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Domain walls as dark energy

Alexander Friedland
School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

Hitoshi Murayama
Department of Physics, University of California, Berkeley, California 94720

and Theory Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Maxim Perelstein
Theory Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 7 June 2002; published 28 February 2003!

The possibility that the energy density of the Universe is dominated by a network of low-tension domain
walls provides an alternative to the commonly discussed cosmological constant and scalar-field quintessence
models of dark energy. We quantify the lower bound on the number density of the domain walls that follows
from the observed near isotropy of the cosmic microwave background radiation. This bound can be satisfied by
a strongly frustrated domain wall network. No fine tuning of the parameters of the underlying field theory
model is required. We briefly outline the observational consequences of this model.
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I. INTRODUCTION

In the last few years there has been a growing amoun
evidence that an unknown negative pressure compo
~‘‘dark energy’’! accounts for 70610% of the energy density
of the Universe. Arguably the most direct evidence com
from the luminosity-redshift relation of the type Ia supern
vae @1,2#. Additional evidence is provided by a combinatio
of data @3#. Both the analysis of the formation of the larg
scale structure@4# and the studies of the baryon fraction
galaxy clusters@5#, combined with the big bang nucleosyn
thesis calculations@6#, suggest the matter content signi
cantly below the critical density. On the other hand, the c
mic microwave background radiation~CMBR! power
spectrum suggests a flat universe@7#. Therefore the differ-
ence must be made up by an additional nonclustering en
density component. The relationship between the pressup
and the energy densityr of the dark energy component
usually parametrized byp5wr, where the equation of stat
w could be time dependent. Theoretical considerations pr
w>21. A good fit to the supernova data can be obtain
assuming a constant or slowly changing equation of s
satisfyingw&20.5 @3# or w&20.6 @8#, depending on the
details of the analysis.

The precise nature of the dark energy component has b
a subject of intense theoretical speculation. The most pop
dark energy candidates include the cosmological constan
vacuum energy, and the so-called quintessence, a nearly
tially homogeneous but time-dependent scalar field~see, for
example, Refs.@9–11#!. Another very interesting possibility
is the ‘‘solid’’ dark energy, originally suggested by Buch
and Spergel@12,13#. In this case, one postulates that the da
energy component possesses resistance to pure shear
mations, guaranteeing stability with respect to small per
bations.~The stability condition is nontrivial for substance
with negative pressure. It is violated, for example, by a p
fect fluid.!

A possible microphysical origin for solid dark energy is
0556-2821/2003/67~4!/043519~7!/$20.00 67 0435
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dense network of low-tension domain walls@13,14#. This is
attractive for several reasons. First, domain walls are ubiq
tous in field theory, inevitably appearing in models wi
spontaneously broken discrete symmetries@15#. Second, do-
main walls, and the solid dark energy in general, have b
shown to be compatible with the observations of large sc
structure@13,16#. Finally, a static wall network has an equ
tion of statew522/3 @17#, consistent with all observationa
data. Despite these appealing features, the idea that a do
wall network could play the role of dark energy has n
received much attention in the literature. In this paper
investigate certain aspects of this scenario. We show tha
requirement of the isotropy of the CMBR yields a stro
lower bound on the number density of the domain walls.
then consider the implications of this bound for the fie
theoretic models of the domain walls. We argue that the
main wall network has to be strongly frustrated to satisfy
CMBR constraint. If this is the case, the equation of state
dark energy is expected to be close to22/3.

II. CMBR CONSTRAINTS

It is well known that the Universe is spatially homog
neous and isotropic on large scales. The best evidence
this is provided by the observed near-isotropy of the CMB
If a network of domain walls is present, the CMBR photo
would acquire different gravitational redshifts~or blueshifts!
depending on the direction of their arrival@18#. Let us esti-
mate this effect.

Until z;O(1), thecontribution of the walls to the energ
density was subdominant and hence they did not sign
cantly affect the CMBR anisotropy. Most of the anisotro
due to domain walls would be built up during the relative
recent epoch,z&1. This allows us to simplify the problem
Consider an observer at rest in the comoving frame.~After
subtracting the effects due to the peculiar motion of
Earth, the CMBR anisotropy measured in actual experime
corresponds to what would be measured by such an
©2003 The American Physical Society19-1
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server.! Let R denote the comoving distance corresponding
z5z0,1, and consider the sphereS of radiusR centered on
the observer. We assume that the CMBR photons arrivin
the surface of this sphere are isotropic. The anisotropy
duced when the photons are travelling from the surface oS
to the observer can be simply estimated, up to correcti
suppressed by powers ofz0, using Newtonian theory. Indeed
the results of the general theory of relativity on subhoriz
scales with receding velocitiesv!c must be equally well
described using Newtonian gravity. Recall that in the Ne
tonian picture, the observer is taken to be at ‘‘the cente
the Universe.’’ Homogeneous matter around him create
gravitational field which grows with distance as

g~r !52G
4p

3
~r13p!r r̂ . ~1!

Here we are following the general principle that the source
Newtonian gravity is the combination (r13p) and not the
density itself~see, for example,@19#!. The redshifts of distan
objects in this picture result from the Doppler shift due to t
expansion of the Universe, and the effect of the gravitatio
field in Eq.~1!. In the Appendix we discuss the calculation
these effects in a homogeneous Universe, and show tha
Newtonian calculation is accurate up to and including
second order terms in the relative velocity of the emitter a
the observer.

If domain walls are present, an additional, anisotro
gravitational field will be induced on top of Eq.~1!, leading
to anisotropies in the CMBR temperature. Denoting
Newtonian potential of the wall network byF(r ), we can
write the observed temperature difference between poin1
and2 on the surface of the sphereS as

T~ r̂ 1!2T~ r̂ 2!

^T&
5F~r 1!2F~r 2!, ~2!

where r 1,2 are the vectors pointing from the center of t
sphere to points1 and2 and r̂ 1,25r 1,2/R.

The Newtonian potential at pointx from a single planar
wall is given by@20#

f~x;n̂,x0!522pGNsn̂•~x2x0!, ~3!

wheres is the wall tension,x0 is a point on the wall andn̂ is
a unit vector normal to the wall. The force on a matter p
ticle from the wall is repulsive. The total potential due to
arbitrary network of planar walls is the sumF(x)
5( if(x; n̂i ,xi). Because the potential~3! grows linearly at
large distances, the walls outside the sphere cannot be
glected in the calculation ofF. On the other hand, it is clea
that the contribution of the walls lying outside the eve
horizon has to vanish. To model this effect, we introduc
regulator which is spherically symmetric with respect to t
observer and cuts off the effects of the walls beyond cer
radiusR̃.R. ~Notice that such a regulator is also necess
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in the usual Newtonian treatment of a matter domina
FRW cosmology.! The dependence on the regulator will di
appear in the final results.

To see how the CMBR anisotropy generated by the w
depends on their distribution in space, let us consider a ‘‘o
dimensional’’ toy model in which all the walls are planar an
perpendicular to thex axis. The anisotropy, defined in thi
model as the temperature difference for the photons arriv
from the 6x directions and measured by an observer ax
50, is

DF5F~R!2F~2R!. ~4!

Let N denote the number of walls betweenx50 andx5R.
Then, we obtain

F~R!5FR14pNGNsS R2
1

N (
i 51

N

xi D , ~5!

where

F52pGNS 2(
i 51

`

s f ~xi !1(
i 51

`

s f ~x2 i !D ~6!

is the gravitational force exerted by the walls on a unit m
placed at the origin, andxi denote the positions of the wall
to the right (i .0) or to the left (i ,0) of the observer. The
regulator functionf in Eq. ~6! is even, f (x)5 f (2x), and
smoothly cuts off the force due to the walls beyond the o
server’s event horizon:f (x)51 for uxu,R̃, f (x)→0 for
uxu.R̃. Using Eq. ~5! and the analogous expression f
F(2R), we can obtain simple analytic estimates of the o
served anisotropy. In our estimates, we will always assu
N@1; clearly, this condition has to be satisfied for the Un
verse to be even approximately homogeneous on la
scales. In fact, the CMBR bound derived below willrequire
N to be large, so our analysis is self-consistent.

If the walls form a perfectly regular lattice structure wi
periodL!R, the leading dependence onR in Eq. ~4! cancels
out and one finds@18#

DF;2pGNsL. ~7!

This is exactly what one expects on physical grounds.
deed, on scales much larger thanL, a regular wall structure
behaves like uniform dark energy, with its Newtonian pote
tial approaching a symmetric parabola; all deviations fro
the parabola occur because of the granularity of the struc
on scales;L. However, Eq.~7! only holds if the wall struc-
ture is perfectly regular on all scales up to the present siz
the horizon.1 Both causality considerations and the inhere
randomness of the system make it extremely hard to bel
that such a regular structure can be realized physically.

1Although the final result is regulator independent, the cance
tion of the R-dependent terms requires a conspiracy between

‘‘nearby’’ walls at x,R and the ‘‘distant’’ walls atx;R̃.
9-2
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In realistic models, the main contribution to the anis
ropy comes not from the granularity of the wall network, b
from long-wavelength fluctuations of the effective avera
energy density of the walls due to deviations from perf
regularity. As an illustration, consider an example in whi
the walls are displaced from their lattice positions by rand
amountsudxi u;L/2. In this case, we find

DF;2pGNs~LR!1/2, ~8!

a much stronger anisotropy than indicated by Eq.~7!. Even
this model, however, is hardly realistic, since it requires t
the number of walls to the left and to the right of the o
server be identical. Removing even a single wall on one s
of the observer leads, on average, to an anisotropy

DF;2pGNsR;2pGNsNL. ~9!

In the absence of long-distance correlations between
positions, the average difference in the number of walls
the left and to the right of the observer is of orderAN,
leading to

DF;2pGNsR3/2L21/2;2pGNsN3/2L. ~10!

The preceding discussion can be summarized by wri
the anisotropy in the form

DF;2pGNsNnL, ~11!

where the value of the exponentn depends on the details o
the wall configuration. What values ofn correspond to real-
istic domain wall networks? To answer this question, let
consider a field theory withNv distinct vacua. Domain walls
form during a cosmological phase transition due to the f
that the field may choose different vacua in causally disc
nected regions of space. Immediately after the phase tra
tion, each causally connected region contains either no w
with probability p;1/Nv , or a single wall with probability
12p. First, consider the case when the wall network do
not evolve ~apart from conformal Hubble stretching! after
the transition. In this case, the CMBR anisotropy induced
the walls today can be estimated as

DF;2pGNsN3/2LAp~12p!. ~12!

Thus, for moderatep, a non-evolving domain wall network
induces the anisotropy of the size indicated by Eq.~10!. The
same estimate applies if the network does evolve, but
evolution does not make the structure more regular. On
other hand, if more regular wall configurations are favor
dynamically and emerge as the network is evolving, the
duced anisotropy could be weaker. While we are not aw
of any numerical simulations that conclusively demonstr
such behavior in a given model, this remains a logical p
sibility. A reasonable lower bound on the induced anisotro
is provided by Eq.~9!, since even a single ‘‘defect’’ in the
regular wall structure inside the present Hubble volu
would induce an anisotropy of that size. Below, we will d
rive the bounds on the parameters of the model using
~12! ~the ‘‘non-evolving network’’ case,n53/2) and Eq.~9!
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~the ‘‘regular network’’ case,n51). The constraints in any
realistic model are expected to lie between these two limit
cases.

While we have used a one-dimensional toy model to
rive Eqs.~7!–~12!, it is possible to show that the same es
mates hold for three-dimensional domain wall networks w
the corresponding regularity properties. Thus, the temp
ture anisotropy created by domain walls inside a sphere
radiusR for the non-evolving network case can be written

dT

^T&
52paGNsN3/2LAp~12p!, ~13!

wherea is a numerical coefficient of order unity that depen
on the detailed properties of the network,L is the average
separation between the walls, andN5R/L is the average
number of walls crossed by a CMBR photon traveling fro
the surface of the sphere to the observer. For a regular
work, we obtain

dT

^T&
52paGNsNL. ~14!

This anisotropy is generated by the fluctuations of the w
number density at large~Hubble! distance scales. Predictin
the power spectrum of the wall-induced anisotropy, as w
as possible deviations from Gaussianity, would require
tailed knowledge of the network geometry.

To be a viable dark energy candidate, the network of
main walls must have the average energy densityr53s/L
5Vwrcrit , where rcrit53H0

2/8pGN is the current critical
density, and 0.6&Vw&0.8. ~We assume that the walls ar
the only form of dark energy present: for example, the c
mological constant vanishes.! To avoid conflict with the pre-
cise measurements of the CMBR anisotropy@21#, the wall
contribution should be at most at the leveldT/T;1026. Us-
ing Eq. ~11!, we find

N*~23105ab2!1/(22n), ~15!

where b is the radius of the sphere in Hubble units,b
5RH0'z0. In the case of a non-evolving network, we o
tain

N*331010a2b4p~12p!, ~16!

s&
2310216

a2b3p~12p!
GeV3, ~17!

L&
0.15

a2b3p~12p!
pc, ~18!

while in the case of a regular network

N*23105ab2, ~19!

s&
1

ab
4310211 GeV3, ~20!
9-3
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L&
1

ab
33104 pc. ~21!

Since the wall energy density becomes comparable to tha
matter atz.0.5, we will use the valueb50.5 for our nu-
merical estimates. The other two parameters entering
above bounds,a andp, depend on many factors, such as t
geometry of the wall network, the properties of the under
ing field theory model, etc. We will keep the dependence
these parameters explicit throughout the discussion.

Our calculation has only included the anisotropy due
the walls at low redshifts, where Newtonian approximation
applicable. The effects of walls at higher redshifts could
included using the full general relativistic solution for th
metric perturbation created by the walls in the Friedma
Robertson-Walker~FRW! universe@22#. In this formalism,
the redshift is computed using the well known Sachs-Wo
formula @23#

S DT

T D
SW

5Fue
o2v•eue

o2
1

2Ee

o

hrs,0ẋ
(0)rẋ(0)sdj, ~22!

where hmn is the metric perturbation due to the walls,2 F
5h00/2 is the ‘‘conformal’’ Newtonian potential, andx(0)

5(const1j,je) is the unperturbed photon path. The su
scripts e and o refer to the ‘‘emitter’’ ~i.e., a point on the
surface of last scattering! and the observer, respectivel
Note that in an expanding Universe, even static domain w
induce a time-dependent metric perturbation, and the t
term in Eq.~22! does not vanish. It was shown in@22# that in
a matter-dominated Universe, the anisotropy due to a wa
a redshiftzw scales as (11zw)23/2 ~the redshift of a wall is
defined as the redshift corresponding to the point on the w
closest to the observer!. Moreover, a constant average num
ber density of walls in comoving coordinates implies th
dN/dzw}(11zw)23/2. Both these effects lead to a seve
suppression of the effects of the walls at high redshifts.
have checked that the calculation of Ref.@22# leads to the
same order-of-magnitude estimates~9! and ~13! for the an-
isotropy created by the walls as the Newtonian treatmen
our paper, justifying the latter.

III. IMPLICATIONS

Let us discuss the implications of the CMBR boun
@Eqs. ~16!–~21!# for the field-theoretic models responsib
for the walls. Domain walls necessarily appear in theor
with spontaneously broken discrete symmetries. If all
dimensionless parameters of the model are of order one
wall tension is determined by the symmetry breaking sc
v. The bounds~17! and ~20! then imply

v&
10

a2/3p1/3~12p!1/3
keV ~23!

2Explicitly, ds25a2(h)(gmn
(0)1hmn)dxmdxn, where h is confor-

mal time.
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a1/3
keV ~24!

for the non-evolving and the regular network cases, resp
tively. Note that the dependence ona andp is rather mild. In
supersymmetric models, such low energy scales can be
erated naturally and be radiatively stable, provided that
supersymmetry~SUSY! breaking is communicated to th
field~s! responsible for domain walls only by gravitation
interactions. In this case, the natural value of the discr
symmetry breaking scale is given byv;F/M Pl , whereAF
is the scale at which SUSY is broken. The constraints~23!
and ~24! are satisfied ifAF&1042105 TeV, which is al-
lowed phenomenologically if the breaking is mediated to
visible sector~standard model fields and their superpartne!
by gauge interactions@24#. In this respect the domain wa
models of dark energy are much more attractive than
scalar-field quintessence models which contain a superl
scalar field with a mass of order 10233 eV. In the latter case
it is difficult to understand how such a low energy scale c
arise from particle physics and not be destabilized by rad
tive corrections. Moreover, the superlight scalar will in ge
eral mediate a phenomenologically problematic new lo
range force@25#.

The simplest field theory model in which domain wa
arise contains a single real scalar field with aZn-invariant
potential. ~A well-known example is an axion of Pecce
Quinn models@26#.! Numerical simulations@27,28# and ana-
lytic calculations@29# show that the wall network of this
model enters the so-calledscaling regimeshortly after its
formation. In this regime, there is only one wall~or at most
a few walls! per horizon volume at any given time. This is
gross contradiction with the bound~16! and, more generally
with the whole concept of the isotropic FRW cosmology. T
problem could be avoided by introducing a very large nu
ber (;108) of independent scalar fields, or considering mo
els with a very large number of vacua.~In the context of the
axion, the latter possibility would correspond to a h
mongous value of the color anomaly of the Peccei-Qu
symmetry,NPQ;108.! Needless to say, both possibilities a
extremely unattractive.

The scaling evolution of a domain wall network relies o
the fact that the network can disentangle as fast as allo
by causality. In models with more complicated vacuu
structure, the disentanglement process could be slo
down, since domains of the same vacuum would gener
be well separated from each other in space. While no c
vincing simulations of domain wall networks exhibiting suc
behavior exist at present, a similar phenomenon has ind
been observed in the simulations of cosmic string netwo
@30#. Alternatively, the walls could experience strong frictio
forces, for example due to their interaction with the partic
of dark matter@31#. In both cases, one expects substan
deviations from the scaling law. The networks of this kin
are referred to asfrustrated. For frustrated networks, the
number of walls in the present horizon volume depends
9-4
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their evolution, and predicting it would require detailed n
merical simulations. On the other hand, one can obtai
simple analytical upper bound on this number as a func
of the wall formation temperatureTf . Assuming that the
walls form during the radiation dominated epoch, and t
the fields of the hidden sector responsible for the walls ar
thermal equilibrium at approximately the same temperat
as the visible sector fields,3 we obtain

Nh&z21~Tf !
Tf

2

M PlH0
, ~25!

wherez(T) is the redshift corresponding to the given tem
perature.~This bound is saturated by a non-evolving n
work, which in the present context can also be termedmaxi-
mally frustrated.! In a model with no unnatura
dimensionless parameters,Tf;v, and Eq.~23! leads toNh
&105a22/3p21/3(12p)21/3 for the non-evolving case. Thi
value does not contradict the CMBR constraint~16! for rea-
sonable values ofa andp ~for example,a;p;0.1.! For the
case of a regular network, Eqs.~24! and ~25! imply that Nh
&63106a21/3, although the true bound is probably som
what lower since some of the walls are likely to be destroy
during the evolution leading to a regular structure. In a
case, the bound seems to be compatible with the CM
constraint~19!. Thus, we conclude that in the presence
frustration, it should be possible to build realistic models
domain wall dark energy without any fine tuning~apart from
the tuning required to cancel the cosmological constant! It
would be very interesting to find explicit field theory mode
leading to a frustrated wall network.

The upper bounds onN derived in the previous paragrap
and the lower bounds in Eqs.~16! and~19! have to be nearly
saturated to be compatible with each other for reason
values ofa andp. This observation leads to two interestin
predictions. First, the wall network has to be close to ma
mal frustration, or, equivalently, be nearly static. Second,
CMBR anisotropy induced by the walls should be close
the current bounds, and therefore improved measuremen
the anisotropy have a good chance of detecting the wall c
tribution if this model is realized.

IV. EQUATION OF STATE

It is well known that the equation of state of a maxima
frustrated ~static! network of planar domain walls isw
522/3. Above, we have argued that a domain wall netw
has to be close to the maximally frustrated regime to play
role of dark energy and be consistent with the CMBR anis
ropy limits. One may worry, however, that even small dev
tions from this regime may cause a large change in the v
of w, making it an unacceptable dark energy candidate. T

3An upper bound on the temperature of the hidden sector field
provided by big bang nucleosynthesis. Unless the hidden se
possesses a large number of degrees of freedom, this bound c
satisfied withThid somewhat lower than, but of the same order
Tvis .
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turns out not to be the case. Let us demonstrate that the
equation of state lies in the allowed range22/3<w
<21/2, regardless of the evolution.

Energy conservation for domain walls readsd(rV)
52pdV2dE, wheredE is the energy lost by the networ
in the process of evolution.~The energy can be radiate
away in form of gravitons, elementary excitations of t
fields responsible for the walls, etc.! Let us tentatively set
dE50. The wall equation of state can then be found fro
the dependence of the energy density of the wall networkrw
on the scale factor of the Universea,

w5212
1

3

d ln rw

d ln a
. ~26!

The number of walls in a fixed comoving volume scales
h2a, whereh is conformal time,dh5dt/a(t). When the
wall network is static,a50. On the other hand, by causalit
there must be at least one wall per horizon volume at
given time, implyinga<1. The physical density of the wal
rest energy therefore scales as}a21h2a. Neglecting the ki-
netic energy of the walls, we obtain

w52
2

3
1

a

3

d ln h

d ln a
. ~27!

During the matter-dominated epoch the total pressure of
Universeptot50, while after the wall energy takes overptot
becomes negative. It can then be shown that in an expan
Universe 0,d ln h/d ln a<1/2, and therefore

2
2

3
<w<2

1

2
. ~28!

The lower limit is achieved when the domain wall network
static, while the upper limit corresponds to the scaling
gime. Notice that even in the scaling regime, while the U
verse is matter dominated, the wall energy density varies
}a23/2. Hence, regardless of the details of the evolution,
wall network eventually comes to dominate the Universe a
its equation of state always lies within the range allowed
the analysis of@3#. Of course, as already mentioned, the n
work must be nearly maximally frustrated to satisfy the is
ropy constraint, so we generally expectw.22/3. In this
case, the more restrictive bound obtained in@8# is also
satisfied.4

In the above derivation, we have neglected the energy
by the wall networkdE and the kinetic energy of the wall
Ekin . Obviously, both approximations are valid for static ne
works. Moreover, numerical simulations@27,28# show that
even in the scaling regimedE.0 andEkin!Erest throughout
the evolution. This justifies our assumptions.@Notice also
that the conditiondE50 can be relaxed; the effect of finit
dE/da is to shiftw closer to22/3, and Eq.~28! still holds.#
On the other hand, the conditionptot<0 is essential for de-
is
or
be

,
4Recent studies disfavorw522/3 at 95% confidence level@34#.
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riving Eq. ~28!. For example, in the radiation-dominate
Universe the wall equation of state isw521/3 in the scaling
regime.

V. CONCLUSIONS

We have considered the constraints on domain wall m
els of dark energy from the observed near-isotropy of
CMBR. We have shown that these constraints can be s
fied by a strongly frustrated domain wall network. The sc
of spontaneous symmetry breaking responsible for the w
is expected to lie in the 10–100 keV range, and can a
naturally in supersymmetric theories. This makes these m
els quite attractive from the particle physics point of view

Domain wall models of dark energy have important o
servational predictions. The dark energy equation of stat
predicted to be close to22/3. This value can be clearl
distinguished from the case of the cosmological constan
the SNAP experiment@32#. The CMBR anisotropy induced
by the walls is likely to be close to the current bounds, a
could be observable in the near future. In general, inhom
geneities of the wall distribution are also expected to ind
peculiar velocity flows on large scales. However, this eff
is small: a network satisfying the CMBR constraints w
produce velocities of order 300 m/s, which is not in confl
with current observations.

The most important outstanding issue in making dom
wall dark energy models fully realistic is finding explic
field theories which lead to highly frustrated wall network
Frustration could arise as a result of the complex dynam
of the system. This possibility can only be addressed by
merical simulations. Such simulations are also necessar
make more detailed predictions of the phenomenological
natures of the walls, such as the power spectrum of the w
induced CMBR anisotropies. At this time, we are aware
only one numerical study of frustrated networks@33#, whose
usefulness is severely limited by its insufficient dynami
range. Clearly, further work in this direction is necessary.
interesting alternative possibility is to consider domain w
networks whose evolution is slowed down by their intera
tion with dark matter. This idea was introduced in@31#. In
the specific model of Ref.@31#, the average wall velocity is
determined by the ratio of wall and dark matter energy d
sities. In our case, this ratio is of order one, and the mec
nism does not work. However, this class of ideas certa
deserves further investigation.
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APPENDIX: NEWTONIAN TREATMENT OF THE
PHOTON REDSHIFT

The rigorous way of computing the temperature anis
ropy acquired by the photons on the way from the surface
last scattering to the observer is by using the techiques
general relativity. On the other hand, the anisotropy indu
when the photons are travelling inside a sphere of a rad
corresponding toz0&1 and centered on the observer can
simply estimated using Newtonian theory.~The estimate is
expected to be accurate up to corrections suppressed by
ers of z0.! To illustrate how the Newtonian theory can b
applied to give the correct redshifts, accurate to the sec
order in v/c, let us explicitly compare the redshifts of
photon emitted at some distanceR computed by the two
methods in the simplest case of exactly homogeneous,
formly expanding Universe.

From the point of view of general relativity, the ratio o
the emitted and observed frequencies,v1 /v2 is simply the
relative change of the scale factor of the Universea during
the time between emission and absorption:

v1 /v25a2 /a1 . ~A1!

If the Universe is filled with a component at critial densi
with the equation of statew, the scale factor has a power la
dependence on time,a;tn, wheren52/@3(11w)#. The ve-
locity with which the emitter is receding from the observer
the time of emissiont1 is

v5R
ȧ~ t1!

a~ t1!
5R

n

t1
. ~A2!

The time it takes for the light to travel to the observer,Dt
[t22t1, can be found from the equation

E
t1

t2 dt

a~ t !
5

R

a~ t1!
. ~A3!

Upon integration, we find

R5~ t2
12nt1

n2t1!
1

12n
, ~A4!

so that

t25S ~12n!R1t1

t1
n D 1/(12n)

. ~A5!

Using this result, we find for the ratio of the scale factors

a~ t2!

a~ t1!
5S t2

t1
D n

5S ~12n!
R

t1
11D n/(12n)

, ~A6!

or, in terms of the recess velocityv5nR/t1,

a~ t2!

a~ t1!
5S 11v

~12n!

n D n/(12n)

. ~A7!

Finally, the ratio of the emitted to absorbed frequency is
9-6
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v~ t2!

v~ t1!
5S 12v

~n21!

n D n/(n21)

.12v1
1

2n
v21•••

.12v1
3~11w!

4
v21•••. ~A8!

Now let us compute the frequency redshift using Newto
ian gravity. For that we take the observer to be at ‘‘the cen
of the Universe,’’ with the surrounding matter inducing
gravitational field

g~r !52G
4p

3
~r13p!r r̂ . ~A9!

The frequency shift has two components, the kinematic D
pler shift and the blueshift because the photon falls into
potential well. The Doppler shift is simply given by

v2
Doppler5

v1~12v !

A12v2
.v1~12v1v2/21••• !. ~A10!

The gravitational blueshift is computed as follows:
rd

k

ett

et

.
n-
.

r
e,

.

04351
-
r

-
e

~v22v1!Grav

v1
5Df52E

0

R

g~r !dr5G
4p

3
~r13p!

R2

2
.

~A11!

Since in the flat Universe the recession velocity obe
v(R)2/25GM(R)/R54pGrR2/3, Eq. ~A11! could be re-
written as

~v22v1!Grav

v1
5~113w!

v2

4
. ~A12!

We observe that, by combining Eqs.~A10! and~A12!, we
recover precisely the result of Eq.~A8!. Thus, in a homoge-
neous Universe, the Newtonian calculation of the pho
redshifts due to the expansion of the Universe is correct u
and including the second order terms inv. In Sec. II we use
the Newtonian picture to estimate the anisotropies due to
presense of domain walls. Since the walls only beco
dominant forz;1, this approximation should be sufficientl
good for an order-of-magnitude estimate. This intuition
confirmed by studying the full general relativistic calculatio
of Ref. @22#.
s.

,

. J.
@1# A. G. Riesset al., Astron. J.116, 1009~1998!; P. M. Garnav-
ich et al., Astrophys. J.509, 74 ~1998!.

@2# S. Perlmutteret al., Astrophys. J.517, 565 ~1999!.
@3# L. Wang, R. R. Caldwell, J. P. Ostriker, and P. J. Steinha

Astrophys. J.530, 17 ~2000!.
@4# J. A. Peacock and S. J. Dodds, Mon. Not. R. Astron. Soc.267,

1020 ~1994!.
@5# S. D. M. White, J. F. Navarro, A. E. Evrard, and C. S. Fren

Nature~London! 366, 429 ~1993!; L. M. Lubin, R. Cen, N. A.
Bahcall, and J. P. Ostriker, Astrophys. J.460, 10 ~1996!; A. E.
Evrard, Mon. Not. R. Astron. Soc.292, 289 ~1997!.

@6# D. N. Schramm and M. S. Turner, Rev. Mod. Phys.70, 303
~1998!.

@7# P. de Bernardiset al., Nature~London! 404, 955 ~2000!.
@8# S. Perlmutter, M. S. Turner, and M. J. White, Phys. Rev. L

83, 670 ~1999!.
@9# R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. L

80, 1582~1998!.
@10# I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett.82,

896 ~1999!.
@11# P. J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D59,

123504~1999!.
@12# M. Bucher and D. N. Spergel, Phys. Rev. D60, 043505~1999!.
@13# R. A. Battye, M. Bucher, and D. Spergel, astro-ph/9908047
@14# Networks of low-tension domain walls were previously co

sidered in the context of structure formation in C. T. Hill, D. N
Schramm, and J. N. Fry, Comments Nucl. Part. Phys.19, 25
~1989!.

@15# A. Vilenkin and E. P. S. Shellard,Cosmic Strings and Othe
Topological Defects~Cambridge University Press, Cambridg
England, 1994!.

@16# J. C. Fabris and S. V. de Borba Goncalves, gr-qc/0010046
@17# E. W. Kolb and M. S. Turner,The Early Universe~Addison-

Wesley, Reading, MA, 1990!.
t,

,

.

t.

@18# Y. B. Zeldovich, I. Y. Kobzarev, and L. B. Okun, Zh. E´ksp.
Teor. Fiz.67, 3 ~1974! @Sov. Phys. JETP40, 1 ~1974!#.

@19# P. J. Peebles,Principles of Physical Cosmology~Princeton
University Press, Princeton, NJ, 1993!, p. 718.

@20# A. Vilenkin, Phys. Rev. D23, 852 ~1981!.
@21# COBE Collaboration, C. L. Bennettet al., Astrophys. J. Lett.

464, L1 ~1996!.
@22# S. Veeraraghavan and A. Stebbins, Astrophys. J. Lett.395, L55

~1992!.
@23# R. K. Sachs and A. M. Wolfe, Astrophys. J.147, 73 ~1967!; M.

J. White, D. Scott, and J. Silk, Annu. Rev. Astron. Astrophy
32, 319 ~1994!.

@24# M. Dine, W. Fischler, and M. Srednicki, Nucl. Phys.B189, 575
~1981!; S. Dimopoulos and S. Raby,ibid. B192, 353~1981!; L.
Alvarez-Gaume´, M. Claudson, and M. B. Wise,ibid. B207, 96
~1982!; M. Dine and A. E. Nelson, Phys. Rev. D48, 1277
~1993!; M. Dine, A. E. Nelson, and Y. Shirman,ibid. 51, 1362
~1995!; M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman,ibid.
53, 2658~1996!; A. de Gouvea, T. Moroi, and H. Murayama
ibid. 56, 1281~1997!.

@25# S. M. Carroll, Phys. Rev. Lett.81, 3067~1998!.
@26# P. Sikivie, Phys. Rev. Lett.48, 1156~1982!; A. Vilenkin and A.

E. Everett,ibid. 48, 1867~1982!.
@27# W. H. Press, B. S. Ryden, and D. N. Spergel, Astrophys

347, 590 ~1989!.
@28# B. S. Ryden, W. H. Press, and D. N. Spergel, Astrophys. J.357,

293 ~1990!.
@29# M. Hindmarsh, Phys. Rev. Lett.77, 4495~1996!.
@30# D. Spergel and U. L. Pen, Astrophys. J. Lett.491, L67 ~1997!.
@31# A. Massarotti, Phys. Rev. D43, 346 ~1991!.
@32# http://snap.lbl.gov
@33# H. Kubotani, Prog. Theor. Phys.87, 387 ~1992!.
@34# R. Bean and A. Melchiorri, Phys. Rev. D65, 041302~R!

~2002!; S. Hannestad and E. Mortsell,ibid. 66, 063508~2002!.
9-7


