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Monte Carlo reconstruction of the inflationary potential

Richard Easther* and William H. Kinney†

Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, 550 West 120th Street, New York, New York 1
~Received 7 November 2002; published 26 February 2003!

We present Monte Carlo reconstruction, a new method for ‘‘inverting’’ observational data to constrain the
form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow
equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of
the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by
a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since
Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method
cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to
poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the
potential outside the small region directly probed by observations. We show examples of Monte Carlo recon-
struction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement
with a factor of five better parameter discrimination than the Planck satellite.
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I. INTRODUCTION

Given a detailed model of physics at the grand unifi
theory ~GUT! scale that supports inflation one can dedu
many of the overall properties of the universe from first pr
ciples. However, new strides in precision cosmology
likely to present us with the inverse problem: given an ac
rate measurement of the primordial perturbation spectr
can we determine the particle physics that drove inflatio
This question leads to ‘‘reconstruction’’—rebuilding a po
tion of the inflationary potential from observations—who
apotheosis is the work of Lidseyet al. @1#. The conclusion of
this effort was that while a limited reconstruction may
possible, it is overly optimistic to hope to deduce more th
the rough form of a small piece of the inflaton potential
the basis of astrophysical observations alone.

Despite this apparent setback, the prospect of being
to probe ultra-high energy particle physics via astrophys
measurements remains tempting. In this paper we prese
new approach to the task,Monte Carlo reconstruction. Un-
like previous workers, we tackle the problem stochastica
by generating large numbers of inflationary models and th
associated potentials and identifying those that lead t
spectrum of primordial perturbations which fits inside
specified window of parameter space. We sacrifice the p
pect of unambiguously reconstructing the inflationary pot
tial, but instead map out the ensemble of viable potenti
We can then assess the extent to which these potential
semble one another, and thus the degree of ambiguity in
‘‘reconstruction.’’

The starting point for Monte Carlo reconstruction is t
Hubble slow roll expansion@2#, which leads to a set of firs
order ‘‘flow’’ equations @3,4# that describes the inflationar
dynamics. The Hubble slow roll expansion can be system
cally continued to arbitrary order but, as we explain belo
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the truncated expansion actually yields an exact solution
the full equations, drawn from a subset of the overall so
tion space. We select a ‘‘universe’’ by assigning random v
ues to each term in the truncated slow roll expansion,
integrate the flow equations forward to the end of inflati
~or far enough into the future to show that the solution a
proaches an inflationary attractor!. We can then determine
the epoch that corresponds to cosmological structure for
tion and thus the predicted parameters of the primord
spectrum, allowing us to select the models which fit into
pre-determined window of parameter space.

As with any other reconstruction program, we face lim
tations dictated by the physics of inflation itself. Since t
field rolls slowly, it traverses only a small portion of th
potential during the epoch in which the primordial perturb
tions are laid down. Consequently, even if all the potenti
we recover for a specific set of cosmological paramet
overlap in the region where the cosmologically relevant p
tion of the spectrum is laid down, they will still diverg
outside this region. However, because we reconstruct the
tire potential, we can estimate the degree to which the rec
structed potentials diverge from one another.

In the following section we summarize the inflationa
dynamics and the flow equations, and in Sec. III apply th
to spell out the process of Monte Carlo reconstruction
detail. We present the results of a variety of simulations
Sec. IV, and test how accurately Monte Carlo reconstruct
can recover a known inflationary potential. As expected
fully consistent reconstruction requires the unambiguous
tection of tensor modes in the cosmic microwave ba
ground~CMB!, but even in the absence of a detectable ten
signal we can still recover some information about the infl
tionary potential. If we assume the error bars on the sc
spectral index and tensor-to-scalar ratio that are expected
the Planck mission, the underlying potential cannot be una
biguously recovered. However, if we decrease these e
bars~perhaps by adding information from large scale stru
ture surveys, or better measurements of CMB polarizati!
by a factor of 5, then we can start to recover afn potential.
©2003 The American Physical Society11-1
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Our conclusions are summarized in Sec. V.

II. INFLATION AND FLOW

We consider inflation driven by a single homogeneo
scalar fieldf ~the inflaton! with potentialV(f) and equation
of motion

f̈13Hḟ1V8~f!50, ~1!

whereH[(ȧ/a) is the Hubble parameter. We assume a s
tially flat, homogeneous and isotropic universe where
inflaton field is the only contribution to the energ
momentum tensor, so that the Einstein field equations h
the familiar form

H25S ȧ

a
D 2

5
8p

3mPl
2 FV~f!1

1

2
ḟ2G ~2!

and

ä

a
5

8p

3mPl
2 @V~f!2ḟ2#. ~3!

Here mPl5G21/2.1019 GeV is the Planck mass. Thes
background equations, along with the equation of motion~1!,
form a coupled set of differential equations that describe
evolution of the universe. The limitḟ50 corresponds to a
de Sitter universe, with the scale factor increasing expon
tially in time

H5AS 8p

3mPl
2 D V~f!5const,

a}eHt. ~4!

In generalH is not exactly constant, but varies as the fieldf
evolves along the potentialV(f). A powerful way of de-
scribing the dynamics of an inflationary universe with
varying field ~and non-trivial potential! is to express the
Hubble parameter as a function of the fieldf, H5H(f),
which is consistent providedf is monotonic in time. The
equations of motion become@1,5–7#

ḟ52
mPl

2

4p
H8~f!,

@H8~f!#22
12p

mPl
2

H2~f!52
32p2

mPl
4

V~f!. ~5!

These are completely equivalent to the second-order e
tion of motion ~1!. The second of the above equations
referred to as theHamilton-Jacobiequation, and can be writ
ten in the useful form

H2~f!F12
1

3
e~f!G5S 8p

3mPl
2 D V~f!, ~6!
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e[
mPl

2

4p S H8~f!

H~f! D 2

. ~7!

The physical meaning ofe can be seen by expressing Eq.~3!
as

S ä

a
D 5H2~f!@12e~f!#, ~8!

so that the condition for inflation (ä/a).0 is given bye
,1. The scale factor is given by

a}eN5expF E
t0

t

HdtG , ~9!

where the number ofe-folds N is

N[E
t

te
Hdt5E

f

fe H

ḟ
df5

2Ap

mPl
E

fe

f df

Ae~f!
. ~10!

It is convenient to useN as the measure of time during in
flation. We takete andfe to be the time and field value a
end of inflation. ThereforeN is defined as the number o
e-folds before the end of inflation and increases as one g
backwardin time, dt.0⇒dN,0. The sign convention for
Ae must be applied carefully, and we take it to have the sa
sign asH8(f):

Ae[1
mPL

2Ap

H8

H
. ~11!

Liddle, Parsons and Barrow use this as the starting point
an infinite hierarchy of slow roll parameters@2#:

s[
mPl

p F1

2 S H9

H D2S H8

H D 2G ,
,lH[S mPl

2

4p D , ~H8!,21

H,

d(,11)H

df (,11)
. ~12!

The evolution of these parameters during inflation is de
mined by a set of ‘‘flow’’ equations@3,4#,

de

dN
5e~s12e!,

ds

dN
525es212e212~2lH!,

d~,lH!

dN
5F,21

2
s1~,22!eG~,lH!

1,11lH . ~13!

Here the time variable is the number ofe-folds N, where
1-2
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d

dN
5

d

d loga
5

mPl

2Ap
Ae

d

df
. ~14!

The derivative of a slow roll parameter at a given order
higher order in slow roll. Taken to infinite order, this set
equations completely specifies the cosmological evolut
up to the normalization of the Hubble parameterH. When
truncated atfinite order, by assuming that the,lH are all
zero above some fixed value of,, the solution of the flow
equations still yields anexact solution of the background
equations, albeit one that is drawn from a special subse
the overall solution space.

III. MONTE CARLO RECONSTRUCTION

The inflationary dynamics are fully specified by the va
ues of the slow roll parameters@e,s,,lH# at a fixed time,
which serve as initial conditions for the flow equations, tru
cated at orderM in the slow roll expansion. We now show
that this information determines the inflationary potent
V(f), up to a constant multiplier. The starting point is t
Hamilton-Jacobi equation,

V~f!5S 3mPl
2

8p DH2~f!F12
1

3
e~f!G . ~15!

We havee(N) trivially from the flow equations. In order to
calculate the potential, we need to determineH(N) and
f(N). With e known,H(N) can be determined by invertin
the definition ofe, Eq. ~7!:

1

H

dH

dN
5e. ~16!

This can be viewed as the lowest-order member of the
tem of flow equations~13!. Similarly, f(N) follows from the
first Hamilton-Jacobi equation~5!:

df

dN
5

mPL

2Ap
Ae. ~17!

Using these equations and Eq.~15!, the form of the potential
can then be fully reconstructed from the numerical solut
for e(N).1 The only necessary observational input is the n
malization of the Hubble parameterH, which enters the
above equations as an integration constant. Here we us
simple condition that the density fluctuation amplitude~as
determined by a first-order slow roll expression! be of order
1025,

dr

r
.

H

2pmPlAe
51025. ~18!

1Expressing the potential in this way is certainly not new. This
the basis of ‘‘functional reconstruction’’ method of Refs.@8,9#, and
well as the ‘‘Stewart-Lyth inverse problem’’ of Ref.@10#.
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A more sophisticated treatment would perform a full norm
ization to the Cosmic Background Explorer~COBE! CMB
data@11,12#. The value of the field,f, also contains an ar
bitrary, additive constant.

Given a solution to the flow equations it is straightforwa
to determine the observational predictions for that mod
even before the potential is computed. For instance, m
surements of CMB anisotropies@13,14# may determine the
tensor-scalar ratior, the spectral indexn, and the ‘‘running’’
of the spectral indexdn/d logk, and we focus on these quan
tities here. To lowest order, the relationship between the s
roll parameters and the observables is especially simplr
5e, n215s, anddn/d logk50. To second order in slow
roll, the observables are given by@2,15#

r 5e@12C~s12e!#, ~19!

for the tensor-scalar ratio, and

n215s2~523C!e22
1

4
~325C!se1

1

2
~32C!~2lH!

~20!

for the spectral index. The constantC[4(ln 21g), where
g.0.577 is Euler’s constant. Derivatives with respect
wave numberk can be expressed in terms of derivatives w
respect toN as @21#

d

dN
52~12e!

d

d ln k
. ~21!

The scale dependence ofn is then given by the simple ex
pression

dn

d ln k
52S 1

12e D dn

dN
, ~22!

which can be evaluated to third order in slow roll by usi
Eq. ~20! and the flow equations. The final result followin
the evaluation of a particular path inM dimensional ‘‘slow
roll space’’ is a point in ‘‘observable parameter space,’’ i
(r ,n,dn/d logk), corresponding to the observational pred
tion for that particular model. This process can be repea
for a large number of models, and used to study the attra
behavior of the inflationary dynamics. In fact, the mode
cluster strongly in the observable parameter space@3#.

We are now in a position to ask the key question: given
observational constraint, what dynamics—and underlying
flationary potential—are compatible with that constraint? W
proceed by generating a large number of ‘‘universes’’ w
random values~in a sense that is made explicit below! for the
slow roll parameters. Given an allowed region in the obse
able parameter space, centered on specified values ofr,n,
anddn/d logk with a width given by the error bars on thes
quantities, we can construct an ensemble of inflationary
tentials consistent with with the specified ‘‘window’’ in pa
rameter space. This Monte Carlo approach to reconstruc
differs from previously used techniques@1,16,17# in that it
generates an ensemble of potentials consistent with a g
constraint, rather than attempting to produce a parametr
1-3
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form for the potential and then constrain those paramet
The advantage of Monte Carlo reconstruction is that
evaluating the flow equations to high enough order we n
only very mild a priori assumptions about the form of th
potential. In addition, by probing the parameter space i
uniform way, we obtain what is in some sense a ‘‘fa
sample’’ of the potentials consistent with a given obser
tional bound. Even so, we do not have a metric on the sp
of initial conditions, so it is not possible to derive statistic
inferences from the ensemble of potentials.

The condition for the end of inflation is thate51. Inte-
grating the flow equations forward in time will yield tw
possible outcomes. One possibility is that the conditione
51 may be satisfied for some finite value ofN, which de-
fines the end of inflation. We identify this point asN50 so
that the primordial fluctuations are actually generated w
N;50. Alternatively, the solution can evolve toward an i
flationary attractor withr 50 andn.1, in which case infla-
tion never stops.2 In reality, inflation must stop at some poin
presumably via some sort of phase transition, such as
‘‘hybrid’’ inflation mechanism@18–20#. Here we make the
simplifying assumption that the observables for such mod
are the values at the late-time attractor.

To summarize, the algorithm for Monte Carlo reconstru
tion is as follows:

~1! Specify a ‘‘window’’ of parameter space: e.g. centr
values forn21, r or dn/d ln k and their associated erro
bars.

~2! Select a random point in slow roll space,@e,h,,lH#,
truncated at orderM in the slow roll expansion.

~3! Evolve forward in time (dN,0) until either~a! infla-
tion ends (e.1), or ~b! the evolution reaches a late-tim
fixed point (e5,lH50,s5const).

~4! If the evolution reaches a late-time fixed point, calc
late the observablesr, n21, anddn/d ln k at this point.

~5! If inflation ends, evaluate the flow equations backwa
N e-folds from the end of inflation. Calculate the observab
parameters at this point.

~6! If the observable parameters lie within the specifi
window of parameter space, compute the potential and
this model to the ensemble of ‘‘reconstructed’’ potentials.

~7! Repeat steps~2! through~6! until the desired numbe
of models have been found.

In principle it is possible to carry out Monte Carlo reco
struction with no assumptions about the convergence of
hierarchy of slow roll parameters. In practice, the flow eq
tions ~13! must be truncated at some finite order and eva
ated numerically. Moreover, for any given path in the para
eter space, we do not knowa priori the correct number o
e-folds N at which to evaluate the observables, since t
depends on details such as the energy density during infla
and the reheat temperature@1#. Consequently, after trunca
ing to orderM in slow roll, we select our models’ paramete
randomly from the following uniform distributions:

2See Ref.@3# for a detailed discussion of the fixed-point structu
of the slow roll space.
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N5@40,70#

e5@0,0.8#

s5@20.5,0.5#

2lH5@20.05,0.05#

3lH5@20.025,0.025#

•••

M11lH50. ~23!

and so forth, reducing the width of the range by factor of fi
for each higher order in slow roll. The series is closed
orderM by taking M11lH50. We useM55 for the calcu-
lations in this paper. The exact choice of ranges for the ini
parameters does not have a large influence on the resu
the Monte Carlo process, as long as they are chosen such
the slow roll hierarchy is convergent. As noted above,
form of the flow equations~13! ensures that the derivative o
,lH depends only on parameters of order, and,11, so this
truncation still leads to anexactevaluation of the flow equa
tions to infinite order. We are selecting a finite subset out
an infinite number of possibilities for initial conditions, bu
the background evolution for a given model is evalua
exactly.3

The result of integrating the flow equations for a partic
lar model is a ‘‘path’’ in the slow roll space parametrized b
the number ofe-folds N. Figures 1–3 show examples o
paths plotted in thes2e plane for different assumption
about the central values for the parametersr, n, and
dn/d logk. Also plotted is the corresponding reconstruct
potential for each path. Surprisingly, while quite compl
behavior is possible for the slow roll parameters, this beh
ior is only weakly reflected in the shape of the potent
itself.

IV. MONTE CARLO RECONSTRUCTION IN PRACTICE

We now describe two concrete applications of th
method. First, we select central values in various regions
the observable parameter space with the error bars expe
from the Planck satellite, and reconstruct the inflationary
tential based on this ‘‘synthetic’’ data. We find that th
Planck satellite will allow us to determine the qualitativ
form of the potential, but is insufficiently precise for wel
constrained reconstruction. This is consistent with the c
clusions of other studies@1,16#. Second, we choose a regio
of parameter space centered on the values forn, r and
dn/d ln k for a specified potential—in this cas
V(f)}f4—and apply our reconstruction algorithm with di
ferent sized error bars, thus determining the observatio
precision that is needed in order to reliably reconstruc
known potential.

3As usual in all analyses of inflation we ignore the back react
of quantum fluctuations on the background evolution.
1-4
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Figure 4 shows the results of two different ‘‘reconstru
tions:’’ for r 50.02, n50.95 anddn/d logk50, and for r
50, n5.93 anddn/d logk50. In both cases the errors ba
are those anticipated for the Planck mission’s measurem
of the spectrum@14,22#, namely dr;0.01, dn;0.01 and
ddn/d logk;0.01. The first case has a tensor contribut

FIG. 1. Paths in the (s,e) plane ~left column! and the corre-
sponding potentialsV(f) ~right column! for r .0.0, n.0.93,
dn/d log k.0.0.

FIG. 2. Paths in the (s,e) plane ~left column! and the corre-
sponding potentialsV(f) ~right column! for a blue spectrumr
.0.0, n.1.05, dn/d log k.0.0.
04351
nt

that would be resolved by the Planck satellite, and the n
malization of the potential is relatively tightly constraine
V;10211mPl

4 . The second reconstruction assumes that
tensor amplitude is not detectable by the Planck satel
with a central valuer .0.0. In this case, the normalization o
the potential is very poorly constrained, although the sh
of the potential is consistent with standard ‘‘small-field
models@13#. The clear conclusion from these plots, and t
other cases that we have examined, is that the Planck sat
may be able to determine the qualitative features of the
tential, but it will not permit the quantitative reconstructio
of the inflationary potential on its own.

It should not come as any particular surprise that Mo
Carlo reconstruction does not yield a tight constraint on
possible form of the inflationary potential. However, th
question this immediately raises is how much mo
accurately—relative to the precision expected from
Planck satellite—would we need to measure the spectrum
order to be able to make a quantitative statement about
functional form of the potential. We tackle this issue b
choosing values ofn, r and dn/d logk consistent with a
known potential, in this case the canonicallf4 model,
which is typical of ‘‘large-field’’ models and has a tenso
fluctuation amplitude observable by the Planck satell
With this assumption, the central values for the spectral
dex and tensor-to-scalar ratio aren50.943 and r 50.02
~evaluated 50e-folding before the end of inflation!. For V
}f4, dn/d logk is close to zero, and we take the centr
value to be precisely zero.

Using the above choices for the central values, we h
performed Monte Carlo reconstruction with Planck-sized

FIG. 3. Paths in the (s,e) plane ~left column! and the corre-
sponding potentialsV(f) ~right column! for r .0.18, n.0.6,
dnd/ log k.20.02. This parameter region is observationally dis
vored, but shows the complicated behavior possible for solution
the flow equations at higher order.
1-5
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rors bars and withdn50.002, dr 50.002 andddn/d logk
50.005. The second choice leads to a box in the (n,r ) plane
that is 25 times smaller than the bound predicted for
Planck satellite and thus represents a substantial impr
ment in experimental precision. We divided thedn/d logk
bound by 2 rather than 5 solely for computational con
nience. The second reconstruction involved computing
proximately 90 million ‘‘trial’’ inflationary models in order
to filter out 100 solutions that passed through the speci
window in parameter space. This took several days of C
time on a fast desktop machine, and would have taken e
longer if we had applied the same scaling toddn/d logk as
we did todn anddr .

If we plot graphs analogous to those in Fig. 4 for the
two reconstructions we find that, unsurprisingly, the ove
shape of both sets of reconstructed potentials are consis
but that there is less spread in the set with the smaller e
bars. However, to determine whether any sort of quantita
reconstruction is possible, we adopt the prior that the po
tials are proportional to (f2f0)m, wheref0 is an unknown
offset, and then perform a least-squares fit to determine
best-fit value ofm. In practice, it is sufficient to normalize
the height of the reconstructed potential to precisely unity

FIG. 4. The upper panel shows 100 reconstructed potent
assuming r 50.0260.01, n50.9560.01, dn/d log k50.060.01
~the errors bars expected from the Planck mission!. This choice
implies that the tensor modes are unambiguously detected,
leads to a tight constraint on the normalization of the potential. T
field f is defined such that the observational parameters are ca
lated atf50. The lower plot shows 100 reconstructed potentia
for r 50.010.01, n50.9360.01, dn/d log k50.060.01. In this
case, tensor modes are not resolved, and the normalization o
potential is poorly constrained. The one anomalous potential in
top figure corresponds to a potential that, by chance, has comp
tively large slow roll parameters, but which cancel in just the rig
way to produce the specified cosmological spectrum.
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f50 and then fit it to the following functional form:

~12cf!m. ~24!

This choice forces the fitted~and rescaled! potential to be
unity whenf50. Adding normalization as a third paramet
to the fit does not have a significant impact on the compu
values ofm.

The results for both simulations are shown in Fig. 5. T
error bars expected from the Planck mission do not all
one to conclude thatV}f4, but the tighter bounds onn and
r do rule out values ofm markedly different from 4.4

4In reality, if the computed value ofm is significantly different
from 4, what we actually learn is that the potential cannot be w
described by Eq.~24!— since settingm to a value significantly
different from 4 produces values ofn and r well outside our as-
sumed range.

ls,

nd
e
u-
,

the
e
ra-
t

FIG. 5. These two histograms show the values of the powem
~horizontal axes! obtained by fitting Eq.~24! to 100 potentials gen-
erated by the Monte Carlo reconstruction algorithm, where the m
sured spectra are assumed to have the central values predict
lf4 inflation. The vertical axes indicate the number of models i
particular bin inm. In the top panel we assume that the error bars
the spectral parameters are equal to those expected from the P
satellite,dr;0.01, dn;0.01 andddn/d log k;0.01, whereas the
bottom panel corresponds todr;0.002, dn;0.002 and
ddn/d log k;0.005. In the former case, the functional form of th
potential cannot be meaningfully recovered, but in the lower c
the results are consistent withV}f4. In both plots we have
dropped a few cases for which the least squares solver did
converge.
1-6
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We thus tentatively conclude that while the Plan
satellite cannot measure the perturbation spect
accurately enough to put even mild quantitative constra
on the potential, increasing the accuracy with whi
both n and r can be recovered by a factor of 5 would allo
one to start making meaningful reconstructions of
potential.

V. DISCUSSION

We have presented a novel method for reconstructing
inflationary potential, based on the powerful flow equati
approach to inflationary dynamics. This method, which
dubMonte Carlo reconstruction, differs from other prescrip-
tions for reconstruction in that it is stochastic in nature a
involves extremely weak prior assumptions about the fo
of the potential. A stochastic approach to reconstruction
distinct advantages compared with, for example, meth
which expand the potential in a Taylor series and fit
coefficients of the Taylor expansion to observable para
eters. In particular, the method can be applied equally we
both poor data sets and to high-quality data: parameters
as the tensor spectral index do not enter the reconstructio
any direct way, making the method very simple and robu
Also, Monte Carlo reconstruction naturally produces sha
for the potential outside the region directly constrained
observation. This follows from our principal assumptio
single field inflation, and the attractor behavior of the infl
tionary dynamics which tends to ensure that the rec
structed potentials overlap outside the region in which
have direct observational input.

We want to make clear what Monte Carlo reconstruct
is not: it is a stochastic method, but not a statistical one.
do not have a metric on the space of initial conditions. C
sequently, we cannot use the ‘‘density’’ of models in a
particular parameter space to infer the relative likelihood
one parameter region over another. Plots of models in ei
the space of possible potentials or the space of exponem
~from fm, as in Fig. 5! are properly interpreted as exclusio
plots, indicating which regions are either consistent or inc
sistent with the data. However, we cannot determine the r
tive likelihood of different initial points in slow roll space
without an understanding of inflationary initial condition
Many other reconstruction attempts truncate the slow
expansion at second or third order, but the approach here
be extended to arbitrary order in slow roll, and we ha
checked that our results do not depend on the specific lev
which we truncate slow roll. However, any slow roll ansa
effectively rules out potentials with small features where
higher order derivatives of the potential andH(f) are large
@23#. If the feature is located in the region of the potent
that corresponds to the primordial spectrum, strict limits c
be placed on the size and slope of the feature@24#. However,
if the feature is outside this region then we will obviously n
be able to reconstruct it.

The most straightforward application of Monte Carlo r
construction is to simply generate an ensemble of poten
consistent with some observational constraint. This sim
and robust procedure can be applied to data sets@for example
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the forthcoming data from the Microwave Anisotropy Pro
~MAP! satellite# for which direct functional reconstruction o
the potential will likely be impossible. While this metho
suffers from the same fundamental limitations as any ot
method, it will allow us to at least answer qualitative que
tions about the form of the inflationary potential: for e
ample, is the potential convex or concave? Higher qua
data will allow for more quantitative constraints on the p
tential. Detection of a nonzero tensor component will gi
information about the normalization of the potential,
within an order of magnitude or two with the accura
projected for the Planck satellite. Even absent a detec
of tensor modes, it may be possible to reach conclusi
about the shape of the potential, if not its normalizatio
More quantitative information can be gleaned from mo
accurate data sets. For instance, an improvement
parameter resolution by a factor of five or so over the Pla
satellite will make information about the exponentfm of
the potential available in at least a rough sense. Ot
possible applications would be plotting the results of t
Monte Carlo reconstruction in the space of derivatives of
potential, V,V8,V9, and so on, for comparison with Refs
@25,26#.

Monte Carlo reconstruction is easily generalizable. F
example, one need not use the slow roll approximation
calculate the power spectrum associated with a partic
choice of ‘‘slow roll’’ parameters generated by the flow equ
tions. ~Note that the slow roll expansion is completely di
tinct from the slow roll approximation. The solutions we
generate for the background evolution are exact.! For calcu-
lating the fluctuation spectrum associated with a particu
path in the parameter space, one could equally well apply
method of uniform approximations introduced by Habib
al. @27#. It is also straightforward to solve for the perturb
tion spectrum by numerically solving the exact equation
quantum modes in the inflationary spacetime: as in the
culation of the potential itself, all the information required
do so is contained in the solution to the flow equations. Th
the method is not only exact in principle, but can be made
in practice if necessary. In addition, the same techniq
could be applied to a set of flow equations based around
expansion other than the Hubble slow roll expansion
Liddle et al., such as the expansion used in Ref.@28#. Doing
so would be useful to investigate the dependence of the
constructed potentials on the details of the truncation sch
for the flow equations. We expect this dependence to
small.
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