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Null energy conditions in quantum field theory

Christopher J. Fewsterand Thomas A. Romdn
Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom
(Received 20 September 2002; published 10 February)2003

For the quantized, massless, minimally coupled real scalar field in four-dimensional Minkowski space, we
show(by an explicit constructionthat weighted averages of the null-contracted stress-energy tensor along null
geodesics are unbounded from below on the class of Hadamard states. Thus there are no quantum inequalities
along null geodesics in four-dimensional Minkowski spacetime. This is in contrast with the case for two-
dimensional flat spacetime, where such inequalities do exist. We discuss in detail the properties of the quantum
states used in our analysis, and also show that the renormalized expectation value of the stress energy tensor
evaluated in these states satisfies the averaged null energy cottd&ierpected despite the nonexistence of
a null-averaged quantum inequality. However, we also show that in any globally hyperbolic spacetime the
null-contracted stress energy averaged ovemalike worldline doessatisfy a quantum inequality bourttbr
both massive and massless figld#d/e comment briefly on the implications of our results for singularity
theorems.
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[. INTRODUCTION form of g [see Eq.(2.3)], and thec, are explicitly known
constants independent ab and g. Such constraints are
The field equations of general relativity have little or no known asquantum weak energy inequaliti¢®WEIs) and
predictive power in the absence of some notion of what metappear to be the vestiges of the weak energy condition in
rics or stress-energy tensors are to be regarded as physicatipyantum field theoryf10]. Over the past decade, QWEIs
reasonable. In classical general relativity it has proved profhave been developed in a variety of circumstarj@e8,11—
itable to require the stress-energy tensor to satisfy one dt7] and are known to hold for the minimally coupled scalar
more of the so-called energy conditions: in particular, thefield, the Dirac field and the electromagnetic and Proca fields
Hawking-Penrose singularity theoreifiis2] and the positive in great generality18—20. The QWElIs also imply that the
mass theorem3,4] are proved under such assumptions. averaged weak energy conditiGAWEC)
The present paper addresses the status of the null energy
condition(NEC) in quantum field theory. The classical NEC
is the requirement that the stress-energy terisgrshould
obeyT,,¢2¢°=0 for all null vectors¢? and at every space-
time point. Although this condition is satisfied by magiput ~ holds at least for Hadamard statesfor which the integral
not all [5,6]) classical matter models, including the mini- converges absolutef21].
mally coupled scalar field and the electromagnetic field, itis It is natural to enquire whether similar vestiges of the
known, however, that this condition is violated by quantumNEC persist in quantum field theory. This is particularly rel-
fields. In fact, the expectatiofir5"¢2¢), of the renormal- ~€vant to attempts to generalize the singularity theorems to
ized null-contracted stress-energy is unbounded from beloWuantized matter fields as it is the NEC which is assumed in
as a function of the quantum state Exactly the same phe- the Penrose theorefil]. While the final stages of gravita-
nomenon afflicts the weak energy conditioWEC) which,  tional collapse presumably require a full theory of quantum
classically, requires thaf,,w? =0 for all timelike vectors ~ gravitation for their description, the early stages can certainly
v? In this case, it is known that the renormalized energyP€ treated within quantum field theory on a fixed curved
density is still subject to constraints on its averages alongPacetime. The question to be addressed is whether an ini-
timelike curves. For example, the massless real scalar field ifally contracting matter distribution will continue to do so
n-dimensional Minkowski space obef,8] and it is here that the NEQor its variant$ appears in the
classical arguments. Accordingly, it is important to under-
stand whether the NEC has an analogue in quantum field
f dtCToo:)w(t,O)g(t)Z?—Cnf dud’g(ul® (1.)  theory. For massless fields in two-dimensional Minkowski
space, this question was answered affirmatively in Rtf],

for all Hadamard statef9] w and any smooth, real-valued Using a Lorentzian sampling function. The bound has the
compactly supported functiog) whereqg is the Fourier trans-  form

f dt(:Tgo:)(t,00=0 (1.2

dx =>— :
e DY 167\ 5
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=(dy/d\)2. It can be easily seen that this bound is invarianttimelike world line QNEls—as a direct consequence of the
under a rescaling of the affine parameter. If we now take tharguments used in Ref18]. We evaluate our bound explic-
limit of Eq. (1.3) as\y— <0, which corresponds to sampling itly for the case of four-dimensional Minkowski space. Taken
the entire null geodesic, we get the ANEEZ3]: together with the results of Sec. Il, we see that large negative
values of the null-contracted stress-energy tensor on one null
geodesic must be compensated by positive values on neigh-
boring geodesics, because the transverse extent of the nega-
tive values is constrained by timelike world line QNEIs. In
Referencé11] left open the question of whether an analo- the conclusion, we briefly speculate on the significance of
gous QNEI exists in spacetime dimensions other than twothese results for attempts to derive singularity theorems for
The techniques used there to obtain a timelike world line QMuantized matter.
in four dimensions could not be employed to derive a similar
QNEI, starting with null geodesicab initio, because the Il. NONEXISTENCE OF NULL-WORLD-LINE QNEIs
former derivation was based upon a mode expansion in the
timelike observer’s rest frame. There are also technical prob-
lems which obstruct the adaptation of the arguments of Ref. We consider a massless minimally coupled real scalar
[18] to null world lines(see the remark following Theorem field in (1+3)-dimensional Minkowski space, with signa-
[1.1). In addition, Ref[11] noted a potential problem: any ture +———. We employ units withh =c=1. The quantum
such inequality involving an average along a null geodesidield is given by
would have to be invariant under rescaling of the affine pa-

f AN T,p:1310),20. (1.4

A. Nonexistence result

3
rametelfamounting to the replacements>\/o, A\g— Mg/ :f d°k Kie ka4 gt (k) eika®
and ¢®—-o¢? in Eq. (1.3] to be physically meaningful. () (277)3(2w)132(a( e a’(ket=),
While the left-hand side of Eq1.3) scales agr?, one might (2.1

expect(on dimensional groundsghat the right-hand side of
such a bound would behave likg ¢, whered is the space-
time dimension, and therefore scalecgs This hints that the

in which k?=(w,k) with w=|k||, the magnitude ok. The
canonical commutation relations are

extension of QNElIs to spacetime dimensiah¥s2 might be [a(k),a(k’)]=0,
problematic.(Of course, these arguments would not apply in 2.2
the presence of a mass or some other geometrical length [a(k),a’(k’)]=(2m)38(k—k"), '

scale—see Ref24].) _ _ o
In this paper, we consider world line averages of the null-and our convention for Fourier transformation is
contracted stress-energy tensor of the form

f(u)=f dte Ut (t). (2.3
()= [ DCTa 1600, (9
Now letf be any smooth nonnegative function of compact

wherey(\) is a smooth causal curve aiifl is a smooth null support, normalized so that

vector field defined on. First, in Sec. Il we study the case in
which v is an affinely parametrized null geodesic in four- f drf(N) =1, (2.9
dimensional Minkowski space with tangent vectdf

=(dy/d\)®. By an explicit construction, we show that anq, for some fixed future-pointing null vectéf, let y(\)
(p(f)), is unbounded from below as& varies among the pe the null geodesie/(\)2=\¢2. For simplicity, we will
class of Hadamard states of the massless minimally couplegks;;me that the three-vector partt8fhas unit lengthin our
scalar field. Thus there are no null-world-line QNEIS in four- frame of reference so £2= (1,6) with ||€]|=1. We will con-
dimensional Minkowski space. Although we consider onlygiqer the averaged quantity

the massless field, we comment that our results generalize

directly to the massive case. Our construction involves a se- b

quence of states, each of which is a superposition of the <P(f)>w:f ANV Tapi€%€7) ,(¥(N), (2.9

vacuum with a multimode two-particle state. A closely re-

lated construction has recently been used in R2B] to  which corresponds to a weighted average of the null-

prove the nonexistence of spatially averaged quantum ineontracted stress energy tensor alondf w is a Hadamard

equalities in four-dimensional Minkowski space. state, the renormalized contracted stress tensor is a smooth
It would be incorrect, however, to conclude from the function on spacetime, so the above integral will certainly

above result that the null-contracted stress-energy tensor gonverge. In order to establish a quantum null energy in-

completely unconstrained in quantum field theory. In Sec. Illequality, one would need to boukd(f )}, from below asw

we consider the averagép(f)), for smooth timelikey in ranges over the class of Hadamard states; however, this is not

an arbitrary globally hyperbolic spacetime and for anypossible, as we now show.

smooth null vector field®. For both massive and massless Theorem Il.1. The quantityp(f)), is unbounded from

fields, these quantities do obey lower bounds—which we calbelow asw varies over the class of Hadamard states
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Proof. We will construct a family of vector Hadamard 1
statesw, [ae(0,1)] with the property that<p(f))wa—>

—o asa— 0. We begin by choosing a fixetl,>0 such that \
Ref is non-negative on the interva2A,,2A,]. To see
that this is possible, we observe that A

?(0):f drf(N) =1, (2.6

which, by continuity, implies that Reis positive in some  ~X 4
neighborhood of the origin.

Next, let o and v be fixed positive numbers with 2 (a) (b)
+3/2<o<2v+2. For each ae(0,1), we define a

“vacuum-plus-two-particle” vector FIG. 1. (a) Only modes lying “inside the conefli.e., those

whose three-momenta make an angle less #hag=cos Y(1—a)
d3k  dek’ with €] are excitedjb) the cones lengthen and tighten arouhds
2n )3 2n )3 b,(kk")|kk’ )} a—0.

wa:Na |O>+

The third feature of interest concerns the amplitude of the

whereN,, is a normalization constant ensurifig,/|=1 and _ o : —
two-particle contribution. Choosing the normalization con-

b, (k.k')=a"HA—k)FHA—K") stant to be
X X o 0) X o 0)B(Kat?,KoE?) (KK )"~ 2, %k d3’ ]
s N, 1+2f oo e bukKIP| L 21

Here, 9 is the usual Heaviside step functioh=Ay/a will we note that, for a null vectdr®= (k,k), the quantity€?k,

be called the momentum cutoff and appearing in Eq(2.8) is equal tok(1—cosé), whered is the
angle betweerd andk. We therefore perform thk and k'’

(0)2[1’ cosf>1-a, (2.9 integrals in Eq.(2.11) by adopting spherical polar coordi-
Xa 0, otherwise, ' nates about, integrating out the trivial azimuthal depen-

dence and then changing variablesge-1—cosf, B'=1

where 6 (respectively,f’) is the angle betweek (respec-  —cos#'. This yields

tively, k') and€. We chooseB:R" X R —R to be(a) sym-

metric[i.e., B(u,u’)=B(u’,u)]; (b) jointly continuous inu d®k  d3k’

andu’; (c) everywhere non-negati@6] and strictly posi- f 2n)? (—§|ba(k k")|?

tive nearu=u’'=0; and(d) normalized so that

. » _a—afAdkadkl(kk,)2V+l
Angfo dufO du’|B(u,u)|?=1. (2.10 (2m)* Jo 0

(The prefactor ensures dimensional consistenéy ex- Xfo dﬁfo dB’|B(kB.k'B")|?

ample of a function meeting these requirementB(g,u’)

= Ay @ Ve~ (U2 We wish to emphasize, however, that _aPTTEA (Ag .

there are many function@nd hence many vectors,) with T 2mt f dvf dv’(vv’)

the properties we require. We will usg, to denote the state

induced by, so t_hat(A)wa—(¢a|A¢_a>. _ | j duf du’|B(u,u’)|?

Let us note various features of this family of states. First,

the momentum cutoff ensures that no modes of momentum J27-20-1)

greater tham\ = A/« are excited. Second, the effect of the (212

X« factors is to ensure that modes can only be excited if their (277) (2v+1)%’

three-momenta make an angle less than ¥ds- ) with the

direction€. The excited mode three-momenta therefore lie inwhere we have made the further changes of variable
the solid sector formed by the intersection of a ball of radius=kgB, u'=k’g’, v=ke, v'=k’a and used the normaliza-
Aol/a (center the originh with a cone of opening angle tion property Eq.(2.10 of B. Becauseo>2v+3/2>2v
cos (1—a) about¢ (with apex at the origin As «—0, this ~ +1, we see that the right-hand side of Eg.12 tends to
solid sector lengthens and tightens up along the diredatjon zero asa—0. By Eq. (2.1) we now haveN,—1 as «a
so the four-momenta of excited modes become more ang+0; since the left-hand side of Ed2.12 is equal to
more parallel tof?, the tangent vector to the null line along [N, *#,—|0)|?, we also see that the states, are in fact
which we are averaging. See Fig. 1. converging to the vacuum vectd®). As we shall see, this
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does not entail that the normal-ordered energy density is con- (:Tap(X): eaeb>w =(:(3V qy(x)ebqu)(x) >
verging to zero(See also the discussion in Sec. IJ C.

The remaining properties of our family of states concern , a3k d3k’ €%KaC°ky,
the corresponding normal ordered two-point functions, given =2N¢ Re 3 3
by (2m)° (2m) o'
d% d°k 1 X[Calk ke ket
:D(x)P(x'):), =2N2Re e
( oo (2m)° (27)° oo’ —b, (kK )e X*katky)], (2.19
X[ C (kK" )el *ka=x"%ky) and substituting into Eq2.5). Noting, for anyK,, that

b, (kk)e M) (213 f d O e TN Ka=F (03K ), (2.19

where
we may write{p(f ))wazpl(f )+ po(f), where

f —2N2Rf d%k A3k €3k E0K!
i) =2NoRe | o s 2n®  fow

X F (3K, —€%Ka)C (k. K") (2.20

P, —
ca(k,k’)zzfWba(kl,k)ba(kl,k’). (2.14

Using the same changes of variable as above, we find
Ca(k,k’): a207(2V+1)ﬁ(A_ k)’ﬁ(A— k,)
X Xal( ) Xal 0 )C(K 03K (KK )Y~ 12

3 31,1 ak fbk'
(2.15 f1— —N2R f d°k d°k" €%k,€°k,
pAT)==2NuRe | o @m® Jaw

and

whereC(u,u’)=C(u’,u) is given by

X (03K + €2k, (kK. (2.21)
ry — 2v+1 _
Cluu’)=2a f 23 YA~k xa( 1) Our aim is now to show that(f)—0 andp,(f)— —c in
) - the limit «— 0. Taking the dominant contributigi,(f ) first,
X (K§)"VB(k}l,,u)B(k3C,,u") and making the same changes of variable as before we may

g2r 1 calculate
- S [k [ Cagpisw

N2 a” A A (e
fy=— = Ref dkf dk’(kk')” Jd
pZ( ) (211_)4 0 0 ( ) 0 18

XB(k{B1,u")
1 _— “ / ' I IAY: Y
=5 Mo f duB(up,u)B(u,u’). (2.16 Xfo dB'BR'B(kA.K BT (kB+K AT
2 o
Rearranging the order of integration, this becomes = (Nz )4J ko dk’'(kk")’o(ka,k’ a)
C(u,u’ —J du,u?’*1B(uy,u)B(uy,u NZqo—20r+1)
( ) 2772(2V+1) 1Y1 ( 1 )B( 1(2])-7) :_TJ dvf dv’ (UU)(P(UU)

(2.22

and we may conclude théb C is jointly continuous iru and

u’ by joint continuity ofB and compactness §0,A4]; (i) C  where

has the same engineering dimensiorBasiii) C(u,u’)=0

for all u, u’ and, crucially,(iv) that the exponent of in , v o, 2 ,

c,(k,k’) differs from that in the corresponding expression ~ #(U:V )=ReJO dufo du'uu’B(u,u")T(u+u’).

for b,(k,k"). Furthermore, since both, andc, have mo- (2.23

mentum cutoffs, it is evident that the normal ordered two-

point function is smootfibecause one may differentiate un- Recalling that Ré is strictly positive on the interval

der the integral sign as often as required to obtain finitE{_ZAO,ZAO], and thatB(u,u’) is non-negative and strictly

derivatives. Accordingly, eachw, is a Hadamard state. positive for smallu, u’, it follows that ¢(v,v’) is non-
The null-contracted normal ordered energy densitynegative forv, v’ €[0,A,] and that the right-hand side of

(p(f)),, is obtained by differentiating the normal ordered Eq. (2.22 is strictly negative. We therefore hayg(f)—

two-point function —o in the limit «— 0, becauser<2v+2 andN,—1.
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Turning to the remaining contributiom (f ), we may use 2N2 @273
a similar analysis to obtain (p(X)), = FRH( |Fa(x)|2m— Fa(X)2a”],
0

2 20— (4v+3) (2.29

Ao Ag
f =a—f dvj dv'(vv")"¥(v,v’),
pa(t) (2m)* 0 0 ( s ) where herep(x) represents thensamplecenergy density at
(2.24  positionx, and

d3k : a —1/2,—ikx2
/ Fa(X)=f(2—Tr)3W?19(A—k)Xa(6’)k” e K&,
v,b(v,v’):ReJO duJOU du’uu’C(u,u’)f(u’—u). (2.30

where

(2.29 In Fig. 2, we plot(p(t,0,02)),, for the casef?=(1,0,0,1),

Since C is jointly continuous, the double integrals in Egs. N Which Eq.(2.29 simplifies to

(2.24) and(2.29 exist and are finite; we may now conclude

- . 2N? Q207
that p1(f )—0 in the limit «—0, becauser>2v+3/2 and _ a 2
Na_>1- <p(t10102)>wa 167T4Ag R |§a(t,2)| 2477.2
Summarizing, we have shown thgi(f ))wae—oo asa
—0.1 —ga(t,z)za“_“), (2.3

At this point it is worth considering the difference be-
tween the present situation and that studied in REf], in
which a QNEI was obtained for massless fields in two-
dimensional Minkowski space. The crucial difference is that, R |
in two-d|men5|0nal_spacetlme, the one?momenta of any two §a(t,Z):f OdU e iv(t-2)/a Lefiszr %(eivz_l)}
field modes are either parallel or antiparallel. The modes 0 z z
which propagate in the same direction as the chosen null (2.32
geodesic contribute nothing to the integfalie to factors of
the form ¢2k,). The only contribution comes from modes  These plots share the common feature of an oscillatory
moving in the opposite direction, and turns out to befringe pattern, with dark regions representing negative values
bounded. By contrast, the proof of Theorem 1.1 makes esfor (p(t,0,02)),, and light regions representing positive val-
sential use of field modes which are almost, but not exactlyyes. It is no coincidence that these plots resemble interfer-
parallel to€?. ence patterns: the dominant contribution arises precisely

from interference between the vacuum and two-particle com-

B. An explicit calculation ponents ofy,. The fringes are centered near the null ray
aparaIIeI to£? running from the lower left to upper right cor-
ners of the figures, and in fact point along spacelike direc-
tions which become more parallel ¢ as « is decreased
B(u,u’)=Ag*S(Ag—u)H(Ag—U'), (2.2  (moving from the left-hand to the right-hand figure in each

row). That these directions cannot be timelike follows from
which satisfies propertie&), (c) and (d) required in the the existence of the timelike world line QNEIs discussed in
proof of Theorem I1.1, but not the joint continuity property S€C. lll-an observer cannot “surf” along a negative energy
(b). Inspection of the proof reveals, however, that this propirough for an indefinite length of time. See Ré27] for
erty was only used to establish the existence of certain inteSimilar examples and discussion. The decreasing fringe sepa-
grals arising in the derivation, all of which may easily be ration (as eithera decreases oA increasep indicates a

where

P2

To make the foregoing result more explicit, we consider
simple example: setting=1, we define

seen to exist in this case. more highly oscillatory energy density.

The calculations are simplified by the fact tHag¢u,u’) Further insight may be gained from Fig. 3, in which we
factorizes into functions of andu’. In particular, one may Plot(:Tapt*¢:),, along(a) the null line(x, 0, 0,\) and (b)
calculate the timelike line ¢,0,0,0). Along the null line, the effect of

decreasingr is essentially to modify the amplitude of the
) 1 , curve while leaving its shape substantially unaltered. For a
Cluu’)= mﬁ(Ao— Wd(Ao—u"), (227 sampling functiorf supported within the central trough, it is
0 clear that(p(f)>a,a—>—oo as a«—0, in accordance with
and Theorem 11.1. Along the timelike curve, however, decreasing
a increases both the amplitude and frequency of the oscilla-

@206\ 102 tions. Averaged against a fixed sampling function, one might
No=|1+ 128+% (2.28 expect that the rapid oscillations would tend to cancel, so
that the averagep f(t)(p(t,0,0,0))wa could be bounded be-
Furthermore, becaud®is also real-valued, low. This is borne out by the results of Sec. Il below.
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FIG. 2. Density plots O(p(t,0,0Z))wa for four different parameter choices. The top row correspondsgte 1 while the lower row has

Ao=2; the left-hand column hag= 0.2, while the right-hand column has=0.05. In all four plotsg=3.75. Dark and light areas represent
negative and positive values, respectively.

The behavior of the energy density in the vicinity of our line Qls are to be satisfied. We speculate that a rotation of the
chosen null geodesic, e.g., as exhibited in Fig. 2, is almosplots in Fig. 2, which makes the white and dark lines hori-
exactly analogous to that found in the analysis of R2E]  zontal, would yield a representative picture of the behavior

for spatially averaged Qls, in the following sense. There, itin the spatial case. The null and spatial cases seem intuitively
was shown that the sampled energy density could be unp be very similar.

boundedly negative in a spatially compact region ot a

=const surface, in four-dimensional Minkowski spacetime.
However, for the ordinary world line QIs to hold, the energy C. Convergence to the vacuum state
density must fluctuate wildly as one moves off teconst

surface. In the present paper, we find a similar result for null We have seen that the massless scalar field in four-

rays. For example, the central trough in Figa)3s a com- dimensiona! Minkowski sp'acetimv'e.does not satisfy nontrivial
pactly supported region of the null geodesic, analogous t6“{” world line quantum. |ne'quallt|es. As described above,
the compactly supported spatially sampled region consideredis was shown by considering a sequence of vacuum-plus-
in Ref.[25], where the energy density can be made unboundtwo-particle states in which the three-momenta of excited
edly negative(Of course, in the null case we are consideringMmodes become more and more parallel to the spatialpafrt

a one-dimensional average along a line, as opposed to the null vector(?® as we take the momentum cutoff to infin-
three-dimensional spatial averagds we move off the null ity. A perhaps puzzling feature of our sequence is that it
geodesic, as shown in Fig(l8 and Fig. 2, the energy density converges in Fock space to the vacuum vector. How, then,
oscillates rapidly in sign, which must happen if the world can the energy density diverge?
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FIG. 3. Plots of the null-contracted stress-energy al@gthe null geodesic}\'—><p()\,0,0)\)>wa for «=0.2 (dotted and a=0.005
(solid); (b) the timelike curvet'—><p(t,0,0,0))wa for =0.2 (dotted and «=0.05(solid). In all casesAy=1, 0=3.75.

The answer to this question resides in the fact that thdéor any f satisfying the hypotheses stated above Theorem
averaged energy density is an unbounded quadratic form, 461, and f(0)#0. Now A—f(\/\y) has Fourier transform
the convergence of a sequence of states in the Hilbert spage ) ,f(\,v), which converges to 2f(0)5(v) as\y— .

norm does not imply the convergence of the CorreSpondin%eplacingf by this distribution in Eqs(2.23 and (2.25), we
expectation values. As a more familiar example, consider thgee that, in the limik g— o '

guantum mechanics of a single harmonic oscillator with an-
gular frequencyw. Let

¢n=|0>+n‘1’4|n), (2.33 ¢(v,v )H27rf(0)Refoduf0 du’uu’B(u,u’)s(u+u’)

wheren=1,2,3,... andn) is a normalized eigenstate of en- =0, (239

ergy Zw(n+1/2). Noting that|¢,|?=1+n 2 the ex-

pected energy is while

1 1+n Yy2n+1 1 v )—27f(0 Rejvduﬁ’du’uu’c u,u’)d(u—u’
<H>¢n:§hw 1+n(*1 ) _ n1’2—§+0(n‘1’2) . Y(v,v")—2mf(0) Jauf (u,u”)é( )
(234 —2450) | ™™ duitcu,u)=0, (2.39

and therefore diverges as—», while ¢, manifestly con- °

verges to the ground stal@), because|¢,—|0)|=n"14

o from which Eq.(2.36 follows. This may also be confirmed
— V.

by a more careful analysis.
At this point, we take the opportunity to clarify an issue
D. Consistency with the ANEC relating to the derivation of the ANEC given in R¢L1], in

Although, as we have seen, null world line QNEIs do nothich it was suggested théh Minkowski spacg the ANEC
exist, there is nonetheless a nontrivial restriction on the nuli€ould be derived by first taking the infinite sampling time

contracted stress energy, namely the averaged null enerd{it Of the QWEI to obtain the AVEC, and then taking the
condition (ANEC) rull limit to conclude that the ANEC holds. However, the

following example shows that the second step cannot be ac-
asb complished without further assumptions: define a function
f AN(:Tap:€%€7) ,(¥(N)=0 (235 n(z) such thath(z) equals+1 for |z|>2, and—1 for |Z|
<1 with h(z) otherwise smooth and bounded betweeh.

established by Klinkhammédgg] at least for a dense set of Settingt®=(1.0),

states in the Fock space of the Minkowski vacuum, and by .

Wald and Yurtsevef29] for a large subclass of Hadamard Tap(X) = tatph(x"xc) (239
stateq30]. As a consistency check, we now show explicitly .

that each state, obeys the ANEC, regarded as the require-'S & symmetric tensor which satisfies the AWEC along any
ment that “ timelike geodesic, but fails to satisfy the ANEC along any

null generator of the light cone at the origin. See Fig. 4.

1 Although it is not clear to us whethercanservedensor field
liminf _f AN F(NNQ)(: Tap:€2€®), (¥(N))=0 could display this behavior, our example shows—even in
f(0) “ Minkowski space—that the ANEC cannot be obtained from

(2.3  the AWEC without more assumptions than used in REE].

}\O~>+oc
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cient conditions would not be satisfiedyfwas null, which
explains why one cannot derive null world line QNEIs using
the arguments of Refl18] (although this does not in itself
demonstrate the nonexistence of such bounds

Proof. The argument is identical to that used for the
QWEI derived in Ref[18], in which the averaged quantity
was(: T, :v%P), (wherev? is the tangent vector tg). We
refer to Ref.[18] for the detailsll

The above bound can be made more quantitative if we

/
/
/
/
/
% return to four-dimensional Minkowski space, witly chosen
/ to be the Poincarénvariant vacuum,y chosen to be the

world line of an inertial observer with four-velocity? and
with €2 some constant null vector field. By Poincaneari-
ance we may writey(7)=(7,0,0,0) without loss of general-
ity; in this frame of reference, we writé?=(¢°,¢), with
€%=v2¢,. We have

FIG. 4. An example to illustrate the distinction between the d®k  (€3k,)? ~
AWEC and the ANEC. The shaded region consists of spacetime H(x,x")= (277) 20 e kal ), (3.9
points x with h(x®x,)<0. (Only one spatial dimension is shown.
The tensofT 5, obeys the AWEC along any timelike geodegicg.,
the dotted ling but fails to obey the ANEC on any null geodesic
through the origine.g., the solid ling

from which it follows that

d3k (eaka)2 (e
II. TIMELIKE WORLD LINE QNEls F(r,7)=9(ng(7 )f 2m? 2w

™)

Theorem 1.1 may appear to suggest that null-contracted 3.9
stress energy tensors are not subject to any constraints in
quantum field theory. This is by no means the case. Le&nd
(M,g) be any globally hyperbolic spacetime ard a
smooth null vector field defined on a tubular neighborhoodg (o — )
of a smooth timelike curve, parametrized by its proper time
7. Let g be any Hadamard state of the Klein-Gordon fiéld N ST ,
of massm=0. :f drdr 2m? 2w € 9(7)g(7")
Theorem IIl.1. For any smooth, real-valued, compactly

. . . d3k aka)2
supported function g, the inequality [31] - [ 2o (¢ - K)o+ )G (— o)
f dT( Tap: €a€b>w(,y(7_))g f _F(a’ d3k (¢ aka)z ,
(3.1) =) @GR 2w lOatel (3.6

holds for all Hadamard states of the Klein-Gordon field of
mass m, where normal ordering is performed relative to the”/
statewy and

where we have used the fact thgt—u) = g(u) sinceq is
real. Introducing polar coordinates abo@itand changing
variables fromk to = \k*+m?, we have

F(r,7)=9(n)g(7")

O 2
! )
X((favaq))(y(r))wb Vb'q))(?’(T/)»wo- Fla,—a) J dk—|g(a+ w)|2f d(cosb)
3.2 ><(w—kcos€)2
Remark Because the differentiated two-point function (£9)2
, dk + 3w?+k?
HXX) = ((£3V @) (x) (€° Vi @) (X)), (3.3 12 1272 f Ig(a 0)[*(3w )
is a distribution it is not cleaa priori that one can restrict it (60)2 f do(w?—m?) Y2402 —m?)
to the curvey as we have done in EB.2) [32]. Techniques T 12472
drawn from microlocal analysis provide sufficient conditions R 5
for this to be accomplished, which are satisfied for timeljke X[g(a+ )| 3.7

owing to the singularity properties of Hadamard states—see
Ref. [18] for more details on this point. However, the suffi- The right-hand side of the bour(@.1) is thus
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©da . (v3,)?% [~ . ) two-particle states in which the excited modes are those
1, —Fla,—a)=——7 5 fm dulg(u)| whose three-momenta lie in a cone centered around our cho-
sen null vector. We considered the limit of a sequence of
u T such states in which the three-momenta become arbitrarily
x de“’(‘*’ —m) (4o —m?), large while the radius of the cone shrinks to zero. Because
the dominant contribution arises from modes with large
(3.8 three-momenta, we expect this result to hold for massive
fields as well.
An interesting feature of our example is that the sampled
energy density along the null geodesic becomes unbounded
J’ d7(:Tap €2€°) ,(¥(7))9(7)? from below while the sequence of quantum states converges
to the vacuum state. We demonstrated how such behavior is
possible by considering an analogous example involving the
simple harmonic oscillator in ordinary quantum mechanics.
It was also shown that, as expected, the renormalized stress
In the massless case, we have the simpler expression energy in our class of states satisfies the ANEC.
As we have learned from Veralprivate communication,
f A7(:Tap: €2€°) , (¥(7))g(7)? based on a remark of Buchholour result may be under- _
stood as a consequence of the fact that, in any algebraic
(v3€,)2 [~ (v3€,)2 (= quantum field theory in Minkowski space of dimensidn
z—ﬁj duu4|g(u)|2=—ﬁ—J drg"(7)?,  >2 obeying a minimal set of reasonable conditig8g]
127 0 127 —» .. .
there are no nontrivial observables localized on any bounded
(3.10 null line segmen{35]. Given further reasonable conditions

(cf. [36]) this could provide a general argument for the non-

where we have used Parseval's theorem and the fact th@gistence of null world line QNEIs even for interacting field
|g(u)| is even. This takes the same form as the correspongpeories.

ing QWEI derived in[8] which reads

so the quantum inequality is

(v%€a)% (= 202 2\3/2
=-—53 dulg(uw)|“u(u—m2)>= (3.9
m

Our results imply that it is not possible to prove a singu-
1 w larity theorem, such as Penrose’s theoféiin by using a null
f d7(: Tapw2®:) ,((7)g(7)2=— 16 zf drg"(7)? world line QNEI instead of, say, the NEC or the ANEC.
TS Although our results have been proven only for flat space-
(3.19 time, we have no reason to believe that a null world line

in our present notation. For nonzero mass, the two bound@NE! is any more likely to exist in curved spacetime.

differ by more than just an overall factor. Singularity theorems such as Penrose’s theorem involve
To give a specific example, suppose that the focusing of null geodesics which generate the boundary
of the future of a closed trapped surface. The latter initiates

g(T):(2777-3)*1/4e*(l/4)(7'/7'o)2’ (3.12  convergence of a bundle of null rays, and then some bound

on the stress-tensor, such as the NEC, is required to maintain
so thatg(7)? is a normalized Gaussian with mean zero andthe focusing. Various sufficient conditions for focusing have
variancer,>0. For massless fields, we obtain been suggested in the literaty7—42. However, it should
ap .2 be pointed out thaho bound on the stress energy tensor
(v7€a) which is strong enough to ensure sufficient focusing to guar-
6477273 ' antee the existence of conjugate points on half-complete null
(3.13  geodesicqas required in the Penrose theojecould hold
everywhere in an evaporating black hole spacetime. Such a
%ound would be inconsistent with the existence of Hawking
evaporation43]. (See Sec. IV of Ref[24] for a more de-
tailed discussion of this pointTo obtain a singularity, how-
ever, it is only necessary that the required focusing condition
hold for at least ondrapped surface. It is somewhat difficult
to see how one would prove that such a trapped surface
We have shown, by explicitly constructing a counterex-would always exist. As suggested in Refg4], [44], in re-
ample, that quantum inequalities along null geodesics do naions of evaporating black hole spacetimes where the ANEC
exist in four-dimensional Minkowski spacetime, for the is violated, it may be possible to getmore limited Ql-type
massless minimally coupled scalar field. By contrast, it wadound that measures the degree of ANEC violation and
shown in Ref.[11] that such bounds do exist in two- which is also invariant under rescaling of the affine param-
dimensional flat spacetime. The quantum states used in owter. Alternatively, one might argue that on dimensional
analysis are superpositions of the vacuum and multimodgrounds, the curvature which promotes focusing scales as

[ dntTan e gt

at least for Hadamard states for which the integral on th
left-hand side converges absolutéBB]. We note that both
sides of this expression scale by a factor @f under
(3o (2,

IV. CONCLUSION
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|.~2, wherel. is the local proper radius of curvature, while proved using inequalities such as K8.1) is an open ques-
the energy densities produced by quantum fields typicallyion, which is currently under investigation.
scale only likel .~“. If this line of reasoning is correct, then
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