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Early acceleration and adiabatic matter perturbations in a class of dilatonic dark-energy models
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We estimate the growth of matter perturbations in a class of recently proposed dark-energy models based on
the ~loop-corrected! gravidilaton string effective action, and characterized by a global attractor epoch in which
dark-matter and dark-energy density scale with the same effective equation of state. Unlike most dark-energy
models, we find that the accelerated phase might start even at redshifts as high asz'5 ~thus relaxing the
coincidence problem!, while still producing at present an acceptable level of matter fluctuations. We also show
that such an early acceleration is not in conflict with the recently discovered supernova SN 1997ff atz
'1.7. The comparison of the predicted value ofs8 with the observational data provides interesting constraints
on the fundamental parameters of the given model of dilaton–dark matter interactions.
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I. INTRODUCTION

Independent cosmological observations have rece
pointed out the existence of a significant fraction of critic
density in the form of unclustered matter, possibly charac
ized by a negative pressure@1–4#. Such a component of th
cosmic fluid, conventionally denoted dark energy, is believ
to drive the accelerated evolution of our present Universe
suggested by the study of the supernovae type Ia~SNIa!
Hubble diagram. While the simplest explanation of the da
energy component is probably a cosmological constan
might be neither the most motivated, nor the best fit to
data.

The existence of a~presently dominating! dark-energy
component raises at least three important questions:~a! What
is the physical origin of such a new component?~b! Why is
its energy density today just comparable to the matter ene
density?~c! Did the acceleration start only very recently
the cosmological history?

The first question refers to the fundamental physi
mechanism able to generate a cosmic and universal d
energy distribution. So far, most models of dark energy h
adopted a purely phenomenological approach, even if a
proposals concerning the possible role of the dark-ene
field in the context of fundamental physics have already
peared@5–10#.

The other questions concern two distinct~although possi-
bly related! aspects of the so-called ‘‘coincidence problem
@11#. The first aspect refers to the density of the dark-ene
and of the dark-matter component. Since in most models
two components have different equations of state, they s
with time in a different way, and their densities should
widely different for essentially all the cosmological histor
by contrast, current data are strongly pointing at a com
rable proportion of the two components just at the pres
epoch.

*Present address: School of Physics and Astronomy, Universi
Birmingham, Edgbaston, Birmingham B15 2TT, England.
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The second aspect of the coincidence problem may a
if the epoch of accelerated evolution started only very
cently, say atz'1. There are reasons to suspect that t
may be the case because, in most models, the growt
structures is forbidden after the beginning of the accelera
expansion, so that the acceleration cannot be extended
far into the past. It has also been recently claimed that
supernova SN 1997ff@12,13# at z'1.7 provides an addi-
tional indication that the acceleration is a relatively rece
phenomenon.

A promising approach for a possible simultaneous ans
to the above questions has been recently provided by a
tonic interpretation of the dark energy based on the infin
bare-coupling limit of the superstring effective action@9#,
whose cosmological solutions are characterized by a l
time global attractor where dark-matter and~dilatonic! dark-
energy densities have an identical scaling with time. A ve
similar cosmological scenario has been studied also
@14,15#. The respective amount of dark-matter and da
energy density is eventually determined by the fundame
constants of the model, and it is expected to be of the sa
order, so that their ratio keeps frozen around unity for
whole duration of such an asymptotic regime. In such a c
text, the approximate equality of dark-matter and da
energy density today would be no longer a coincidence of
present epoch, but a consequence of the fact that our
verse has already entered the asymptotic regime~actually, for
a region of parameter space allowed by observations,
also possible that the ratio of dark-energy to dark-matter d
sity is close to unity not only in the asymptotic regime, b
already after the equivalence epoch!. Finally, the cosmic field
responsible for the observed large-scale acceleration w
be no longer introducedad hoc, being identified with a fun-
damental ingredient of superstring or M-theory models
high-energy physics.

In this paper we will focus our discussion on the possi
constraints imposed by structure formation on the ab
model of dilatonic dark energy, by studying the growth
matter perturbations in the two relevant post-equivalence
ochs: a first decelerated epoch, dubbeddragging phase, and
a second accelerated epoch, dubbedfreezing phase. We will
then reconstruct the behavior of the cosmological grav

of
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tional potential, evaluate the Sachs-Wolfe and integra
Sachs-Wolfe contributions to the spectrum of cosmic mic
wave background~CMB! anisotropies, and estimate th
present level of matter fluctuations~in particular, the so-
called variances8, smoothed out over spheres of radi
8 Mpch21). Finally, we will compare it with observations

The results that we find are interesting, and might help
answering the third question posed at the beginning of
section: among the range of parameters compatible wi
phenomenologically acceptables8 we find indeed values al
lowing a long epoch of acceleration, starting as far in the p
as atz'5. By contrast, the models of dark energy uncoup
to dark matter, with a frozen~or slowly varying! equation of
state, cannot accelerate beforez'1. It seems appropriate t
anticipate here that the production of an acceptable leve
fluctuations even in the case of an early start of the acce
ated epoch is due to two concurrent factors: the first is t
during the freezing phase, perturbations do not stop grow
like in other models of accelerating dark energy; the sec
is that the horizon at equivalence in our model shifts at lar
scales with respect to a standard cold dark matter model
a cosmological constant (LCDM) model. It is also important
to stress that such an early acceleration is by no mean
contrast with the recently observed supernova SN 1997
z'1.7.

For the model of dilatonic dark energy considered in t
paper the coincidence problem can thus be alleviated by
fact that the ratio of dark-matter to dark-energy density is
order one not only at present, not only in the course of
future evolution but~at least in principle! also in the past,
long before the present epoch. It should be clear, howe
that this possibility could be strongly constrained by futu
observations of supernovae at high redshift.

The paper is organized as follows. In Sec. II we pres
the details of our late-time, dilaton-driven cosmological s
nario, and define the~theoretical and phenomenological! pa-
rameters relevant to our computation. In Sec. III we disc
the growth of matter perturbations and compute the varia
s8. In Sec. IV we impose the observational constraints
our set of parameters, and determine the maximal poss
extension towards the past of the phase of accelerated
lution. We also find, as a byproduct of our analysis, intere
ing experimental constraints on the fundamental parame
of the string effective action used for a dilatonic interpre
tion of the dark-energy field. In Sec. V we compare o
model with the constraints provided by the farthest obser
supernova atz'1.7. Our conclusions are finally summarize
in Sec. VI.

II. THE MODEL

The model we consider is based on the gravidilaton str
effective action@16# which, to lowest order in the higher
derivative expansion, but including dilaton-dependent lo
corrections and a nonperturbative potential, can be writte
the string-frame as follows@9#:

S52
1

2ls
2E d4xA2g̃@e2c(f)R̃1Z~f!~¹̃f!2

12ls
2Ṽ~f!#1Sm~ g̃,f,matter!. ~1!
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Herels is the fundamental string-length parameter, and
tilde refers to the string-frame metric. The function
c(f),Z(f) are appropriate ‘‘form factors’’ encoding th
dilatonic loop corrections and reducing, in the weak coupl
limit, to the well known tree-level expressions@16# Z
5exp(2c)5exp(2f).

In this paper we are interested in a ‘‘late-time,’’ post-b
bang cosmological scenario, in which the dilaton is free
run to infinity rolling down an exponentially suppressed p
tential, and the loop form factors approach a finite limit
f→1`. Assuming the validity of an asymptotic Taylor ex
pansion@17#, and following the spirit of ‘‘induced-gravity’’
models in which the gravitational and gauge couplings sa
rate at small values because of the large number (N;102) of
fundamental grand unified theory~GUT! gauge bosons en
tering the loop corrections, we can write, forf→1`,

e2c(f)5c1
21b1e2f1O~e22f!,

Z~f!52c2
21b2e2f1O~e22f!,

Ṽ~f!5V0e2f1O~e22f!. ~2!

The dimensionless coefficientsc1
2 ,c2

2 are typically of order
102, because of their quantum-loop origin. We may note,
particular, thatc1

2 asymptotically controls the fundament
ratio between the~dimensionally reduced! string and Planck
scales@9#, c1

25ls
2/lP

2 , which is indeed expected to be in th
range@18# lP /ls.0.320.03.

To complete the model we have to specify the mat
actionSm of Eq. ~1!, containing the coupling~possibly renor-
malized by loop corrections! of the matter fields to the dila
ton. The variation ofSm with respect tof defines the~string-
frame! dilatonic charge densitys̃, whose appearance is
peculiar string theory effect@19#, and represents the crucia
difference from conventional~Brans-Dicke! scalar-tensor
models of gravity.

For the cosmological scenario of this paper we shall
sume, as in@9#, thatSm contains radiation, baryons and co
dark matter, and that the dilatonic charge of the dark ma
component switches on at sufficiently large couplings, be
proportional@through a time-dependent factorq(f)] to its
energy densityr̃c . Also, q(f) is assumed to approach
constant~positive! valueq0 asf→1`,

q~f!5q01O~e2q0f!. ~3!

The dilatonic charge of radiation and of ordinary baryon
matter are instead exponentially suppressed in the str
coupling regime@9#, and this guarantees the absence of u
acceptably large corrections to macroscopic gravity, sinc
the model we are considering the dilaton is asymptotica
massless and leads to long-range scalar interactions~see
however@20# for possible testable violations of the equiv
lence principle, and other non-standard effects, possibly
servable in such a context!.

By considering an isotropic, spatially flat metric bac
ground, and a perfect fluid model of matter sources, it is n
convenient to write the cosmological equations for the act
2-2



a

o

l

h
at

te
of
c

tic
h

nt
he

t,
led
c-
-

the

on-

evi-

at-
st

ted
uent,

l

ial
e
t
i-
hout

s
es

lly
e
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~1! directly in the Einstein frame, defined by the conform
transformationg̃mn5c1

2gmnexp(c). In the cosmic-time gauge

~and in units 2lP
2[16pG51) the equations are@9#

6H25r1rf , 4Ḣ16H252p2pf , ~4!

k2~f!~f̈13Hḟ !1k~f!k8~f!ḟ21V8~f!

1
1

2
@c8~f!~rb1rc!1q~f!rc#50, ~5!

where a prime denotes differentiation with respect tof, and

k2~f!53c8222e2cZ, V5c1
4e2cṼ, q~f!5sc /rc ,

~6!

rf5
1

2
k2~f!ḟ21V~f!, pf5

1

2
k2~f!ḟ22V~f!, ~7!

r5r r1rb1rc , p5r r /3. ~8!

We have explicitly separated the radiation, baryon and c
dark matter components (r r ,rb ,rc), and introduced the
~Einstein-frame! dilatonic charge per unit of gravitationa
mass,q(f), which is nonvanishing~at large enoughf) only
for the dark-matter component. The combination of t
above equations leads to the separate energy conserv
equations:

ṙ r14Hr r50, ~9!

ṙb13Hrb2
1

2
ḟc8rb50, ~10!

ṙc13Hrc2
1

2
ḟ~c81q!rc50, ~11!

ṙf13H~rf1pf!1
1

2
ḟ@c8~rb1rc!1qrc#50. ~12!

With the above assumptions onc, Z and q, and for ap-
propriate values of the parameters of the loop functions~in
particular, for a sufficiently small value ofV0), it has been
shown in @9# that the phase of standard, matter-domina
evolution is modified by the nonminimal, direct coupling
dark matter and dilatonic dark energy. After the equivalen
epoch, in particular, the Universe may enter a phase
‘‘dragging,’’ followed by an accelerated phase of asympto
‘‘freezing.’’ For the reader’s convenience we recall here t
main properties of two such phases, referring to@9,14# for a
more detailed discussion~see also@21# for a general study of
the dynamical system!.

~i! ‘‘Dragging’’ phase. The potentialV(f) is negligible,
the evolution is decelerated,rf is still subdominant~as well
asrb), but rf evolves in time like the dominant compone
rc , so that the dilaton dark energy is ‘‘dragged’’ along by t
dark matter density.
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In this phasek(f) can be approximated by a constan
k(f)5k1, and it is thus convenient to define the resca
field f̂5k1f which has a canonical kinetic term in the a
tion, and which satisfies withrc the system of coupled equa
tions

f̈̂13H ḟ̂1
1

2 S c81q

k D rc50, ~13!

ṙc13Hrc2
1

2 S c81q

k D rcḟ̂50. ~14!

We can then define the canonical effective coupling of
dilaton to dark matter by the functionb(f), defined by

1

A3
b~f!5

1

2

c8~f!1q~f!

k~f!
~15!

which, in the dragging phase, is also approximated by a c
stant,b(f)5b1!1 ~the conventional factor 1/A3 has been
introduced here to adapt the notations of this paper to pr
ous studies of the dark-matter-scalar system@21#!.

Using Eqs.~4!,~13! we find, in the dragging phase@9#,

ḟ̂524Hb1 /A3, ~16!

so that, from Eq.~14!,

rc;H2;rf;a2(314b1
2/3). ~17!

Because of the dragging the time evolution of the dark m
ter density deviates from the typical behavior of du
sources, in such a way thatrc decays slightly faster than
energy density of baryons,rb;a23. It is however unlikely
that this effect may lead the Universe to a baryon-domina
phase, because this trend is soon inverted in the subseq
freezing phase.

~ii ! ‘‘Freezing’’ phase. The asymptotic dilaton potentia
V(f)5V0exp(2f) comes into play, the evolution~for large
enough values ofq) is accelerated, the dark matter, potent
and ~dilatonic! kinetic energy densities evolve in the sam
way, so that the ratiorf /rc is frozen to an arbitrary constan
value. The critical fraction of dark matter, potential and k
netic energy densities are also separately constant throug
this phase@9,21#.

In such a phase, asymptotically approached whenf→
1`, one has q(f)5q0 , c850, and the parameter
k(f),b(f) can be again approximated by constant valu
k2 ,b2 ~in general different from the previous ones!, related
by k2b25A3q0/2. The coupled equations for the canonica
rescaled fieldf̂5k2f are modified by the presence of th
potential

f̈̂13H ḟ̂1
]V

]f̂
1

b2

A3
rc50, ~18!
2-3
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ṙc13Hrc2
b2

A3
rcḟ̂50, ~19!

and, together with Eq.~4!, are solved by the following con
figuration @9#:

V5V0e2f̂/k2;~ḟ̂!2;rf;rc;H2;a26/(21q0). ~20!

In units of critical energy density we find, in particular,

VV5
V

6H2
5Vk1

q0

21q0
, Vk5

~ ḟ̂ !2

12H2
5

3k2
2

~21q0!2
,

Vf5VV1Vk , Vc512Vf . ~21!

Note that, from Eq.~20!,

ä

aH2
511

Ḣ

H2
5

q021

q012
, ~22!

so that the freezing phase is accelerated forq0.1. In that
case, according to Eq.~20!, the dark matter density tends t
be strongly enhanced~as time goes on! with respect to the
baryon density, which on the contrary is uncoupled to
dilaton and thus evolves in the standard way,rb;a23. As
already pointed out in@9,22#, it is tempting to speculate, in
such a context, that the present smallness of the ratiorb /rc
could then emerge as an artifact of a long enough freez
phase, started before the present epoch.

In this paper, in order to discuss the possible bounds
posed by present observations on the above scenario, we
consider a simplified model of late-time~i.e., after-
equivalence! cosmology, consisting of two phases. More p
cisely, we will drastically approximate the background ev
lution by assuming that the Universe performs a sud
transition from the radiation-dominated to the draggi
phase at the equivalence epocha5aeq, and from the drag-
ging to the freezing phase at the transition epocha5af . We
will discuss in this context the phenomenological constra
on the parameters of the string effective action, and in p
ticular their possible consistency with an early beginning
the freezing epoch,zf5(a0 /af)21@1, which ~as already
mentioned! may be relevant for a truly satisfactory solutio
of the coincidence problem.

To make contact with previous results we will use he
the following explicit model of dilaton potential, charge an
loop corrections~already adopted in@9#!:

e2c(f)5e2f1c1
2 , Z~f!5e2f2c2

2 , q~f!5q0

eq0f

c21eq0f
,

~23!

V~f!5c1
4mV

2e2c@exp~2e2f/a1!2exp~2e2f/a2!#,

0,a2,a1 . ~24!

Here c1
2 ,c2

2 ,c2 are numbers of order 102, the asymptotic
charge satisfiesq0.1 to guarantee a final accelerated r
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gime, and the dilaton potential reduces asymptotically to
exponential form of Eq.~2!, with V05mV

2(a12a2)/a1a2

~in units 2lP
2 51). It is worth noting that the mass scalemV ,

controlling asymptotically the amplitude of the potential~and
thus the beginning of the freezing phase!, is possibly ex-
pected to be of nonperturbative origin, and thus related to
fundamental string scale in a typical instantonic way,

mV5expF2
2

b* aGUT
GMs , ~25!

whereaGUT.1/25 is the asymptotic value of the GUT gaug
coupling, andb* is some model-dependent loop coefficien
As noted in@9#, a value ofb* slightly smaller than the usua
coefficient of the QCD beta-function is already enough
movemV from the QCD scale down to the scale relevant
a realistic scenario of dark-energy domination; a typical r
erence value is, for instance,b* .0.36, which corresponds
to mV;H0;10261M P , and thus to a freezing phase startin
around the present epoch.

With the above explicit forms of the loop corrections w
can now compute the constant parameters for the drag
(k1 ,b1) and the freezing (k2 ,b2) eras. By setting

m25A3c1 /(A2c2) we find

k15A 3

m2
, b15

q0m2

2c2
, k25A 3

m2
, b25

q0m2

2
.

~26!

The constantm2 /A3 represents the slope of the dilaton p
tential V(f̂) during freezing. With these definitions,q0
52b2 /m2 ,c25b2 /b1.

For our model of background we can finally express
phenomenological variables, required for the subsequ
computations, in terms of the above set of parameters. F
Eqs. ~17!,~20! we get the barotropic parameterw
5(ptot /r tot)11 relative to the effective equation of state
cold dark matter,

w1511
4

9
b1

2 , w25
2

21q0
5

m2

m21b2
, ~27!

in the dragging and freezing eras, respectively. Another u
ful parameter isVc : in the dragging phase, from Eq.~16!,

Vc512Vf512
~ ḟ̂ !2

12H2
512

4

9
b1

2 . ~28!

In the freezing phase, from Eq.~21!,

Vc5
2m2

212b2m229

2~b21m2!2
~29!

~this is therefore to be identified as the value observed
day!.

Note that the ratio of dark-energy to dark-matter dens
may be close to unity throughout the cosmic evolution af
2-4
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equivalence, if the constantsb1 ,b2 ,m2 are of the order of
unity. In this sense, in such a model, it is even possible
a serious coincidence problem never really arises. By c
trast, dark-energy modelswithouta stationary phase in whic
rm;rf ~see e.g.@23,24#! have to explain the current valu
~or order one! of ratiosVf /Vm which range from extremely
small values in the past to unboundedly large values in
future @14#.

We end this section with the computation of three use
redshift parametersze ,zf ,zb corresponding, respectively, t
the radiation-matter equivalence, to the beginning of
freezing epoch, and to the baryon epoch~associated to a
possible baryon-dominated phase!. From the behavior ofrf
andrb in the freezing phase,

rf5rf~a0!S a0

a D 3w2

, rb5rb~a0!S a0

a D 3

, ~30!

we can determine the baryon redshift epochab , such that
rf5rb , as follows@22#:

11zb5
a0

ab
5S Vf

Vb
D

0

(m21b2)/3b2

. ~31!

The present ratio (Vf /Vb)0 is a known observational input
Our model excludes the possibility of a baryon-domina
phase and thus requires, for consistency,zb.zf ~see@22# for
a dark-energy model with a baryonic epoch!.

The equivalence scale can be obtained by rescalingrc and
r r from ae down toa0, i.e.

rc~a0!5rc~ae!S ae

af
D 3w1S af

a0
D 3w2

,

r r~a0!5r r~ae!S ae

af
D 4S af

a0
D 4

, ~32!

from which

11ze5
a0

ae
5F S V r

Vc
D

0
S af

a0
D 3(w22w1)G1/(3w124)

, ~33!

where, again, (V r /Vc)0 is an observational input. Similarly
we can determine the freezing epoch by rescaling the dila
potential energy,

rV~af !5V0e2f f5rV~a0!S a0

af
D 3w2

. ~34!

HererV(a0)56H0
2VV , whereVV is determined by Eq.~21!,

andf f is the transition scale between small and large val
of the dilaton charge, namelyf f5(2/q0)ln c, from Eq.~23!.
We thus obtain

11zf5
a0

af
5F V0

6H0
2VV

S b1

b2
D m2/2b2G (m21b2)/3m2

, ~35!
04351
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VV5
914b2~m21b2!

4~m21b2!2
, ~36!

whereH0 is the value of the Hubble parameter provided
present observations.

In conclusion, we have a four-parameter model of ba
ground, spanned by two possible~related! sets of indepen-
dent variables: the phenomenological variab
$b1 ,b2 ,m2 ,zf% or, equivalently, the fundamental variable
$c1 /c2 ,c2,q0 ,V0%, referred to thef→1` limit of the string
effective action of Eq.~1!. The mapping between the tw
sets is defined by Eqs.~26! and ~36!. Note that two of the
four parameters can be in principle determined by fitting
observational data relative to the present fraction of c
dark matter,Vc , and the dark-energy equation of state,w2:
we can determine, for instance,m2 and b2 through Eqs.
~26!,~29!. In the following sections we will discuss the a
lowed regions left by various phenomenological constrai
in such a parameter space.

III. CONSTRAINTS FROM STRUCTURE FORMATION

In this section we will compute the rms dark-matter de
sity contrasts8 for the model presented in Sec. II, combinin
it with the CMB angular power spectrum~at low multipoles!
in order to eliminate the dependence on the normaliza
factor. Another analytical computation ofs8 including dark
energy has recently been presented in@25#, but only for mod-
els in which dark energy and dark matter are uncoupled.

Before starting the computation, let us recall some p
liminary condition to be imposed~for consistency! on our
model of background.

A. Consistency conditions on the background

As illustrated in Sec. II, the evolution of our cosmologic
background is characterized by two stationary (rc;rf)
stages: the dragging era~labeled by the subscript 1), and th
final accelerated freezing era~labeled by 2). This scenario
can be consistently implemented provided the parameters
chosen in such a way as to satisfy the following conditio

First, the dragging era exists, and is a saddle point of
dynamical system, only if@21#

ub1u,A3/2.0.87. ~37!

Second, in order for the baryons not to dominate~in the past!
over the dark-matter component, it is necessary to impose~as
anticipated!

zb.zf . ~38!

Third, the final freezing phase is accelerated only if

m2,2b2 . ~39!

The current SNIa observations, however, require more t
simply an acceleration, as shown by a recent analysis@26# of
SNIa data in models which include a freezing epoch. T
result is that only models with an effective equation of st
2-5
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w2'0.4 ~best fit! or w2,0.5 ~at one sigma! are consistent
with the SNIa Hubble diagram.

In the following discussion we will reduce, for simplicity
our set of free parameters by using the observed CDM f
tion of critical density,Vc.0.3, as a fixed observationa
input. This can be used to eliminatem2 through Eq.~29!, in
such a way that we are left with three parameters o
b1 , b2 and zf . In that case, the above limits onw2
5m2 /(m21b2) define two reference values forb2,

b254.02,~best fit! ~40!

b252.35, ~one sigma!, ~41!

which will be used in our subsequent analysis. For fut
reference, note that the lower limit at 95% C.L. isb2
.1.55. We note, finally, that pushing back in time the tra
sition between the dragging and freezing eras, that is,
creasingzf , implies a decrease ofze . The condition

zf&100 ~42!

prevents the unwanted crossing of these two quantities.
All the above constraints will be imposed on our sub

quent computations.

B. Angular power spectrum at low multipoles

In this subsection we will extend the treatment of t
Sachs-Wolfe effect presented in@27# ~to which we refer for
the notation! in such a way as to include the case of coup
dark energy and dark matter. We shall assume a conform
flat metric,ds25a2(dt22dxidxi), and we shall exploit the
fact that, in the absence of anisotropic stress, the two sc
potentialsC and F defined in the longitudinal gauge tur
out to be equal and to coincide, in the Newtonian limit, w
the usual gravitational potential. The general expressions
the Sachs-Wolfe~SW! and integrated Sachs-Wolfe~ISW!
parts of the angular power spectrum, for adiabatic scalar
turbations, can then be written as@27#

C,
SW5

2

9pE dkk2uC~k,td!u2 j ,
2@k~t02td!#, ~43!

C,
ISW52G2

2~, !E dkuC8~k,t,!u2, ~44!

whereG2(,)5G@(,11)/2#/G@(,12)/2#, j , are the spheri-
cal Bessel functions, the prime denotes differentiation w
respect to conformal time, andtd is the conformal time at
decoupling, whilet,5t02(,11/2)/k ~notice that the above
expression for the ISW coefficient has been already in
grated overt).

Let us denote withdk the CDM density contrast for the
wavemodek, and withf̂ andx[df̂, respectively, the val-
ues of the background scalar field and of its fluctuation. T
label 0 will denote the present timet0, and it is to be under-
stood that all the density parametersVc ,Vb , etc. always
refer to the present time, unless otherwise stated. Finally
perturbation variables will be expressed in terms of th
04351
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Fourier components. The potentialC is then determined by
the relativistic Poisson equation~in units 16pG51)

C~a!52
3

2k2
H0

2Vcdk~a0!s~k,a!

2
1

4k2
x8f̂82

3aH

4k2
xf̂82

a2

4k2
x

dV

df̂
, ~45!

where we have introduced the~possiblyk-dependent! func-
tion s(k,a), which accounts for the time-evolution of th
dark matter and of its density contrast, according to the eq
tions

rc~a!5rc~a0! f ~a!, ~46!

dk~a!5dk~a0!D~k,a!, ~47!

s~k,a!5D~k,a! f ~a!S a

a0
D 2

. ~48!

The quantities appearing on the r.h.s. of Eq.~45! are
evaluated in the synchronous gauge, while the potentialC is
calculated in the longitudinal gauge@27#, since this helps in
extending the validity of the Poisson equation to all scal
Note that we have dropped from the Poisson equation
contribution of the dark-matter velocity fluctuations, since
can be shown that they are negligible@15#. The baryon con-
tribution has been neglected as well. Defining the ma
power spectrumP(k)5udk(a0)u2, it follows that

C,
SW5

1

2p
H0

4Vc
2~11S!E dk

k2
P~k!us~k,ad!u2

3 j ,
2@k~t02td!#, ~49!

C,
ISW5

9

2
H0

4Vc
2G2

2~, !~11P!E dk

k4
P~k!us8@k,a~t,!#u2.

~50!

The functionsS andP represent corrections due to the sc
lar field contribution. In the next few paragraphs we w
neglect these effects, concentrating the attention only on
dark-matter part of the power spectrum, while the scalar c
tribution will be reconsidered at the end of our calculatio
The convenience of this procedure will become appar
later on.

Focusing our attention on the background evolution a
the epoch of matter-radiation equivalence, we can n
specify the evolution of the CMB energy density by settin

f ~a!5~a/a0!23w2, a.af ~51!

5~af /a0!23w2~a/af !
23w1, a,af , ~52!

wherew1,2 were defined in Eqs.~27!. For what concerns the
growth of matter perturbations, since we are interested in
low-multipole branch of the spectrum, it is reasonable
consider only scales that reenter the horizon after equ
2-6



n

th

n

o

ol
ir

M
in

r-
i
r
rk
F
he
th

om

m

th
ut
od

a

e
nt

e

he
and

in-

eld

he
n-

as
ki-

tri-

EARLY ACCELERATION AND ADIABATIC MATTER . . . PHYSICAL REVIEW D 67, 043512 ~2003!
lence ~and before freezing, as in the accelerated stage
reenter is possible!. The growth ofdk has been derived in
@15# as a function of the parametersb andm of the dragging
and freezing epochs. It turns out that the evolution is
same for all modes:

D~k,a!5~a/a0!m2, a.af

5~a/af !
m1~af /a0!m2, a,af ,

where

m1511
4

3
b1

2 , m25
D210b22m2

4~b21m2!
, ~53!

and

D252108144b2m2132b2
3m2125m2

21b2
2~32m2

2244!
~54!

~in the dragging phase the same exponentm1 describes the
growth of perturbations both inside and outside the horizo!.
Considering scales withk,kd , where the subscriptd stands
for decoupling, the relevant function for the computation
the ordinary SW effect can thus be parametrized by
k-independent function as follows:

s~af !5~ad /af !
m123w1~af /a0!m223w2~ad /a0!25~af /a0!a2,

~55!

wherea2[m223w212 ~note thata1[m123w11250).
Some comments are now in order, concerning the ev

tion of perturbations described by the above equations. F
we notice that in the dragging phasem1.1, i.e. that the
perturbations growth is faster than in a standard CD
model. This is due to an extra pull on dark matter aris
from the dark-energy coupling, that act as an additional~sca-
lar! gravity force@15#. Secondly, the growth in the accele
ated freezing regime does not vanish asymptotically, like
other dark-energy models. This is again an effect of the da
energy–dark-matter coupling and of the fact that the da
matter density is not driven to zero by the acceleration.
nally, since the baryons are decoupled from the dilaton, t
evolve differently, and a bias between the baryons and
dark-matter distribution is expected. The constraints fr
this effect have been discussed in Ref.@15#.

It is important to stress that the matter power spectru
calculated today for scalesk,ke , whereke is the scale that
reenters the horizon at equivalence,

ke5aeHe5aeH0@~af /a0!23w2~ae /af !
23w1#1/2, ~56!

does not change with respect to the primordial shape

P~k!5Akn, ~57!

whereA is the usual normalization factor~see e.g. Ref.@28#!.
This is due to a peculiarity of the dragging phase, i.e. to
fact that the perturbation growth is identical inside and o
side the horizon, just like in the case of standard CDM m
els ~although, as already mentioned, the growth ratem1 is
larger than unity!. The dragging phase, in addition, leads to
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time-independent gravitational potential~again, like in stan-
dard CDM models!, and thus it does not contribute to th
ISW effect, which is entirely produced in the subseque
freezing phase.

From the integration of Eq.~49!, with S50 we then eas-
ily obtain

C,
SW5

g12n

16
AH0

n13Vc
2s2~af !G~,,n!, ~58!

where

G~,,n!5
G~32n!G„~2,1n21!/2…

G„~42n!/2…2G„~2,152n!/2…
, ~59!

and where the factorg appears by eliminatingt0 ~from the
result of the SW integral! in terms of the present Hubbl
scaleH0, according to the definition

t05E da

a2H
5

2

a0H0
g. ~60!

This integral can be finally estimated by considering t
separate contributions from the two phases of our model,
we obtain

g5
1

2l2
F11

3Dw~af /a0!l2

2l1
G ,

l15
3

2
w121, l25

3

2
w221, Dw5w22w1 ~61!

~the usual result for the standard cosmological model is
steadg51).

It is appropriate to reconsider at this point the scalar-fi
corrections to the SW effect, represented byS. The scalar
field fluctuations which are outside the horizon during t
dragging phase grow proportionally to the CDM density co
trast ~see @21,22#!. Since rc;rf , it is found thatS is a
constant, and depends only onb1 as follows:

S5

64Ap

3
b1

2~31b1
2!~1514b1

2!

4051252b1
22336b1

4164b1
6

~62!

~the contribution coming from the scalar-field potential h
been neglected, since in the dragging phase the dilaton
netic energy is dominant with respect toV).

For what concerns the ISW effect, the scalar field con
bution on subhorizon scales is negligible@22#, and we can
consistently setP50. If we define the variabley5kt0, and
we use the result that, in the accelerated epoch,

s~a!5~a/a0!a2, ~63!

then we are led to
2-7
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C,
ISW5

9

2
AVc

2G2
2~, !H0

n13a2
2E

ymin

`

dyyn24a~,,y!2a222l2.

~64!

The lower limit of integration,

ymin5

S ,1
1

2D
12r

, r 5
t f

t0
5

~af /a0!l2

2gl1
, ~65!

has been obtained by imposingt,.t f , since only in the
second~freezing! stage is there a significant ISW contrib
ed

-

f

04351
tion. The time-dependence of the freezing scale-factor, on
other hand, can be parametrized by

a5a0@l2~H0t1B!#1/l2, ~66!

where

B5S af

a0
D l2S 1

l2
2

1

l1
D . ~67!

By using all the above results the ISW integral can
finally performed and, in the casen51, the result is
.

C,,ISW5
9

4
AVc

2G2
2~, !H0

4a2

@~B12g!l2#2(a2 /l2)1@~B12gr !l2#2(a2 /l2)21
•@4ga2~r 21!2~B12gr !l2#

g2~2,11!2~2a22l2!
. ~68!

For a generic, primordial spectral index withnÞ1 a much more complicated~but still analytic! expression may be obtained
In conclusion, the dimensionless, angular power-spectrum at low multipoles (,<10) can be approximated by

C,5C,,SW1C,,ISW5AF, ~69!

where, forn51,

F~,;af ,b1 ,b2 ,m2!5H0
4Vc

2F 1

4p,~,11! S af

a0
D 2a2

~11S!

1
9

4
G2

2~, !a2

@~B12g!l2#2(a2 /l2)1@~B12gr !l2#2(a2 /l2)21
•@4ga2~r 21!2~B12gr !l2#

g2~2,11!2~2a22l2!
G .

~70!
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The variableC,* , representing the experimentally observ
angular power spectrum, measured in units of (mK) 2, can
thus be finally written in the form

C,* 5
T0

2,~,11!AF

2p
, ~71!

whereT052.7263106mK.

C. Calculation of s8

The ~dimensionless! variance of the CMB density fluctua
tions, in spheres of radiusR858h21 Mpc, where h
5H0 /(100 km sec21 Mpc21), is defined by@28#

s8
25

1

2p2E P~k!W8
2~k!k2dk5

A

2p2
R8

2(31n)I 1 , ~72!

where W8(k) is the spherical top-hat window function o
radiusR8, and
I 15E x21nT2~x!W2~x!dx. ~73!

Note that we are using the full power spectrum corrected
the transfer functionT(k), i.e. P(k)5AknT2(k), since in the
definition of s8 it is necessary to include also scales withk
.ke .

It is important to stress, at this point, that the above tra
fer function is identical to the one of the usualLCDM
model. During the dragging phase, in fact, the perturbat
growth does not depend on the wave number, while dur
the freezing phase only subhorizon perturbations have to
taken into account, so that no distortion of the power sp
trum occurs after the equivalence epoch. Therefore,
transfer function only expresses the usual correction to
primordial spectrum due to the different growth of perturb
tions in the radiation epoch~those entering the horizon be
fore equivalence are depressed with respect to those ent
later!. Since, in our model, the cosmological evolution befo
equivalence is standard, we can safely adopt the tran
function of aLCDM model for which the wave number ke
crossing the horizon at equivalence is the same as in
model. For a LCDM model with present densityVc(Lcdm)
one has, in particular,
2-8
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ke(Lcdm)5a0H0Vc(Lcdm)A 2

V r
. ~74!

By equating toke(Lcdm) the value ofke determined in our
model @see Eq.~56!#, we thus obtain the effective densit
parameter

Vc(Lcdm)5S V r

2 D 1/2S af

a0
D 23Dw/2S ae

a0
D (223w1)/2

~75!

to be used for the determination of the equivalent trans
function ~we shall of course restrict our analysis to the ca
Vc(Lcdm),1). For the final numerical integration of Eq.~73!
we shall use theLCDM transfer function proposed in@29#.

Combining Eq.~71! and Eq.~72!, in order to eliminate the
normalization factorA, we finally obtain

s8
25

C,* I 1

pT0
2R8

4,~,11!F
, ~76!

whereI 1 depends onVc(Lcdm) . The observedC,* has been
obtained by fitting the COBE data as in@30#. The compari-
son of Eq.~76! with the experimental value ofs8,

s85~0.5660.1!Vc
20.47, ~77!

taken from data on clusters abundances@31#, will eventually
give the sought-for constraint on the parameters of the d
ton model introduced in Sec. II.

IV. RESULTS

In order to implement the constraints imposed bys8 we
shall first eliminatem2 from our set of parameters~as already
anticipated!, by using Eq.~29! and fixing the CDM density a
the valueVc50.3, suggested by present observation~see
e.g. @32#!. Also, we shall assume for the baryon density t
value predicted by standard nucleosynthesis@33#, Vb
50.02h22, and we seth50.65.

The value ofb2, at givenm2, should be unambiguousl
determined byq0, and then by the observed value of th
cosmic acceleration through Eqs.~22! and~26!. However, in
view of the present experimental uncertainties, we have
cepted here an open range of possibilities and we have i
trated the constraints at two~rather different! values ofb2 :
b252.35~the minimum value allowed at one sigma by SN
@26#!, andb254.02~the best fit to the SNIa data@26#!. These
two reference values will be used in all the following discu
sion.

We shall first illustrate thes8 constraint in Fig. 1 by plot-
ting the curves corresponding to the experimental values~77!
~with a 3 sigma error band! in the plane$zf ,b1% with b2
fixed. The upper curves~and the darker regions! corresponds
to lower values ofs8. In this figure~and in the next one! the
white region has been excluded because the transfer fun
parameterVc(Lcdm) becomes larger than unity. The dash
horizontal lines represent the upper bound onzf imposed by
the baryon constraint~38!. The allowed region is below the
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dashed line, and within the upper and lower white curves
the left panel of Fig. 1 we have usedb252.35, and we
obtain that the maximum past-extension of the accelera
regime is

zf<zb.5.07. ~78!

In the right panel, forb254.02, we obtainzf<zb.3.47. At
the two-sigma lower limit,b251.55, the acceleration ex
tends tozf.8.

By contrast, it is easy to see that in dark-energy models
more conventional type, i.e. uncoupled to dark matter, w
frozen equation of statewf and matter densityVm , the ac-
celeration starts at the redshift

zacc5@~3wf22!~Vm21!/Vm#1/(323wf)21. ~79!

This value, for allwf,2/3 ~i.e. for a present accelerate
regime!, is always smaller than unity ifVm50.360.1.
Therefore, a~future! unambiguous measurement of the e
pansion rate atz.1 could be a powerful method to distin
guish between coupled and uncoupled models of dark
ergy.

FIG. 1. Curves at constants8 @from Eq. ~76!#, andb2 fixed at
the values 2.35~top! and 4.02~bottom!. The allowed region is be-
low the dashed line, and within the upper and lower white curv
corresponding to the limiting values of Eq.~77!.
2-9
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The plots of Fig. 1 refer to our ‘‘phenomenological’’ set o
parameters, and in particular to the duration of the freez
epoch~possibly relevant to the solution of the coinciden
problem!. Thes8 constraint provides however interesting i
formation also on the set of ‘‘fundamental’’ parameters of t
string effective action~1!, used for our model of dilatonic
dark energy.

By eliminatingc1 /c25A2/3m2, and fixingq0, i.e. b2, as
before, we can plot indeed thes8 constraint in the plane
spanned by the variablesc2 andV0. The result is shown in
Fig. 2, again forb252.35 ~left panel! and for b254.02
~right panel!. We have restored the required Planck leng
factors, and given the potentialV0 in units of eV4. The al-
lowed region is within the upper and lower white curves,
before. The lower bound onc2 derived fromb1, at fixedb2,
is satisfied for all the range of values illustrated in the p
ture.

We note that the values of parameters used in@9# for a
particular numerical integration of the string cosmolo
equations are well compatible with the above bounds. I
also important to stress that, since the value ofc2 is naturally
expected in the range 102–103 @9#, the allowed mass scale o
the dilaton potential,V0

1/4, turns out to be fixed in a rathe
narrow region around (1022–1023) eV, even in the case o
an early start of the freezing epoch. This result confirms t

FIG. 2. Curves at constants8, andb2 fixed at the values 2.35
~top! and 4.02~bottom!. The allowed region is below the straigh
line representing the consistency boundzf,zb , and within the up-
per and lower white curves corresponding to the limiting values
Eq. ~77!.
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as already pointed out in@9#, a realistic dark-energy scenari
seems to require a rather high degree of accuracy in de
mining the scale of the dilaton potential. This~fine-tuning?!
aspect of the potential is however a common problem of
scalar-field models of dark energy.

It should be mentioned, to conclude this section, that
have performed an additional observational test of our c
of dilatonic dark-energy models by comparing with th
COBE data the slope of the low-multipoleC, spectrum in-
duced by the SW and ISW effect. Using a simple Gauss
likelihood distribution we have concluded that, at the con
dence level of two sigma, the predicted slopes are com
ible with the data for all the allowed region of paramet
space, so that no~significant! additional constraints are gen
erated.

V. THE FARTHEST SUPERNOVA

As a last check on the viability of the present dilaton
dark-energy model we have considered the constraints
posed by the most distant type Ia supernova@12# known so
far, SN 1997ff, for which a very recent assessment of lens
magnification has increased the apparent magnitude by
60.12 mag@13#. This leads to a final distance modulus~i.e.
to a difference of apparent and absolute magnitude! of m
2M545.4960.34 mag.

Using the definition adopted in@12#, this result can be
expressed in the following way. The luminosity distance

dL5~11z!E
0

z dz8

H~z8!
, ~80!

from which one defines

D~m2M !55@ log10„dL~z!…2 log10„dL+~z!…#, ~81!

wheredL+(z)5z(z12)/(2H0) is the luminosity distance for
Milne’s model, i.e. a hyperbolic empty universe (Vm5VL

50). For the supernova SN 1997ff one obtainsD(m2M )
'20.1560.34 at z'1.755, in good agreement with
LCDM model characterized today byVm50.35,VL50.65
@13#. For such a model, the Universe atz51.755 is already
well within the decelerated epoch, which starts aroundz
50.548@see Eq.~79!#.

This does not imply, however, that all models which a
accelerated at largez are ruled out~even without mentioning
the still unclear experimental uncertainties of such a sup
nova detection!. Let us calculate indeed the luminosity
distance along a stationary regimerm;rf , for a spatially
flat geometry. Neglecting for the moment the baryon con
bution, the Friedmann equation is

H25H0
2@Vm~a/a0!23w1Vf~a/a0!23w#5H0

2~a/a0!23w,

where, in particular,w5w2 @see Eq.~27!# for our freezing
regime. The corresponding luminosity-distance~for w
Þ2/3) is

f

2-10
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dL5~11z!E
0

z dz8

H~z8!
5

2~11z!

~223w!H0
@~11z!2(3w/2)1121#.

~82!

For an accelerated evolution withw,2/3 ~i.e., in our case,
q0.1), and for largez, we havedL;z223w/2, while for
Milne’s cosmologydL;z2. It follows that, at largez and for
anyw.0, the Milne model always provides larger distanc
~and thus larger apparent magnitudes! than a model of sta-
tionary evolution. As a consequence, a negative value
D(m2M ), referred to Milne, does not necessarily corr
spond to deceleration.

For a more precise illustration of this important point w
have plotted in Fig. 3 the distance modulusD(m2M ) for
the accelerated freezing phase of our dilatonic dark-ene
model. We have numerically integrated the luminosi
distance functions, including baryons, for the two particu
valuesb252.35,b254.02 already used in the previous fig
ures~it may be useful to recall that, whenVc is fixed to 0.3,
these two values ofb2 correspond tow250.5 and w2
50.4, respectively!. It can be seen from the picture that,
both cases, the curves representing the cosmic evolutio
our model,although deeply inside the accelerating regim,
remain well within one sigma from the~lensing-corrected!
SN 1997ff data, while providing, at the same time, a reas
able fit of the binned data of all the other supernovae.

VI. CONCLUSION

In this paper we have considered a phenomenolog
model of dark-energy–dark-matter interactions based on
infinite bare-coupling limit of the superstring effective a
tion. The dilaton, rolling down an exponentially suppress
potential, plays the role of the cosmic field responsible
the observed acceleration, and drives the Universe towar
final configuration dominated by a comparable amount
kinetic, potential and CDM energy density.

FIG. 3. The distance modulusm2M , referred to Milne’s cos-
mology, for aLCDM model ~dashed curve! and for the dilatonic
dark-energy model during the freezing epoch, for two values ofb2

~thick curves when baryons are included, thin curves without ba
ons!. The points atz,1 represent the binned data from all th
high-redshift Ia supernovae known so far. The datum plottedz
51.755 represents the lensing-corrected SN 1997ff. All data
derived from@12,13#.
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The effective dilatonic coupling to dark matter switch
on at late enough times~i.e., large enough bare coupling!,
and affects in a significant way the post-equivalence cos
logical evolution. The time-dilution of the dark-matter de
sity, in particular, is first slightly enhanced~during the drag-
ging phase! and then considerably damped~during the
freezing phase! with respect to the standarda23 decay law.
The large-angle fluctuation scales relevant to the obser
CMB anisotropies reenter the horizon during the dragg
epoch, and exit the horizon again during the freezing epo
In spite of this unconventional evolution, the growth of th
matter-density perturbations may be large enough to ma
consistently present observations.

The predicted value of the~smoothed out! density contrast
s8, compared with data obtained from cluster abundan
defines a significant allowed region in the parameter spac
the given class of dilatonic dark-energy models. The analy
of such an allowed region provides two main results.

The first is that the bounds on the past-time extension
the accelerated~freezing! epoch are significantly weaker tha
in conventional dark-energy models~uncoupled to dark mat-
ter, with frozen equation of state!. The establishment of the
freezing regime, in our class of dilatonic models, is allow
long before the present epoch~up to z.5), thus providing
~in principle! a further relaxation of the coincidence problem
by extending the present cosmological configuration not o
in the far future, but also towards the past.

The possibility of very early (z.1) accelerated evolution
is indeed a typical signature of such a class of dilatonic m
els, useful in principle to discriminate it from other~un-
coupled! dark energy models, hopefully on the grounds
future observational data. It is important to stress, to t
respect, that the farthest type Ia supernova so far observ
at z.1.7, and is perfectly compatible with an accelerat
Universe already at that epoch, provided the data of
magnitude-redshift diagram are consistently fitted by the
celerated kinematics of dilatonic models.

The second result concerns the parameters of the~nonper-
turbative! dilaton potential appearing in the strong-bar
coupling regime of the string effective action. The dilato
mass scaleV0, for an efficient and realistic dark energy sc
nario, appears in such a context to be tightly anchored
value very near to the present Hubble curvature scale
small deviation ofV0 from the required value is enough t
remove the predictions of the dilatonic model from the
gion of parameter space allowed by thes8 data.

This means that, under the assumption that the dilato
models discussed in this paper provide the correct expla
tion of the observed cosmic acceleration, the measurem
of the density contrasts8, besides their obvious astrophys
cal importance, would also acquire an interesting hig
energy significance for providing an indirect~parameter-
dependent! measurement of the dilaton mass scale.

We note, finally, that astrophysical observations may p
vide several additional constraints on dilatonic dark-ene
models. For instance, the clustering evolution of source
high redshifts may constrain directly the freezing grow
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exponentm2; as already mentioned, the baryon bias that
velops during freezing is also observable, at least in princ
@15#; finally, further constraints can be derived from a co
putation of the full multipole spectrum of the CMB radiatio
~see e.g.@34# for a recent study of the CMB constraints o
coupled dark-energy models with power-law potentials!. Pre-
liminary results seem to confirm the conclusions of t
ev

e

n,

04351
-
le
-

paper, but a detailed discussion of these new constrain
postponed to a future work.
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