2 1—)(2

These projectors are functions of the figldnly and can be
considered, respectively, as projectors in the Lorentz algebra
on the su(2) subalgebra defined by and its orthogonal

boost part(see Appendix B for more detajls
The decomposed action reads

S(B):f dtd®x(Pg) kA + AYGx+ NpH +AH),

(A8)
Hi= =P kF1 . (A10)

PHYSICAL REVIEW 67, 044009 (2003

1

H Pe)xPip Y2 RGFL, (A11)
2 1+E

Fli=aA = aA+ I ATAT. (A12)

The action (A8) gives rise to ten first class constraints
Gx, H;, H and also two sets of second class constraints

¢ =11"YQ} QL =0, (A13)

=0, (A14)

where
(QQ)1=g*"Q%QY,

which lead to Dirac brackets. They change the commutation
relations of the canonical variables so that the connection
becomes noncommutative. Another consequence is that the
area operator is not diagonal in the basis of Wilson lines

defined with the connectio~, since the brackdiA*,PL}p

is not diagonal in spatial indices. The action of the area op-
erator on such a Wilson line depends on the details of em-
bedding of the surface and line into three-dimensional space
[10].

However, one can redefine the connection in such a way
that the area operator would be diagonal on Wilson lines
defined with the new connection. It has been shpudj that
there is a two-parameter family of such Lorentz connections,
i.e., transforming correctly under the Gauss and diffeomor-
phism constraints. They are written as

a
1+ —

’ l ’
ﬂ gXX _ —(1_b)HXX

B

1
Af(ab)=Af+3

RY
—1f¥VzE%gW+<a6§,+bH§f>

1+E

.
Xl gxr

X[ AR+ A X (Q)], (A15)

where we introduced
AX(®) = gXX/Hé( R F0T 00l
1 w Xk YA R
+§fvz x Qi QwdkQy™ |- (A16)

Using the explicit expression@3a)—(A3d), one can show
that actuallyA(Q) depends only on the fielg:
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¢ QXET e %dixe aix
1- 1-x* '1-x°

AYQ)=—g¥

(A17)

The connection$A15) possess the following properties:

{AX(a,b),Pl}p=8][(1~b) &y, —all} 11y,

(A18)
{A (a,b), I(P)}Dzoa (A19)
{{AX@b),AY(a,b)lp,Pslp=0. (A20)

PHYSICAL REVIEW D 67, 044009 (2003

From (A19) it follows that

{AX(a,b),x*}p=0. (A21)

Note also that they can be represented as follows:

Af(a,b)=Af+ (@d, +bIL [ Tz AF+ A (Q)],
(A22)

where A=_47(0,0) is the unique true space-time connec-
tion diagonalizing the area operafdd]. More precisely, it is
the only connection from the famiA15), which transforms
correctly under the time diffeomorphisms.

The resulting area spectrum for generiglf) is

S~7i\[a?+(1-b)?]C(su(2))—(1—b)?C(sl(2,C))+a(1—b)C,(sl(2,C))

whereC,;=g*YT,Ty andCz— I1*YT, Ty are the Casimir op-
erators ofSL(2,C) andC=

(A23)

It is ftrivial to show that the quantity(3) satisfies

13, TxTy is the Casimir operator p%A{*"=0. Then one can show that the remaining compo-

of the SU(2) subgroup obtained from the canonically em-nents of the connection coincide with the quanty:

bedded one by a boost transformation with the parameéter

APPENDIX B: REDUCING SL(2,C) TO THE SUBGROUP
SU(2)

Let us introduce mixed tensors:

9x=(e%cX% ),  PX=(85, —&%cx%),  (BL)
q§=( ~ Sabcxchg—xasz) |
1-x* 1-x
« [ S xax® £2"xc
Da:( 1- 2 ,1—)(2)' (B2)
They relate the triad and the triad multiplets
Qk=0xEa. Pk=piEa. (B3)
Q=dzE}, PI=pE’ (B4)
and possess the following properties:
0Py =P =0, (B5)
a%dn = PXPh = 55 (B6)
Q§q;:|2(o)x, Pxpa—l(P)x (B7)

One can say that the set of six-dimensional vectpfsq®)

Ai(ash)az q>a<Ai(aSh)X: BAi(bar)a . (BS)

Thus, A®"™ gives an embedding & ("? into the Lorentz
algebra.
To proceed further, we introduce the “booste8'U(2)
subgrouglet us call itSU,(2) ] with generators
G0=a30x. (BY)
They formsu(2) algebra with the structure constarfifg=
~eapd %+ LY'X (L x) ) (67,610 =150¢"." It
turns out that ify=const, A (@shR transforms as a connection
with respect to the transformations generatecgkg’j) :

{GW(n) AP o= gin?+ i nPAP. (B1O)

As a result, in this restricted situatioA{®**"® is a connection
of the gauge grousU,(2) and generalizes the Ashtekar-
Barbero connection. Similarly, the restriction of the Lorentz
covariant connectiod* (5) to SU,(2) given by

A= gRAT (BLY)

transforms according to E¢B10) sinceG{Y commute with
X-

’In the case of constant, one can redefine the generators by a

describes a basis in the Lorentz algebra obtained from th@atrix constructed frony to get the algebra with the usual structure

standard one by a Lorentz boost with paramgter

constants ,,,°.
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APPENDIX C: COMMUTATOR OF TWO CONNECTIONS APPENDIX D: REPRESENTATIONS OF SL(2,C)
The commutator of the space-time connectidif with The generatorsTy form the sl(2,C) algebra with the
itself can be calculated and is given by a horrible expressiostructure constants)z<Y
[14]:
[Tx. Ty]= Tz (D1)
[f d3xf(x)Aix(x),f d3yg(y)AjY(y)] Let us introduce the notatiorg= (A,,—B,) and
D

1 H+:iBl_Bz, H_:iBl+Bz, H3:iB3, (DZ)
=—1RXRYJ a3z (K] ™gaf—K[>'fa,0)

F+:iA1_A2, F_:iA1+A2, F3:iA3. (D3)
2 1+—2
B These generators commute in the following way:
ST_| TS
oL h0l (D [H, Hal=-H.. [H_Hgl=H_, [H. H_]=2H,,
where [H, F.]=[H_,F_]=[Hs,F;3]=0,
K™ =155 S QRL(QQ)ij o+ QT QP — Q] QP [H. Fsl=—F,, [H_,Fs=F_,
+ 611 (@0Qr } [H., F_]=—[H_,F.]=2F,, (D4)

Ly T=115, f59 Q7 QI Q7 +(QQ)inQ 110) ™+ QI Q5 Q7 [Fi Hsl=—F,, [F_,H3]=F_,
~QIQ7 Qi +(QQ); Q7 1)~ QIQ7 Qf1Qpa QL [F+ Fal=H., [F_Fs]=—H_,

IS 18 QMQ7 +(QQinl ™ [F. F ]=—2Hs,

— QI QI ()% 3:Q+ 112 15 (QQ)inQ ()T An irreducible representation of the Lorentz group is charac-
- T terized by two numbersn,u), wherene N/2 andu e C. In

—(QQ)inQ1(**~ (QQ);; Q! (**1Qpe1 Q5 the spaceH,, , of this representation one can introduce an

orthonormal basis
+115 15007 QR (9 "PaiQy o o
mh m=—j,—j+1,...j—1j, I=nn+1,...

+150Q7 QR (2! (S MTW Q. - (C2) (D5)

l]JCh that the generators introduced above act in the follow-

Nevertheless, using this expression one can obtain severgl g way [31]:

important properties. First of all, note that from EGJ) it is
straightforward to check the following fact: Haéjm=Mé m

sRDAAT AR D=0 (© H gy = M D)~ M s, (06)

Then, since the quantit{8) can be written as a similar pro- Ho& =G +m)(—m+1)& mq
jection of the space-time connectioty, : g

F3é&im= Y Vi° =M% _ 1+ BjyMEj m

1
(ashX _ _ X 1 z -
Al A1 ,3 )HY Iyr(RTDZAT,  (CH =YV + D =mE) g,
(D7)

it commutes with itself. Moreover, from E@GA21) it follows Fo&im= vV —m(—m=1)& 1mi1

that z.inyA(é,b) commutgs withy and, therefore, with the +,3(j)\/(j —m)(j+m+1)E naa

function A(Q) (A17). This allows us to conclude that the i i

covariant generalization of the Ashtekar-Barbero connection F YV +HmMED (G +M+2) € e,

A given by Eq.(5) is also commuting.
Another property, which follows immediately from the F_& n=— v V(i+m(j+m—1)& _1m 1

relation(33), is - -
+BHNG+M(j—m+1)& m_s
Iz(Q)Z{AiZ’A}N}DIXQ)W:O' (€5 _7(j+1)\/(j_m+1)(j—m+2)§j+1,m711
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where Then, we would like to define the Lorentz connection so that
_ _ : : IL,A=i,a. LetA=i,a+b. Action of a gauge transformation
_inp o (j2=n?)(j*~p?) bg  9€SL(2C) is defined by splittingg into its SU,(2) part
Po=- jG+1)’ Y072 1V 1) (8) acting with the initialSU(2) action ona and its pure boost
(J - 5) I+ 2 part acting on the fiel¢k. Good behavior oA under gauge

transformation gives the following conditions &n
The unitary representations correspond to two cadgghe

principal series, VgeSU,(2),%=gbg t+x(ax 1) +g(ax)x g™t

E3
(n,u)=(n,ip), neNR2peR (D9) E3

and(2) the supplementary series, and
(n,w)=(0p), |pl<1, peR. (D10) Vg pureboost, %b=gbg *+g(dg™t). (E4)

The principal series representations are the ones interveninﬁt\; o ) )

in the Plancherel decomposition formula fb? functions A Priori, there are many §(l)lut|ons to these equations. The
overSL(2,C). Simple representations are the representation§/Mmplest solution id=x(dx" 7). Thus, this procedure allows
of the principal series with the vanishing Casimir operator!S t0 create asL(2,C) connection from arsU(2) one by
C,(sl(2,C)) [22,23. There are two types of such represen_mtroducmg the vector fielgy. It can be used to construct the

tations: (1,0) and (0Oi,p). In both cases we havg;,=0 for
all j. However, the representationsi(), have the particu-
larity that they possess &U(2) invariant vectorg o.

APPENDIX E: CREATING A LORENTZ CONNECTION
FROM AN SU(2) CONNECTION

covariant generalization of the Ashtekar-Barbero connection
(5). Indeed, one can start from ti84J(2) loop gravity, with

a hypersurface provided with @U(2) connectiona (the
Ashtekar-Barbero connectipnand, following this proce-
dure, one can try to make the formalism explicitly covariant.
First, we introduce a time normal fiejd (which allows us to

go out of the time gaugeand then we construcA=i,a

Let us suppose that we have a hypersurface with an-x(dx 1), which gives rise to a$L(2,C) structure with a

SU(2) connectiona. Now, we would like to extend the
SU(2) structure to &L(2,C) one and the connecticato a
SL(2,C) connectionA. For this purpose, we introduce on the
hypersurface a time normal fielde H, =SL(2,C)/SU(2)
valued on theupper part of the two-sheelyperboloid. We
choose a reference vectgp on the hyperboloid and define
x e SL(2,C) rotating fromyg to x. Let us define the isomor-
phism

i :su(2)—su,(2) (ED

and the projection

I, :sl(2,C)—su,(2). (E2

covariant connection on the canonical hypersurface. It turns
out that this result matches exactly what comes out of the
direct covariant canonical analysis as described in Sec. Il
Indeed, looking at Eq(5), i,a is A®"™ [anda is A®™ as

in Eq. (B8)] and b=x(sx 1) is to be identified with the
function A (Q). However, it is easy to realize that this does
not exactly match Eq5) since the latter involves a rotation
from A to RA. This can be explained from an ambiguity in
our embedding procdure, more precisely in the definition of
boosts: if the boosts are taken to Ker(1/8)J acting on
both y anda, then it is straightforward to check that the right
solution to the gauge transformation equations hs
=R(xdx 1) and that we retrieve the correRtfactor.
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