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Early acceleration and adiabatic matter perturbations in a class of dilatonic dark-energy models
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We estimate the growth of matter perturbations in a class of recently proposed dark-energy models based on
the (loop-correctefigravidilaton string effective action, and characterized by a global attractor epoch in which
dark-matter and dark-energy density scale with the same effective equation of state. Unlike most dark-energy
models, we find that the accelerated phase might start even at redshifts as lzighh dthus relaxing the
coincidence problemwhile still producing at present an acceptable level of matter fluctuations. We also show
that such an early acceleration is not in conflict with the recently discovered supernova SN 1997ff at
~1.7. The comparison of the predicted valuesgfwith the observational data provides interesting constraints
on the fundamental parameters of the given model of dilaton—dark matter interactions.
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[. INTRODUCTION The second aspect of the coincidence problem may arise

if the epoch of accelerated evolution started only very re-

Independent cosmological observations have recentlgently, say atz~1. There are reasons to suspect that this
pointed out the existence of a significant fraction of criticalmay be the case because, in most models, the growth of
density in the form of unclustered matter, possibly characterStructures is forbidden after the b_egmnmg of the accelerated
ized by a negative pressufe—4]. Such a component of the €XPansion, so that the acceleration cannot be extended too

cosmic fluid, conventionally denoted dark energy, is believec]ar into the past. It has also been recently claimed that the

to drive the accelerated evolution of our present Universe, gupernova SN 1997{f12,13 at z~1.7 provides an addi-

suggested by the study of the supernovae typeSiia aﬁﬁgilolrgglrc]::rt:on that the acceleration is a relatively recent

Hubble diagram. Wh_lle the simplest explanat_lon of the darkT A promising approach for a possible simultaneous answer
energy component is probably a cosmological constant, iy the ahove questions has been recently provided by a dila-
might be neither the most motivated, nor the best fit to thegnic interpretation of the dark energy based on the infinite
data. ) o bare-coupling limit of the superstring effective actif,

The existence of dpresently dominatingdark-energy whose cosmological solutions are characterized by a late-
component raises at least three important questi@h¥vhat  time global attractor where dark-matter agufilatonic) dark-
is the physical origin of such a new compone(ti?Why is  energy densities have an identical scaling with time. A very
its energy density today just comparable to the matter energsimilar cosmological scenario has been studied also in
density?(c) Did the acceleration start only very recently in [14,15. The respective amount of dark-matter and dark-
the cosmological history? energy density is eventually determined by the fundamental

The first question refers to the fundamental physicalconstants of the model, and it is expected to be of the same
mechanism able to generate a cosmic and universal darkrder, so that their ratio keeps frozen around unity for the
energy distribution. So far, most models of dark energy havavhole duration of such an asymptotic regime. In such a con-
adopted a purely phenomenological approach, even if a fediext, the approximate equality of dark-matter and dark-
proposals concerning the possible role of the dark-energ§hergy density today would be no longer a coincidence of the

field in the context of fundamental physics have already apPrésent epoch, but a consequence of the fact that our Uni-
peared5-10. verse has already entered the asymptotic regantuially, for

a region of parameter space allowed by observations, it is

The other questions concern two distifalthough possi- ; .
bly related aspects of the so-called “coincidence problem” &S0 Possible that the ratio of dark-energy to dark-matter den-
ity is close to unity not only in the asymptotic regime, but

[11]. The first aspect refers to the density of the dark-energ . . e
and of the dark-matter component. Since in most models théready after the equivalence epachinally, the cosmic field

: . esponsible for the observed large-scale acceleration would
two components have different equations of state, they sca e no longer introducedd hog being identified with a fun-
W!th time in a different way, and their den3|t|e§ ShO_UId begamental ingredient of superstring or M-theory models of
widely different for essentially all the cosmological history: high-energy physics.

by contrast, current data are strongly pointing at a compa- “|, this paper we will focus our discussion on the possible
rable proportion of the two components just at the presengonstraints imposed by structure formation on the above
epoch. model of dilatonic dark energy, by studying the growth of
matter perturbations in the two relevant post-equivalence ep-
ochs: a first decelerated epoch, dubleagging phaseand
*Present address: School of Physics and Astronomy, University ot second accelerated epoch, dubfredzing phaseWe will
Birmingham, Edgbaston, Birmingham B15 2TT, England. then reconstruct the behavior of the cosmological gravita-
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tional potential, evaluate the Sachs-Wolfe and integratediere A is the fundamental string-length parameter, and the
Sachs-Wolfe contributions to the spectrum of cosmic microtilde refers to the string-frame metric. The functions
wave background(CMB) anisotropies, and estimate the (¢),Z($) are appropriate “form factors” encoding the
present level of matter fluctuatior@ particular, the so- dilatonic loop corrections and reducing, in the weak coupling
called varianceog, smoothed out over spheres of radius|imit, to the well known tree-level expressior[d6] Z

8 Mpch™1). Finally, we will compare it with observations. =exp(— ) =exp ).

The results that we find are interesting, and might help in |4 this paper we are interested in a “late-time,” post-big
answering the third question posed at the beginning of thigang cosmological scenario, in which the dilaton is free to
section: among the range of parameters compatible with g, 3, infinity rolling down an exponentially suppressed po-
l;:)he'nom(?nologlcallr)]/ afccept?bbq}we fltndtl'ndeedfva!u?z al- ttential, and the loop form factors approach a finite limit as
:SW:?:"SOEQ epoch ot acceleration, starting as far in the pazd)_} +o. Assuming the validity of an asymptotic Taylor ex-

~5. By contrast, the models of dark energy uncouple ion[17], and following th irit of “induced-aravity”
to dark matter, with a frozefor slowly varying equation of pansioni17], and foflowing the spint o uced-gravity
state, cannot accelerate befare 1. It seems appropriate to models in which the gravitational and gauge couplings satu-
te at small values because of the large number {0?) of

anticipate here that the production of an acceptable level dj o
fluctuations even in the case of an early start of the accelefdndamental grand unified theofUT) gauge bosons en-

ated epoch is due to two concurrent factors: the first is thaf€"ng the loop corrections, we can write, f¢r +,
during the freezing phase, perturbations do not stop growing ) _ a2 — ¢ “2¢

like in other models of accelerating dark energy; the second e =citbe 7+ 0(e"7),
is that the horizon at equivalence in our model shifts at larger

scales with respect to a standard cold dark matter model with Z(¢)=—ci+be ?+0(e”??),

a cosmological constanf\(CDM) model. It is also important g

to stress that such an early acceleration is by no means in V(¢)=Voe ¢+ 0(e ??). 2)
contrast with the recently observed supernova SN 1997ff at

z~1.7. The dimensionless coeﬁicientﬁ,c% are typically of order

For the model of dilatonic dark energy considered in this10?, because of their quantum-loop origin. We may note, in
paper the coincidence problem can thus be alleviated by thgarticular, thatc? asymptotically controls the fundamental
fact that the ratio of dark-matter to dark-energy density is ofratio between thédimensionally reducedstring and Planck

order one not only at present, not o_nly in thej course of th%cales[9], c§=)\§/>\2 , which is indeed expected to be in the
future evolution but(at least in principlg also in the past, range[18] X p/\=0.3—0.03
s=0. .03.

that this possibiy could be strongly consirained by future. 10 COMPIte the model we have to specify the mater
P Y gy y actionS,, of Eg. (1), containing the couplingpossibly renor-

observations of supernovae at high redshift. alized by loop correctionof the matter fields to the dila-

The paper is organized as follows. In Sec. Il we presen o . : .
the details of our late-time, dilaton-driven cosmological sce10N- The variation o8y, with respect top defines thstring-

nario, and define th&heoretical and phenomenologicala-  frame dilatonic charge densityr, whose appearance is a
rameters relevant to our computation. In Sec. Il we discusgpeculiar string theory effedtl9], and represents the crucial
the growth of matter perturbations and compute the variancdifference from conventionalBrans-Dicke scalar-tensor
og. In Sec. IV we impose the observational constraints ormodels of gravity.

our set of parameters, and determine the maximal possible For the cosmological scenario of this paper we shall as-
extension towards the past of the phase of accelerated eveume, as if9], thatS,, contains radiation, baryons and cold
lution. We also find, as a byproduct of our analysis, interestdark matter, and that the dilatonic charge of the dark matter
ing experimental constraints on the fundamental paramete@mponent switches on at sufficiently large couplings, being
of the string effective action used for a dilatonic interpreta-proportional[through a time-dependent factgf ¢)] to its

tion of the dark-energ_y field. In Sec. V we compare ourenergy densityp.. Also, q(¢) is assumed to approach a
model with the constraints prow_ded by thg farthest ObS?fve@onstant(positive valueqg as ¢p— + =,

supernova at=~1.7. Our conclusions are finally summarized

in Sec. VI. q(p)=qo+ O(e" %%), 3)

Il. THE MODEL The dilatonic charge of radiation and of ordinary baryonic
o o _matter are instead exponentially suppressed in the strong
Thg modgl we consu_jer is based on the g_raV|d|Iatc_)n St“”g:oupling regime[9], and this guarantees the absence of un-
effective action[16] which, to lowest order in the higher- gcceptably large corrections to macroscopic gravity, since in
derivative expansion, but including dilaton-dependent 100Rpe model we are considering the dilaton is asymptotically
corrections and a nonperturbative potential, can be written iR, assjess and leads to long-range scalar interactises

the string-frame as followg9]: however[20] for possible testable violations of the equiva-
1 lence principle, and other non-standard effects, possibly ob-
5= — _f dV—gle  “IR+Z( ) (¥ $)2 servable in such a conteéxt
2)\2 By considering an isotropic, spatially flat metric back-

. - ground, and a perfect fluid model of matter sources, it is now
T2\ V() ]+ Si(9, ¢, mattey. (1) convenient to write the cosmological equations for the action
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(1) directly in the Einstein frame, defined by the conformal In this phasek(¢) can be approximated by a constant,
transformatiorﬁw,=c%gwexp(glf). In the cosmic-time gauge k(¢)fk1, and it is thus convenient to define the rescaled

(and in units 22=167G=1) the equations arg] field ¢=Kk;¢ which has a canonical kinetic term in the ac-
tion, and which satisfies with, the system of coupled equa-
6H2=p+p,, 4H+6H?=—p—p,, (4 tons
2 y ’ ’ 12 ’ = A 1 lﬂ,+q
K B)(b+3HB) T K(BK () F+V'(9) beanie 5| L )pczo, 13
1
+5 [ (@) (pptpe)+a(#)pc]=0, (5 _ 1y +q| »
pc+3Hpc_§ Tk pcp=0. (14

where a prime denotes differentiation with respecttoand
We can then define the canonical effective coupling of the

k3(p)=3¢'2-2e?"Z, V=cie®N, q(p)=0./pe, ® dilaton to dark matter by the functiof(¢), defined by
1 . 1 . 1 1y (d)+a(e)
=5 KD +V(D),  Py=5K($)F*=V(), (7) B2k (15
p=p;tpptpes, P=p/3. (8)  which, in the dragging phase, is also approximated by a con-

stant, B(¢) = B,<1 (the conventional factor B has been
We have explicitly separated the radiation, baryon and coldntroduced here to adapt the notations of this paper to previ-
dark matter componentsp(,pp,pc), and introduced the ous studies of the dark-matter-scalar sysfédi).
(Einstein-frame dilatonic charge per unit of gravitational Using Egs.(4),(13) we find, in the dragging phagé],
massq(¢), which is nonvanishingat large enougl®) only

for the dark-matter component. The combination of the A
above equations leads to the separate energy conservation ¢= 4HB1/\/§’ (16
tions:
equations so that, from Eq(14),
p,+4Hp, =0, 9
Pr Pr 9) pC~H2~p¢~a—(3+4ﬁi/3)' (17)
. 1.
pot3Hpy— 59 pp=0, (100 Because of the dragging the time evolution of the dark mat-

ter density deviates from the typical behavior of dust
1 sources, in such a way that decays slightly faster than
bc+ 3Hp.— _;ﬁ(,pr +q)p.=0, (11) energy density of baryong,~a 3. It is however unlikely
2 that this effect may lead the Universe to a baryon-dominated
L phase, because this trend is soon inverted in the subsequent,
. T freezing phase.
Pt 3H(pytPy)+ 58LY (Pt pc) +Apc]=0. (12) (i) “Freezing” phase The asymptotic dilaton potential
V($)=Vyexp(—¢) comes into play, the evolutioffor large
With the above assumptions afy Z andq, and for ap- enough values aff) is accelerated, the dark matter, potential
propriate values of the parameters of the loop functions and (dilatonic) kinetic energy densities evolve in the same
particular, for a sufficiently small value d&f,), it has been way, so that the ratip 4/ p. is frozen to an arbitrary constant
shown in[9] that the phase of standard, matter-dominatedsalue. The critical fraction of dark matter, potential and ki-
evolution is modified by the nonminimal, direct coupling of netic energy densities are also separately constant throughout
dark matter and dilatonic dark energy. After the equivalencehis phasd9,21].
epoch, in particular, the Universe may enter a phase of In such a phase, asymptotically approached when
“dragging,” followed by an accelerated phase of asymptotic+«, one hasq(¢)=qq, #'=0, and the parameters
“freezing.” For the reader’s convenience we recall here thek(¢),B8(#) can be again approximated by constant values
main properties of two such phases, referring@d 4| fora  k,,B, (in general different from the previous ongselated
more detailed discussidsee alsg21] for a general study of by k,3,=\/3q,/2. The coupled equations for the canonically
the dynamical system . . o rescaled fieldp=k,¢ are modified by the presence of the
(i) “Dragging” phase. The potentialV(¢) is negligible, potential
the evolution is decelerated,, is still subdominantas well
aspy), butp, evolves in time like the dominant component . N B
pec, SO that the dilaton dark energy is “dragged” along by the ;ﬁ*' 3Hp+ —+ _ch: 0, (18)
dark matter density. b 3
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. By gime, and the dilaton potential reduces asymptotically to the
pct+3Hp.— —=p.p=0, (190  exponential form of Eq(2), with Vo=m(a;— ay)/aiay

V3 (in units 27\%: 1). Itis worth noting that the mass scailg,
controlling asymptotically the amplitude of the potentiahd
thus the beginning of the freezing phase possibly ex-
pected to be of nonperturbative origin, and thus related to the
fundamental string scale in a typical instantonic way,

and, together with Eq4), are solved by the following con-
figuration[9]:

V=Voe Yo~ ()2~ p,~pe~H2~a ¥ 0. (20)

In units of critical energy density we find, in particular, mv=ex;{ - 2 M., 25
- 5 B™ agut
Q :L — Q + i Q — (d)) — 3—k2 . .

VT 6H2 KT 2+0q0" T K 1212 (2+q0)2’ whereagyt=1/25 is the asymptotic value of the GUT gauge
coupling, and8* is some model-dependent loop coefficient.

_ —1_ As noted in[9], a value of3* slightly smaller than the usual
Q4= vt Q=170 1 coefficient of the QCD beta-function is already enough to
Note that, from Eq(20), movem,, from the QCD scale down to the scale relevant for
a realistic scenario of dark-energy domination; a typical ref-

a H qo—1 erence value is,Glfor instancg =0.36, which corresponds
T 1+ 02 gt 2’ (22 tomy~Hy~10"5M5, and thus to a freezing phase starting

around the present epoch.

With the above explicit forms of the loop corrections we
case, according to Eq20), the dark matter density tends to can now compute the co_nstant parameters for the dr_agging
be strongly enhanceths time goes onwith respect to the (ki,1) and the freezing K;.B;) eras. By setting
baryon density, which on the contrary is uncoupled to thetz=v3¢1/(y2¢,) we find
dilaton and thus evolves in the standard way;-a 3. As

so that the freezing phase is accelerateddgr 1. In that

already pointed out 9,22, it is tempting to speculate, in 3 Qom2 3 QoM2
1=\ Bi=—= ., ke=\/—, B2= .

such a context, that the present smallness of the gtip. o 202 o 2

could then emerge as an artifact of a long enough freezing (26)

phase, started before the present epoch.

In this paper, in order tq discuss the possible boynds imThe constan]uzl\/§ represents the slope of the dilaton po-
posed by present observations on the above scenario, we Willntia| \/(¢) during freezing. With these definitiong,
consider a simplified model of late-timdi.e., after- =28,/ 1y,62= B,/ B,.
equivalencgcosmology, consisting of two phases. More pre-  Fqor oir model of background we can finally express the
cisely, we will drastically approximate the background evo-ynenomenological variables, required for the subsequent
lution by assuming that the Universe performs a suddeiiompytations, in terms of the above set of parameters. From
transition from the radiation-dominated to the draggngq& (17),(200 we get the barotropic parametew

phase at the equivalence epazh aeq, and from the drag-  —, "/, y+1 relative to the effective equation of state of
ging to the freezing phase at the transition epaeha;. We 414 dark matter

will discuss in this context the phenomenological constraints

on the parameters of the string effective action, and in par- 4 2 o
ticular their possible consistency with an early beginning of wy=1+ 5/31, W2=2+—= TB
the freezing epochz;=(ay/as)—1>1, which (as already Qo #27Tp2
mentioned may be relevant for a truly satisfactory solution i, the dragging and freezing eras, respectively. Another use-

of the coincidence problem. _ ful parameter i) : in the dragging phase, from E(L6),
To make contact with previous results we will use here

the following explicit model of dilaton potential, charge and

(27)

i ifo): ()7 4
loop correctiongalready adopted if9]): Q=1-0,=1- PP = 1_513% (28)
erd’
e VW=e"?+c? Z(p)=e ?—c3, q(d)=qo——, In the freezing phase, from ER1),
c?+ o
3 263+ 2Bopr—9
4. 2 c™ (29
V(¢)=cimie?/[exp(—e */a;)—exp—e %/ ay)], 2(Bo+ po)?
0<a,<aj. (24)  (this is therefore to be identified as the value observed to-
day).
Here cf,c%,c2 are numbers of order %P the asymptotic Note that the ratio of dark-energy to dark-matter density

charge satisfies|p>1 to guarantee a final accelerated re-may be close to unity throughout the cosmic evolution after
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equivalence, if the constanfs,,B,,u, are of the order of 9+48,( ot B)
unity. In this sense, in such a model, it is even possible that Qy= — (36)
a serious coincidence problem never really arises. By con- 4(pat B2)

trast, dark-energy modelgithouta stationary phase in which
pm~py (see e.g[23,24)) have to explain the current value A
(or order ong of ratios(2 , /), which range from extremely present obse_rvatlons.

small values in the past to unboundedly large values in the [N conclusion, we have a four-parameter model of back-
future [14]. ground, spanned by two possiblelated sets of indepen-

We end this section with the computation of three usefudent  variables:  the  phenomenological  variables
redshift parameters,,z; ,z, corresponding, respectively, to {'31’:82':‘5214} or, equivalently, the fundamental variables
the radiation-matter equivalence, to the beginning of theC1/C2:6"do,Vo}, referred to thep— + = limit of the string
freezing epoch, and to the baryon epo@ssociated to a effective action of Eq(1). The mapping between the two

possible baryon-dominated phasErom the behavior op sets is defined by Eq$26) and (36). Note that two of the
and p,, in the freezing phase ¢ four parameters can be in principle determined by fitting the

observational data relative to the present fraction of cold
ao)® dark matter()., and the dark-energy equation of statg;
—) , (300 we can determine, for instance,, and B, through Egs.
a (26),(29). In the following sections we will discuss the al-
lowed regions left by various phenomenological constraints
in such a parameter space.

whereH, is the value of the Hubble parameter provided by

3wy

=l
» Pp=pp(30)

a

Py=pg(a0)

we can determine the baryon redshift epagh such that
ps=pp. as follows[22]:

(ot B2)I3B2 IIl. CONSTRAINTS FROM STRUCTURE FORMATION

2 (31)

l+Zb=_=
ap

Q4
Qp

In this section we will compute the rms dark-matter den-
sity contrasiorg for the model presented in Sec. Il, combining
The present ratio@ ,/Q,), is a known observational input. it With the CMB angular power spectrutat low multipoles

Our model excludes the possibility of a baryon-dominated” order to eliminate _the dependence on_the n_ormalization
phase and thus requires, for consistegy; z; (see[22] for factor. Another analytical computation of; including dark

0

a dark-energy model with a baryonic epach energy has recently been presentef2®l, but only for mod-
The equivalence scale can be obtained by rescalind €IS in which dark energy and dark matter are uncoupled.
p, from a, down toay, i.e. ~ Before starting the computation, let us recall some pre-
liminary condition to be imposedfor consistency on our
3wy g, | 3wz model of background.

pc(ag)=pc(ae)

as 2l . L
A. Consistency conditions on the background
a\ 4 af\* As illustrated in Sec. Il, the evolution of our cosmological
pr(ag)=pr(ae)| - | 3| (32 background is characterized by two stationapy,< p.)
f 0 . .
stages: the dragging etbeled by the subscript 1), and the
from which final accelerated freezing eftabeled by 2). This scenario
can be consistently implemented provided the parameters are
ap Q,\ [a)|3We-w)]UEw-4) chosen in such a way as to_satisfy th.e following cqnditions.
1+ze=a—: (Q— ™ } , (33 First, the dragging era exists, and is a saddle point of our
e ¢/o\ <0 dynamical system, only if21]
where, again, Q,/Q.), is an observational input. Similarly, |B1]<\/3/2=0.87. (37)
we can determine the freezing epoch by rescaling the dilaton
potential energy, Second, in order for the baryons not to domin@tethe past
over the dark-matter component, it is necessary to imgase
3w anticipatedl
pv(ag)=Voe %= py(ao) a (34
f 7,>7 . (39

Herepy(ag) =6H5Qy , whereQy, is determined by Eq21),  Third, the final freezing phase is accelerated only if
and ¢; is the transition scale between small and large values

of the dilaton charge, nameky; = (2/qo)In c, from Eq.(23). H2<2P5. (39
We thus obtain
The current SNla observations, however, require more than

ag Vo (B2 (mo+ B2)/3p2 simply an apceleration, as shpwn by a recent analgé€kof
1+2zi= Pl eerr el b , (35 SNla data in models which include a freezing epoch. The
i [6HGQy P2 result is that only models with an effective equation of state
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w,~0.4 (best fi) or w,<<0.5 (at one sigmpare consistent Fourier components. The potenti#l is then determined by
with the SNla Hubble diagram. the relativistic Poisson equatidm units 16rG=1)

In the following discussion we will reduce, for simplicity,
our set of free parameters by using the observed CDM frac-
tion of critical density,(.=0.3, as a fixed observational

3
V(@)= ;HoQcd(@os(k.a)
input. This can be used to eliminate, through EQq.(29), in

such a way that we are left with three parameters only, 1 . 3aH . a2 dv
B1, B> and z;. In that case, the above limits ow, — X X'~ —x—=, (49
= uo/(uo+ By) define two reference values f@,, 4k 4k 4k* d¢
B,=4.02, (best fit (40) vyhere we have_ introduced tf(possiblylk-depende_ljtfunc-
tion s(k,a), which accounts for the time-evolution of the
B>=2.35, (one sigma, (41) Sark matter and of its density contrast, according to the equa-
ions
which will be used in our subsequent analysis. For future B
reference, note that the lower limit at 95% C.L. B pe(8)=pc(a0)f(a), (46)
>1.55. We note, finally, that pushing back in time the tran- _
sition between the dragging and freezing eras, that is, in- dda)= di(ap)D(ka), (47)
creasingz;, implies a decrease af,. The condition a2
s(k,a)=D(k,a)f(a)| —| . 48
z;=100 (42 (ka)=Dikayi(a) ao) -
prevents the unwanted crossing of these two quantities. The quantities appearing on the r.h.s. of K45 are
All the above constraints will be imposed on our subse-evaluated in the synchronous gauge, while the potenitiad
guent computations. calculated in the longitudinal gaug@7], since this helps in
extending the validity of the Poisson equation to all scales.
B. Angular power spectrum at low multipoles Note that we have dropped from the Poisson equation the

) ] ) contribution of the dark-matter velocity fluctuations, since it
In this subsection we will extend the treatment of the s pe shown that they are negligils]. The baryon con-
Sachs-Wolfe effect presented [i27] (to which we refer for  ihytion has been neglected as well. Defining the matter
the notation in such a way as to include the case of coupledpower spectrunP (k) =| 5(ag)|?, it follows that

dark energy and dark matter. We shall assume a conformally

flat metric,ds’=a?(d72—dx'dx;), and we shall exploit the 1 dk

fact that, in the absence of anisotropic stress, the two scalar C7"= 2—H§Q§(1+E)f — P(k)[s(k,aq)|?

potentials¥ and ® defined in the longitudinal gauge turn & k

out to be equal and to coincide, in the Newtonian limit, with X 2[k(1o—74)] (49)

the usual gravitational potential. The general expressions for ¢ o Tdlb

the Sachs-Wolfe(SW) and integrated Sachs-Wolf@SW)

parts of the angular power spectrum, for adiabatic scalar per- ~1sw_ 2H49262(€)(1+H)J %P(k)|s’[k a(r)]?

turbations, can then be written 7] ¢ 2 0cem2 k4 AR
(50)

2
cit= @J ki W (k, 7)) k(70— 7a)],  (43)  The functionsX, andIlI represent corrections due to the sca-
lar field contribution. In the next few paragraphs we will
neglect these effects, concentrating the attention only on the
cW= 2G§(€)f dk| ¥’ (k,7,)|?, (44  dark-matter part of the power spectrum, while the scalar con-
tribution will be reconsidered at the end of our calculation.

whereG,(¢)=T[(£+1)/2)/T[(£+2)/2], j, are the spheri- 1he convenience of this procedure will become apparent
cal Bessel functions, the prime denotes differentiation witater on. . _
respect to conformal time, ang} is the conformal time at Focusing our attention on the background evolution after

decoupling, whiler,= 7,— (£ + 1/2)/k (notice that the above the €poch of matter-radiation equivalence, we can now
expression for the ISW coefficient has been already inteSPECify the evolution of the CMB energy density by setting

grated overr). _ ~3w,
Let us denote withs, the CDM density contrast for the f(a)=(a/ap) ™, a>a (52)

wavemodek, and with ¢ and X=069, respepnvely, thg val- =(aslag) “*"2(alag) "1, a<ay, (52

ues of the background scalar field and of its fluctuation. The

label O will denote the present tintg, and it is to be under- wherew; , were defined in Eq927). For what concerns the
stood that all the density parameteis. ,(),, etc. always growth of matter perturbations, since we are interested in the
refer to the present time, unless otherwise stated. Finally, albw-multipole branch of the spectrum, it is reasonable to
perturbation variables will be expressed in terms of theirconsider only scales that reenter the horizon after equiva-
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lence (and before freezing, as in the accelerated stage ntime-independent gravitational potentiagain, like in stan-
reenter is possibje The growth of§, has been derived in dard CDM models and thus it does not contribute to the
[15] as a function of the parametgBsand u of the dragging ISW effect, which is entirely produced in the subsequent
and freezing epochs. It turns out that the evolution is thdreezing phase.

same for all modes: From the integration of Eq49), with 2 =0 we then eas-
ily obtain
D(k,a)=(alag)™, a>a;
1-n
=(alas)™(as/ap)™, a<as, cW= 716 AHJ 2028 (an)G(¢,n), (58
where
where
4 A—10B82—p2
—14 22 — Te e
M=1+3B81 M=y (53 S TB=II@CEn-12) .
and T T((4-n)2)T(2¢+5-n)/2)’
A?=—108+44Bu,+ 323§M2+ 25,u§+ ,33(32,“%_44) and where the factoy appears by eliminating, (from the

(54)  result of the SW integralin terms of the present Hubble

scaleH,, according to the definition
(in the dragging phase the same expormentdescribes the

growth of perturbations both inside and outside the hopizon da 2
Considering scales witk<<k,, where the subscrigt stands ro=f o an Y (60)
for decoupling, the relevant function for the computation of a’H oMo
the ordinary SW effect can thus be parametrized by a
k-independent function as follows: This integral can be finally estimated by considering the
separate contributions from the two phases of our model, and
s(as)=(ag/as)™ WVi(as/ag)™ W2(ay/ag)?=(as/ay)*2,  we obtain
(55)

where @,=m,—3w,+2 (note thata;=m; —3w;+2=0).
Some comments are now in order, concerning the evolu-

tion of perturbations described by the above equations. First 3 3

we notice that in the dragging phase,>1, i.e. that the _ _ _

perturbations growth is faster than in a standard CDM M=WmL Ap=5Wo— 1, Aw=womw, - (61)

model. This is due to an extra pull on dark matter arising

from the dark-energy coupling, that act as an additigeed-  (the usual result for the standard cosmological model is in-

lar) gravity force[15]. Secondly, the growth in the acceler- steady=1).

ated freezing regime does not vanish asymptotically, like in |t is appropriate to reconsider at this point the scalar-field

other dark-energy models. This is again an effect of the darkeorrections to the SW effect, represented Xy The scalar

energy—dark-matter coupling and of the fact that the darkfield fluctuations which are outside the horizon during the

matter density is not driven to zero by the acceleration. Fidragging phase grow proportionally to the CDM density con-

nally, since the baryons are decoupled from the dilaton, theyast (see[21,27)). Since pe~pg, it is found thats is a

evolve differently, and a bias between the baryons and theonstant, and depends only @3 as follows:

dark-matter distribution is expected. The constraints from

1 [ 3Aw(af/a0)*2}
y=—|1+ ———,
2), 2%,

this effect have been discussed in Réb]. p

It is important to stress that the matter power spectrum, 64 5/3%(3+ B2)(15+432)
calculated today for scalds<k., wherek, is the scale that S = (62)
reenters the horizon at equivalence, 405+ 25282 — 33687+ 643°

ke=aeHe=acHo[ (ar/ap) *"(ac/ar) *"1]'%  (56) (the contribution coming from the scalar-field potential has
been neglected, since in the dragging phase the dilaton ki-
netic energy is dominant with respect\9.

P(k)=AK", (57) For what concerns the ISW effect, the scalar field contri-

bution on subhorizon scales is negligif22], and we can

whereA is the usual normalization fact¢see e.g. Ref.28]). consistently sefl =0. If we define the variablg=kr,, and
This is due to a peculiarity of the dragging phase, i.e. to theve use the result that, in the accelerated epoch,
fact that the perturbation growth is identical inside and out-
side the horizon, just like in the case of standard CDM mod- s(a)=(alag)“?, (63
els (although, as already mentioned, the growth mateis
larger than unity. The dragging phase, in addition, leads to athen we are led to

does not change with respect to the primordial shape
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sw 9 o s i3 o[ . _— tion. The time-dependence of the freezing scale-factor, on the
CM=5A0CG(0)Hg a2J dyy" *a(£,y)?*2"?2, other hand, can be parametrized by
Ymin
4 a=ag[\o(Hor+B)1™2, (66)
The lower limit of integration,
where
€+ !
2 i (as/ag)*? o 1 1 (67)
Ymin=— . = —=—F (65) a A N/’
1-r 70 2'}/)\1 0 2 1
has been obtained by imposing> 7;, since only in the By using all the above results the ISW integral can be

second(freezing stage is there a significant ISW contribu- finally performed and, in the case=1, the result is

9 B+ 2y)\,]2@ 4 [(B+2yr)\,]2 @2 D=1 [4ya,(r—1)— (B+2yr)\
c, |SW=—AQ§G§(€)Héa2[( Y)\2] [( YrN] [4yay(r—1)—( yr) 2]_ 69
‘ 4 YA(2€+1)%(2a5—\,)

For a generic, primordial spectral index witl* 1 a much more complicategbut still analytio expression may be obtained.
In conclusion, the dimensionless, angular power-spectrum at low multipbted @) can be approximated by

C¢=C¢ swtCrisw=AF, (69
where, forn=1,

af2

ap
a—o (1+2)

F(€;a5,B1,B2,m2) =HgQ2

4mf(€+1)

[(B+2y)N\,]2@2 "D+ [(B+2yr)\ ]2 @2 L [4yay(r—1) = (B+2yr)\,]
Y2(2€+1)%(2a,—\») '

9 2
+2G3(0)ay

(70

The variableC? , representing the experimentally observed o2 )
angular power spectrum, measured in units @KJ?, can '1:J XTI WA(x)dx. (73)
thus be finally written in the form
Note that we are using the full power spectrum corrected by
the transfer functio (k), i.e. P(k)=Ak"T?(k), since in the
. T20(€+1)AF 71 deIIinition of og it is necessary to include also scales wkth
(TS, >Ke.
2m I? is important to stress, at this point, that the above trans-
fer function is identical to the one of the usuAICDM
_ model. During the dragging phase, in fact, the perturbation
whereTo=2.726< 10 K. growth does not depend on the wave number, while during
the freezing phase only subhorizon perturbations have to be
C. Calculation of og taken into account, so that no distortion of the power spec-
trum occurs after the equivalence epoch. Therefore, the
transfer function only expresses the usual correction to the
primordial spectrum due to the different growth of perturba-
tions in the radiation epoctthose entering the horizon be-
fore equivalence are depressed with respect to those entering
ng%f P(k)Wg(k)kzdk= %Rg““h, (72) Iatel_). Since, i_n our model, the cosmological evolution before
2 2 equivalence is standard, we can safely adopt the transfer
function of aACDM modelfor which the wave number.k
crossing the horizon at equivalence is the same as in our
where Wg(k) is the spherical top-hat window function of model For a ACDM model with present densit ¢ scam)
radiusRg, and one has, in particular,

The (dimensionlessvariance of the CMB density fluctua-
tions, in spheres of radiusRg=8h"1 Mpc, where h
=H,/(100 kmsec! Mpc™?), is defined by[28]

043512-8



EARLY ACCELERATION AND ADIABATIC MATTER . .. PHYSICAL REVIEW D 67, 043512 (2003

to be used for the determination of the equivalent transfer
function (we shall of course restrict our analysis to the case
Q¢acam<1). For the final numerical integration of E@.3) 0 010203040506
we shall use the\CDM transfer function proposed ir29].

Combining Eq(71) and Eq.(72), in order to eliminate the
normalization facto, we finally obtain

[2 6
Ke(Acdm =aoHoQ¢(acdm) o (74)

' 5
By equating tokezcam the value ofk, determined in our 4

model [see Eq.(56)], we thus obtain the effective density
parameter « 3

N
Q, 1/2 ay —3Aw/2 a, (2—-3wy)/2

Qeacdm= ( 2/ la a0 (75 2
1
0

*
cly

2 wtlt
aTIRGC(L+1)F’

og (76)

wherel; depends of)(\cqm - The observedC] has been
obtained by fitting the COBE data as [i80]. The compari-
son of Eq.(76) with the experimental value afg,

0s=(0.56+0.1)Q %, (77

taken from data on clusters abundani®s, will eventually
give the sought-for constraint on the parameters of the dila-

ton model introduced in Sec. Il 0 0.10.20.30.40.50.6
B

FIG. 1. Curves at constantg [from Eq.(76)], and 83, fixed at
the values 2.3%top) and 4.02(bottom). The allowed region is be-
low the dashed line, and within the upper and lower white curves,
corresponding to the limiting values of E(.7).

IV. RESULTS

In order to implement the constraints imposed dywe
shall first eliminatew, from our set of parametefas already
anticipated, by using Eq(29) and fixing the CDM density at
the valueQ.=0.3, suggested by present observatisae . - .
e.g.[32]). Also, we shall assume for the baryon density the?hisr;eeg I;)r;en’e"’lmgf Vgitgmlthvieu%g%reaﬂg;hw_e; gg'tiggr\xj In
\;acl)tfggherzc?d;(r:]tgc\ilvebgehsiagga;d nucleosynthep&s], (s obtgin t_hat the maximum past-extension of the accelerated

The value of3,, at givenu,, should be unambiguously regime 1s
determined byg,, and then by the observed value of the 2;<2,=5.07. (78)
cosmic acceleration through Eq82) and(26). However, in
view of the present experimental uncertainties, we have aqn the right panel, fop3,=4.02, we obtairz;<z,~3.47. At
cepted here an open range of possibilities and we have illughe two-sigma lower limit,8,=1.55, the acceleration ex-
trated the constraints at tweather different values of8;:  tends toz,~8.

B2=2.35(the minimum value allowed at one sigma by SNIa By contrast, it is easy to see that in dark-energy models of
[26]), andB,=4.02(the best fit to the SNla dafd6]). These  more conventional type, i.e. uncoupled to dark matter, with
two reference values will be used in all the following discus-frozen equation of state, and matter densitf,,,, the ac-

sion. o o celeration starts at the redshift
We shall first illustrate therg constraint in Fig. 1 by plot-
ting the curves corresponding to the experimental vald@s Zaoe=[(BW4—2)(Qp— 1)/Q, Y30 —1. (79

(with a 3 sigma error bandn the plane{z;,8,} with 8,

fixed. The upper curve@nd the darker regiopgorresponds  This value, for allw,<2/3 (i.e. for a present accelerated
to lower values ofrg. In this figure(and in the next onghe  regime, is always smaller than unity if),,=0.3+0.1.
white region has been excluded because the transfer functiorherefore, a(future) unambiguous measurement of the ex-
parameten).,.qm becomes larger than unity. The dashedpansion rate az>1 could be a powerful method to distin-
horizontal lines represent the upper boundzpimposed by  guish between coupled and uncoupled models of dark en-
the baryon constraint38). The allowed region is below the ergy.
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as already pointed out i®], a realistic dark-energy scenario
seems to require a rather high degree of accuracy in deter-
mining the scale of the dilaton potential. THfine-tuning?
aspect of the potential is however a common problem of all
scalar-field models of dark energy.

It should be mentioned, to conclude this section, that we
=2.3 have performed an additional observational test of our class
—2. of dilatonic dark-energy models by comparing with the

24 f dilatonic dark dels b i ith th
-25 ﬂZ =2.35 COBE data the slope of the low-multipo®, spectrum in-

6 duced by the SW and ISW effect. Using a simple Gaussian
: likelihood distribution we have concluded that, at the confi-
051152253354 dence level of two sigma, the predicted slopes are compat-
]Og(cz) ible with the data for all the allowed region of parameter
space, so that nsignifican} additional constraints are gen-
erated.

-1.9

-2
-2.1
-2.2

log(Vy'4/eV)

V. THE FARTHEST SUPERNOVA

As a last check on the viability of the present dilatonic
dark-energy model we have considered the constraints im-
posed by the most distant type la supernpi2] known so
far, SN 1997ff, for which a very recent assessment of lensing

N maghnification has increased the apparent magnitude by 0.34
-2.5 32:4-02 +0.12 mag[13]. This leads to a final distance moduli=.
to a difference of apparent and absolute magnitumfem
1152253354 — M =45.49+0.34 mag.
log(cz) Using the definition adopted ifil2], this result can be
expressed in the following way. The luminosity distance is

log(Vo'4/eV)

FIG. 2. Curves at constamtg, and B3, fixed at the values 2.35

(top) and 4.02(bottom). The allowed region is below the straight z dZ
line representing the consistency bounet z,, and within the up- d = (1+Z)J' —~, (80)
per and lower white curves corresponding to the limiting values of 0 H(Z')
Eq. (77). ) ]
from which one defines
The plots of Fig. 1 refer to our “phenomenological” set of
parameters, and in particular to the duration of the freezing A(m—M)=5[l0g,o(d, (2))—log;o(d,.(2))],  (81)

epoch(possibly relevant to the solution of the coincidence

problem. The og constraint provides however interesting in- _ . S
formation also on the set of “fundamental” parameters of thewhere,d“’(z) =2(2+2)/(2Ho) is the luminosity dIStaECG for
Milne’s model, i.e. a hyperbolic empty univers€ (= ,

string effective action(1), used for our model of dilatonic —0). For the supernova SN 1997ff one obtaihém— M)
dark energy. ; .
By eliminatingc, /¢, = \2/3u,, and fixin ie. B, as ~—0.15-0.34 atz=~1.755, in good agreement with a
y 9Ci/Cy K2, 990, 1.€. b2, ACDM model characterized today ,,=0.35(,=0.65
before, we can plot indeed theg constraint in the plane . .
. : .~ [13]. For such a model, the Universe &t 1.755 is already
spanned by the variableg andV,. The result is shown in o .
) . - N well within the decelerated epoch, which starts around
Fig. 2, again forB,=2.35 (left pane) and for B,=4.02 —0.548[see Eq(79)]
(right pane). We have restored the required Planck length This does not imply, however, that all models which are

factors, and given the potentil in units of eV:. The al- accelerated at largeare ruled outeven without mentioning

lt?g:‘/c?rde reﬁ‘?%@;‘?&ﬂrfzemfnggrri\infflrmer W;\tltﬁxc:érves, 3%he still unclear experimental uncertainties of such a super-
: B1, Ba, nova detection Let us calculate indeed the luminosity-

is satisfied for all the range of values illustrated in the PIC-§istance along a stationary regimg~p,,, for a spatially

ture. . .
flat geometry. Neglecting for the moment the baryon contri-
We note that the values of parameters usefQinfor a bution, the Friedmann equation is

particular numerical integration of the string cosmology
equations are well compatible with the above bounds. It is
also important to stress that, since the valueZit naturally
expected in the range 4010° [9], the allowed mass scale of
the dilaton potential,\/(l,"‘, turns out to be fixed in a rather where, in particularw=w, [see Eq.(27)] for our freezing
narrow region around (IG—102) eV, even in the case of regime. The corresponding luminosity-distancéor w
an early start of the freezing epoch. This result confirms that# 2/3) is

H2=H3[Q(alag) 2"+ Q4(alay) *"]=Hj(alay) ",
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04 The effective dilatonic coupling to dark matter switches
02 By =402 on at late enough time§.e., large enough bare coupling
Q\A and affects in a significant way the post-equivalence cosmo-
0 = —— logical evolution. The time-dilution of the dark-matter den-
El —02 sity, in particular, is first slightly enhancedduring the drag-
<§| | ging phasg and then considerably dampediuring the
-04 freezing phasewith respect to the standaal 3 decay law.
_06 The large-angle fluctuation scales relevant to the observed
Q7 =0.35, Qy=0.65 —m=, CMB anisotropies reenter the horizon during the dragging
02 05 i 3 : epoch, and exit the horizon again during the freezing epoch.
z In spite of this unconventional evolution, the growth of the

matter-density perturbations may be large enough to match
FIG. 3. The distance modulus— M, referred to Milne’s cos-  consistently present observations.

mology, for aACDM model (dashed curveand for the dilatonic The predicted value of thesmoothed oytdensity contrast
dark-energy model during the freezing epoch, for two valuegof g, compared with data obtained from cluster abundance,
(thick curves when baryons are included, thin curves without barydefines a significant allowed region in the parameter space of
ons. The points atz<1 represent the binned data from all the the given class of dilatonic dark-energy models. The analysis
high-redshift la supernovae _known so far. The datum plottel at ¢ <\ ,ch an allowed region provides two main results.
:1:755 represents the lensing-corrected SN 1997ff. All data are The first is that the bounds on the past-time extension of
derived from[12,13. . o

the acceleratefreezing epoch are significantly weaker than
in conventional dark-energy modeisncoupled to dark mat-
ter, with frozen equation of stgteThe establishment of the
freezing regime, in our class of dilatonic models, is allowed

(82 long before the present epoc¢hp to z=5), thus providing

(in principle) a further relaxation of the coincidence problem,
For an accelerated evolution withi<2/3 (i.e., in our case, by extending the present cosmological configuration not only
do>1), and for largez, we haved, ~z> 32, while for  in the far future, but also towards the past.
Milne’s cosmologyd, ~Z2. It follows that, at largez and for The possibility of very early2>1) accelerated evolution
anyw>0, the Milne model always provides larger distancesis indeed a typical signature of such a class of dilatonic mod-
(and thus larger apparent magnituddsan a model of sta- els, useful in principle to discriminate it from othéun-
tionary evolution. As a consequence, a negative value ofoupled dark energy models, hopefully on the grounds of
A(m—M), referred to Milne, does not necessarily corre-future observational data. It is important to stress, to this
spond to deceleration. respect, that the farthest type la supernova so far observed is

For a more precise illustration of this important point we at 1.7, and is perfectly compatible with an accelerated

have plotted in Fig. 3 the distance modulti¢m—M) for  ypiverse already at that epoch, provided the data of the

the accelerated freezing phase of our dilatonic dark-energy,,qnitude-redshift diagram are consistently fitted by the ac-
model. We have numerically integrated the luminosity-.qjarated kinematics of dilatonic models.

distance functions, including baryons, for the two particular
valuesB,=2.358,=4.02 already used in the previous fig-
ures(it may be useful to recall that, whe®, is fixed to 0.3,
these two values ofB, correspond tow,=0.5 andw,
=0.4, respectively It can be seen from the picture that, in
both cases, the curves representing the cosmic evolution

dz B 2(1+2)
H(z') (2=3w)Hg

d|_=(1-|—z)foZ [(1+Z)_(3W/2)+1—1]_

The second result concerns the parameters ofrtbeper-
turbative dilaton potential appearing in the strong-bare-
coupling regime of the string effective action. The dilaton
mass scal&/,, for an efficient and realistic dark energy sce-
&ario, appears in such a context to be tightly anchored to a

our model,although deeply inside the accelerating regime value Very near to the present H_ubble curv_ature scale. A
remain well within one sigma from théensing-corrected small deviation ofVy from the required value is enough to
SN 1997ff data, while providing, at the same time, a reasonf€move the predictions of the dilatonic model from the re-

able fit of the binned data of all the other supernovae. gion of parameter space allowed by tig data. . _
This means that, under the assumption that the dilatonic

models discussed in this paper provide the correct explana-
tion of the observed cosmic acceleration, the measurements
In this paper we have considered a phenomenologicadf the density contrastg, besides their obvious astrophysi-
model of dark-energy—dark-matter interactions based on theal importance, would also acquire an interesting high-
infinite bare-coupling limit of the superstring effective ac- energy significance for providing an indire¢parameter-
tion. The dilaton, rolling down an exponentially suppresseddependentmeasurement of the dilaton mass scale.
potential, plays the role of the cosmic field responsible for We note, finally, that astrophysical observations may pro-
the observed acceleration, and drives the Universe towardswade several additional constraints on dilatonic dark-energy
final configuration dominated by a comparable amount oimodels. For instance, the clustering evolution of sources at
kinetic, potential and CDM energy density. high redshifts may constrain directly the freezing growth

VI. CONCLUSION
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exponenim,; as already mentioned, the baryon bias that depaper, but a detailed discussion of these new constraints is
velops during freezing is also observable, at least in principlgpostponed to a future work.

[15]; finally, further constraints can be derived from a com-
putation of the full multipole spectrum of the CMB radiation
(see e.g[34] for a recent study of the CMB constraints on
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