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Rotating quantum thermal distribution
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We show that the rigidly rotating quantum thermal distribution on flat space-time suffers from a global
pathology which can be cured by introducing a cylindrical mirror if and only if it has a radius smaller than that
of the speed-of-light cylinder. When this condition is met, we demonstrate numerically that the renormalized
expectation value of the energy-momentum stress tensor corresponds to a rigidly rotating thermal bath up to a
finite correction except on the mirror where there are the usual Casimir divergences.
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[. INTRODUCTION space-time. The scalar wave equation is separable in these
coordinates. Indeed the corresponding positive Klein-Gordon
In a recent investigation of the rotating quantum vacuumporm modes
Davieset al.[1] uncovered a remarkable issue involving the
speed-of-light cylinder of flat space-time. A particle detector _ 1 - . —
rotating at the same angular velocity as this vacuum fails to Ugxm= e et timestikzg I/ (w+mQ)%—k°R],
remain inert in unbounded space-time and remains inert V8m?

when the space-time is bounded by an infinite cylindrical (2.2

mirror only if the mirror has a radius less than that of the . . .
speed-of-light cylinder. It is only in this case that the concept™@y be obtained from the standard modes of Minkowski

of a rotating vacuum is unambiguously defined. In theSPace-time in cylindrical coordinates
present article, we attempt to extend this discussion of rota-

tion to the problem of defining a rigidly rotating quantum B 1 ot imetik > 3
thermal distribution. Whereas we might have expected that Uwkm= N e Mt (Vo =k R) (2.3

this distribution would be pathological only on and outside
the_ speed-of-light cylinder, in fact we find that it is patho— by the identification
logical almost everywhere on the unbounded space-time andy

likewise on the space-time bounded by a cylindrical mirror

except when the mirror has a radius less than that of the

speed-of-light cylinder.

This problem is closely related to the definition of a
Hartle-Hawking vacuum on Kerr space-time. In particular,
on the asymptotically flat region of the space-time for a
black hole which is rotating arbitrarily slowly, the contribu- .
tions made to the field by the upgoing modes become neg|i§pace-tlme. o . .
gible and when these are discarded the anticommutator func- 1€ thermal distribution at inverse temperatrand rig-
tion associated with the Hartle-Hawking vacuum of Hél. idly rotating at angular velocity) will be described by the

coincides with the thermal distribution considered here. ~ density operator

w=w—mQ. (2.4

Since it is the norms not the frequencies of the RRO modes
which determine the commutation relations of the associated
creation and annihilation operators, the rotating vacuum na-
ively coincides with the conventional vacuum of Minkowski

’3+:eiﬁ|:|+1 (25)
Il. THE DISTRIBUTION ON UNBOUNDED SPACE-TIME

We first introduce a cylindrical coordinate system With the Hamiltonian
{t, ,R,¢. ,Zz} rigidly rotating at a fixed angular velocit;
this is related to the usual cylindrical Minkowski coordinate ao—i KB 2.6
system{t,R, ¢,z} by the transformation ooty '

t,=t, @, =¢—Oft. (2.2 The thermal anticommutator functio@fl) associated with
this distribution is therefore characterized by the condition

These coordinates are appropriate to the discussion of rigidIj3]
rotating observerRROQO’s) in flat space-time. These are
analogous to observers corotating with the horizon in Kerr G(Bl)(t+ Xt ,x’)=G(ﬁl)(t++iﬂ,x;t’+ XD (2.7

It can be checked that at least formally this condition is sat-
*Electronic address: Gavin.Duffy@ucd.ie isfied by the anticommutator function defined by the mode
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1 ~ © 0] - © o " ~
Gly(xx')=— > dw | dkcot Ao Gfy(x,x')= DD dk cot Bwxmn
872 0 2 5

m=—ow — o m=—o n=1 — oo

% eim(tp*<p')+ik(zfz')Rd:efiw(tft’)] < aio—e) k(a2 I EmR)Im(EmrR’)

x 3, (Jo?—K2R)I (Jol—K°R'). (2.8 47 RE®mdn s 1(Emn)
X 2 Rg e kmilt=t)] (3.9

As the energyw as measured by . tends towards zero, the

density of states factor cotB@/2) becomes infinite although

the modes themselves remain nonzero whenevwet0. s associated with a thermal distribution described by the
These modes clearly make divergent contributions to thejensity operato2.5 with Hamiltonian (2.6). This mode
mode sum(2.8) except when eitheR or R’ is zero. The sum suffers from a similar pathology to that on the un-
anticommutator functionGf}, is thus pathological except hounded space-time unless there are no positive frequency

when at least one of the two points is on thaxis. In Ref. o404, whichoy . is zero. It is a well known property of

[4], a similar pathology was noted in the mode sum for thethe zeros ofl, thaté,,>|m| (Ref.[6], see Sec. 15)and so

2?;53?;"25;?5” function of the Hartle-Hawking state consid- e see from Eq(3.2) that if Ry< €~ %, no such modes exist.

On the other hand, the asymptotic behavior of this first zero
is (Ref.[7], see p. xvii)

lll. THE DISTRIBUTION WITHIN

AN INFINITE CYLINDER

_ o _ _ _ Emi~M+1.85575n"3, (m—wx), (3.5
We now introduce a cylindrical mirror of arbitrary radius

Ro. For brevity, we only treat the case of a field which sat-

isfies Dirichlet conditions on this cylinder. Introducing a from which we see that iR,>Q ", there are modes of this
nondimensional radial variablR=R/R,, a complete set of type for all sufficiently largem. It follows that the mode sum
orthonormal solutions to the field equation subject to thegiven in Eq.(3.4) is well behaved if and only if the mirror

boundary conditions is lies within the speed-of-light cylinder.
1
Ukmn= 1 IV. THE MEASUREMENTS OF AN RRO
27Ry |wkmn||‘]m+1(§mn)|
gt +imetikz — When the mirror lies inside the speed-of-light cylinder,
Xe o Im(EmnR), 3.1 static observers and RRO’s both make measurements with
respect to the vacuum state whose anticommutator function
where is given in Eq.(3.3). These measurements can be calculated
from
grznn 2
Ogmn=* _2+k (3.2
Ro Gl (x,X") =G py(x,X")
a_\ndgmn denotes theath positive zero oﬂm. The normali_za- _ _ i i * dk aimlo—¢')+ik(z-2')
tion factor has been calculated by making use of an identity mete =1 ) e eBokmn—1
for the Bessel function$Ref. [5], see p. 766 The modes
which have positive norm are precisely those which have (€ R)J (& R’) _
. . . m mn m mn 2 R 7"‘)kmn(t7t,) (4 l)
positive frequencyw. The vacuum state associated with the 22 > de 1. .
field when it is expanded in terms of this set of modes has a 47 RowkmmIm 1(Emn)
anticommutator function which is given by the mode sum
e We can derive from this a set of expressions for the nonzero
Gey(X.X') = DD dkdm(e—e")tik(z=2') components of the energy-momentum stress tensor corre-
m=—wn=1 J-w sponding to the the conformally invariant field, the details of

which can be found in Ref8]. The mode by mode cancel-

y Il EmnR) I EmnR") >R lation of the high frequency divergences which afflict both

q:e*iwkmn(t*t’)]_ . . . . -
4W2R3wkmn3r2n+1(§mn) antlcom_mutator functions in the c_0|nC|dent I|m|t makes these
expressions amenable to numerical analysis and the results
(3.3 are shown in Fig. 1. They are compared with the Planckian
forms corresponding to a rigidly rotating thermal distribution
The anticommutator function at temperatur@d which are
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& gular velocity isQ1=0.5R,. The
I dashed line is a plot of the value
oo | for a rigidly rotating thermal dis-
tribution (4.2)—(4.7).
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and are the speed and Lorentz factor of an RRO at the ap-
propriate space-time point. We find that they are in close
A2 agreement everywhere except, as expected, close to the mir-
<Tt‘°>€|anck=%lf Y (yD)4, (4.4 ror.
2
T V. RENORMALIZED EXPECTATION VALUES
(T Blanc= gg (13027 (YD), (4.5

A renormalized expectation value differs from that an
RRO measures by a term due to polarization of the vacuum

R\B T 4 by the mirror. This term can be calculated by making use of
(TR)Planci=gg (Y1) (4.6)  the relationship between that Feynman propagator and the
Euclidean Green function; on the Euclidean section of the
manifold, the analysis becomes essentially identical to that of

2

2

ag  _ T 4 a uniformly accelerating infinite flat mirror on the Euclidean
(T2)Pranck™ %WT) ' 4.7 section of the Rindler manifold and we can proceed along
the lines of Ref[9]. We find that the Euclidean Green func-
wherev and y are given by tion which vanishes on the mirror is
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FIG. 2. The graphs are given
in units in whichR,, the radius of
the cylinder, is unity. In the right
hand graphs, the dashed line gives
the analytically calculated Casimir
divergence(5.4—(5.7) while the
solid line in the second graph and
the points in the others give the
numerically calculated values.

Km(Vo?+k?Ry)
ln(Vo?+k2Ry) |

whereR_=min{RR'}, R =maX{RR’}, andt=ir. The sec-
ond term in the braces is absent in the case of the Euclidean
Green function on the unbounded manifold and so this is the
term that remains after renormalization. Now, closing the
points and making a transformation to polar variakieand

v defined by

(5.9
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kRy=asiny, wRy=aco0sy, (5.2

we find that we can perform the integral overto obtain

[’

z fmdaalﬁq(aﬁ)
0

AmPRE m===

Km(a)

Im(@) '
(5.3

<‘Aﬁ2>ren= -

A similar thing can be done for the components of the
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and are in agreement with the general expressions of Ref.
[10]. We have used these to calculate renormalized expecta-
tion values in the thermal distribution whefi=0 and
checked that they are well approximated by the general ex-
pressions given in Refl11].

VI. CONCLUSION

energy-momentum stress tensor and the resulting expressions W& found that the anticommutator function associated
together with Eq(5.3 are amenable to numerical analysis.W'th the rigidly rotating thermal distribution on unbounded

Once again, the details can be found in R&f. The results

Minkowski space-time is pathological almost everywhere.

are presented in Fig. 2. They are compared with the Casimifn€ pathology is caused by the existence of nonzero modes
divergence close to the mirror which can be calculated by athich have zero energy as measured by the HamiltoHian

asymptotic analysis following Ref9]. The relevant expres-

sions are
A2 o __ __)
(B ren T T - } (R—1), (5.9
e~ ——————=—— (R>1 .
(TR e 720 RY1-R)? ( ), (5.5
o 1 19(1—§)} =
<Tt>ren 720772Rg(1_§)3 14 (R 1)!
(5.6)
(T o — ! {1+6(1_§)} R—1)
PN 360m2RY(1—R)® 7 ’
(5.7)

relevant to RRO’s. In Ref4], a similar pathology was noted
in the anticommutator function of the Hartle-Hawking state

considered in Ref[2]. In this caseH . is the Hamiltonian
relevant to observers rigidly rotating with the horizon. The
corresponding modes are thus at the critical point of super-
radiant scattering. When Minkowski space-time is bounded
by an infinite cylinder of radius larger than the speed-of-light
cylinder we found that the anticommutator function is once
again pathological almost everywhere because of the exis-
tence of these modes for all sufficiently high In a future
article we will show that when the Kerr black hole is en-
closed within a mirror of constant Boyer-Lindquist radius
larger than the minimum radius of the speed-of-light surface,
for all sufficiently high m there are complex frequency
modes whose real parts lie in the regime we associate with
superradiance in the absence of the mirror. This set of modes
has the critical point of superradiant scattering as an accu-
mulation point.
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