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Teleparallel origin of the Fierz picture for spin-2 particle
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A new approach to the description of a spin-2 particle in flat and curved spacetime is developed on the basis
of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the
Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the
teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge
symmetry of the spin-2 model, and derive the linearized Einstein operator from the fundamental identity of the
teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the
usual Riemannian approach, one needs to include the nonminimal~torsion dependent! coupling terms.
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I. INTRODUCTION

A consistent description of higher~greater than 1! spin
fields interacting with external classical~electromagnetic and
gravitational! fields represents a nontrivial problem whic
has not been completely solved until now. Earlier analyse
this problem can be found in Refs.@1,2#, and a more recen
discussion, as well as a list of basic references, is give
Ref. @3#. Recently, a new approach based on the so ca
Fierz theory of the spin-2 particle in flat and curved spa
time has been developed by Novello and Neves@4#. In this
work, using Fierz variables, the consistency problem o
massive spin-2 field in a curved spacetime has been stud
with the results indicating that the Fierz representation se
to be more appropriate to deal with the coupling of a spi
field to gravity.

Now, as is well known, curvature and torsion are able
provide each one equivalent description of the gravitatio
interaction. In fact, according to general relativity, curvatu
is used togeometrizespacetime, and in this way successfu
describe the gravitational interaction. Teleparallelism, on
other hand, attributes gravitation to torsion, but in this c
torsion accounts for gravitation not by geometrizing the
teraction, but by acting as aforce. This means that, in the
teleparallel equivalent of general relativity, there are no g
desics, but force equations quite analogous to the Lore
force equation of electrodynamics@5#. Gravitational interac-
tion, thus, can be describedalternatively in terms of curva-
ture, as is usually done in general relativity, or in terms
torsion, in which case we have the so called teleparallel g
ity.

An important point of teleparallel gravity is that it corre
sponds to a gauge theory for the translation group. Due to
peculiar character of translations, any gauge theory includ
these transformations will differ from the usual intern
gauge models in many ways, the most significant being
presence of a tetrad field. On the other hand, a tetrad
can naturally be used to define a linear Weitzenbo¨ck connec-
tion, which is a connection presenting torsion, but no cur

*Permanent address: Department of Theoretical Physics, Mos
State University, 117234 Moscow, Russia.
0556-2821/2003/67~4!/044008~5!/$20.00 67 0440
of

in
d
-

a
d,
s

2

o
l

e
e
-

-
tz

f
v-

he
g

l
e
ld

-

ture. A tetrad field can also be used to define a Riemann
metric, in terms of which a Levi-Civita connection is con
structed. As is well known, it is a connection presenting c
vature, but no torsion. It is important to keep in mind th
torsion and curvature are properties of a connection@6#, and
many different connections can be defined on the same m
fold. Therefore one can say that the presence of a nontri
tetrad induces both a teleparallel and a Riemannian st
tures in spacetime. The first is related to the Weitzenbo¨ck and
the second to the Levi-Civita connection.

The reason for gravitation to present two equivalent
scriptions is related to a quite peculiar property of gravi
tion, the so calleduniversality. Let us explore this point in
more detail. As with any other interaction, gravitation pr
sents a description in terms of gauge theory. In fact, as m
tioned above, teleparallel gravity is a gauge theory for
translation group, with contortion playing the role of forc
On the other hand, universality of gravitation means that
particles feel gravity the same. In other words, particles w
different masses feel a different gravitational force in suc
way that all these particles acquire the same acceleration
a consequence of this property, it turns out to be possibl
describe gravitation not as aforce, but as adeformationof
spacetime. More precisely, according to this view, a grav
tional field is supposed to produce acurvaturein spacetime,
the gravitational interaction being achieved in this case
letting test particles to follow the geodesics of spacetim
This is the approach used by the general relativity desc
tion of gravitation. It is important to notice that only an in
teraction presenting the universality property can be
scribed by ageometrizationof spacetime.

Instead of using the general relativity approach, the ba
purpose of this paper will be to use the teleparallel appro
to analyze the problem of a spin-2 field coupled to grav
The teleparallel approach will be used to describe both
spin-2 field, and the gravitational background field. The ba
conclusion will be that the Fierz picture constructed in R
@4# is naturally present in the teleparallel construction. In t
sense, we can say that the teleparallel equivalent of gen
relativity appears to be a natural framework to deal with
spin-2 theory. In fact, the small perturbations of the tetr
field are shown to reproduce correctly the behavior of
spin-2 field on the flat Minkowski spacetime. The antisym
w
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metric piece of the tetrad turns out to be redundant, altho
taking into account its explicit contribution makes the und
lying gauge symmetry more transparent. The generaliza
for the presence of gravitation is straightforward, and it re
resents an alternative way to describe the spin-2 particle
teracting with an external gravitational field.

II. TELEPARALLEL GRAVITY: BASIC FACTS

The general structure of teleparallel gravity is presente
detail in Refs.@5,7–10#. In this section we summarize th
fundamentals of this theory. In short, teleparallel appro
can be understood as a gauge theory of the spacetime t
lation group. Using the Greek alphabet to denote space
indices, and the Latin alphabet to denote the local fra
components, the corresponding gauge potential is re
sented by the nontrivial part of the tetrad fieldha

m . This
tetrad gives rise to the so called Weitzenbo¨ck connection

Gr
mn5ha

r]nha
m , ~2.1!

which introduces the distant parallelism on a fou
dimensional spacetime manifold. It is a connection that p
sents torsion, but not curvature. Its torsion

Tr
mn5Gr

nm2Gr
mn ~2.2!

plays the role of the translational gauge field strength. T
Weitzenbo¨ck connection can be conveniently decompos
into the Riemannian and the post-Riemannian pieces

Gr
mn5G̃r

mn1Kr
mn , ~2.3!

whereG̃r
mn5 1

2 grs(]mgns1]ngms2]sgmn) is the Christof-
fel symbol constructed from the spacetime metricgmn

5ha
mhb

nhab and

Kr
mn5 1

2 ~Tm
r

n1Tn
r

m2Tr
mn! ~2.4!

is the contortion tensor. Correspondingly, all other geome
cal and physical objects and operations constructed with
help of the Riemannian connectionG̃r

mn will be denote with
a tilde.

The gauge gravitational field Lagrangian reads

LG5
c4

16pG
hSrmnTrmn , ~2.5!

whereh5det(ha
m) and

Srmn52Srnm
ª

1
2 @Kmnr2grnTsm

s1grmTsn
s# ~2.6!

is a tensor written in terms of the Weitzenbo¨ck connection
only. Inverting this equation, we obtain torsion in terms
the above tensor:

Tr
mn52~Sm

r
n2Sn

r
m!1dm

r Ss
ns2dn

rSs
ms . ~2.7!

The Lagrangian~2.5! describes what is commonly known a
the teleparallel equivalent of Einstein’s general relativ
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theory. Performing a variation with respect to the tetrad,
find the teleparallel version of the gravitational field equati

]s~hSl
rs!2

4pG

c4
~htl

r!50, ~2.8!

where

htl
r5

c4h

4pG
Sm

nrGm
nl2dl

rLG ~2.9!

is the energy-momentum~pseudo! tensor of the gravitationa
field. This equation is known to be equivalent to the E
stein’s equation of general relativity. It is important to noti
that the left-hand side of the field equation~2.8! can be re-
written as the usual left-hand side of Einstein equations

]s~hSl
rs!2

4pG

c4
~htl

r![
h

2 S R̃l
r2

1

2
dl

rR̃D , ~2.10!

which then provides an easy proof of the Lemma 2 of R
@4#. As the source of both field equations is the symme
energy-momentum tensor, the equivalence alluded to ab
holds also in the presence of matter@11#. It is worth noticing
that the teleparallel field equation has the same structur
the Yang-Mills equation, which is consistent with the fa
that teleparallel gravity corresponds to a gauge theory.
see in this way that the teleparallel approach to gravitatio
more closely related to field theory than the general relativ
approach.

III. LINEARIZED THEORY

The trivial tetradha
m5da

m describes the flat geometry
for which the metric has the diagonal Minkowski formgmn

5hmn5diag(11,21,21,21). Let us then expand the te
rad field around the flat background as follows:

ha
m5da

m1ua
m . ~3.1!

The Weitzenbo¨ck connection reads, correspondingly,

Gr
mn5]nur

m , ~3.2!

whereur
m5da

rua
m . As a result, the torsion and its trace ar

respectively,

Tr
mn5]mur

n2]nur
m , Tr

mr5]mu2]rur
m , ~3.3!

with u5ur
r . Decomposing the perturbation tensorumn into

the symmetric and antisymmetric pieces

umn5fmn1amn , ~3.4!

with

fmnªu(mn) and amnªu[mn] , ~3.5!

we compute immediately the contortion tensor

Kr
mn5]rfmn2]mfr

n1]nar
m . ~3.6!
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Substituting now the above expressions into Eq.~2.6!, we
obtain

Srmn5 1
2 @]mfnr2]nfmr2grn~]mf2]sfsm!

1grm~]nf2]sfsn!

1]ramn1grn]sasm2grm]sasn#. ~3.7!

Comparison with Ref.@4# shows that the first two lines ar
nothing but the Fierz tensorFmnr52Fnmr introduced by
Novello and Neves. More specifically,

Srmn52Fmnr1 1
2 ~]ramn1grn]sasm2grm]sasn!.

~3.8!

Since we have identically

]m~]ramn1grn]sasm2grm]sasn![0,

the last term drops out completely from the linearized gra
tational field equations~2.8!, which then reads

]sSl
sr50. ~3.9!

This equation yields the correct dynamics of the spin-2 p
ticle in flat spacetime, as it is easily seen from the iden
~2.10!. Indeed, substituting the expansion~3.1! into it, we
find that

]sSl
sr[ 1

2 G̃L
l

r, ~3.10!

where the left-hand side represents the linearized Eins
tensor

G̃mn
L 5h~hmnf2fmn!2]m]nf2hmn]a]bfab1]m]lfl

n

1]n]lfl
m . ~3.11!

The identity~2.10! plays the fundamental role in the telepa
allel theory, since it underlies the proof of the equivalence
Einstein’s gravity and the teleparallel gravity. Now, as a b
product of this identity we have straightforwardly derive
the Lemma 2 of Ref.@4#.

It is interesting to notice that the teleparallel Lagrang
~2.5! can be rewritten as

LG5
c4

8pG
h~SrmnSrmn2Ssm

sSr
mr23SrmnS[rmn] !.

~3.12!

Inserting Eq.~3.7! here, we can verify that the antisymmetr
field amn drops out completely, in accordance with the ana
sis of the linearized field equations. This observation sho
that, as a matter of fact, the antisymmetric field does
have physical importance. Indeed, one can show quite g
erally that, by means of a local Lorentz transformation, it
always possible to choose a frame in which the tetrad ma
is symmetric@12–14#. In such a frame, the fieldamn van-
ishes, and as a result the tensorSrmn coincides~up to a sign!
with the Fierz tensor introduced in Ref.@4#.
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However, there is a certain reason to keepamn nontrivial.
In particular, we can verify the covariance of the lineariz
formalism with respect to ‘‘general coordinate’’ spacetim
transformations. The demonstration of this property in R
@4# is rather long and not very transparent. In contrast, her
is sufficient to notice that the tensor~3.7! is explicitly invari-
ant under the gauge transformations

fmn→fmn1]mLn1]nLm , ~3.13!

amn→amn2]mLn1]nLm . ~3.14!

The proof is straightforward: One just needs to substit
these formulas into Eq.~3.7!. The original perturbation field
~3.4! transforms asum

n→um
n12]nLm, in complete agree-

ment with the geometrical meaning of the tetrad.

IV. SPIN-2 FIELD IN THE PRESENCE OF GRAVITATION

In order to construct the theory for a spin-2 particle on
curved spacetime, instead of the expansion~3.1!, we con-
sider the tetrad expansion

ha
m5h̄ a

m1ua
m ~4.1!

around the nontrivial classical backgroundh̄ a
m . Such an ap-

proach is analogous to the treatment of a consistent sp
model as a first order perturbation of the general relativ
theory@2#. We will denote with an overline every other bac
ground objects and operations. In order to simplify the co
putations, in contrast to the above described flat-space
cussion, we will choose the symmetric gauge@12–14# from
the very beginning. Then, we have the symmetric tensor fi

fm
nªh̄a

mua
n , fmn5fnm , ~4.2!

where h̄a
m is the inverse background tetradh̄a

mh̄ a
n5dn

m .
From now on, the Greek indices will be raised and lower
with the help of the background metricḡmn5h̄ a

mh̄ b
nhab .

Substituting the expansion~4.1! into the Weitzenbo¨ck
connection~2.1!, up to first order infr

m , we find

Gr
mn5Ḡr

mn1¹̄nfr
m , ~4.3!

where Ḡr
mn5h̄a

r]nh̄ a
m is the background teleparallel con

nection, and¹̄n is the covariant derivative in the connectio
Ḡr

mn . As a result, we obtain for the torsion

Tr
mn5T̄r

mn1¹̄mfr
n2¹̄nfr

m . ~4.4!

Using this expression in Eqs.~2.6! and ~3.12!, we straight-
forwardly obtain the kinetic term for the spin-2 field La
grangian in the presence of gravitation

LG5
c4

8pG
h̄~FrmnFrmn2Fsm

sFr
mr!5

c4

8pG
h̄Frmn¹̄nfmr .

~4.5!

Here,Frmn is the covariant generalization of the Fierz tens

Frmn5 1
2 @¹̄nfmr2¹̄mfnr1grn~¹̄mf2¹̄sfsm!

2grm~¹̄nf2¹̄sfsn!#. ~4.6!
8-3
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The main difference of the spin-2 model~4.5! from the
theory studied in Ref.@4# is that the covariant derivatives i
Eq. ~4.6! are defined with the help of the teleparallel conne
tion, and not with the help of the Riemannian~Christoffel!
connection. We thus obtain an alternative way to describ
spin-2 particle in the presence of gravitation. The result
theory is obviously generally covariant.

As is well known@1–4#, the higher spin theories are ge
erally inconsistent in the presence of the electromagn
and/or gravitational field. Technically, this amounts to t
nonvanishing covariant divergence of the corresponding fi
operator which, in turn, is related to the fact that the cova
ant derivative has a nontrivial commutator proportional
the curvature. The consistency conditions, derived for
higher spin fields, place strong restrictions on the spacet
curvature which are not fulfilled, in general.

In the teleparallel gravity, the spacetime curvature is ze
whereas the commutator of the covariant derivatives rea

@¹m ,¹n#52Tl
mn¹l . ~4.7!

Accordingly, the consistency condition for the theory~4.5!
will be not algebraic, as in the usual formulation, but diffe
ential instead:T̄l

mn¹̄lFrmn50.
If we demand that the consistency conditions should

satisfied for all field configurations, we then have to co
clude that the torsion should vanish. This observation ag
with the general analysis of the higher spin theories on
Riemann-Cartan spacetime@15#. A possible way to avoid the
consistency problem is to include nonminimal coupli
terms in the Lagrangian@2,3#. Since the curvature is zero, th
nonminimal terms may involve only the torsion tensor. T
latter, being of the third rank, necessarily involves the deri
tive for the construction of the invariant contractions. It
straightforward to see that, adding the nonminimal inter
tion Lagrangian

Lnon5
c4

8pG
h̄@fal~Kl

mn2Tl
mn!¹̃nfma2famTlmn¹̃afln

2flnTlmn~¹̃mf2¹̃afam!

1fmnTl
ml~¹̃nf2¹̃afan!# ~4.8!
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to the Lagrangian~4.5! yields the Riemannian Fierz La
grangian of Ref.@4#. This then allows us to solve the consi
tency problem.

The theory of massive spin-2 particle@2,3# was satisfac-
torily formulated within the framework of the Fierz approac
@4#. Our results also admit a direct generalization to the n
trivial mass which we though do not discuss here since
follows along the same lines as in Ref.@4#.

V. DISCUSSION AND CONCLUSIONS

Novello and Neves@4# have demonstrated that the Fie
representation for the spin-2 theory has a number of adv
tages as compared to the alternative approaches~such as the
nonambiguity of the order of derivatives and the equivalen
to the nonminimal curvature Einstein representation with
fixed coefficients of additional terms@2#!. Here, we have
shown that the Fierz representation can be naturally un
stood on the basis of the teleparallel gravity. In particular,
find that ~i! the structure of the Fierz tensor defined in R
@4# through anad hocprocedure is unambiguously fixed b
the teleparallel theory,~ii ! the gauge symmetry~3.13!,~3.14!
underlying the corresponding spin-2 freedom, is manifes
straightforwardly,~iii ! the linearized Einstein operator arise
immediately as a consequence of the fundamental iden
~2.10! of the teleparallel theory. It is worthwhile to note th
the antisymmetric piece of the tetrad field, while being d
namically redundant, plays a significant role in the form
derivations. A certain disadvantage of our approach is
need of the nonminimal coupling of the type~4.8! to solve
the consistency problem on the curved spacetime. Thi
similar to the observations made within the Riemannian
proach@2#.

Summarizing, in this paper we have developed a new
proach to the description of spin-2 in flat and curved spa
time on the basis of the teleparallel gravity theory. This a
proach appears to be a true origin for the Fierz representa
proposed recently in Ref.@4#.
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