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Could thermal fluctuations seed cosmic structure?

João Magueijo and Levon Pogosian
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 14 November 2002; published 27 February 2003!

We examine the possibility that thermal, rather than quantum, fluctuations are responsible for seeding the
structure of our universe. We find that while the thermalization condition leads to nearly Gaussian statistics, a
Harrisson-Zeldovich spectrum for the primordial fluctuations can only be achieved in very special circum-
stances. These depend on whether the universe gets hotter or colder in time, while the modes are leaving the
horizon. In the latter case we find a no-go theorem which can only be avoided if the fundamental degrees of
freedom are not particlelike, such as in string gases near the Hagedorn phase transition. The former case is less
forbidding, and we suggest two potentially successful ‘‘warming universe’’ scenarios. One makes use of the
Phoenix universe, the other of ‘‘phantom’’ matter.
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I. INTRODUCTION

A major success of the big bang theory is its ability
account for the detailed structure of the Universe, such
galaxy clustering, or the temperature fluctuations in the c
mic microwave background. Paramount to this picture is
phenomenon of gravitational instability, by means of whi
primordial small departures from homogeneity can grow i
the observed structures. Within the big bang theory the
quired primordial fluctuations are treated merely as ini
conditions. Vacuumquantumfluctuations in inflationary sce
narios have been shown to lead to the required initial con
tions, fitting current large scale structure data. It is, howe
important to know just how unavoidable is the conclusi
that cosmic structures have a quantum origin. Could th
primordial fluctuations have athermalorigin instead?

The possibility that we are descendent from thermal fl
tuations was advanced by Peebles, in his bookPrinciples of
Physical Cosmology, pp. 371–373@1#. Peebles pointed ou
that if the Universe was in thermal equilibrium on the c
moving scale of 10 Mpc when its temperature wasT
51011 GeV, then the observed value ofs10 could be ex-
plained. This fascinating remark leaves several questions
answered. Such a scenario may explain the observed val
s10, but what about fluctuations on other scales? Furth
more, thermal fluctuations are not strictly Gaussian—d
this scenario conflict with observations?

Motivated by these unsolved issues, in this paper we
further and examine under which conditions primordial th
mal fluctuations lead to a Harrison-Zeldovich~HZ! @2# spec-
trum of approximately Gaussian fluctuations. Such a s
nario would fit all existing data in the same way that th
usual inflationary quantum fluctuation scenario does. Inde
the only potentially distinguishing feature would be a diffe
ent signature~or absence thereof! of gravitational waves
~tensor modes! in the thermal scenario.

A matter not addressed by Peebles is how to estab
thermalization on the relevant scales. In pure big bang c
mology all observed fluctuations spanned causally disc
nected regions when the universe was at the required
temperatures to induce the appropriate level of fluctuatio
0556-2821/2003/67~4!/043518~8!/$20.00 67 0435
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In addition, simplypostulatingexact thermalization over al
scales, say at Planck time, leads to grossly inappropriate
sults ~thermal fluctuations are white-noise rather than sc
invariant!. Hence, we should assume that exact thermal
tion only applies to sub-horizon modes, and that there i
mechanism for pushing sub-horizon thermal modes outs
the horizon, where they freeze and become non-therm
Since different modes freeze at different temperatures, it m
be that the final super-horizon spectrum is indeed of
type.

We shall consider three types of mechanisms for push
modes outside the horizon: accelerated expansion, var
speed of light~VSL! and a contracting universe. In the fir
case we consider inflation models driven by a dominant co
ponent of thermal radiation, as in@3#, where deformed dis-
persion relations affect common radiation at high tempe
tures. This is not to be confused with inflationary models
which there is a finite radiation component during inflati
@4,5#. There the dominant component is always the infla
field ~even though the thermal bath drives inflaton fluctu
tions!. The second possibility is a varying speed of lig
~VSL!, either in the form of a space-time field„c(xm)…
@6–9#, or as an energy-dependent effect„c(E)… @11#. There
are VSL models@8# in which quantum vacuum fluctuation
can produce the HZ spectrum@10#. However, in a large class
of VSL scenarios the universe is never vacuum domina
Hence subhorizon scale thermalization is the reason for
apparent homogeneity of the Universe—and likewise th
mal fluctuations are responsible for the primordial fluctu
tions. In the third case, we consider the possibility of therm
fluctuations seeding structures within Lemaitre’s Phoe
universe@12#.

The paper is organized as follows. In Sec. II we exam
the statistics of thermal fluctuations. In Sec. III we derive t
necessary conditions for thermal fluctuations to have a sc
invariant spectrum. In Sec. IV we show that these conditio
cannot be fulfilled in universes dominated by radiation co
prised of conventional particles and in which the temperat
decreases with time. At the end of Sec. IV and in Sec. V
propose a set of models that may bypass this no-go theo
We summarize our results in Sec. VI.
©2003 The American Physical Society18-1
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II. THE STATISTICS OF THERMAL FLUCTUATIONS

Most of the currently available data is consistent with t
hypothesis that primordial fluctuations are Gaussian dist
uted@13#. A possible exception is the report of non-vanishi
‘‘inter-scale’’ components of the cosmic microwave bac
ground ~CMB! bispectrum calculated from the four ye
Cosmic Background Explorer~COBE! Differential Micro-
wave Radiomatry~DMR! data @14#. New CMB measure-
ments, in particular by the Microwave Anisotropy Pro
~MAP! satellite, are expected to provide tighter constrai
on the amount of cosmological non-Gaussianity.

Based on current observational evidence, one has to
quire that at least on very large scales, primordial fluct
tions must be sufficiently well described by a Gaussian d
tribution. Here we encounter the first obstacle, since stri
speaking thermal fluctuations are not Gaussian. In what
lows we shall show that these fluctuations are Gaussian
very good approximation under the same set of conditi
which assure thermalization.

Fluctuations in a thermal~canonical! ensemble can be de
termined from the partition function

Z5(
r

e2bEr, ~1!

whereb5T21. This is true even if deformed dispersion r
lations are introduced@11#. Hence the total energyU inside a
volumeV is given by

U5^E&5

(
r

Ere
2bEr

(
r

e2bEr

52
d logZ

db
. ~2!

In general this integral needs not be proportional toT4, and
indeed under deformed dispersion relationsU}Tg, with 1
,g,4. However, because energy is an extensive quan
we always have thatU5rV, that isU is proportional to the
volume. If gÞ4 there is a preferred length scalel T , and we
can choose units so that

r'T4~ l TT!g24 ~3!

~specifically we use units such thatG5\5c05kB51,
wherec0 is current value ofc, and neglect factors of orde
1!.

The energy variance is given by

s2~E!5^E2&2^E&25
d2logZ

db2 52
dU

db
~4!

and so the relative variance is

sU
2 5

s2~E!

U2 5
T2r8

r2

1

V
~5!

where prime denotes differentiation with respect to tempe
ture. We see that whereas the amplitude of these fluctuat
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is model dependent, their spectrum~i.e. the fact thatsU
2

}1/V) is not. The white noise nature of thermal fluctuatio
follows from the fact that energy is an extensive quantity~i.e.
proportional to the volume!.

The fact thatsU
2 }1/V leads to an interesting heuristi

interpretation of thermal fluctuations. It seems to imply th
thermal fluctuations may be seen as a Poisson proces
volving a set of regions with coherence lengthl dependent
only on the temperature~and not the sample volume!. In a
volumeV there aren5V/l3 such regions, so that a Poisso
process results in variance

sU
2 5

s2~n!

n̄2
5

1

n̄
5

l3

V
~6!

implying that any white noise spectrum of fluctuations m
be seen as a Poisson process. The dependencel(T) can be
inferred from Eq.~5! and in general takes the form

l35
T2r8

r2
~7!

translating, for Eq.~3!, into

l3'
g

T3

1

~ l TT!g24
. ~8!

We see thatl}T21 only for g54. For g51 ~realized in
non-commutative geometry@11#! l is temperature indepen
dent and equals the length scale of non-commutativity.
general the thermal coherence length decreases with inc
ing temperature,exceptif g,1. In the exceptional caseg
,1 the coherence length increases with the temperature
the relative energy fluctuations anomalously increase w
the temperature; in Sec. IV we shall rule out this exceptio
case.

The non-Gaussianity of thermal fluctuations may now
studied in terms of the cumulants of the distribution. T
third order centered cumulant is given by@15#

k35^E3&23^E2&^E&12^E&352
d3logZ

db3 5
d2U

db2 ~9!

so that the relative skewness is

s35
k3

s3 '
g~g11!

g3/2

~ l TT!22g/2

~VT3!1/2
. ~10!

Hence for large volumess3!1. Likewise for higher cumu-
lants

kn5~21!n
dnlogZ

dbn 5~21!n21
dn21U

dbn21
~11!

and so

sn5
kn

sn'cn~g!
~ l TT!(n/2 21)(42g)

~VT3!n/2 21
~12!
8-2
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with the proportionality constantcn(g)5g(g11)•••(g1n
22)/gn/2. SettingV5L3 we find the unsurprising result tha
this can be written as

sn'
cn~g!

gn/221 S l

L D 3(n/221)

~13!

and so if the volume under study is much larger than
thermal coherence length as defined above we have in
that sn!1.

We conclude that thermal fluctuations are Gaussian
very good approximation if, when they leave the horizon,
thermal coherence length is much smaller than the hori
size. The departures from Gaussianity always lead to pos
cumulants and these decay with the ordern as in Eq.~13!.
Since the condition for thermalization is that the cohere
length is much smaller than the scales under study, we
conclude that Gaussianity is part and parcel of the s
consistency conditions for studying thermal fluctuations
thermal equilibrium.

III. THE POWER SPECTRUM

Gaussian fluctuations are fully described by their tw
point function. This can be encoded insU

2 , but is more often
expressed in terms of the power spectrumP(k)5^udku2&,
wheredk are the Fourier modes of the density contrastdr/r.
The two can be related via the integral@16#:

sU
2 5

1

2p2E
0

`

P~k!WF
2~kL!k2dk, ~14!

whereWF(kL) is a filter function andL;V1/3 is the smooth-
ing scale~so thatU5rV). Assuming a power law depen
dence for the power spectrum,P(k)5A2kn, and, for in-
stance, a Gaussian filter function,WF(kL)5e2k2L2/2,
integration of Eq.~14! gives

sU
2 5

Ã2

L31n
5

Ã2

V11n/3
, ~15!

where Ã25A2G@(n13)/2#/(4p2), that is, Ã'A. By com-
paring Eqs.~5! and ~15! one can see that thermal dens
fluctuations have a white noise spectrum (n50) with ampli-
tude,

P~k!5^udku2&'
T2r8

r2
k0 ~16!

where we have ignored factors of order 1. This result o
applies to modes which are in causal contact, i.e. sub-hor
modes. More precisely it only applies when self-gravity
negligible, and so to modes smaller than the Jeans leng

Suppose we have a model in which a certain range
Fourier modes of thermal density fluctuations are forced o
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side the horizon and are allowed to re-enter it at a later tim1

Then, at first horizon crossing we have

kh;
uȧu
c

~17!

wherek are comoving wave numbers,a is the scale factor
and c is the speed of light.2 The modulus sign in Eq.~17!
accounts for the possibility of such a crossing happen
during a contracting phase in a bouncing universe—a mo
discussed in Sec. V B. We parametrize the temperature
pendence of the first horizon crossing with

kh5Tml1
m21 , ~18!

wherel1 is some characteristic length scale. We will co
sider two types of scenarios: those in which the tempera
of the radiation is decreasing with the evolution, and those
which the temperature is increasing.

If the universe cools as it expands then solving the ho
zon problem and the existence of a first crossing require
m,0. More generally, one needsdkh /dT,0 or, from Eq.
~18!,

ä

ȧ
2

ċ

c
.0. ~19!

Hence, while modes are being forced outside the horizon
must have either accelerated expansion or a decreasing s
of light, or a combination of both.

If the universe heats up as it evolves in time, thenm.0
~or dkh /dT.0). We consider this case in some detail in S
V.

In both types of scenarios we will be interested in iden
fying conditions for a HZ spectrum of density fluctuations
be left outside the horizon. If there is no significant evoluti
of the gravitational potentialf outside the horizon while the
modes are being pushed out~this is usually enforced by re
quiring that the equation of state remains more or less c
stant!, then density fluctuations have a HZ spectrum wh
the equal-time power spectrum off has a form

k3Pf5B2, ~20!

with B'1025. If in addition at horizon crossing we hav
fh'dh , then we need3

1This condition is more restrictive than requiring that the horiz
problem be solved—for instance the Milne universe~with a}t)
does not have horizons, and yet sub-horizon modes are not pu
outside the horizon. The reader is also referred to Ref.@17# for a
simple condition for solving the horizon and flatness problems.

2c is the speed of light at the time of the horizon crossing, wh
could be different fromc0.

3This may be seen as an independent assumption, or justified
ing Einstein’s equations. The perturbed Friedmann equations in
comoving longitudinal gauge imply thatk2f'a2rd and, using the

Friedmann equation,ȧ2'ra2, and Eq. ~17!, we obtain f
'(kh /k)2d. Hencefh'dh .
8-3
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kh
3dh

2'B2'10210, ~21!

which is sometimes used as the definition of the HZ sp
trum. Sincefh'dh , this expression is true in any gaug
because thedh defined in the various gauges are all prop
tional to each other.

If we identify these fluctuations with thermal fluctuation
about to leave the horizon, then, using Eq.~16!, this is
equivalent to

T2

r2

dr

dT
kh

3~T!'B2 ~22!

~where again we have neglected factors of order 1!. Equation
~3! then leads to

g

l T
g24

kh
3T12g'B2. ~23!

Taking the time derivative of the above expression leads

3
k̇h

kh
1~12g!

Ṫ

T
50. ~24!

Since k̇h.0 is the condition for modes to be leaving th
horizon, it follows from Eq.~24! that

~12g!
Ṫ

T
,0. ~25!

Hence scale invariance requires thatg,1 or g.1 depend-
ing on whether the Universe is getting colder or hotter.
recall thatg,1 is equivalent to saying that the thermal c
herence lengthl increaseswith the temperature@see Eq.
~8!#, or that the fractional energy fluctuations increase w
the temperature. This is quite anomalous and we shall ru
out explicitly in the next section. Hence we are left wi
warming universes as a possibility for HZ fluctuations
thermal origin.

These results may be expressed more quantitatively
noting that Eqs.~18! and~23! lead to the condition for scale
invariance:

g5113m, ~26!

or more generally the expression for the tilt

n541
12g

m
. ~27!

In our argument so far we have abstained from using E
stein’s equations. Instead, we have treated Eq.~21! as an
independent assumption and alsoassumedthat the gravita-
tional potential would freeze outside the horizon. Howev
we can go further if we are prepared to use Friedmann eq
tions:

ȧ

a
}Ar and r}

1

a3(11w)
~28!
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~wherew is the equation of state!, and if we parametrize the
dependence of the speed of light on the temperature as

c}Ta. ~29!

Then from Eqs.~17!, ~18!, ~28! and ~29! the condition for
scale invariance reduces to

g

123a
52

11w

12w
~30!

or, alternatively, to

a5
~22g!1~21g!w

6~11w!
. ~31!

IV. A NO-GO THEOREM FOR COOLING UNIVERSES

If at all times the universe has been cooling (Ṫ,0), then
we arrive at a forbidding set of conditions for a sca
invariant spectrum. In this casekh must decrease with the
temperature (m,0). As already noted, from Eq.~25! it then
follows that this requires

g,1. ~32!

This condition is a strict inequality:g51 leads to eithern
54 ~if the modes are indeed being pushed out of the h
zon!, or to n50 ~if the Hubble length stagnates!.

If g,1 the fractional amplitude of thermal fluctuation
anomalously increaseswith the temperature. As Eq.~8!
shows, this also implies that the thermal correlation len
increases with the temperature. Below we present a no
theorem which shows that it is unlikely that this condition
satisfied assuming that the weak energy condition is satis
and that the fundamental degrees of freedom are particle

Consider radiation in thermal equilibrium with a certa
dispersion relationp(E) which becomes the usualp25E2 at
sufficiently low energies. The energy density is proportion
to the integral:

r~T!}I ~T!5E dE
Ep2~E!

eE/T21
Udp

dEU, ~33!

where the integration is over all allowed values of ener
For convenience, let us defineF(E)[Ep2(E)udp/dEu and
re-write I (T) as

I ~T!5TE dE

T

F~E!

eE/T21
[T f~T!. ~34!

In order to haveg,1, f (T) must be a decreasing function o
temperature at sufficiently high values ofT, i.e. f 8(T),0 .
Let us evaluatef 8(T):

f 8~T!5E dE

T2

F~E!

eE/T21
FE

T

eE/T

eE/T21
21G . ~35!
8-4
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COULD THERMAL FLUCTUATIONS SEED COSMIC STRUCTURE? PHYSICAL REVIEW D67, 043518 ~2003!
If we only consider non-negative energies, then the fac
under the integral appearing in front of the square bracke
non-negative, while the expression inside the brackets
non-negative, monotonically increasing function ofE/T.
Hence,f 8(T).0 for all T. Thus, the inequality~32! cannot
be satisfied.

The above proof is quite general and is valid for all mo
els that would aim to achieveg,1 by modifying the disper-
sion relations without altering the statistical properties of
gas. In particular, this proof implies that the modified disp
sion relations considered in Refs.@18,11,3# could not result
in a HZ spectrum.

The no-go argument assumed that the thermalized ra
tion was made of particles obeying Bose-Einstein statist
A radically different statistics is likely to be needed in ord
to obtain the desired exponent in the Stefan-Boltzmann r
tion. Thus the only way we see of bypassing this no-go th
rem is to allow for non-particle-like degrees of freedom. W
conclude this section by suggesting a scenario which m
make use of this possibility.

Saturating temperature

An example of a system in which it is possible to ha
g,1 is a gas of strings at temperatures close to the so-ca
Hagedorn temperature,TH @19#. In a gas of strings, the num
ber of degenerate states increases exponentially with en
@20# and the canonical partition function diverges for allT
.TH . This does not necessarily mean that tempera
higher thanTH are unphysical. In fact, all physical quantitie
such as energy density and specific heat are actually fini
T>TH @21#. In @22# it was suggested thatTH corresponds to
a phase transition, somewhat analogous to the deconfi
transition in QCD. At temperatures close toTH , the canoni-
cal ensemble description of string gases becomes invalid
to increasingly large energy fluctuations@23#. One must use
the microcanonical ensemble instead, which is well defin
only if all spatial dimensions were compactified@21#.4

At least within the canonical ensemble formalism,TH can
be interpreted as the limiting temperature of the gas—as
ergy is increased, the temperature remains constant. In
language of Eq.~3! this corresponds tog→0, in agreement
with the constraint~32!. A straightforward examination o
Eq. ~30! with g50 shows that scale invariance can be sa
fied if eitherw521, as in inflation, or ifa51/3, as in VSL
models.

String-driven inflationary models, making use of the e
istence of a limiting temperature, have been considere
the late 1980s@24,25#. More recently, in Ref.@26#, it was
proposed that winding modes of open strings on D-bra
above the Hagedorn phase transition can provide the n
tive pressure necessary to drive inflation. In particular, it w
suggested that one could achieve a period of expone

4In Ref. @21# it is further suggested that in this picture one need
mechanism which would later make three of the spatial dimens
sufficiently large for us to live in.
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inflation ~with w521) if not all transverse dimensions sup
ported winding modes@26#.

It would be very interesting to investigate if thermal flu
tuations could indeed be viable candidates for structure
mation in these models and the degree of fine-tuning
would involve.

The other possibility, that of a VSL theory witha51/3, is
currently lacking a specific model realization.

V. WARMING UNIVERSES

But it could be that at the early stage when the modes
being pushed out of the horizon the universe is getting ho
Such is the case of thermal radiation withg(11w),0. If
g.0, denser radiation means hotter radiation; howeve
w,21 the universe gets denser~and so hotter! as it ex-
pands. Alternatively we could havew.21, so that the uni-
verse gets less dense as it expands; but then ifg,0 this
translates into a higher temperature.

Another possibility is a stage of radiation injection, eith
from particle or antiparticle annihilation, from false vacuu
decay, or from a cosmological constant discharge.

Yet another possibility is the Phoenix universe of Lem
tre @12#, where modes would be pushed outside the horiz
with temperature increasing during the contracting phase

If the universe gets hotter in time, we needkh to increase
with time, and with temperature, so thatm.0. A necessary
condition for scale invariance is then

g.1, ~36!

bypassig the no-go theorem in the previous section. Ag
from Eqs.~17!, ~18!, ~28! and ~29! we obtain

m5gF1

2
2

1

3~11w!G2a.0 ~37!

or equivalently

a

g
,

113w

6~11w!
. ~38!

Conditions~30! and ~31! still apply.
We now consider particular solutions to these conditio

A. A phantom phase

‘‘Phantom’’ matter@27# exhibits an equation of state wit
w,21, and it may constitute the dark energy of the u
verse. It has also been conjectured that normal radia
at high temperatures could behave like phantom matter@3#.
For these models there is a critical density,rc , such thatw
.21 for r,rc , while for r.rc one hasw,21. If the
Universe starts off withr.rc and expanding thena
}(2t)2/3(11w). As the universe expands it gets denser a

a
s

8-5
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hotter. Eventually a phase transition brings it to the s
Planckian regime.

In such a scenario there is hyper-inflation, so the mo
are pushed out of the horizon without a VSL. However,
order for density fluctuations to have a scale invariant sp
trum, the condition in Eq.~30! must be satisfied. Sinceg
.1 andw,21, we find that

a.
1

2
2

1

3~v11!
.

1

2
. ~39!

Hence, in order to obtain scale-invariance, one needs a V
Regarding the spectrum’s amplitude, from Eq.~23! one

can obtain the requirement

g

l T
g24

l1
(12m)(12g)/m'B2'10210, ~40!

or, using Eq.~26! to expressm in terms ofl,

gS l1

l T
D g24

'B2. ~41!

Thus, given a value ofg, Eq. ~41! constrains the ratio of the
two characteristic length scalesl T and l1. Within any spe-
cific model providing a relation between the scale factoa
and the temperatureT it should be possible to expressl1 in
terms of l T . Consequently, these two length scales sho
not be considered as independent.

We may expect one of the models based upon the form
ism presented in@11# to satisfy these conditions, placing fu
ther restrictions upon deformations of dispersion relatio
The spectrum’s amplitude in this case will be fixed by t
ratio between the non-commutative length scale~related to
l T) and the Planck length~related tol1).

B. A bouncing universe

In the bouncing model a closed universe goes throug
series of cycles starting with a big bang and expansion,
lowed by re-contraction and a big crunch. Every time t
universe approaches the crunch it bounces into a new b
and if entropy increases at the bounce the new cycle l
longer ~i.e. expands to a larger and colder turnaround po!
in each new cycle. Although the idea goes back to Lema
@12#, it has often been forgotten and revived a few times, e
more recently in@28#.

It is questionable that this model dispenses with fin
tuning, specially when dealing with the homogeneity a
entropy problems. It may be that just too much junk~en-
tropy! is left over from previous cycles. This can usually
avoided combining the bouncing universe with inflatio
such as in its ekpyrotic incarnation@29#.

Another possibility is that the speed of light decreases
the bounce, so that all the relevant scales we see today
sub-horizon modes at some point deep in the radiation ep
in the contracting phase. Hence homogeneity~and absence o
pervading coalescing black holes! could have been estab
lished on all the relevant scales for the current cycle. B
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more importantly in this scenario thermal fluctuations cou
become the Harrison-Zeldovich spectrum of initial con
tions which we observed in our current cycle. We now illu
trate how this could happen.

As long asw.21 ~and g.0) the universe heats up i
time during the contracting phase. Hence a necessary co
tion for scale invariance is thatg.1, evading the no-go
theorem presented in Sec. IV. Modes must leave the hor
as the universe contracts, and as Eq.~37! shows this can be
achieved without a VSL ifw.21/3, i.e. the universe under
goes the necessary accelerated contraction when the s
energy conditionis satisfied. A general condition for scal
invariance is then Eq.~30!. We find the notable result tha
standard radiation (w51/3, g54, a50) satisfies the condi-
tion for scale invariance. Hence, as long as the scales we
observe today were sub-horizon deep in the radiation ep
during the contracting phase of the previous cycle, therm
fluctuations in standard radiation lead to a Harriso
Zeldovich spectrum of initial fluctuations in the new phas5

A problem arises with the amplitude, which may be re
edied if there is a drop in the speed of light at the boun
For g54 the scalel T drops out of the problem@cf. Eq. ~3!#.
Also for w51/3 anda50 we havekh}T, som51 and the
scalel1 disappears from Eq.~18!. Hence the ratio of these
parameters disappears from the expression for the amplit
as can be seen directly from Eq.~41!; the amplitude become
then a combination of numerical factors of order 1 clearly
contradiction with observations. This can also be illustra
using the 10 Mpc comoving scale as the normalization po
as in Peebles’ example@1#. Rephrasing Peebles argument
terms of this model, we know that in the case of a perfec
symmetric bounce the right normalizations10 can be ob-
tained if the 10 Mpc comoving scale leaves the horizon
the contracting phase when the universe was at 1011 GeV.
However, if the relation between temperature and time
either side of the bounce is symmetric, this comoving sc
would leave the horizon much earlier in the contracti
phase, when the universe was much colder and therefore
fractional fluctuations were much larger.

The problem with the normalization mentioned abov
could be resolved if the bounce was asymmetrical, allow
for the 10 Mpc comoving scale to leave the horizon when
universe was indeed at 1011 GeV. One possible scenario i
when the speed of light is constant during the previousc
5c2) and current (c5c1) cycles, butc2@c1 , i.e. the
speed of light decreases at the bounce. One can make
tional simplifying assumptions just to illustrate the point. L
us assume that the fundamental constantsG and \ also
change at the bounce in such a way so as to preserve
relation between the temperature and time~this can be
achieved if\3c5/G is the same before and after the bounc!.
Hence the relation between time and temperature is s

5This assumes certain mode matching at the bounce. In gen
the picture will be much more complicated. This issue is discus
in Sec. V B 1.
8-6
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COULD THERMAL FLUCTUATIONS SEED COSMIC STRUCTURE? PHYSICAL REVIEW D67, 043518 ~2003!
metrical around the bounce, but forc2 /c1!1 the 10 Mpc
comoving scale would leave the horizon in the contract
phase much later and at a higher temperature, as illustrat
Fig. 1.

Using t/(1 sec)'„T/(1 MeV)…22, we find that t!

510228 sec before the bounce the temperature is 1011 GeV.
The comoving horizon at this time is 10 Mpc across if

c2t!510 Mpc
a!

a0
~42!

Sincea! /a05TCMB/1011 GeV ~whereTCMB'2.7 K) we get

c2

c1
'1021. ~43!

Note that unlike other VSL arguments, which lead to low
bounds onc2 /c1 , this argument leads to an identity: th
spectrum amplitude results directly from a given value
c2 /c1 . It may be possible to obtain a similar effect b
another way of making the bounce asymmetrical. For
stance ifG and \ vary differently at the bounce a differen
constraint is obtained.

Certainly, the validity of the above discussion depen
upon the matching of growing and decaying modes dur
the bounce dynamics—something which is unknown in

FIG. 1. The normalization problem in bouncing universes an
way to solve it. In the case of a perfectly symmetrical boun
density perturbations on 10 Mpc scale exit the horizon during
contracting phase at temperatures much lower than 1011 GeV. The
problem could be fixed if the speed of light in the contracting ph
(c2) had a much bigger constant value than it has today~i.e. c2

@c1).
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absence of a specific model for the bounce. We concl
with a discussion of the two main uncertainties faced by t
model.

1. Mode matching at the bounce

Bounce dynamics will in general mix the modes in eith
phase@34,35#, a matter which may upset our previous arg
ments. In the contracting phase we have

f5A2f01
B2

utu
~44!

and in the expanding phase

f5A1f01
B1

t
~45!

wheref is the gravitational potential andt50 at the bounce.
Matching these modes depends on the bounce dynamics
everything we have said previously assumed thatB2 mode
was not excited and that theA2 mode was matched onto th
A1 mode.

If the B2 mode is excited, but then matches on to theB1

mode, then the earlier discussion still applies. However if
B2 mode matches onto theA1 mode then the conclusions i
this paper have to be revised: in addition to the HZ spectr
predicted here, there would be a very red componentn
523). Another pathological case is whenA2 and B1 are
excited, whileB25A150.

We defer to a future publication a more careful study
this situation. It certainly depends on how the bounce is
tually produced. Mode matching in pre-big-bang@36# and
ekpyrotic @29# cosmologies has been discussed in consid
able detail in Refs.@34,35#.

2. Entropy production at the bounce

Another matter which may change the spectrum and n
malization of the fluctuations is entropy production at t
bounce~which almost certainly occurs!. Indeed for normal
radiation, i.e. withg54, the amplitude of thermal densit
fluctuations on a given scaleL can be expressed in terms o
the entropy contained in a sphere of radiusL @Eq. ~15.26! of
@1##:

dL
25

16

3S
. ~46!

Thus, if entropy is produced at different rates on differe
scales the spectrum of fluctuations could be modified. In
dition this issue is bound to interfere with any normalizati
condition for the amplitude.

VI. CONCLUSIONS

We have studied the possibility of thermal fluctuatio
providing seeds for currently observed cosmic structures.
suming thermal equilibrium, we have identified the nec
sary conditions under which these fluctuations are Gaus
and scale invariant. We have shown that Gaussianity c

a
,
e

e
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J. MAGUEIJO AND L. POGOSIAN PHYSICAL REVIEW D67, 043518 ~2003!
straints are automatically satisfied in thermal equilibriu
The situation with the scale invariance of the power sp
trum is more problematic. In order to have a HZ spectrum
a universe that cools in time one needs significant modifi
tions to the Stefan-Boltzmann law, namely,r}Tg with g
,1. We have shown that this condition is unlikely to b
satisfied for radiation comprised of Bose-Einstein particl
If we are prepared to assume that the radiation is not mad
particles, then naturally a number of possibilities could op
up. If over a certain period the Universe was warming
with time, then the condition for scale invariance becom
g.1 and can, in principle, be achieved with a gas of Bo
Einstein particles with appropriate dispersion relations.

An approach different from ours was taken in Ref.@30#.
There, authors have considered thermal fluctuations in a
tem of particles with an attractive short range potential an
repulsive 1/r 2 potential at large scales. They have shown t
the resulting power spectrum of density fluctuations is sc
invariant on sufficiently large scales~smallks). We find this
direction of thought interesting and deserving further dev
opment.
ijo
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To conclude, we have discussed an alternative, ‘‘therm
way of obtaining scale-invariant initial spectrum of dens
fluctuations. Other ways to match the observations with
inflationary quantum fluctuations have been previously d
cussed, e.g. active seed models@31# with @32# or without
VSL @33#. One may argue that some of these models are
‘‘natural’’ than inflation. However, they make the point th
the recent observational victories in modern cosmology a
success of the Harrison-Zeldovich spectrum plus grav
tional instability rather than a ‘‘proof’’ of the inflationary
origin of the initial fluctuations.
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