
PHYSICAL REVIEW D 67, 044003 ~2003!
Null energy conditions in quantum field theory

Christopher J. Fewster* and Thomas A. Roman†
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~Received 20 September 2002; published 10 February 2003!

For the quantized, massless, minimally coupled real scalar field in four-dimensional Minkowski space, we
show~by an explicit construction! that weighted averages of the null-contracted stress-energy tensor along null
geodesics are unbounded from below on the class of Hadamard states. Thus there are no quantum inequalities
along null geodesics in four-dimensional Minkowski spacetime. This is in contrast with the case for two-
dimensional flat spacetime, where such inequalities do exist. We discuss in detail the properties of the quantum
states used in our analysis, and also show that the renormalized expectation value of the stress energy tensor
evaluated in these states satisfies the averaged null energy condition~as expected!, despite the nonexistence of
a null-averaged quantum inequality. However, we also show that in any globally hyperbolic spacetime the
null-contracted stress energy averaged over atimelikeworldline doessatisfy a quantum inequality bound~for
both massive and massless fields!. We comment briefly on the implications of our results for singularity
theorems.
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I. INTRODUCTION

The field equations of general relativity have little or n
predictive power in the absence of some notion of what m
rics or stress-energy tensors are to be regarded as phys
reasonable. In classical general relativity it has proved p
itable to require the stress-energy tensor to satisfy one
more of the so-called energy conditions: in particular,
Hawking-Penrose singularity theorems@1,2# and the positive
mass theorem@3,4# are proved under such assumptions.

The present paper addresses the status of the null en
condition~NEC! in quantum field theory. The classical NE
is the requirement that the stress-energy tensorTab should
obeyTab,a,b>0 for all null vectors,a and at every space
time point. Although this condition is satisfied by many~but
not all @5,6#! classical matter models, including the min
mally coupled scalar field and the electromagnetic field, i
known, however, that this condition is violated by quantu
fields. In fact, the expectation̂Tab

ren,a,b&v of the renormal-
ized null-contracted stress-energy is unbounded from be
as a function of the quantum statev. Exactly the same phe
nomenon afflicts the weak energy condition~WEC! which,
classically, requires thatTabv

avb>0 for all timelike vectors
va. In this case, it is known that the renormalized ene
density is still subject to constraints on its averages al
timelike curves. For example, the massless real scalar fie
n-dimensional Minkowski space obeys@7,8#

E dt^:T00:&v~ t,0!g~ t !2>2cnE duunuĝ~u!u2 ~1.1!

for all Hadamard states@9# v and any smooth, real-value
compactly supported functiong, whereĝ is the Fourier trans-

*Electronic address: cjf3@york.ac.uk
†Permanent address: Department of Physics and Earth Scie

Central Connecticut State University, New Britai
CT 06050. Electronic address: roman@ccsu.edu
0556-2821/2003/67~4!/044003~11!/$20.00 67 0440
t-
lly

f-
or
e

rgy

s

w

y
g
in

form of g @see Eq.~2.3!#, and thecn are explicitly known
constants independent ofv and g. Such constraints are
known asquantum weak energy inequalities~QWEIs! and
appear to be the vestiges of the weak energy condition
quantum field theory@10#. Over the past decade, QWE
have been developed in a variety of circumstances@7,8,11–
17# and are known to hold for the minimally coupled sca
field, the Dirac field and the electromagnetic and Proca fie
in great generality@18–20#. The QWEIs also imply that the
averaged weak energy condition~AWEC!

E dt^:T00:&v~ t,0!>0 ~1.2!

holds at least for Hadamard statesv for which the integral
converges absolutely@21#.

It is natural to enquire whether similar vestiges of t
NEC persist in quantum field theory. This is particularly re
evant to attempts to generalize the singularity theorems
quantized matter fields as it is the NEC which is assumed
the Penrose theorem@1#. While the final stages of gravita
tional collapse presumably require a full theory of quantu
gravitation for their description, the early stages can certa
be treated within quantum field theory on a fixed curv
spacetime. The question to be addressed is whether an
tially contracting matter distribution will continue to do s
and it is here that the NEC~or its variants! appears in the
classical arguments. Accordingly, it is important to und
stand whether the NEC has an analogue in quantum fi
theory. For massless fields in two-dimensional Minkows
space, this question was answered affirmatively in Ref.@11#,
using a Lorentzian sampling function. The bound has
form

l0

p E
2`

`

dl
^:Tab : l al b&v„g~l!…

l21l0
2 >2

1

16pl0
2 , ~1.3!

for all l0.0 and a large class of states@22# v, whereg is an
affinely parametrized null geodesic with tangent vector,a

es,
©2003 The American Physical Society03-1
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5(dg/dl)a. It can be easily seen that this bound is invaria
under a rescaling of the affine parameter. If we now take
limit of Eq. ~1.3! asl0→`, which corresponds to samplin
the entire null geodesic, we get the ANEC@23#:

E
2`

`

dl^:Tab : l al b&v>0. ~1.4!

Reference@11# left open the question of whether an ana
gous QNEI exists in spacetime dimensions other than t
The techniques used there to obtain a timelike world line
in four dimensions could not be employed to derive a sim
QNEI, starting with null geodesicsab initio, because the
former derivation was based upon a mode expansion in
timelike observer’s rest frame. There are also technical pr
lems which obstruct the adaptation of the arguments of R
@18# to null world lines~see the remark following Theorem
III.1!. In addition, Ref.@11# noted a potential problem: an
such inequality involving an average along a null geode
would have to be invariant under rescaling of the affine
rameter@amounting to the replacementsl°l/s, l0°l0 /s
and ,a°s,a in Eq. ~1.3!# to be physically meaningful
While the left-hand side of Eq.~1.3! scales ass2, one might
expect~on dimensional grounds! that the right-hand side o
such a bound would behave likel0

2d , whered is the space-
time dimension, and therefore scale assd. This hints that the
extension of QNEIs to spacetime dimensionsd.2 might be
problematic.~Of course, these arguments would not apply
the presence of a mass or some other geometrical le
scale—see Ref.@24#.!

In this paper, we consider world line averages of the n
contracted stress-energy tensor of the form

^r~ f !&v5E dl^:Tab : l al b&v„g~l!…, ~1.5!

whereg~l! is a smooth causal curve and,a is a smooth null
vector field defined ong. First, in Sec. II we study the case i
which g is an affinely parametrized null geodesic in fou
dimensional Minkowski space with tangent vector,a

5(dg/dl)a. By an explicit construction, we show tha
^r( f )&v is unbounded from below asv varies among the
class of Hadamard states of the massless minimally cou
scalar field. Thus there are no null-world-line QNEIs in fou
dimensional Minkowski space. Although we consider on
the massless field, we comment that our results genera
directly to the massive case. Our construction involves a
quence of states, each of which is a superposition of
vacuum with a multimode two-particle state. A closely r
lated construction has recently been used in Ref.@25# to
prove the nonexistence of spatially averaged quantum
equalities in four-dimensional Minkowski space.

It would be incorrect, however, to conclude from th
above result that the null-contracted stress-energy tens
completely unconstrained in quantum field theory. In Sec.
we consider the averages^r( f )&v for smooth timelikeg in
an arbitrary globally hyperbolic spacetime and for a
smooth null vector field,a. For both massive and massle
fields, these quantities do obey lower bounds—which we
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timelike world line QNEIs—as a direct consequence of t
arguments used in Ref.@18#. We evaluate our bound explic
itly for the case of four-dimensional Minkowski space. Tak
together with the results of Sec. II, we see that large nega
values of the null-contracted stress-energy tensor on one
geodesic must be compensated by positive values on ne
boring geodesics, because the transverse extent of the n
tive values is constrained by timelike world line QNEIs.
the conclusion, we briefly speculate on the significance
these results for attempts to derive singularity theorems
quantized matter.

II. NONEXISTENCE OF NULL-WORLD-LINE QNEIs

A. Nonexistence result

We consider a massless minimally coupled real sca
field in (113)-dimensional Minkowski space, with signa
ture 1222. We employ units with\5c51. The quantum
field is given by

F~x!5E d3k

~2p!3~2v!1/2„a~k!e2 ikaxa
1a†~k!eikaxa

…,

~2.1!

in which ka5(v,k) with v5iki , the magnitude ofk. The
canonical commutation relations are

@a~k!,a~k8!#50,
~2.2!

@a~k!,a†~k8!#5~2p!3d~k2k8!,

and our convention for Fourier transformation is

f̂ ~u!5E dte2 iut f ~ t !. ~2.3!

Now let f be any smooth nonnegative function of compa
support, normalized so that

E dl f ~l!51, ~2.4!

and, for some fixed future-pointing null vector,a, let g~l!
be the null geodesicg(l)a5l,a. For simplicity, we will
assume that the three-vector part of,a has unit length~in our
frame of reference!, so,a5(1,ø) with iøi51. We will con-
sider the averaged quantity

^r~ f !&v5E dl f ~l!^:Tab :,a,b&v„g~l!…, ~2.5!

which corresponds to a weighted average of the n
contracted stress energy tensor alongg. If v is a Hadamard
state, the renormalized contracted stress tensor is a sm
function on spacetime, so the above integral will certain
converge. In order to establish a quantum null energy
equality, one would need to bound^r( f )&v from below asv
ranges over the class of Hadamard states; however, this i
possible, as we now show.

Theorem II.1. The quantitŷr( f )&v is unbounded from
below asv varies over the class of Hadamard states.
3-2
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Proof. We will construct a family of vector Hadamar
statesva @aP(0,1)# with the property that̂ r( f )&va

→
2` asa→0. We begin by choosing a fixedL0.0 such that
Re f̂ is non-negative on the interval@22L0,2L0#. To see
that this is possible, we observe that

f̂ ~0!5E dl f ~l!51, ~2.6!

which, by continuity, implies that Ref̂ is positive in some
neighborhood of the origin.

Next, let s and n be fixed positive numbers with 2n
13/2,s,2n12. For each aP(0,1), we define a
‘‘vacuum-plus-two-particle’’ vector

ca5NaF u0&1E d3k

~2p!3

d3k8

~2p!3 ba~k,k8!uk,k8&G , ~2.7!

whereNa is a normalization constant ensuringicai51 and

ba~k,k8!5asq~L2k!q~L2k8!

3xa~u!xa~u8!B~ka,a,ka8,a!~kk8!n21/2.

~2.8!

Here,q is the usual Heaviside step function,L5L0 /a will
be called the momentum cutoff and

xa~u!5H 1, cosu.12a,

0, otherwise,
~2.9!

where u ~respectively,u8) is the angle betweenk ~respec-
tively, k8) andø. We chooseB:R13R1→R to be ~a! sym-
metric @i.e., B(u,u8)5B(u8,u)]; ~b! jointly continuous inu
and u8; ~c! everywhere non-negative@26# and strictly posi-
tive nearu5u850; and~d! normalized so that

L0
4n12E

0

`

duE
0

`

du8uB~u,u8!u251. ~2.10!

~The prefactor ensures dimensional consistency.! An ex-
ample of a function meeting these requirements isB(u,u8)
5L0

2(2n11)e2(u1u8)/2. We wish to emphasize, however, th
there are many functions~and hence many vectorsca) with
the properties we require. We will useva to denote the state
induced byca so that^A&va

5^cauAca&.
Let us note various features of this family of states. Fi

the momentum cutoff ensures that no modes of momen
greater thanL5L0 /a are excited. Second, the effect of th
xa factors is to ensure that modes can only be excited if th
three-momenta make an angle less than cos21(12a) with the
directionø. The excited mode three-momenta therefore lie
the solid sector formed by the intersection of a ball of rad
L0 /a ~center the origin! with a cone of opening angle
cos21(12a) aboutø ~with apex at the origin!. As a→0, this
solid sector lengthens and tightens up along the directioø,
so the four-momenta of excited modes become more
more parallel to,a, the tangent vector to the null line alon
which we are averaging. See Fig. 1.
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The third feature of interest concerns the amplitude of
two-particle contribution. Choosing the normalization co
stant to be

Na5F112E d2k

~2p!3

d3k8

~2p!3 uba~k,k8!u2G21/2

, ~2.11!

we note that, for a null vectorka5(k,k), the quantity,aka
appearing in Eq.~2.8! is equal tok(12cosu), whereu is the
angle betweenø and k. We therefore perform thek and k8
integrals in Eq.~2.11! by adopting spherical polar coord
nates aboutø, integrating out the trivial azimuthal depen
dence and then changing variables tob512cosu, b851
2cosu8. This yields

E d3k

~2p!3

d3k8

~2p!3 uba~k,k8!u2

5
a2s

~2p!4 E
0

L

dkE
0

L

dk8~kk8!2n11

3E
0

a

dbE
0

a

db8uB~kb,k8b8!u2

5
a2s2224n

~2p!4 E
0

L0
dvE

0

L0
dv8~vv8!2n

3E
0

v
duE

0

v8
du8uB~u,u8!u2

<
a2~s22n21!

~2p!4~2n11!2 , ~2.12!

where we have made the further changes of variableu
5kb, u85k8b8, v5ka, v85k8a and used the normaliza
tion property Eq.~2.10! of B. Becauses.2n13/2.2n
11, we see that the right-hand side of Eq.~2.12! tends to
zero asa→0. By Eq. ~2.11! we now haveNa→1 as a
→0; since the left-hand side of Eq.~2.12! is equal to
iNa

21ca2u0&i2, we also see that the statesca are in fact
converging to the vacuum vectoru0&. As we shall see, this

FIG. 1. ~a! Only modes lying ‘‘inside the cone’’@i.e., those
whose three-momenta make an angle less thanumax5cos21(12a)
with ø# are excited;~b! the cones lengthen and tighten aroundø as
a→0.
3-3
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does not entail that the normal-ordered energy density is c
verging to zero.~See also the discussion in Sec. II C.!

The remaining properties of our family of states conce
the corresponding normal ordered two-point functions, giv
by

^:F~x!F~x8!:&va
52Na

2 ReE d3k

~2p!3

d3k8

~2p!3

1

Avv8

3@ca~k,k8!ei ~xaka2x8aka8!

1ba~k,k8!e2 i ~xaka1x8aka8!#, ~2.13!

where

ca~k,k8!52E d3k1

~2p!3
ba~k1 ,k!ba~k1 ,k8!. ~2.14!

Using the same changes of variable as above, we find

ca~k,k8!5a2s2~2n11!q~L2k!q~L2k8!

3xa~u!xa~u8!C~ka,a,ka8,a!~kk8!n21/2,

~2.15!

whereC(u,u8)5C(u8,u) is given by

C~u,u8!52a2n11E d3k1

~2p!3 q~L2k1!xa~u1!

3~k1
2!n21/2B~k1

a,a ,u!B~k1
a,a ,u8!

5
a2n11

2p2 E
0

L

dk1k1
2n11E

0

a

dbB~k1b1 ,u!

3B~k1b1 ,u8!

5
1

2p2 E
0

L0
dvv2nE

0

v
du1B~u1 ,u!B~u1 ,u8!. ~2.16!

Rearranging the order of integration, this becomes

C~u,u8!5
1

2p2~2n11!
E

0

L0
du1u1

2n11B~u1 ,u!B~u1 ,u8!

~2.17!

and we may conclude that~i! C is jointly continuous inu and
u8 by joint continuity ofB and compactness of@0,L0#; ~ii ! C
has the same engineering dimension asB; ~iii ! C(u,u8)>0
for all u, u8 and, crucially,~iv! that the exponent ofa in
ca(k,k8) differs from that in the corresponding expressi
for ba(k,k8). Furthermore, since bothba andca have mo-
mentum cutoffs, it is evident that the normal ordered tw
point function is smooth~because one may differentiate u
der the integral sign as often as required to obtain fin
derivatives!. Accordingly, eachva is a Hadamard state.

The null-contracted normal ordered energy dens
^r( f )&va

is obtained by differentiating the normal ordere
two-point function
04400
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^:Tab~x!:,a,b&va
5^:,a

“aF~x!,b
“bF~x!:&va

52Na
2 ReE d3k

~2p!3

d3k8

~2p!3

,aka,bkb8

Avv8

3@ca~k,k8!eixa~ka2ka8!

2ba~k,k8!e2 ixa~ka1ka8!#, ~2.18!

and substituting into Eq.~2.5!. Noting, for anyKa , that

E dl f ~l!e2 ig~l!aKa5 f̂ ~,aKa!, ~2.19!

we may write^r( f )&va
5r1( f )1r2( f ), where

r1~ f !52Na
2 ReE d3k

~2p!3

d3k8

~2p!3

,aka,bkb8

Avv8

3 f̂ ~,aka82,aka!ca~k,k8! ~2.20!

and

r2~ f !522Na
2 ReE d3k

~2p!3

d3k8

~2p!3

,aka,bkb8

Avv8

3 f̂ ~,aka1,aka8!ba~k,k8!. ~2.21!

Our aim is now to show thatr1( f )→0 andr2( f )→2` in
the limit a→0. Taking the dominant contributionr2( f ) first,
and making the same changes of variable as before we
calculate

r2~ f !52
Na

2as

~2p!4 ReE
0

L

dkE
0

L

dk8~kk8!n12E
0

a

db

3E
0

a

db8bb8B~kb,k8b8! f̂ ~kb1k8b8!

52
Na

2as

~2p!4 E
0

L

dkE
0

L

dk8~kk8!nw~ka,k8a!

52
Na

2as22~n11!

~2p!4 E
0

L0
dvE

0

L0
dv8~vv8!nw~v,v8!,

~2.22!

where

w~v,v8!5ReE
0

v
duE

0

v8
du8uu8B~u,u8! f̂ ~u1u8!.

~2.23!

Recalling that Ref̂ is strictly positive on the interva
@22L0,2L0#, and thatB(u,u8) is non-negative and strictly
positive for smallu, u8, it follows that w(v,v8) is non-
negative forv, v8P@0,L0# and that the right-hand side o
Eq. ~2.22! is strictly negative. We therefore haver2( f )→
2` in the limit a→0, becauses,2n12 andNa→1.
3-4
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Turning to the remaining contributionr1( f ), we may use
a similar analysis to obtain

r1~ f !5
Na

2a2s2~4n13!

~2p!4 E
0

L0
dvE

0

L0
dv8~vv8!nc~v,v8!,

~2.24!

where

c~v,v8!5ReE
0

v
duE

0

v8
du8uu8C~u,u8! f̂ ~u82u!.

~2.25!

Since C is jointly continuous, the double integrals in Eq
~2.24! and~2.25! exist and are finite; we may now conclud
that r1( f )→0 in the limit a→0, becauses.2n13/2 and
Na→1.

Summarizing, we have shown that^r( f )&va
→2` asa

→0. j
At this point it is worth considering the difference b

tween the present situation and that studied in Ref.@11#, in
which a QNEI was obtained for massless fields in tw
dimensional Minkowski space. The crucial difference is th
in two-dimensional spacetime, the one-momenta of any
field modes are either parallel or antiparallel. The mod
which propagate in the same direction as the chosen
geodesic contribute nothing to the integral~due to factors of
the form ,aka). The only contribution comes from mode
moving in the opposite direction, and turns out to
bounded. By contrast, the proof of Theorem II.1 makes
sential use of field modes which are almost, but not exac
parallel to,a.

B. An explicit calculation

To make the foregoing result more explicit, we conside
simple example: settingn51, we define

B~u,u8!5L0
24q~L02u!q~L02u8!, ~2.26!

which satisfies properties~a!, ~c! and ~d! required in the
proof of Theorem II.1, but not the joint continuity proper
~b!. Inspection of the proof reveals, however, that this pro
erty was only used to establish the existence of certain i
grals arising in the derivation, all of which may easily b
seen to exist in this case.

The calculations are simplified by the fact thatB(u,u8)
factorizes into functions ofu andu8. In particular, one may
calculate

C~u,u8!5
1

24p2L0
4 q~L02u!q~L02u8!, ~2.27!

and

Na5S 11
a2s26

128p4D 21/2

. ~2.28!

Furthermore, becauseB is also real-valued,
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^r~x!&va
5

2Na
2

L0
4 ReS uFa~x!u2

a2s23

24p2 2Fa~x!2asD ,

~2.29!

where herer(x) represents theunsampledenergy density at
positionx, and

Fa~x!5E d3k

~2p!3

,aka

k1/2 q~L2k!xa~u!kn21/2e2 ikaxa
.

~2.30!

In Fig. 2, we plot^r(t,0,0,z)&va
for the case,a5(1,0,0,1),

in which Eq.~2.29! simplifies to

^r~ t,0,0,z!&va
5

2Na
2

16p4L0
4 ReS uja~ t,z!u2

a2s27

24p2

2ja~ t,z!2as24D , ~2.31!

where

ja~ t,z!5E
0

L0
dv e2 iv~ t2z!/aF iv2

z
e2 ivz1

v
z2 ~e2 ivz21!G .

~2.32!

These plots share the common feature of an oscillat
fringe pattern, with dark regions representing negative val
for ^r(t,0,0,z)&va

and light regions representing positive va
ues. It is no coincidence that these plots resemble inter
ence patterns: the dominant contribution arises precis
from interference between the vacuum and two-particle co
ponents ofca . The fringes are centered near the null r
parallel to,a running from the lower left to upper right cor
ners of the figures, and in fact point along spacelike dir
tions which become more parallel to,a as a is decreased
~moving from the left-hand to the right-hand figure in ea
row!. That these directions cannot be timelike follows fro
the existence of the timelike world line QNEIs discussed
Sec. III–an observer cannot ‘‘surf’’ along a negative ener
trough for an indefinite length of time. See Ref.@27# for
similar examples and discussion. The decreasing fringe s
ration ~as eithera decreases orL0 increases! indicates a
more highly oscillatory energy density.

Further insight may be gained from Fig. 3, in which w
plot ^:Tab,a,b:&va

along~a! the null line~l, 0, 0,l! and~b!

the timelike line (t,0,0,0). Along the null line, the effect o
decreasinga is essentially to modify the amplitude of th
curve while leaving its shape substantially unaltered. Fo
sampling functionf supported within the central trough, it i
clear that ^r( f )&va

→2` as a→0, in accordance with
Theorem II.1. Along the timelike curve, however, decreas
a increases both the amplitude and frequency of the osc
tions. Averaged against a fixed sampling function, one mi
expect that the rapid oscillations would tend to cancel,
that the averages* f (t)^r(t,0,0,0)&va

could be bounded be
low. This is borne out by the results of Sec. III below.
3-5
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FIG. 2. Density plots of̂ r(t,0,0,z)&va
for four different parameter choices. The top row corresponds toL051 while the lower row has

L052; the left-hand column hasa50.2, while the right-hand column hasa50.05. In all four plots,s53.75. Dark and light areas represe
negative and positive values, respectively.
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The behavior of the energy density in the vicinity of o
chosen null geodesic, e.g., as exhibited in Fig. 2, is alm
exactly analogous to that found in the analysis of Ref.@25#
for spatially averaged QIs, in the following sense. There
was shown that the sampled energy density could be
boundedly negative in a spatially compact region ont
5const surface, in four-dimensional Minkowski spacetim
However, for the ordinary world line QIs to hold, the ener
density must fluctuate wildly as one moves off thet5const
surface. In the present paper, we find a similar result for n
rays. For example, the central trough in Fig. 3~a! is a com-
pactly supported region of the null geodesic, analogous
the compactly supported spatially sampled region conside
in Ref. @25#, where the energy density can be made unbou
edly negative.~Of course, in the null case we are consideri
a one-dimensional average along a line, as opposed
three-dimensional spatial average.! As we move off the null
geodesic, as shown in Fig. 3~b! and Fig. 2, the energy densit
oscillates rapidly in sign, which must happen if the wor
04400
st

it
n-

.

ll

to
ed
d-

a

line QIs are to be satisfied. We speculate that a rotation of
plots in Fig. 2, which makes the white and dark lines ho
zontal, would yield a representative picture of the behav
in the spatial case. The null and spatial cases seem intuiti
to be very similar.

C. Convergence to the vacuum state

We have seen that the massless scalar field in fo
dimensional Minkowski spacetime does not satisfy nontriv
null world line quantum inequalities. As described abov
this was shown by considering a sequence of vacuum-p
two-particle states in which the three-momenta of exci
modes become more and more parallel to the spatial partø of
the null vector,a as we take the momentum cutoff to infin
ity. A perhaps puzzling feature of our sequence is tha
converges in Fock space to the vacuum vector. How, th
can the energy density diverge?
3-6
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FIG. 3. Plots of the null-contracted stress-energy along~a! the null geodesicl°^r(l,0,0,l)&va
for a50.2 ~dotted! and a50.005

~solid!; ~b! the timelike curvet°^r(t,0,0,0)&va
for a50.2 ~dotted! anda50.05 ~solid!. In all cases,L051, s53.75.
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The answer to this question resides in the fact that
averaged energy density is an unbounded quadratic form
the convergence of a sequence of states in the Hilbert s
norm does not imply the convergence of the correspond
expectation values. As a more familiar example, consider
quantum mechanics of a single harmonic oscillator with
gular frequencyv. Let

fn5u0&1n21/4un&, ~2.33!

wheren51,2,3,... andun& is a normalized eigenstate of en
ergy \v(n11/2). Noting that ifni2511n21/2, the ex-
pected energy is

^H&fn
5

1

2
\v

11n21/2~2n11!

11n21/2 5Fn1/22
1

2
1O~n21/2!G\v

~2.34!

and therefore diverges asn→`, while fn manifestly con-
verges to the ground stateu0&, becauseifn2u0&i5n21/4

→0.

D. Consistency with the ANEC

Although, as we have seen, null world line QNEIs do n
exist, there is nonetheless a nontrivial restriction on the n
contracted stress energy, namely the averaged null en
condition ~ANEC!

E dl^:Tab :,a,b&v„g~l!…>0 ~2.35!

established by Klinkhammer@28# at least for a dense set o
states in the Fock space of the Minkowski vacuum, and
Wald and Yurtsever@29# for a large subclass of Hadama
states@30#. As a consistency check, we now show explici
that each stateva obeys the ANEC, regarded as the requi
ment that

lim inf
l0→1`

1

f ~0!
E dl f ~l/l0!^:Tab :,a,b&va

„g~l!…>0

~2.36!
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for any f satisfying the hypotheses stated above Theor
II.1, and f (0)Þ0. Now l° f (l/l0) has Fourier transform

v°l0 f̂ (l0v), which converges to 2p f (0)d(v) asl0→`.
Replacingf̂ by this distribution in Eqs.~2.23! and~2.25!, we
see that, in the limitl0→`,

w~v,v8!→2p f ~0!ReE
0

v
duE

0

v8
du8uu8B~u,u8!d~u1u8!

50, ~2.37!

while

c~v,v8!→2p f ~0!ReE
0

v
duE

0

v8
du8uu8C~u,u8!d~u2u8!

52p f ~0!E
0

min$v,v8%
duu2C~u,u!>0, ~2.38!

from which Eq.~2.36! follows. This may also be confirmed
by a more careful analysis.

At this point, we take the opportunity to clarify an issu
relating to the derivation of the ANEC given in Ref.@11#, in
which it was suggested that~in Minkowski space! the ANEC
could be derived by first taking the infinite sampling tim
limit of the QWEI to obtain the AWEC, and then taking th
null limit to conclude that the ANEC holds. However, th
following example shows that the second step cannot be
complished without further assumptions: define a funct
h(z) such thath(z) equals11 for uzu.2, and21 for uzu
,1 with h(z) otherwise smooth and bounded between61.
Settingta5(1,0),

Tab~x!5tatbh~xcxc! ~2.39!

is a symmetric tensor which satisfies the AWEC along a
timelike geodesic, but fails to satisfy the ANEC along a
null generator of the light cone at the origin. See Fig.
Although it is not clear to us whether aconservedtensor field
could display this behavior, our example shows—even
Minkowski space—that the ANEC cannot be obtained fro
the AWEC without more assumptions than used in Ref.@11#.
3-7
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III. TIMELIKE WORLD LINE QNEIs

Theorem II.1 may appear to suggest that null-contrac
stress energy tensors are not subject to any constrain
quantum field theory. This is by no means the case.
(M ,g) be any globally hyperbolic spacetime and,a a
smooth null vector field defined on a tubular neighborho
of a smooth timelike curveg, parametrized by its proper tim
t. Let v0 be any Hadamard state of the Klein-Gordon fieldF
of massm>0.

Theorem III.1. For any smooth, real-valued, compac
supported function g, the inequality [31]

E dt^:Tab :,a,b&v„g~t!…g~t!2>2E
0

` da

p
F̂~a,2a!

~3.1!

holds for all Hadamard statesv of the Klein-Gordon field of
mass m, where normal ordering is performed relative to
statev0 and

F~t,t8!5g~t!g~t8!

3^~,a
“aF!„g~t!…~,b8

“b8F!„g~t8!…&v0
.

~3.2!

Remark. Because the differentiated two-point function

H~x,x8!5^~,a
“aF!~x!~,b8

“b8F!~x8!&v0
~3.3!

is a distribution it is not cleara priori that one can restrict i
to the curveg as we have done in Eq.~3.2! @32#. Techniques
drawn from microlocal analysis provide sufficient conditio
for this to be accomplished, which are satisfied for timelikeg
owing to the singularity properties of Hadamard states—
Ref. @18# for more details on this point. However, the suf

FIG. 4. An example to illustrate the distinction between t
AWEC and the ANEC. The shaded region consists of spacet
points x with h(xaxa),0. ~Only one spatial dimension is shown!
The tensorTab obeys the AWEC along any timelike geodesic~e.g.,
the dotted line! but fails to obey the ANEC on any null geodes
through the origin~e.g., the solid line!.
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cient conditions would not be satisfied ifg was null, which
explains why one cannot derive null world line QNEIs usi
the arguments of Ref.@18# ~although this does not in itsel
demonstrate the nonexistence of such bounds!.

Proof. The argument is identical to that used for th
QWEI derived in Ref.@18#, in which the averaged quantit
was^:Tab :vavb&v ~whereva is the tangent vector tog!. We
refer to Ref.@18# for the details.j

The above bound can be made more quantitative if
return to four-dimensional Minkowski space, withv0 chosen
to be the Poincare´ invariant vacuum,g chosen to be the
world line of an inertial observer with four-velocityva and
with ,a some constant null vector field. By Poincare´ invari-
ance we may writeg(t)5(t,0,0,0) without loss of general
ity; in this frame of reference, we write,a5(,0,ø), with
,05va,a . We have

H~x,x8!5E d3k

~2p!3

~,aka!2

2v
e2 ika~xa2x8a!, ~3.4!

from which it follows that

F~t,t8!5g~t!g~t8!E d3k

~2p!3

~,aka!2

2v
e2 iv~t2t8!

~3.5!

and

F̂~a,2a!

5E dtdt8E d3k

~2p!3

~,aka!2

2v
e2 i ~v1a!~t2t8!g~t!g~t8!

5E d3k

~2p!3

~,aka!2

2v
ĝ~v1a!ĝ~2v2a!

5E d3k

~2p!3

~,aka!2

2v
uĝ~a1v!u2, ~3.6!

where we have used the fact thatĝ(2u)5ĝ(u) sinceg is
real. Introducing polar coordinates aboutø and changing
variables fromk to v5Ak21m2, we have

F̂~a,2a!5
~,0!2

8p2 E
0

`

dk
k2

v
uĝ~a1v!u2E

21

1

d~cosu!

3~v2k cosu!2

5
~,0!2

12p2 E
0

`

dk
k2

v
uĝ~a1v!u2~3v21k2!

5
~,0!2

12p2 E
m

`

dv~v22m2!1/2~4v22m2!

3uĝ~a1v!u2. ~3.7!

The right-hand side of the bound~3.1! is thus

e

3-8



th
n

n

n

th

x
n
e
a
-
o

od

ose
cho-

of
rily

use
ge
ive

led
ded

rges
or is
the
cs.
tress

-
raic

ded
s
n-
ld

u-

.
ce-
ne

lve
ary
tes
und
tain
ve

or
ar-
null

h a
ing

ion
lt
ace

EC

nd
m-
al
as

NULL ENERGY CONDITIONS IN QUANTUM FIELD THEORY PHYSICAL REVIEW D67, 044003 ~2003!
2E
0

` da

p
F̂~a,2a!52

~va,a!2

12p3 E
m

`

duuĝ~u!u2

3E
m

u

dv~v22m2!1/2~4v22m2!,

~3.8!

so the quantum inequality is

E dt^:Tab :,a,b&v„g~t!…g~t!2

>2
~va,a!2

12p3 E
m

`

duuĝ~u!u2u~u22m2!3/2. ~3.9!

In the massless case, we have the simpler expression

E dt^:Tab :,a,b&v„g~t!…g~t!2

>2
~va,a!2

12p3 E
0

`

duu4uĝ~u!u252
~va,a!2

12p2 E
2`

`

dtg9~t!2,

~3.10!

where we have used Parseval’s theorem and the fact
uĝ(u)u is even. This takes the same form as the correspo
ing QWEI derived in@8# which reads

E dt^:Tabv
avb:&v„g~t!…g~t!2>2

1

16p2 E
2`

`

dtg9~t!2

~3.11!

in our present notation. For nonzero mass, the two bou
differ by more than just an overall factor.

To give a specific example, suppose that

g~t!5~2pt0
2!21/4e2~1/4!~t/t0!2

, ~3.12!

so thatg(t)2 is a normalized Gaussian with mean zero a
variancet0.0. For massless fields, we obtain

E dt^:Tab :,a,b&v„g~t!…g~t!2>2
~va,a!2

64p2t0
4 ,

~3.13!

at least for Hadamard states for which the integral on
left-hand side converges absolutely@33#. We note that both
sides of this expression scale by a factor ofs2 under
,a°s,a.

IV. CONCLUSION

We have shown, by explicitly constructing a countere
ample, that quantum inequalities along null geodesics do
exist in four-dimensional Minkowski spacetime, for th
massless minimally coupled scalar field. By contrast, it w
shown in Ref. @11# that such bounds do exist in two
dimensional flat spacetime. The quantum states used in
analysis are superpositions of the vacuum and multim
04400
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two-particle states in which the excited modes are th
whose three-momenta lie in a cone centered around our
sen null vector. We considered the limit of a sequence
such states in which the three-momenta become arbitra
large while the radius of the cone shrinks to zero. Beca
the dominant contribution arises from modes with lar
three-momenta, we expect this result to hold for mass
fields as well.

An interesting feature of our example is that the samp
energy density along the null geodesic becomes unboun
from below while the sequence of quantum states conve
to the vacuum state. We demonstrated how such behavi
possible by considering an analogous example involving
simple harmonic oscillator in ordinary quantum mechani
It was also shown that, as expected, the renormalized s
energy in our class of states satisfies the ANEC.

As we have learned from Verch~private communication,
based on a remark of Buchholz! our result may be under
stood as a consequence of the fact that, in any algeb
quantum field theory in Minkowski space of dimensiond
.2 obeying a minimal set of reasonable conditions@34#
there are no nontrivial observables localized on any boun
null line segment@35#. Given further reasonable condition
~cf. @36#! this could provide a general argument for the no
existence of null world line QNEIs even for interacting fie
theories.

Our results imply that it is not possible to prove a sing
larity theorem, such as Penrose’s theorem@1#, by using a null
world line QNEI instead of, say, the NEC or the ANEC
Although our results have been proven only for flat spa
time, we have no reason to believe that a null world li
QNEI is any more likely to exist in curved spacetime.

Singularity theorems such as Penrose’s theorem invo
the focusing of null geodesics which generate the bound
of the future of a closed trapped surface. The latter initia
convergence of a bundle of null rays, and then some bo
on the stress-tensor, such as the NEC, is required to main
the focusing. Various sufficient conditions for focusing ha
been suggested in the literature@37–42#. However, it should
be pointed out thatno bound on the stress energy tens
which is strong enough to ensure sufficient focusing to gu
antee the existence of conjugate points on half-complete
geodesics~as required in the Penrose theorem! could hold
everywhere in an evaporating black hole spacetime. Suc
bound would be inconsistent with the existence of Hawk
evaporation@43#. ~See Sec. IV of Ref.@24# for a more de-
tailed discussion of this point.! To obtain a singularity, how-
ever, it is only necessary that the required focusing condit
hold for at least onetrapped surface. It is somewhat difficu
to see how one would prove that such a trapped surf
would always exist. As suggested in Refs.@24#, @44#, in re-
gions of evaporating black hole spacetimes where the AN
is violated, it may be possible to get a~more limited! QI-type
bound that measures the degree of ANEC violation a
which is also invariant under rescaling of the affine para
eter. Alternatively, one might argue that on dimension
grounds, the curvature which promotes focusing scales
3-9
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l c
22, wherel c is the local proper radius of curvature, whi

the energy densities produced by quantum fields typic
scale only likel c

24. If this line of reasoning is correct, the
one might expect the breakdown of the energy condition
only affect the validity of the singularity theorems whenl c
5 l Planck @43#.

In this paper, we also showed that—in general globa
hyperbolic spacetimes—averages of null-contracted str
energy of massive and massless fields alongtimelikecurves
are constrained by quantum inequalities. Large negative
ergy densities concentrated along a null geodesic must th
fore be compensated by large positive energy densities
neighboring null geodesics. This is reminiscent of the tra
verse smearing employed by Flanagan and Wald@45# in their
study of the ANEC in semiclassical quantum gravity. Su
transversely smeared observables also evade the Buch
Verch argument mentioned above. Whether physically in
esting global results, such as singularity theorems, can
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proved using inequalities such as Eq.~3.1! is an open ques-
tion, which is currently under investigation.
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