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The possibility that the energy density of the Universe is dominated by a network of low-tension domain
walls provides an alternative to the commonly discussed cosmological constant and scalar-field quintessence
models of dark energy. We quantify the lower bound on the number density of the domain walls that follows
from the observed near isotropy of the cosmic microwave background radiation. This bound can be satisfied by
a strongly frustrated domain wall network. No fine tuning of the parameters of the underlying field theory
model is required. We briefly outline the observational consequences of this model.
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[. INTRODUCTION dense network of low-tension domain wa|ls3,14]. This is
attractive for several reasons. First, domain walls are ubiqui-
In the last few years there has been a growing amount dous in field theory, inevitably appearing in models with
evidence that an unknown negative pressure compone@pontaneously broken discrete symmetfits]. Second, do-
(“dark energy”) accounts for 76 10% of the energy density main walls, and the solid dark energy in general, have been
of the Universe. Arguably the most direct evidence comes$hown to be compatible with the observations of large scale
from the luminosity-redshift relation of the type la superno-Structure[13,16.. Finally, a static wall network has an equa-
vae[1,2]. Additional evidence is provided by a combination tion of statew=—2/3[17], consistent with all observational
of data[3]. Both the analysis of the formation of the large data. Despite these appealing features, the idea that a domain
scale structur¢4] and the studies of the baryon fraction in Wall network could play the role of dark energy has not
galaxy clusterg5], combined with the big bang nucleosyn- "eceived much attention in the literature. In this paper we
thesis calculationg6], suggest the matter content signifi- investigate certain aspects of this scenario. We show that the

cantly below the critical density. On the other hand, the cosfequirement of the isotropy of the CMBR yields a strong

mic microwave background radiatiofCMBR) power lower bound on the_ numbe_r density qf the domain walls_. We

spectrum suggests a flat univeisg. Therefore the differ- then cqn3|der the |mpI|cat|on_s of this bound for the field-

ence must be made up by an additional nonclustering energtpepretm models of the domain walls. We argue that.the do-

density component. The relationship between the pregsure Main wall netwprk has.to_ be strongly frustrated. to satisfy the

and the energy density of the dark energy component is CMBR const_ralnt. If this is the case, the equation of state of

usually parametrized by=wp, where the equation of state dark energy is expected to be close-t@/3.

w could be time dependent. Theoretical considerations prefer

w=— 1 A good fit to the supernova d'ata can b_e obtained II. CMBR CONSTRAINTS

assuming a constant or slowly changing equation of state

satisfyingw= —0.5 [3] or w=—0.6 [8], depending on the It is well known that the Universe is spatially homoge-

details of the analysis. neous and isotropic on large scales. The best evidence for
The precise nature of the dark energy component has beéhis is provided by the observed near-isotropy of the CMBR.

a subject of intense theoretical speculation. The most populdf a network of domain walls is present, the CMBR photons

dark energy candidates include the cosmological constant, avould acquire different gravitational redshifisr blueshift$

vacuum energy, and the so-called quintessence, a nearly spdepending on the direction of their arriid8]. Let us esti-

tially homogeneous but time-dependent scalar fiskk, for  mate this effect.

example, Refs[9—11)). Another very interesting possibility Until z~0O(1), thecontribution of the walls to the energy

is the “solid” dark energy, originally suggested by Bucher density was subdominant and hence they did not signifi-

and Sperg€]12,13. In this case, one postulates that the darkcantly affect the CMBR anisotropy. Most of the anisotropy

energy component possesses resistance to pure shear defiue to domain walls would be built up during the relatively

mations, guaranteeing stability with respect to small perturfecent epochz=<1. This allows us to simplify the problem.

bations.(The stability condition is nontrivial for substances Consider an observer at rest in the comoving frafdter

with negative pressure. It is violated, for example, by a persubtracting the effects due to the peculiar motion of the

fect fluid) Earth, the CMBR anisotropy measured in actual experiments
A possible microphysical origin for solid dark energy is a corresponds to what would be measured by such an ob-
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servern Let Rdenote the comoving distance corresponding tan the usual Newtonian treatment of a matter dominated
z=123<1, and consider the sphefeof radiusR centered on FRW cosmology. The dependence on the regulator will dis-
the observer. We assume that the CMBR photons arriving appear in the final results.

the surface of this sphere are isotropic. The anisotropy in- To see how the CMBR anisotropy generated by the walls
duced when the photons are travelling from the surfacg§ of depends on their distribution in space, let us consider a “one-
to the observer can be simply estimated, up to correctiondimensional” toy model in which all the walls are planar and
suppressed by powers rf, using Newtonian theory. Indeed, perpendicular to the axis. The anisotropy, defined in this
the results of the general theory of relativity on subhorizonmodel as the temperature difference for the photons arriving
scales with receding velocities<c must be equally well from the £x directions and measured by an observex at
described using Newtonian gravity. Recall that in the New-=0, is

tonian picture, the observer is taken to be at “the center of

the Universe.” Homogeneous matter around him creates a AP=d(R)—P(—R). (4)

gravitational field which grows with distance as

Let N denote the number of walls betwegs 0 andx=R.
A Then, we obtain

o(r)=—G—5(p+3p)rr. (D §
CI>(R)=FR+477NGN0( R—%E xi), (5)

Here we are following the general principle that the source of =
Newtonian gravity is the combinatiorp ¢ 3p) and not the
density itself(see, for exampld,19]). The redshifts of distant
objects in this picture result from the Doppler shift due to the o oc
expansion of the Universe, and the effect of the gravitational F=2mG ( _ z of(x;)+ 2 af(x_-)) (6)
field in Eq.(1). In the Appendix we discuss the calculation of N A = '
these effects in a homogeneous Universe, and show that the
Newtonian calculation is accurate up to and including thes the gravitational force exerted by the walls on a unit mass
second order terms in the relative velocity of the emitter andblaced at the origin, ang denote the positions of the walls
the observer. to the right {>0) or to the left {<0) of the observer. The

If domain walls are present, an additional, anisotropicregulator functionf in Eqg. (6) is even,f(x)=f(—x), and
gravitational field will be induced on top of E@l), leading  smoothly cuts off the force due to the walls beyond the ob-
to anisptropies ir} the CMBR temperature. Denoting theserver's event horizonf(x)=1 for |x|<R, f(x)—0 for
Newtonian potential of the wall network b(r), we can & ysing Eq. (5) and the analogous expression for
write the observed temperature difference between pdints ®(—R), we can obtain simple analytic estimates of the ob-

and2 on the surface of the spheteas served anisotropy. In our estimates, we will always assume
A A N>1; clearly, this condition has to be satisfied for the Uni-
T(rqy)—T(ry) verse to be even approximately homogeneous on large
T:q’(rl)_q’(rﬂ (20 scales. In fact, the CMBR bound derived below wibuire
N to be large, so our analysis is self-consistent.
If the walls form a perfectly regular lattice structure with
periodL<R, the leading dependence &1in Eq. (4) cancels

where

wherer, , are the vectors pointing from the center of the

sphere to pointd and?2 andFLz:rl,z/R. out and one find§18]
The Newtonian potential at point from a single planar
wall is given by[20] AD~27Gyol. (7)
¢(x;ﬁ,x0)= —ZWGNaﬁ-(x—xo), (3) This is exactly what one expects on physical grounds. In-

deed, on scales much larger thiana regular wall structure

) ) ) ) . behaves like uniform dark energy, with its Newtonian poten-
whereo is the wall tensionx, is a point on the wall and is  j5| approaching a symmetric parabola; all deviations from
a unit vector normal to the wall. The force on a matter parhe parabola occur because of the granularity of the structure
ticle from the wall is repulsive. The total potential due to an gy, scalesL . However, Eq(7) only holds if the wall struc-
arbitrary network of planar walls is the sund(x)  {yre is perfectly regular on all scales up to the present size of
=3¢(x; n;,x;). Because the potentiéd) grows linearly at  the horizon: Both causality considerations and the inherent
large distances, the walls outside the sphere cannot be neandomness of the system make it extremely hard to believe
glected in the calculation ab. On the other hand, itis clear that such a regular structure can be realized physically.
that the contribution of the walls lying outside the event
horizon has to vanish. To model this effect, we introduce a———

regulator which is spherically symmetric with respect to the 1ajthough the final result is regulator independent, the cancella-
observer and cuts off the effects of the walls beyond certaifion of the R-dependent terms requires a conspiracy between the

radiusR>R. (Notice that such a regulator is also necessarynearby” walls at x<R and the “distant” walls ax~R.

043519-2



DOMAIN WALLS AS DARK ENERGY PHYSICAL REVIEW D 67, 043519 (2003

In realistic models, the main contribution to the anisot-(the “regular network” casey=1). The constraints in any
ropy comes not from the granularity of the wall network, but realistic model are expected to lie between these two limiting
from long-wavelength fluctuations of the effective averagecases.
energy density of the walls due to deviations from perfect While we have used a one-dimensional toy model to de-
regularity. As an illustration, consider an example in whichrive Egs.(7)—(12), it is possible to show that the same esti-
the walls are displaced from their lattice positions by randonmates hold for three-dimensional domain wall networks with
amounts 8x;|~L/2. In this case, we find the corresponding regularity properties. Thus, the tempera-

ture anisotropy created by domain walls inside a sphere of
AD~27Gyo(LR)Y, (8)  radiusR for the non-evolving network case can be written as

a much stronger anisotropy than indicated by &g. Even ST
this model, however, is hardly realistic, since it requires that —=2maGyoN*L\p(1-p), (13
the number of walls to the left and to the right of the ob- (M

server be identical. Removing even a single wall on one sid

. fuherea is a numerical coefficient of order unity that depends
of the observer leads, on average, to an anisotropy

on the detailed properties of the netwotk,s the average
AD~27GyoR~27GyoNL. (9) separation between the walls, ah=R/L is the average
number of walls crossed by a CMBR photon traveling from
In the absence of long-distance correlations between wathe surface of the sphere to the observer. For a regular net-
positions, the average difference in the number of walls tavork, we obtain
the left and to the right of the observer is of ordgN,

. oT
leading to —=2maGyoNL. (14

(M
AD~27GNyoRYL Y2~ 247G o N¥2L. (10)
) ) _ ) _ This anisotropy is generated by the fluctuations of the wall
The preceding discussion can be summarized by writingyumber density at largéHubble distance scales. Predicting
the anisotropy in the form the power spectrum of the wall-induced anisotropy, as well
. as possible deviations from Gaussianity, would require de-
AQ~2wGnoN’L, 1D tailed knowledge of the network geometry.

where the value of the exponentdepends on the details of To be a viable dark energy candidate, the network of do-

the wall configuration. What values ef correspond to real- main walls must have thezaveragg energy demﬁj}s‘_f{l'

istic domain wall networks? To answer this question, let us~ CwPerit, Where pei=3Hg/8nGy is the current critical
consider a field theory with,, distinct vacua. Domain walls density, and 0.8€,,<0.8. (We assume that the walls are
form during a cosmological phase transition due to the facin€ only form of dark energy present: for example, the cos-
that the field may choose different vacua in causally disconMological constant vanishggo avoid conflict with the pre-
nected regions of space. Immediately after the phase trangfiSe measurements of the CMBR anisotrd@y], ”_“g wall
tion, each causally connected region contains either no wallgontribution should be at most at the leval/T~10"". Us-
with probability p~ /N, , or a single wall with probability N9 Ed.(11), we find

1—p. First, consider the case when the wall network does
not evolve (apart from conformal Hubble stretchingfter
the transition. In this case, the CMBR anisotropy induced b
the walls today can be estimated as

N=(2x 10°ab?) (=7, (15

Xvhere b is the radius of the sphere in Hubble units,
=RHy~z,. In the case of a non-evolving network, we ob-

AD~27GNoNL \p(1—p). (12 t@n

Thus, for moderat®, a non-evolving domain wall network N=3x10"a’b’p(1-p), (16)
induces the anisotropy of the size indicated by @g). The

same estimate applies if the network does evolve, but the 2x10° 16

evolution does not make the structure more regular. On the USW GeV’, (17)
other hand, if more regular wall configurations are favored P P

dynamically and emerge as the network is evolving, the in- 0.15

duced anisotropy could be weaker. While we are not aware L< 23— pC, (18)
of any numerical simulations that conclusively demonstrate a’h’p(1-p)

such behavior in a given model, this remains a logical pos- = .

sibility. A reasonable lower bound on the induced anisotropyVhile in the case of a regular network
is provided by Eq.(9), since even a single “defect” in the )

regular wall structure inside the present Hubble volume N=2x10ab?, (19)
would induce an anisotropy of that size. Below, we will de- 1

rive the bounds on the parameters of the model using Eq. = 11

(12) (the “non-evolving network” casey=3/2) and Eq(9) UsabA’xm GeV’, (20

043519-3



FRIEDLAND, MURAYAMA, AND PERELSTEIN PHYSICAL REVIEW D 67, 043519 (2003

1 o and
L= %3><1 pc. (21
4x10°
Since the wall energy density becomes comparable to that of v= T keV (24)

matter atz=0.5, we will use the valu&=0.5 for our nu-
merical estimates. The other two parameters entering the ]
above boundsa andp, depend on many factors, such as thef_Or the non-evolving and the regular net_work cases, respec-
geometry of the wall network, the properties of the underly-tively. Note that the dependence amndp is rather mild. In
ing field theory model, etc. We will keep the dependence orfUpersymmetric models, such low energy scales can be gen-
these parameters explicit throughout the discussion. erated naturally and be radiatively stable, provided that the
Our calculation has only included the anisotropy due toSUPersymmetry(SUSY) breaking is communicated to the
the walls at low redshifts, where Newtonian approximation isfield(s) responsible for domain walls only by gravitational
applicable. The effects of walls at higher redshifts could behteractions. In this case, the natural value of the discrete
included using the full general relativistic solution for the Symmetry breaking scale is given by-F/Mp, where F
metric perturbation created by the walls in the Friedmannis the scale at which SUSY is broken. The constrai@®
Robertson-WalkefFRW) universe[22]. In this formalism, and (24) are satisfied ifyF=10"—10° TeV, which is al-
the redshift is computed using the well known Sachs-Wolfdowed phenomenologically if the breaking is mediated to the
formula[23] visible sector(standard model fields and their superparthers
by gauge interactionf24]. In this respect the domain wall

AT o o Lo - (0)p(0)e models of dark energy are much more attractive than the
T =®[g-v-eg- EJ; hpo, X PXT7dE, (22) scalar-field quintessence models which contain a superlight
sw scalar field with a mass of order 1 eV. In the latter case,

it is difficult to understand how such a low energy scale can
arise from particle physics and not be destabilized by radia-
tive corrections. Moreover, the superlight scalar will in gen-
eral mediate a phenomenologically problematic new long-

whereh ,, is the metric perturbation due to the wallsh
=hyy/2 Is the “conformal” Newtonian potential, ana(®
=(const- &,£€) is the unperturbed photon path. The sub-
scriptse and o refer to the “emitter” (i.e., a point on the
surface of last scatteringand the observer, respectively. range for'ce[25]. , . . .

Note that in an expanding Universe, even static domain wallg _The S|mplest f|e_Id theory model n Wh'c.:h do_mam walls
induce a time-dependent metric perturbation, and the thirg"'S€ contains a single real scalar field wil¥ ainvariant

term in Eq.(22) does not vanish. It was shown[ia2] that in potential. (A well-known example is an axion of Peccei-

a matter-dominated Universe, the anisotropy due to a wall a\?;énzar{;%?aetli%ig]&gUSTSCVC?LZﬂﬁftﬁgﬁzgé%ﬁofado?qﬁi's
a redshiftz,, scales as (*z,) 32 (the redshift of a wall is

defined as the redshift corresponding to the point on the waﬂEOdel enters the so-callestaling regimeshortly after its

closest to the observerMoreover, a constant average num- a ][(renwa'uvs);}i S)In é?'ﬁorﬁgéwi’ofﬂﬁ:s ;St ;le (i)\?:nvriﬂt a_t”r]?soi in
ber density of walls in comoving coordinates implies that P Y9 :

dN/dz,(1+2,) 32 Both these effects lead to a severe 9r0SS contradiction with the bour{d6) and, more generally,

suppression of the effects of the walls at high redshifts. WéN'th the whole concept of the isotropic FRW cosmology. The

have checked that the calculation of REZ2] leads to the problem coulq be avoided by intrqducing avery 'afge num-
same order-of-magnitude estimat@ and (13) for the an- ber (~10°) of independent scalar fields, or considering mod-

isotropy created by the walls as the Newtonian treatment ogzov;/]'thtﬁevﬁg&ggeoggirgitl)ifr ovtlc\nll?lfjt(a:otrrr]:sc%r:dexiom;hiu-
our paper, justifying the latter. ’ P y P

mongous value of the color anomaly of the Peccei-Quinn
symmetry,Npqo~ 10°.) Needless to say, both possibilities are
IIl. IMPLICATIONS extremely unattractive.

Let us discuss the implications of the CMBR bounds The scaling evolution of a do_main wall network relies on
[Egs. (16)—(21)] for the field-theoretic models responsible the fact th_at the network can disentangle as fast as allowed
for the walls. Domain walls necessarily appear in theoriedy causality. In models with more complicated vacuum
with spontaneously broken discrete symmetries. If all theStructure, the disentanglement process could be slowed
dimensionless parameters of the model are of order one, tHfPWn, since domains of the same vacuum would generally

wall tension is determined by the symmetry breaking scald€ Well separated from each other in space. While no con-
v. The boundg€17) and(20) then imply vincing simulations of domain wall networks exhibiting such

behavior exist at present, a similar phenomenon has indeed
been observed in the simulations of cosmic string networks
10 . : L
= keV (23 [30]. Alternatively, the walls could experience strong friction
213-1/371 __ 1/3 FE H H :
a““p(1-p) forces, for example due to their interaction with the particles
of dark matter[31]. In both cases, one expects substantial
deviations from the scaling law. The networks of this kind
%Explicitly, ds?=a?(7)(g{")+h,,,)dx“dx", where 5 is confor- ~ are referred to adrustrated For frustrated networks, the
mal time. number of walls in the present horizon volume depends on
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their evolution, and predicting it would require detailed nu-turns out not to be the case. Let us demonstrate that the wall
merical simulations. On the other hand, one can obtain aquation of state lies in the allowed range2/3=<w
simple analytical upper bound on this number as a functions — 1/2, regardless of the evolution.

of the wall formation temperatur@;. Assuming that the Energy conservation for domain walls readgpV)
walls form during the radiation dominated epoch, and that= —pdV— SE, whereSE is the energy lost by the network
the fields of the hidden sector responsible for the walls are ifn the process of evolution(The energy can be radiated
thermal equilibrium at approximately the same temperaturaway in form of gravitons, elementary excitations of the

as the visible sector fieldsywe obtain fields responsible for the walls, etd_et us tentatively set
SE=0. The wall equation of state can then be found from
= Tf2 the dependence of the energy density of the wall netyqrk
Np=2"*(Ty) MpHo’ (259 on the scale factor of the Universe
wherez(T) is the redshift corresponding to the given tem- wWe—1— E dinp, 26
perature.(This bound is saturated by a non-evolving net- 3 dna’

work, which in the present context can also be termmeci-

mally frustrated) In a model with no wunnatural The number of walls in a fixed comoving volume scales as
dimensionless parameterB;~v, and Eq.(23) leads toNj, n~ % where 5 is conformal time,dn=dt/a(t). When the
=10°a"?Pp~Y3(1—p) 12 for the non-evolving case. This wall network is statica=0. On the other hand, by causality
value does not contradict the CMBR constrdib®) for rea-  there must be at least one wall per horizon volume at any
sonable values od andp (for example,a~p~0.1.) For the  given time, implyinga<1. The physical density of the wall
case of a regular network, Eq®4) and (25) imply thatN;,  rest energy therefore scales@a™ 7~ . Neglecting the ki-
=6x10Pa13 although the true bound is probably some-netic energy of the walls, we obtain

what lower since some of the walls are likely to be destroyed

during the evolution leading to a regular structure. In any 2 adlngy

case, the bound seems to be compatible with the CMBR W:_§+§m- (27)
constraint(19). Thus, we conclude that in the presence of

frustration, it should be possible to build realistic models OfDuring the matter-dominated epoch the total pressure of the
domain wall dark energy without any fine tunigapart from Universep,,=0, while after the wall energy takes oveg,

the tuning required to cancel the cosmological constant. = pecomes negative. It can then be shown that in an expanding
would be very interesting to find explicit field theory models jniverse o<dIn yldIna<1/2, and therefore

leading to a frustrated wall network.

The upper bounds oN derived in the previous paragraph
and the lower bounds in Eq€l6) and(19) have to be nearly —
saturated to be compatible with each other for reasonable
values ofa and p. This observation leads to two interesting o ) ) )
predictions. First, the wall network has to be close to maxi-1he lower limitis achieved when the domain wall network is
mal frustration, or, equivalently, be nearly static. Second, thét@tic, while the upper limit corresponds to the scaling re-
CMBR anisotropy induced by the walls should be close todime- !\lohce that even in the scaling regime, wh|lle the_Um—
the current bounds, and therefore improved measurements ¥grse is matter dominated, the wall energy density varies as

. Zap ; .
the anisotropy have a good chance of detecting the wall cor@ ~ - Hence, regardless of the details of the evolution, the
tribution if this model is realized. wall network eventually comes to dominate the Universe and

its equation of state always lies within the range allowed by
the analysis of3]. Of course, as already mentioned, the net-
work must be nearly maximally frustrated to satisfy the isot-

It is well known that the equation of state of a maximally FOPYy constraint, so we generally expagt=—2/3. In this
frustrated (statig network of planar domain walls isv ~ case, the more restrictive bound obtained[8] is also
=—2/3. Above, we have argued that a domain wall networksatisfied. o
has to be close to the maximally frustrated regime to play the [N the above derivation, we have neglected the energy loss
role of dark energy and be consistent with the CMBR anisotPy the wall networksE and the kinetic energy of the walls
ropy limits. One may worry, however, that even small devia-Exin- Obviously, both approximations are valid for static net-
tions from this regime may cause a large change in the valu@orks. Moreover, numerical simulatiori27,28 show that

of w, making it an unacceptable dark energy candidate. Thi§ven in the scaling regiméE=0 andE,j,<E s throughout
the evolution. This justifies our assumptionlotice also

that the conditiordE=0 can be relaxed; the effect of finite

3An upper bound on the temperature of the hidden sector fields i9E/ 8@ is to shiftw closer to—2/3, and Eq/(28) still holds ]
provided by big bang nucleosynthesis. Unless the hidden sectd?n the other hand, the conditign,=<0 is essential for de-
possesses a large number of degrees of freedom, this bound can be
satisfied withT,;y somewhat lower than, but of the same order as,
Tyis - “4Recent studies disfavav= —2/3 at 95% confidence levgB4].

Wl N
I

=

I

|
N| =

(28)

IV. EQUATION OF STATE
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riving Eq. (28). For example, in the radiation-dominated APPENDIX: NEWTONIAN TREATMENT OF THE
Universe the wall equation of statevis= — 1/3 in the scaling PHOTON REDSHIFT

regime. The rigorous way of computing the temperature anisot-

ropy acquired by the photons on the way from the surface of
last scattering to the observer is by using the techiques of
V. CONCLUSIONS general relativity. On the other hand, the anisotropy induced

when the photons are travelling inside a sphere of a radius

We have considered the constraints on domain wall mOdcorres ondina ta.<1 and centered on the observer can be
els of dark energy from the observed near-isotropy of the. ponaing o= . . .
CMBR. We have shown that these constraints can be satisz-'mply edstlmt;'ited using Newtonian theo(fhe est|ma(';eb|s
X ' : xpected to be accurate up to corrections suppresse ow-
fied by a strongly frustrated domain wall network. The scale b P bp yp

¢ i irv breaki ible for th IIers of z,.) To illustrate how the Newtonian theory can be
Of spontaneous Ssymmetry breaking responsibie for the wa ﬁpplied to give the correct redshifts, accurate to the second

is expected to lie in the 10-100 keV range, and can arisg jer in /¢, let us explicity compare the redshifts of a
naturally in supersymmetric theories. This makes these mOdphoton emitted at some distanée computed by the two
els quite attractive from the particle physics point of view. methods in the simplest case of exactly homogeneous, uni-
servational predictions. The dark energy equation of state is From the point of view of general relativity, the ratio of
predicted to be close te-2/3. This value can be clearly the emitted and observed frequencies/w, is simply the
distinguished from the case of the cosmological constant byelative change of the scale factor of the Univeaseuring

the SNAP experimeni32]. The CMBR anisotropy induced the time between emission and absorption:

by the walls is likely to be close to the current bounds, and

could be observable in the near future. In general, inhomo- w1lwy=az/a;. (A1)
genei'ties of th.e wall distribution are also expected t(.) induceif the Universe is filled with a component at critial density
peculiar velocity flows on large scales. However, this eﬁectwith the equation of stat, the scale factor has a power law
is small: a network satisfying the CMBR constraints will '

" L . . dependence on time,~t", wheren=2/[3(1+w)]. The ve-
pr_oduce velocities of _order 300 m/s, which is not in ConﬂlCtIocity with which the emitter is receding from the observer at
with current observations.

: o . . . the time of emissiort; is
The most important outstanding issue in making domain

wall dark energy models fully realistic is finding explicit

field theories which lead to highly frustrated wall networks. v=R =R—. (A2)

Frustration could arise as a result of the complex dynamics a(ty) !

of the system. This possibility can only be addressed by nuthe time it takes for the light to travel to the observat,

merical simulations. Such simulations are also necessary tat,—t, can be found from the equation

make more detailed predictions of the phenomenological sig-

natures of the walls, such as the power spectrum of the wall- tp dt R

induced CMBR anisotropies. At this time, we are aware of Lm: a(ty)

only one numerical study of frustrated netwofB8], whose

usefulness is severely limited by its insufficient dynamicalUpon integration, we find

range. Clearly, further work in this direction is necessary. An

interesting alternative possibility is to consider domain wall

networks whose evolution is slowed down by their interac-

tion with dark matter. This idea was introduced[Bi]. In

the specific model of Ref31], the average wall velocity is SO that

determined by the ratio of wall and dark matter energy den- (
=

a(ty) _n

(A3)

R=(t3 "t} —ty) (A4)

1-n’

(1-n)R+t, | 7"

th

sities. In our case, this ratio is of order one, and the mecha-
nism does not work. However, this class of ideas certainly
deserves further investigation.

(A5)

Using this result, we find for the ratio of the scale factors
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w(tZ) (n_l) =1 1 2 (wz_wl)Grav J'R 4 R?
w(tl)_( —U n —1_U+%U + - w—l—A¢—— Og(r)dr—G?(p+3p)?.
3(1+w) (A11)
=l-vt—F—v (A8)  since in the flat Universe the recession velocity obeys

v(R)?/2=GM(R)/R=47GpR?/3, Eq. (A11) could be re-
Now let us compute the frequency redshift using Newton-written as

ian gravity. For that we take the observer to be at “the center (wp— @)% 2
of the Universe,” with the surrounding matter inducing a 2 Y —(1+3w)—. (A12)
gravitational field w1 4

41

- We observe that, by combining E&10) and(A12), we
9(r)=-G—5 (p+3p)rr. (A9) y g Eqé10) and(A12)

recover precisely the result of EGA8). Thus, in a homoge-
neous Universe, the Newtonian calculation of the photon
The frequency shift has two components, the kinematic Dopredshifts due to the expansion of the Universe is correct up to
pler shift and the blueshift because the photon falls into theand including the second order termsvinin Sec. Il we use
potential well. The Doppler shift is simply given by the Newtonian picture to estimate the anisotropies due to the
presense of domain walls. Since the walls only become

poppler_ @1(1=0) dominant forz~ 1, this approximation should be sufficiently
@2 [1—32 wy(1=v+v%2+--). (ALO) good for an order-of-magnitude estimate. This intuition is
confirmed by studying the full general relativistic calculation
The gravitational blueshift is computed as follows: of Ref.[22].
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