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Rotating quantum thermal distribution
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~Received 11 November 2002; published 7 February 2003!

We show that the rigidly rotating quantum thermal distribution on flat space-time suffers from a global
pathology which can be cured by introducing a cylindrical mirror if and only if it has a radius smaller than that
of the speed-of-light cylinder. When this condition is met, we demonstrate numerically that the renormalized
expectation value of the energy-momentum stress tensor corresponds to a rigidly rotating thermal bath up to a
finite correction except on the mirror where there are the usual Casimir divergences.
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I. INTRODUCTION

In a recent investigation of the rotating quantum vacuu
Davieset al. @1# uncovered a remarkable issue involving t
speed-of-light cylinder of flat space-time. A particle detec
rotating at the same angular velocity as this vacuum fails
remain inert in unbounded space-time and remains i
when the space-time is bounded by an infinite cylindri
mirror only if the mirror has a radius less than that of t
speed-of-light cylinder. It is only in this case that the conc
of a rotating vacuum is unambiguously defined. In t
present article, we attempt to extend this discussion of r
tion to the problem of defining a rigidly rotating quantu
thermal distribution. Whereas we might have expected
this distribution would be pathological only on and outsi
the speed-of-light cylinder, in fact we find that it is path
logical almost everywhere on the unbounded space-time
likewise on the space-time bounded by a cylindrical mir
except when the mirror has a radius less than that of
speed-of-light cylinder.

This problem is closely related to the definition of
Hartle-Hawking vacuum on Kerr space-time. In particul
on the asymptotically flat region of the space-time for
black hole which is rotating arbitrarily slowly, the contribu
tions made to the field by the upgoing modes become ne
gible and when these are discarded the anticommutator f
tion associated with the Hartle-Hawking vacuum of Ref.@2#
coincides with the thermal distribution considered here.

II. THE DISTRIBUTION ON UNBOUNDED SPACE-TIME

We first introduce a cylindrical coordinate syste
$t1 ,R,w1 ,z% rigidly rotating at a fixed angular velocityV;
this is related to the usual cylindrical Minkowski coordina
system$t,R,w,z% by the transformation

t15t, w15w2Vt. ~2.1!

These coordinates are appropriate to the discussion of rig
rotating observers~RRO’s! in flat space-time. These ar
analogous to observers corotating with the horizon in K

*Electronic address: Gavin.Duffy@ucd.ie
†Electronic address: ottewill@relativity.ucd.ie
0556-2821/2003/67~4!/044002~5!/$20.00 67 0440
,

r
o
rt
l

t

a-

at

nd
r
e

,

li-
c-

ly

r

space-time. The scalar wave equation is separable in t
coordinates. Indeed the corresponding positive Klein-Gord
norm modes

ũṽkm5
1

A8p2
e2 i ṽt11 imw11 ikzJm@A~ṽ1mV!22k2R#,

~2.2!

may be obtained from the standard modes of Minkow
space-time in cylindrical coordinates

uvkm5
1

A8p2
e2 ivt1 imw1 ikzJm~Av22k2R! ~2.3!

by the identification

ṽ5v2mV. ~2.4!

Since it is the norms not the frequencies of the RRO mo
which determine the commutation relations of the associa
creation and annihilation operators, the rotating vacuum
ively coincides with the conventional vacuum of Minkows
space-time.

The thermal distribution at inverse temperatureb and rig-
idly rotating at angular velocityV will be described by the
density operator

r̂15e2bĤ1, ~2.5!

with the Hamiltonian

Ĥ15 i
]

]t1
. ~2.6!

The thermal anticommutator functionG(1)
b associated with

this distribution is therefore characterized by the condit
@3#

G(1)
b ~ t1 ,x;t18 ,x8!5G(1)

b ~ t11 ib,x;t18 ,x8!. ~2.7!

It can be checked that at least formally this condition is s
isfied by the anticommutator function defined by the mo
sum
©2003 The American Physical Society02-1



e

th

t

th
id

s
at
a

th

ti

v
he
s

the

n-
ncy

f

.
ero

r,
with
tion
ted

ero
rre-
of

l-
th
se
sults
ian
n

DUFFY AND OTTEWILL PHYSICAL REVIEW D 67, 044002 ~2003!
G(1)
b ~x,x8!5

1

8p2 (
m52`

` E
2`

`

dvE
0

v

dk cothS bṽ

2
D

3eim(w2w8)1 ik(z2z8)Re@e2 iv(t2t8)#

3Jm~Av22k2R!Jm~Av22k2R8!. ~2.8!

As the energyṽ as measured byĤ1 tends towards zero, th
density of states factor coth(bṽ/2) becomes infinite although
the modes themselves remain nonzero whenevermÞ0.
These modes clearly make divergent contributions to
mode sum~2.8! except when eitherR or R8 is zero. The
anticommutator functionG(1)

b is thus pathological excep
when at least one of the two points is on thez axis. In Ref.
@4#, a similar pathology was noted in the mode sum for
anticommutator function of the Hartle-Hawking state cons
ered in Ref.@2#.

III. THE DISTRIBUTION WITHIN
AN INFINITE CYLINDER

We now introduce a cylindrical mirror of arbitrary radiu
R0. For brevity, we only treat the case of a field which s
isfies Dirichlet conditions on this cylinder. Introducing
nondimensional radial variableR̄5R/R0, a complete set of
orthonormal solutions to the field equation subject to
boundary conditions is

ukmn5
1

2pR0AuvkmnuuJm11~jmn!u

3e2 ivkmnt1 imw1 ikzJm~jmnR̄!, ~3.1!

where

vkmn56Ajmn
2

R0
2

1k2 ~3.2!

andjmn denotes thenth positive zero ofJm . The normaliza-
tion factor has been calculated by making use of an iden
for the Bessel functions~Ref. @5#, see p. 765!. The modes
which have positive norm are precisely those which ha
positive frequencyv. The vacuum state associated with t
field when it is expanded in terms of this set of modes ha
anticommutator function which is given by the mode sum

G(1)~x,x8!5 (
m52`

`

(
n51

` E
2`

`

dkeim(w2w8)1 ik(z2z8)

3
Jm~jmnR̄!Jm~jmnR̄8!

4p2R0
2vkmnJm11

2 ~jmn!
2 Re@e2 ivkmn(t2t8)#.

~3.3!

The anticommutator function
04400
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a

G(1)
b ~x,x8!5 (

m52`

`

(
n51

` E
2`

`

dk cothS bṽkmn

2
D

3eim(w2w8)1 ik(z2z8)
Jm~jmnR̄!Jm~jmnR̄8!

4p2R0
2vkmnJm11

2 ~jmn!

32 Re@e2 ivkmn(t2t8)# ~3.4!

is associated with a thermal distribution described by
density operator~2.5! with Hamiltonian ~2.6!. This mode
sum suffers from a similar pathology to that on the u
bounded space-time unless there are no positive freque
modes for whichṽkmn is zero. It is a well known property o
the zeros ofJm thatjm1.umu ~Ref. @6#, see Sec. 15.3! and so
we see from Eq.~3.2! that if R0,V21, no such modes exist
On the other hand, the asymptotic behavior of this first z
is ~Ref. @7#, see p. xviii!

jm1;m11.85575m1/3, ~m→`!, ~3.5!

from which we see that ifR0.V21, there are modes of this
type for all sufficiently largem. It follows that the mode sum
given in Eq.~3.4! is well behaved if and only if the mirror
lies within the speed-of-light cylinder.

IV. THE MEASUREMENTS OF AN RRO

When the mirror lies inside the speed-of-light cylinde
static observers and RRO’s both make measurements
respect to the vacuum state whose anticommutator func
is given in Eq.~3.3!. These measurements can be calcula
from

G(1)
b ~x,x8!2G(1)~x,x8!

5 (
m52`

`

(
n51

` E
2`

`

dk
1

ebṽkmn21
eim(w2w8)1 ik(z2z8)

3
Jm~jmnR̄!Jm~jmnR̄8!

4p2R0
2vkmnJm11

2 ~jmn!
2 Re@e2 ivkmn(t2t8)#. ~4.1!

We can derive from this a set of expressions for the nonz
components of the energy-momentum stress tensor co
sponding to the the conformally invariant field, the details
which can be found in Ref.@8#. The mode by mode cance
lation of the high frequency divergences which afflict bo
anticommutator functions in the coincident limit makes the
expressions amenable to numerical analysis and the re
are shown in Fig. 1. They are compared with the Planck
forms corresponding to a rigidly rotating thermal distributio
at temperatureT which are
2-2
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FIG. 1. The graphs are given
in units in whichR0, the radius of
the cylinder, is unity. The tem-
perature isT510/R0 and the an-
gular velocity isV50.5/R0. The
dashed line is a plot of the valu
for a rigidly rotating thermal dis-
tribution ~4.2!–~4.7!.
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^f2&Planck
b 5

~gT!

12
, ~4.2!

^Tt
t&Planck

b 52
p2

90
~31v2!g2~gT!4, ~4.3!

^Tt
w&Planck

b 5
4p2

90
vg2~gT!4, ~4.4!

^Tw
w&Planck

b 5
p2

90
~113v2!g2~gT!4, ~4.5!

^TR
R&Planck

b 5
p2

90
~gT!4, ~4.6!

^Tz
z&Planck

b 5
p2

90
~gT!4, ~4.7!

wherev andg are given by
04400
v5RV, g5
1

A12v2
~4.8!

and are the speed and Lorentz factor of an RRO at the
propriate space-time point. We find that they are in clo
agreement everywhere except, as expected, close to the
ror.

V. RENORMALIZED EXPECTATION VALUES

A renormalized expectation value differs from that
RRO measures by a term due to polarization of the vacu
by the mirror. This term can be calculated by making use
the relationship between that Feynman propagator and
Euclidean Green function; on the Euclidean section of
manifold, the analysis becomes essentially identical to tha
a uniformly accelerating infinite flat mirror on the Euclidea
section of the Rindler manifold and we can proceed alo
the lines of Ref.@9#. We find that the Euclidean Green func
tion which vanishes on the mirror is
2-3
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FIG. 2. The graphs are given
in units in whichR0, the radius of
the cylinder, is unity. In the right
hand graphs, the dashed line give
the analytically calculated Casimi
divergence~5.4!–~5.7! while the
solid line in the second graph an
the points in the others give th
numerically calculated values.
` dv ` dk 2 2

ean
the
he
GE~x,x8!5E
2`2p

e2 iv(t2t8)E
2`2p

eik(z2z8)

3 (
m52`

` eim(w2w8)

2p
I m~Av21k2R,!

3H Km~Av21k2R.!2I m~Av21k2R.!
04400
3
Km~Av 1k R0!

I m~Av21k2R0!
J , ~5.1!

whereR,5min$R,R8%, R.5max$R,R8%, andt5 i t. The sec-
ond term in the braces is absent in the case of the Euclid
Green function on the unbounded manifold and so this is
term that remains after renormalization. Now, closing t
points and making a transformation to polar variablesa and
g defined by
2-4



he
sio
is

im
a

-

Ref.
cta-

ex-

ted
d
re.
des

te

he
er-
ed
ht
ce
xis-

n-
s

ce,
y
with
des
cu-

ROTATING QUANTUM THERMAL DISTRIBUTION PHYSICAL REVIEW D 67, 044002 ~2003!
kR05a sing, vR05a cosg, ~5.2!

we find that we can perform the integral overg to obtain

^f̂2& ren52
1

4p2R0
2 (

m52`

` E
0

`

daaI m
2 ~aR̄!

Km~a!

I m~a!
.

~5.3!

A similar thing can be done for the components of t
energy-momentum stress tensor and the resulting expres
together with Eq.~5.3! are amenable to numerical analys
Once again, the details can be found in Ref.@8#. The results
are presented in Fig. 2. They are compared with the Cas
divergence close to the mirror which can be calculated by
asymptotic analysis following Ref.@9#. The relevant expres
sions are

^f̂2& ren;2
1

16p2R0
2~12R̄!2 F11

12R̄

3
G ~R̄→1!, ~5.4!

^T̂R
R& ren;2

1

720p2R0
4~12R̄!2

~R̄→1!, ~5.5!

^T̂t
t& ren;

1

720p2R0
4~12R̄!3 F11

19~12R̄!

14
G ~R̄→1!,

~5.6!

^T̂w
w& ren;2

1

360p2R0
4~12R̄!3 F11

6~12R̄!

7
G ~R̄→1!,

~5.7!
n-

s

ns

04400
ns
.

ir
n

and are in agreement with the general expressions of
@10#. We have used these to calculate renormalized expe
tion values in the thermal distribution whenV50 and
checked that they are well approximated by the general
pressions given in Ref.@11#.

VI. CONCLUSION

We found that the anticommutator function associa
with the rigidly rotating thermal distribution on unbounde
Minkowski space-time is pathological almost everywhe
The pathology is caused by the existence of nonzero mo
which have zero energy as measured by the HamiltonianĤ1

relevant to RRO’s. In Ref.@4#, a similar pathology was noted
in the anticommutator function of the Hartle-Hawking sta
considered in Ref.@2#. In this caseĤ1 is the Hamiltonian
relevant to observers rigidly rotating with the horizon. T
corresponding modes are thus at the critical point of sup
radiant scattering. When Minkowski space-time is bound
by an infinite cylinder of radius larger than the speed-of-lig
cylinder we found that the anticommutator function is on
again pathological almost everywhere because of the e
tence of these modes for all sufficiently highm. In a future
article we will show that when the Kerr black hole is e
closed within a mirror of constant Boyer-Lindquist radiu
larger than the minimum radius of the speed-of-light surfa
for all sufficiently high m there are complex frequenc
modes whose real parts lie in the regime we associate
superradiance in the absence of the mirror. This set of mo
has the critical point of superradiant scattering as an ac
mulation point.
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