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Could thermal fluctuations seed cosmic structure?
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We examine the possibility that thermal, rather than quantum, fluctuations are responsible for seeding the
structure of our universe. We find that while the thermalization condition leads to nearly Gaussian statistics, a
Harrisson-Zeldovich spectrum for the primordial fluctuations can only be achieved in very special circum-
stances. These depend on whether the universe gets hotter or colder in time, while the modes are leaving the
horizon. In the latter case we find a no-go theorem which can only be avoided if the fundamental degrees of
freedom are not particlelike, such as in string gases near the Hagedorn phase transition. The former case is less
forbidding, and we suggest two potentially successful “warming universe” scenarios. One makes use of the
Phoenix universe, the other of “phantom” matter.
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[. INTRODUCTION In addition, simplypostulatingexact thermalization over all
scales, say at Planck time, leads to grossly inappropriate re-
A major success of the big bang theory is its ability to sults (thermal fluctuations are white-noise rather than scale
account for the detailed structure of the Universe, such asvarian). Hence, we should assume that exact thermaliza-
galaxy clustering, or the temperature fluctuations in the costion only applies to sub-horizon modes, and that there is a
mic microwave background. Paramount to this picture is thenechanism for pushing sub-horizon thermal modes outside
phenomenon of gravitational instability, by means of whichthe horizon, where they freeze and become non-thermal.
primordial small departures from homogeneity can grow intoSince different modes freeze at different temperatures, it may
the observed structures. Within the big bang theory the rebe that the final super-horizon spectrum is indeed of HZ
quired primordial fluctuations are treated merely as initialtype.
conditions. Vacuunguantumfluctuations in inflationary sce- We shall consider three types of mechanisms for pushing
narios have been shown to lead to the required initial condimodes outside the horizon: accelerated expansion, varying
tions, fitting current large scale structure data. It is, howeverspeed of light(VSL) and a contracting universe. In the first
important to know just how unavoidable is the conclusioncase we consider inflation models driven by a dominant com-
that cosmic structures have a quantum origin. Could thesponent of thermal radiation, as [8], where deformed dis-
primordial fluctuations have thermalorigin instead? persion relations affect common radiation at high tempera-
The possibility that we are descendent from thermal fluctures. This is not to be confused with inflationary models in
tuations was advanced by Peebles, in his bBdkciples of  which there is a finite radiation component during inflation
Physical Cosmologypp. 371-3731]. Peebles pointed out [4,5]. There the dominant component is always the inflaton
that if the Universe was in thermal equilibrium on the co-field (even though the thermal bath drives inflaton fluctua-
moving scale of 10 Mpc when its temperature w@s tions). The second possibility is a varying speed of light
=10 GeV, then the observed value of, could be ex- (VSL), either in the form of a space-time fiel(t(x*))
plained. This fascinating remark leaves several questions ufi6—9], or as an energy-dependent efféc{E)) [11]. There
answered. Such a scenario may explain the observed value afe VSL modeld8] in which quantum vacuum fluctuations
010, but what about fluctuations on other scales? Furtherean produce the HZ spectruh0]. However, in a large class
more, thermal fluctuations are not strictly Gaussian—doesf VSL scenarios the universe is never vacuum dominated.
this scenario conflict with observations? Hence subhorizon scale thermalization is the reason for the
Motivated by these unsolved issues, in this paper we g@apparent homogeneity of the Universe—and likewise ther-
further and examine under which conditions primordial ther-mal fluctuations are responsible for the primordial fluctua-
mal fluctuations lead to a Harrison-Zeldovi@Z) [2] spec-  tions. In the third case, we consider the possibility of thermal
trum of approximately Gaussian fluctuations. Such a scefluctuations seeding structures within Lemaitre’s Phoenix
nario would fitall existing data in the same way that the universe[12].
usual inflationary quantum fluctuation scenario does. Indeed, The paper is organized as follows. In Sec. Il we examine
the only potentially distinguishing feature would be a differ- the statistics of thermal fluctuations. In Sec. Ill we derive the
ent signature(or absence therepfof gravitational waves necessary conditions for thermal fluctuations to have a scale-
(tensor mod@sin the thermal scenario. invariant spectrum. In Sec. IV we show that these conditions
A matter not addressed by Peebles is how to establishannot be fulfilled in universes dominated by radiation com-
thermalization on the relevant scales. In pure big bang cogrised of conventional particles and in which the temperature
mology all observed fluctuations spanned causally discondecreases with time. At the end of Sec. IV and in Sec. V we
nected regions when the universe was at the required higbropose a set of models that may bypass this no-go theorem.
temperatures to induce the appropriate level of fluctuationaNe summarize our results in Sec. VI.
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[l. THE STATISTICS OF THERMAL FLUCTUATIONS is model dependent, their spectrufiee. the fact thato?
Most of the currently available data is consistent with the " 1V) is not. The white noise nature of thermal fluctuations

hypothesis that primordial fluctuations are Gaussian distrib‘fonowS 'from the fact that energy is an extensive quarilie.
uted[13]. A possible exception is the report of non-vanishing proportional to thezvolun% . . -
“inter-scale” components of the cosmic microwave back- 'Ne fact thatoy=1/V leads to an interesting heuristic
ground (CMB) bispectrum calculated from the four year interpretation of_thermal fluctuations. It seems to imply tha;
Cosmic Background ExplorefCOBE) Differential Micro- thermal quctuauon; may pe seen as a Poisson process in-
wave Radiomatry(DMR) data[14]. New CMB measure- volving a set of regions with coherence lengttdependent
ments, in particular by the Microwave Anisotropy Probe©nly on the temperatur&u;d not the sample volumeln a
(MAP) satellite, are expected to provide tighter constraints/0lumeV there aren=V/\* such regions, so that a Poisson
on the amount of cosmological non-Gaussianity. process results in variance

Based on current observational evidence, one has to re- 2 3
quire that at least on very large scales, primordial fluctua- o2 _7 () :EZ )‘_
tions must be sufficiently well described by a Gaussian dis- R Y]
tribution. Here we encounter the first obstacle, since strictly
speaking thermal fluctuations are not Gaussian. In what folimplying that any white noise spectrum of fluctuations may
lows we shall show that these fluctuations are Gaussian to i3 seen as a Poisson process. The dependgfidecan be
very good approximation under the same set of conditionéhferred from Eq.(5) and in general takes the form
which assure thermalization.

6

Fluctuations in a thermdtanonical ensemble can be de- )\3_E )
termined from the partition function - p?
7= e P& (1) translating, for Eq(3), into
-
sy 1
where=T"1. This is true even if deformed dispersion re- =73 W' )
lations are introduceflL1]. Hence the total energy inside a T
volumeV is given by We see that= T~ ! only for y=4. For y=1 (realized in
non-commutative geometfyL1]) \ is temperature indepen-
E E,e A& dent and equals the length scale of non-commutativity. In
T dlogz general the thermal coherence length decreases with increas-
U=(E)= - dg - 2) ing temperatureexceptif y<1. In the exceptional casg
Z e P& <1 the coherence length increases with the temperature and

' the relative energy fluctuations anomalously increase with

In general this integral needs not be proportionaT fo and the temperature; in Sec. IV we shall rule out this exceptional

indeed under deformed dispersion relatidhs T?, with 1 ca§reh. G ianitv of th | fluctuati b
<vy<4. However, because energy is an extensive quantity. € non-aussianity ot thermal fiuctuations may now be

we always have thdt = pV, that isU is proportional to the tért]ggleddm terrr:s 0(1; the Clljmltjl.ams of the]d|str|but|on. The
volume. If y#4 there is a preferred length scéle and we ird order centered cumulant is given k5

can choose units so that d®logz d2U
k3=(E}—3(EN(E)+ 2(E)’=———5—=—+ (9
p~THIT)7 ™ 3 ’ dg®  dp
(specifically we use units such th@B=#=co=kg=1, SC thatthe relative skewness is
\iv)hereco is current value ot, and neglect factors of order ks y(y+1) (I;T)2 72 o
: Sg=—73~ .
The energy variance is given by o? Y2 (VT2
) 5 ) d?logZ du Hence for large volumes;<1. Likewise for higher cumu-
o“(E)=(E%)—(E) :d—ﬁzz_@ 4 lants
and so the relative variance is d"logZ _,dmtu
Kn=(—1)“d—ﬁn=(—1)” lW (11)
, OXE) T%p'1
VTTgT T v ® and so
. . . . P (1T)(W2=1)(4=)
where prime denotes differentiation with respect to tempera- Sh=—n~ cn(y) (12)

ture. We see that whereas the amplitude of these fluctuations (VT3)W2-1
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with the proportionality constard,(y)=y(y+1)---(y+n side the horizon and are allowed to re-enter it at a later time.
—2)/y"2. SettingV=L2 we find the unsurprising result that Then, at first horizon crossing we have
this can be written as

al
co(y) (AN|30V2-D) khN? (17)
Uy 13
Sz | (13 . .
Y wherek are comoving wave numbera,is the scale factor

andc is the speed of light. The modulus sign in Eq(17)
and so if the volume under study is much larger than theaccounts for the possibility of such a crossing happening
thermal coherence length as defined above we have indeelliring a contracting phase in a bouncing universe—a model
thats,<1. discussed in Sec. V B. We parametrize the temperature de-

We conclude that thermal fluctuations are Gaussian to @aendence of the first horizon crossing with

very good approximation if, when they leave the horizon, the .
thermal coherence length is much smaller than the horizon kn=THNE T, (18
size. The departures from Gaussianity always lead to positive , L i
cumulants and these decay with the ordeas in Eq.(13). V\{here)\l is some charac'terlstlc Iength sgale. We will con-
Since the condition for thermalization is that the coherencé&der WO types of scenarios: those in which the temperature
length is much smaller than the scales under study, we ma t_he radiation is decre_as!ng Wlth_ the evolution, and those in
conclude that Gaussianity is part and parcel of the selfVhich the temperature is increasing. _ _
consistency conditions for studying thermal fluctuations in T the universe cools as it expands then solving the hori-

thermal equilibrium. zon problem and the existence of a first crossing require that
n<0. More generally, one needatk,/dT<0 or, from Eq.
(18),
Ill. THE POWER SPECTRUM
Gaussian fluctuations are fully described by their two- a ¢
. . . . . . >0. (19
point function. This can be encodeddr, , but is more often a ¢

expressed in terms of the power spectritk)=(|&/?),

wheres, are the Fourier modes of the density cont@stp.  Hence, while modes are being forced outside the horizon one
The two can be related via the integfab]: must have either accelerated expansion or a decreasing speed

of light, or a combination of both.
1 (e If the universe heats up as it evolves in time, ther0
Ua:ﬁfo P(K)W2(kL)k?dk, (14)  (ordk,/dT>0). We consider this case in some detail in Sec.
V.

In both types of scenarios we will be interested in identi-
whereWg (kL) is a filter function and-~V*?is the smooth-  fying conditions for a HZ spectrum of density fluctuations to
ing scale(so thatU=pV). Assuming a power law depen- be left outside the horizon. If there is no significant evolution
dence for the power spectrun®(k)=A%k", and, for in-  of the gravitational potentiap outside the horizon while the
stance, a Gaussian filter functiom\/F(kL):e—kzLZ/Z, modes are being pushed dthis is usually enforced by re-
integration of Eq.(14) gives quiring that the equation of state remains more or less con-
stan}, then density fluctuations have a HZ spectrum when
the equal-time power spectrum ¢f has a form

A? A2
ou= [ 3+n - y1+n/3’

(19 k3P 4=B2, (20)

with B~107°. If in addition at horizon crossing we have

where A2=AT'[(n+3)/2]/(47?), that is,A~A. By com- b~ &, then we need

paring Egs.(5) and (15) one can see that thermal density
fluctuations have a white noise spectrum=0) with ampli-

tude, 1This condition is more restrictive than requiring that the horizon

problem be solved—for instance the Milne universdgth act)
sz’ does not have horizons, and yet sub-horizon modes are not pushed
P(k)=(]8*)~ —K° (16)  outside the horizon. The reader is also referred to Rif| for a
p simple condition for solving the horizon and flatness problems.
% is the speed of light at the time of the horizon crossing, which
where we have ignored factors of order 1. This result onlycould be different front,.

applies to modes which are in causal contact, i.e. sub-horizon®This may be seen as an independent assumption, or justified us-
modes. More precisely it only applies when self-gravity ising Einstein's equations. The perturbed Friedmann equations in the
negligible, and so to modes smaller than the Jeans length. comoving longitudinal gauge imply that ¢~a%p 5 and, using the

Suppose we have a model in which a certain range ofriedmann equation,a?~pa? and Eq. (17), we obtain ¢
Fourier modes of thermal density fluctuations are forced out= (k;,/k)?s. Hencegy~ &, .
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k352~B?~1071, (21)  (wherew is the equation of stateand if we parametrize the
dependence of the speed of light on the temperature as
which is sometimes used as the definition of the HZ spec-

trum. Since ¢~ ), this expression is true in any gauge coxTe. (29
because thé,, defined in the various gauges are all propor-
tional to each other. Then from Egs.(17), (18), (28) and (29) the condition for

If we identify these fluctuations with thermal fluctuations scale invariance reduces to
about to leave the horizon, then, using EG6), this is

i 1+w

equivalent to Y (30

5 1-3a 1—w
3 2

p? di (T~B (22) or, alternatively, to

(where again we have neglected factors of ordeEgjuation (2—y)+(2+y)w

(3) then leads to a= 61w . (31

—k3T1 7~B?. (23) IV. ANO-GO THEOREM FOR COOLING UNIVERSES

| Y-

If at all times the universe has been coolinig(0), then
arrive at a forbidding set of conditions for a scale-
i T invariant spectrum. In this cadg, must decrease with the

3N +(1-y)==0. (24)  temperature £<0). As already noted, from E¢25) it then
k T follows that this requires

Taking the time derivative of the above expression leads to,

Sincek,>0 is the condition for modes to be leaving the y<1. (32
horizon, it follows from Eq.(24) that
This condition is a strict inequalityy=1 leads to eithen
=4 (if the modes are indeed being pushed out of the hori-
zon), or ton=0 (if the Hubble length stagnates
If y<1 the fractional amplitude of thermal fluctuations
Hence scale invariance requires that1 or y>1 depend- anomalouslyincreaseswith the temperature. As Eq(8)
ing on whether the Universe is getting colder or hotter. Weshows, this also implies that the thermal correlation length
recall thaty<<1 is equivalent to saying that the thermal co- increases with the temperature. Below we present a no-go
herence length\ increaseswith the temperatur¢see Eq. theorem which shows that it is unlikely that this condition is
(8)], or that the fractional energy fluctuations increase withsatisfied assuming that the weak energy condition is satisfied
the temperature. This is quite anomalous and we shall rule &nd that the fundamental degrees of freedom are patrticlelike.
out explicitly in the next section. Hence we are left with  Consider radiation in thermal equilibrium with a certain
warming universes as a possibility for HZ fluctuations of dispersion relatiop(E) which becomes the usupf=E? at
thermal origin. sufficiently low energies. The energy density is proportional
These results may be expressed more quantitatively bgo the integral:
noting that Eqs(18) and(23) lead to the condition for scale

T
(1—7)f<o. (25)

invariance: Ep?(E) |dp
p(Mecl(T)= f dE—— SET_1 |dE (33
y=1+3u, (26) 1
or more generally the expression for the tilt where the integration is over all allowed values of energy.
For convenience, let us defifgE)=Ep?(E)|dp/dE| and
1_ _ .
N4+ 7’ 27 re-write I (T) as
y7s
) ) ) dE F(E)
In our argument so far we have abstained from using Ein- I(T)=Tf - leTf(T). (34
e —

stein’s equations. Instead, we have treated 4) as an
independent assumption and aBssumedhat the gravita-
tional potential would freeze outside the horizon. However!n order to havey<<1, f(T) must be a decreasing function of
we can go further if we are prepared to use Friedmann equdemperature at sufficiently high values Bfi.e. f'(T)<0 .

tions: Let us evaluatd’(T):
a 1 , . _ [dE F(E) |E €T
EOC P and pxw (28) f'(T)= ?2- ET_q ET_1 —-1]. (35
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If we only consider non-negative energies, then the factoinflation (with w= —1) if not all transverse dimensions sup-
under the integral appearing in front of the square brackets igorted winding modef26].
non-negative, while the expression inside the brackets is a It would be very interesting to investigate if thermal fluc-
non-negative, monotonically increasing function BfT. tuations could indeed be viable candidates for structure for-
Hence,f’(T)>0 for all T. Thus, the inequality32) cannot Mation in these models and the degree of fine-tuning it
be satisfied. would involve.

The above proof is quite general and is valid for all mod-  The other possibility, that of a VSL theory with=1/3, is
els that would aim to achieve<1 by modifying the disper- currently lacking a specific model realization.
sion relations without altering the statistical properties of the

gas. In particular, this proof implies that the modified disper- V. WARMING UNIVERSES
sion relations considered in Refd8,11,3 could not result But it could be that at the early stage when the modes are
in a HZ spectrum. being pushed out of the horizon the universe is getting hotter.

The no-go argument assumed that the thermalized radiagych is the case of thermal radiation wigil+w)<O0. If
tion was made of particles obeying Bose-Einstein statistics, >0, denser radiation means hotter radiation; however if
A radically different statistics is likely to be needed in orderw< —1 the universe gets dens&nd so hotteras it ex-
to obtain the desired exponent in the Stefan-Boltzmann relgpands. Alternatively we could hawe>—1, so that the uni-
tion. Thus the only way we see of bypassing this no-go theoverse gets less dense as it expands; but thep<iD this
rem is to allow for non-particle-like degrees of freedom. Wetranslates into a higher temperature.
conclude this section by suggesting a scenario which may Another possibility is a stage of radiation injection, either
make use of this possibility. from particle or antiparticle annihilation, from false vacuum
decay, or from a cosmological constant discharge.
Yet another possibility is the Phoenix universe of Lemai-
Saturating temperature tre [12], where modes would be pushed outside the horizon

An example of a system in which it is possible to haveWith temperature increasing during the contracting phase.

y<1 is a gas of strings at temperatures close to the so-called. If the universe gets hotter in time, we nelgdto increase
Hagedorn temperatur&,, [19]. In a gas of strings, the num- with pme, and W|th.temperatur_e, so that-0. A necessary
ber of degenerate states increases exponentially with enerG@ndition for scale invariance is then

[20] and the canonical partition function diverges for all

>Ty. This does not necessarily mean that temperature y>1, (36)
higher thanT, are unphysical. In fact, all physical quantities,

such as energy density and specific heat are actually finite at

T=T, [21]. In [22] it was suggested thadt, corresponds to Pypassig the no-go theorem in the previous section. Again,
a phase transition, somewhat analogous to the deconfinif§om Egs.(17), (18), (28) and (29) we obtain

transition in QCD. At temperatures closeTq, the canoni-

cal ensemble description of string gases becomes invalid due

to increasingly large energy fluctuatiof3]. One must use = 7[1— ; —a>0 (37)
the microcanonical ensemble instead, which is well defined 2 3(1+w)
only if all spatial dimensions were compactifig2i].*
At least within the canonical ensemble formalishy, can o equivalently
be interpreted as the limiting temperature of the gas—as en-
ergy is increased, the temperature remains constant. In the
language of Eq(3) this corresponds tg— 0, in agreement a 1+3w
with the constraint(32). A straightforward examination of ;<m (38)

Eq. (30) with y=0 shows that scale invariance can be satis-

fied if eitherw=—1, as in inflation, or ifa=1/3, as in VSL N )
models. Conditions(30) and (31) still apply.

String-driven inflationary models, making use of the ex- \We now consider particular solutions to these conditions.

istence of a limiting temperature, have been considered in
the late 1980924,25. More recently, in Ref[26], it was
proposed that winding modes of open strings on D-branes
above the Hagedorn phase transition can provide the nega- “Phantom” matter[27] exhibits an equation of state with
tive pressure necessary to drive inflation. In particular, it wagv<<—1, and it may constitute the dark energy of the uni-
suggested that one could achieve a period of exponentialerse. It has also been conjectured that normal radiation
at high temperatures could behave like phantom m&ker
For these models there is a critical densjty, such thatw
“In Ref.[21] it is further suggested that in this picture one needs a>—1 for p<p., while for p>p. one hasw<-—1. If the
mechanism which would later make three of the spatial dimension¥/niverse starts off withp>p, and expanding thera
sufficiently large for us to live in. o (—1)23(*W) - As the universe expands it gets denser and

A. A phantom phase
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hotter. Eventually a phase transition brings it to the subimore importantly in this scenario thermal fluctuations could

Planckian regime. become the Harrison-Zeldovich spectrum of initial condi-
In such a scenario there is hyper-inflation, so the modesions which we observed in our current cycle. We now illus-

are pushed out of the horizon without a VSL. However, intrate how this could happen.

order for density fluctuations to have a scale invariant spec- As long asw>—1 (and y>0) the universe heats up in

trum, the condition in Eq(30) must be satisfied. Sinc@  time during the contracting phase. Hence a necessary condi-

>1 andw<-—1, we find that tion for scale invariance is thay>1, evading the no-go
theorem presented in Sec. IV. Modes must leave the horizon
1 1 1 . ;
> —>—, (39 as the universe contracts, and as EY) shows this can be
2 3(w+l) 2

achieved without a VSL ifv> —1/3, i.e. the universe under-

. . . . oes the necessary accelerated contraction when the stron
Hence, in order to obtain scale-invariance, one needs aVSIg. y 9

Regarding the spectrum’s amplitude, from E83) one energy con.dition's satisfied. A general condition for scale
can ogtain tﬂe reuni)rement P €3 invariance is then Eq30). We find the notable result that

standard radiationW{=1/3, y=4, «=0) satisfies the condi-

tion for scale invariance. Hence, as long as the scales we can
AEWANe B2 10710 (40)  observe today were sub-horizon deep in the radiation epoch
during the contracting phase of the previous cycle, thermal
fluctuations in standard radiation lead to a Harrison-
Zeldovich spectrum of initial fluctuations in the new phase.
)\1) y—4 A problem arises with the amplitude, which may be rem-

Y
|24
F

or, using Eq.(26) to expressu in terms of\,

~B2. (41) edied if there is a drop in the speed of light at the bounce.
For y=4 the scald drops out of the problerfcf. Eq. (3)].

Also for w=1/3 anda=0 we havek,«T, sou=1 and the
scale\; disappears from Eq18). Hence the ratio of these
parameters disappears from the expression for the amplitude,

and the temperatur€ it should be possible to expressg in as can be seen directly from Eg); the amplitude becomes

terms ofl1. Consequently, these two length scales shouldn€" @ combination of numerical factors of order 1 clearly in
not be considered as independent. contradiction with observations. This can also be illustrated
We may expect one of the models based upon the formakSing the 10 Mpc comoving scale as the normalization point,
ism presented ifil1] to satisfy these conditions, placing fur- @s in Peebles’ exampld]. Rephrasing Peebles argument in
ther restrictions upon deformations of dispersion relationsterms of this model, we know that in the case of a perfectly
The spectrum’s amplitude in this case will be fixed by thesymmetric bounce the right normalizatian,, can be ob-
ratio between the non-commutative length sdatdated to  tained if the 10 Mpc comoving scale leaves the horizon in

Y

It

Thus, given a value of, Eq.(41) constrains the ratio of the
two characteristic length scalés and A ;. Within any spe-
cific model providing a relation between the scale fa@or

I7) and the Planck lengttrelated to\,). the contracting phase when the universe was at GeV.
However, if the relation between temperature and time on
B. A bouncing universe either side of the bounce is symmetric, this comoving scale

would leave the horizon much earlier in the contracting

I.n the bouncing mpdel a closgd universe goes th_rough ﬁhase, when the universe was much colder and therefore the
series of cycles starting with a big bang and expansion, fo'fractional fluctuations were much larger

lowed by re-contraction and a big crunch. Every time the . 3 :

. . . The problem with the normalization mentioned above,
universe approaches the crunch it bounces into a new ban buld be resolved if the bounce was asvmmetrical. allowin
and if entropy increases at the bounce the new cycle Iasé u vedl u w Y Ical, wing

longer (i.e. expands to a larger and colder turnaround point'©" the 10 Mpc.comovmgisjggle to leave the horizon when the
in each new cycle. Although the idea goes back to Lemaitr&Niverse was indeed at 10GeV. One possible scenario is

[12], it has often been forgotten and revived a few times, e.gWhen the speed of light is constant during the previaus (
more recently in28]. =c_) and current ¢=c,) cycles, butc_>c,, i.e. the

It is questionable that this model dispenses with fine-speed of light decreases at the bounce. One can make addi-
tuning, specially when dealing with the homogeneity andtional simplifying assumptions just to illustrate the point. Let
entropy problems. It may be that just too much ju@k- us assume that the fundamental constaBtsind 7 also
tropy) is left over from previous cycles. This can usually be change at the bounce in such a way so as to preserve the
avoided combining the bouncing universe with inflation,relation between the temperature and tirtieis can be
such as in its ekpyrotic incarnatig@9]. achieved if3c®/G is the same before and after the bounce

Another possibility is that the speed of light decreases aHence the relation between time and temperature is sym-
the bounce, so that all the relevant scales we see today were
sub-horizon modes at some point deep in the radiation epoch——
in the contracting phase. Hence homogengityd absence of  5This assumes certain mode matching at the bounce. In general,
pervading coalescing black hojesould have been estab- the picture will be much more complicated. This issue is discussed
lished on all the relevant scales for the current cycle. Buin Sec. VB 1.
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absence of a specific model for the bounce. We conclude
_ c H—l with a discussion of the two main uncertainties faced by this
I +
P y: model.

time

1. Mode matching at the bounce

Bounce dynamics will in general mix the modes in either
phas€[ 34,35, a matter which may upset our previous argu-
ments. In the contracting phase we have

10"'Gev LN B
“ L outside d=A_¢o+ W (44)
the horizon 10 Mpc a(t,) /atoday

physical distance and in the expanding phase

B,
10''Gev R — N b=Asdot (45)

c_H_1 whered is the gravitational potential arte=0 at the bounce.
Matching these modes depends on the bounce dynamics, and
everything we have said previously assumed Biatmode

was not excited and that the. mode was matched onto the

AN A, mode.
RS -1 If the B_ mode is excited, but then matches on to Ehe
i C+H mode, then the earlier discussion still applies. However if the
B_ mode matches onto th&, mode then the conclusions in
FIG. 1. The normalization problem in bouncing universes and &his paper have to be revised: in addition to the HZ spectrum

way to solve it. In the case of a perfectly symmetrical bouncepredicted here, there would be a very red component (
density perturbations on 10 Mpc scale exit the horizon during the_ —3). Another pathological case is whén andB, are
contracting phase at temperatures much lower thdh GeV. The excited, whileB_=A, =0.

problem could be fixed if the speed of light in the contracting phase
(c_) had a much bigger constant value than it has to@day c_
>c,).

We defer to a future publication a more careful study of
this situation. It certainly depends on how the bounce is ac-
tually produced. Mode matching in pre-big-baf@p] and

. ekpyrotic[29] cosmologies has been discussed in consider-
metrical around the bounce, but for /c, <1 the 10 Mpc able detail in Refs{34,35.

comoving scale would leave the horizon in the contracting

phase much later and at a higher temperature, as illustrated in 2. Entropy production at the bounce

Fig. 1.

gUsing t/(1 sec)(T/(1 MeV))"2, we find that t, Another matter which may change the spectrum and nor-
=10 2 sec before the bounce the temperature i€ GeV. malization of the fluctuations is entropy production at the
The comoving horizon at this time is 10 Mpc across if bounce(which almost certainly occursindeed for normal

radiation, i.e. withy=4, the amplitude of thermal density

a, fluctuations on a given scalecan be expressed in terms of
c_t,=10 MpCa—o (42 the entropy contained in a sphere of radiukEq. (15.26 of
[L]]:
Sincea, /ag=Teyp/10' GeV (whereTcyg~2.7 K) we get 16
=—. (46)
c. 3S
—~107% (43 _ _ _ _
C+ Thus, if entropy is produced at different rates on different

scales the spectrum of fluctuations could be modified. In ad-

Note that unlike other VSL arguments, which lead to lowergition this issue is bound to interfere with any normalization
bounds onc_/c, , this argument leads to an identity: the condition for the amplitude.

spectrum amplitude results directly from a given value of
c_/c,. It may be possible to obtain a similar effect by
another way of making the bounce asymmetrical. For in-
stance ifG and# vary differently at the bounce a different ~ We have studied the possibility of thermal fluctuations
constraint is obtained. providing seeds for currently observed cosmic structures. As-
Certainly, the validity of the above discussion dependssuming thermal equilibrium, we have identified the neces-
upon the matching of growing and decaying modes duringsary conditions under which these fluctuations are Gaussian
the bounce dynamics—something which is unknown in theand scale invariant. We have shown that Gaussianity con-

VI. CONCLUSIONS
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straints are automatically satisfied in thermal equilibrium. To conclude, we have discussed an alternative, “thermal,”
The situation with the scale invariance of the power specway of obtaining scale-invariant initial spectrum of density
trum is more problematic. In order to have a HZ spectrum influctuations. Other ways to match the observations without
a universe that cools in time one needs significant modificainflationary quantum fluctuations have been previously dis-
tions to the Stefan-Boltzmann law, namephsT” with vy cussed, e.g. active seed modfdd] with [32] or without

<1. We have shown that this condition is unlikely to be vSL [33]. One may argue that some of these models are less
satisfied for radiation comprised of Bose-Einstein particlessnatyral” than inflation. However, they make the point that

If we are prepared to assume that the radiation is not made @fe recent observational victories in modern cosmology are a
particles, then naturally a number of possibilities could opensyccess of the Harrison-Zeldovich spectrum plus gravita-

up. If over a certain period the Universe was warming Uptional instability rather than a “proof” of the inflationary
with time, then the condition for scale invariance becomesyigin of the initial fluctuations.

y>1 and can, in principle, be achieved with a gas of Bose-
Einstein particles with appropriate dispersion relations.

An approach different from ours was taken in R0].
There, authors have considered thermal fluctuations in a sys-
tem of particles with an attractive short range potential and a We are grateful to Ruth Durrer for pointing out several
repulsive 1v? potential at large scales. They have shown thaerrors in an earlier draft of the manuscript, and to Pedro
the resulting power spectrum of density fluctuations is scalé-erreira for sharing his ideas on the subject and for bringing
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