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Monte Carlo reconstruction of the inflationary potential
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We present Monte Carlo reconstruction, a new method for “inverting” observational data to constrain the
form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow
equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of
the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by
a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since
Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method
cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to
poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the
potential outside the small region directly probed by observations. We show examples of Monte Carlo recon-
struction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement
with a factor of five better parameter discrimination than the Planck satellite.
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[. INTRODUCTION the truncated expansion actually yields an exact solution of
the full equations, drawn from a subset of the overall solu-
Given a detailed model of physics at the grand unifiedtion space. We select a “universe” by assigning random val-
theory (GUT) scale that supports inflation one can deduceues to each term in the truncated slow roll expansion, and
many of the overall properties of the universe from first prin-integrate the flow equations forward to the end of inflation
ciples. However, new strides in precision cosmology argor far enough into the future to show that the solution ap-
likely to present us with the inverse problem: given an accuproaches an inflationary attractoiVe can then determine
rate measurement of the primordial perturbation spectrunthe epoch that corresponds to cosmological structure forma-
can we determine the particle physics that drove inflation?ion and thus the predicted parameters of the primordial
This question leads to “reconstruction”—rebuilding a por- spectrum, allowing us to select the models which fit into a
tion of the inflationary potential from observations—whosepre-determined window of parameter space.
apotheosis is the work of Lidsest al.[1]. The conclusion of As with any other reconstruction program, we face limi-
this effort was that while a limited reconstruction may betations dictated by the physics of inflation itself. Since the
possible, it is overly optimistic to hope to deduce more tharfield rolls slowly, it traverses only a small portion of the
the rough form of a small piece of the inflaton potential onpotential during the epoch in which the primordial perturba-
the basis of astrophysical observations alone. tions are laid down. Consequently, even if all the potentials
Despite this apparent setback, the prospect of being ablee recover for a specific set of cosmological parameters
to probe ultra-high energy particle physics via astrophysicabverlap in the region where the cosmologically relevant por-
measurements remains tempting. In this paper we presenttn of the spectrum is laid down, they will still diverge
new approach to the taskjonte Carlo reconstructionUn-  outside this region. However, because we reconstruct the en-
like previous workers, we tackle the problem stochasticallytire potential, we can estimate the degree to which the recon-
by generating large numbers of inflationary models and theistructed potentials diverge from one another.
associated potentials and identifying those that lead to a In the following section we summarize the inflationary
spectrum of primordial perturbations which fits inside adynamics and the flow equations, and in Sec. Il apply these
specified window of parameter space. We sacrifice the proge spell out the process of Monte Carlo reconstruction in
pect of unambiguously reconstructing the inflationary potendetail. We present the results of a variety of simulations in
tial, but instead map out the ensemble of viable potentialsSec. 1V, and test how accurately Monte Carlo reconstruction
We can then assess the extent to which these potentials rean recover a known inflationary potential. As expected, a
semble one another, and thus the degree of ambiguity in thiellly consistent reconstruction requires the unambiguous de-
“reconstruction.” tection of tensor modes in the cosmic microwave back-
The starting point for Monte Carlo reconstruction is the ground(CMB), but even in the absence of a detectable tensor
Hubble slow roll expansioh2], which leads to a set of first signal we can still recover some information about the infla-
order “flow” equations[3,4] that describes the inflationary tionary potential. If we assume the error bars on the scalar
dynamics. The Hubble slow roll expansion can be systematispectral index and tensor-to-scalar ratio that are expected for
cally continued to arbitrary order but, as we explain below,the Planck mission, the underlying potential cannot be unam-
biguously recovered. However, if we decrease these error
bars(perhaps by adding information from large scale struc-
*Electronic address: easther@physics.columbia.edu ture surveys, or better measurements of CMB polarization
TElectronic address: kinney@physics.columbia.edu by a factor of 5, then we can start to recovegpapotential.
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Our conclusions are summarized in Sec. V. wheree is defined to be
II. INFLATION AND FLOW _my[H(¢))? @
T Arx H(¢) ) °

We consider inflation driven by a single homogeneous

S?alar _fieldqb (theinflaton) with potentialV(¢) and equation  The physical meaning of can be seen by expressing E8).
of motion
as

d+3Hp+V'($)=0, (1) -
( =H2($)[1—-€e()], 8

whereHE(é/a) is the Hubble parameter. We assume a spa- a

tially flat, homogeneous and isotropic universe where the . . . o
inflaton field is the only contribution to the energy- SO that the condition for inflationafa)>0 is given bye

momentum tensor, so that the Einstein field equations have - The scale factor is given by
the familiar form

t
o aue”=ex;{f Hdt}, 9
, (@& 8 1., to
=3 Tz | V() + 3¢ 2
3mp, where the number of-folds N is
and
te ¢e H 2w (¢ d
. NEJ Hdtzf —d¢= im ¢ . (10
a 8w "2 t Mpy be Ve((b)
3 a2 V)~ 7. €
3mp It is convenient to us&l as the measure of time during in-

flation. We taket, and ¢, to be the time and field value at
end of inflation. ThereforeN is defined as the number of
form a coupled set of differential equations that describe th%éil?;ak;g:r?r&gge detrfo(ilcmi“g n ?r?g ;riwgrr]e?gﬁjeﬁig:iogoes

evolution of the universe. The limip=0 corresponds 0 a /2 st be applied carefully, and we take it to have the same
de Sitter universe, with the scale factor increasing eXPONerkjgn asH' ():

Here mp=G Y?=10'° GeV is the Planck mass. These
background equations, along with the equation of motign

tially in time
mp. H’
H= \/(8—772 V(¢)=const, € +2\/; H' D
3mg,
e Liddle, Parsons and Barrow use this as the starting point for

axe™. (4 an infinite hierarchy of slow roll parametel2]:
In generalH is not exactly constant, but varies as the figld me[1(H” H’\?2
evolves along the potentidlf(#). A powerful way of de- 057[5 W) _(W )
scribing the dynamics of an inflationary universe with a
varying field (and non-trivial potentialis to express the 21 ¢y e-1 g(e+ D
Hubble parameter as a function of the field H=H(¢), ngE(%> (H") . (12)
which is consistent provided is monotonic in time. The 4 HY  dettD

equations of motion beconj&,5-7
The evolution of these parameters during inflation is deter-

2 . )
. Mp mined by a set of “flow” equation$3,4],
b=— 22 (#), g |
i d
€
—=¢(o+2¢€),
o, 12w 327 an~ < )
[H'($)12— = HA(¢)= — —- V(). (5)
Mp Mp d
g
, —=—5e0— 126>+ 2(°\p),
These are completely equivalent to the second-order equa- dN
tion of motion (1). The second of the above equations is
referred to as thelamilton-Jacobiequation, and can be writ- d(‘Ap) [€-1 0—2)el (¢
ten in the useful form N | 2 ot (E=2)€|(CAn)
. 1 8 + Iy, (13
H2($)| 1- 3 e() |=| —5 | V() (6) _ -
3mp, Here the time variable is the number ®folds N, where
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d d my _d
m_dloga_g\/;\/zﬂ' (14)
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A more sophisticated treatment would perform a full normal-
ization to the Cosmic Background Explor&eOBE) CMB
data[11,12. The value of the fieldg, also contains an ar-

o ) _ bitrary, additive constant.
The derivative of a slow roll parameter at a given order is  Gjyen a solution to the flow equations it is straightforward
higher order in slow roll. Taken to infinite order, this set of 5 determine the observational predictions for that model,
equations completely specifies the cosmological evolutiongyen pefore the potential is computed. For instance, mea-

up to the normalization of the Hubble parameké&rWhen
truncated affinite order, by assuming that thex,, are all
zero above some fixed value 6f the solution of the flow

surements of CMB anisotropi¢43,14] may determine the
tensor-scalar ratio, the spectral inder, and the “running”
of the spectral indern/d logk, and we focus on these quan-

equations still yields arexactsolution of the background tjties here. To lowest order, the relationship between the slow
equations, albeit one that is drawn from a special subset gf parameters and the observables is especially simple:

the overall solution space.

IIl. MONTE CARLO RECONSTRUCTION

The inflationary dynamics are fully specified by the val-
ues of the slow roll parametefs,o,A\] at a fixed time,
which serve as initial conditions for the flow equations, trun-
cated at ordeM in the slow roll expansion. We now show
that this information determines the inflationary potential
V(¢), up to a constant multiplier. The starting point is the
Hamilton-Jacobi equation,

2
3mp

8

1
V(g)= )H2<¢>[1—§e<¢) (15

We havee(N) trivially from the flow equations. In order to
calculate the potential, we need to determidéN) and
¢(N). With € known,H(N) can be determined by inverting
the definition ofe, Eq. (7):

1 dH

HaN "~ (19

€.

=¢, n—1=0, anddn/dlogk=0. To second order in slow
roll, the observables are given bg,15|

r=e[1-C(o+2¢)], (19

for the tensor-scalar ratio, and

—1=0—(5-3C)e?— %(3—5C)Ue+ %(B—C)(Z)\H)
(20)

for the spectral index. The consta@Gt=4(In2+v), where
v=0.577 is Euler’'s constant. Derivatives with respect to
wave numbek can be expressed in terms of derivatives with
respect toN as[21]

N~ (1—e)

dink: (21

The scale dependence ofis then given by the simple ex-
pression

dn B
dink

1
1—-€

dn
d_N,

(22)

This can be viewed as the lowest-order member of the sys-

tem of flow equation$13). Similarly, ¢(N) follows from the
first Hamilton-Jacobi equatio(®):

d¢_ MpL

m_z\/;

Using these equations and E5), the form of the potential
can then be fully reconstructed from the numerical solutio
for e(N).2 The only necessary observational input is the nor
malization of the Hubble parametét, which enters the

Je. (17)

above equations as an integration constant. Here we use Q

simple condition that the density fluctuation amplitu@es
determined by a first-order slow roll expressidoe of order
10°°,

op H

=———=10"°
p 27Tmp|\/g

(18)

‘Expressing the potential in this way is certainly not new. This is
the basis of “functional reconstruction” method of Ref8,9], and
well as the “Stewart-Lyth inverse problem” of Ref10].

which can be evaluated to third order in slow roll by using
Eg. (20) and the flow equations. The final result following
the evaluation of a particular path M dimensional “slow

roll space” is a point in “observable parameter space,” i.e.
(r,n,dn/dlogk), corresponding to the observational predic-
tion for that particular model. This process can be repeated
for a large number of models, and used to study the attractor

rPehavior of the inflationary dynamics. In fact, the models

cluster strongly in the observable parameter spage

We are now in a position to ask the key question: given an
servational constraint, what dynamics—and underlying in-
flationary potential—are compatible with that constraint? We
proceed by generating a large number of “universes” with
random valuesgin a sense that is made explicit belofor the
slow roll parameters. Given an allowed region in the observ-
able parameter space, centered on specified values of
anddn/d logk with a width given by the error bars on these
quantities, we can construct an ensemble of inflationary po-
tentials consistent with with the specified “window” in pa-
rameter space. This Monte Carlo approach to reconstruction
differs from previously used techniqué$,16,17 in that it
generates an ensemble of potentials consistent with a given
constraint, rather than attempting to produce a parametrized
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form for the potential and then constrain those parameters. N=[40,70
The advantage of Monte Carlo reconstruction is that by

evaluating the flow equations to high enough order we need €=[0,0.8]
only very mild a priori assumptions about the form of the

potential. In addition, by probing the parameter space in a o=[-05,03

uniform way, we obtain what is in some sense a “fair
sample” of the potentials consistent with a given observa-
tional bound. Even so, we do not have a metric on the space
of initial conditions, so it is not possible to derive statistical
inferences from the ensemble of potentials.

The condition for the end of inflation is that=1. Inte-
grating the flow equations forward in time will yield two M+IN,=0. (23
possible outcomes. One possibility is that the conditéon
=1 may be satisfied for some finite value Nf which de-  and so forth, reducing the width of the range by factor of five
fines the end of inflation. We identify this point As=0 so  for each higher order in slow roll. The series is closed to
that the primordial fluctuations are actually generated whe®rderM by taking ™**\;;=0. We useM =5 for the calcu-
N~50. Alternatively, the solution can evolve toward an in- 1ations in this paper. The exact choice of ranges for the initial
flationary attractor withr =0 andn>1, in which case infla- parameters does not have a large influence on the result of
tion never stop$.In reality, inflation must stop at some point, the Monte Carlo process, as long as they are chosen such that

presumably via some sort of phase transition, such as th e slow roll hlerarch_y is convergent. As noted aboye, the
“hybrid” inflation mechanism[18—2(. Here we make the orm of the flow equation$§l3) ensures that the derivative of

€ .
A : Ay depends only on parameters of ordeand{ + 1, so this
simplifying assumption that. the observables for such mOdel%runcation still leads to aexactevaluation of the flow equa-
are the values at the late-time attractor.

. . tions to infinite order. We are selecting a finite subset out of
_To summarlze: the algorithm for Monte Carlo reconstruc-p infinite number of possibilities for initial conditions, but
tionis as follows: the background evolution for a given model is evaluated
(1) Specify a “window” of parameter space: e.g. central exactly?

values forn—1, r or dn/dInk and their associated error  The result of integrating the flow equations for a particu-

2\y=[—0.05,0.09

3\y=[—0.025,0.02%

bars. o . lar model is a “path” in the slow roll space parametrized by
(2) Select a random point in slow roll spade, 7,"Aul,  the number ofe-folds N. Figures 1-3 show examples of
truncated at ordeM in the slow roll expansion. paths plotted in ther—e plane for different assumptions

~ (3) Evolve forward in time §N<0) until either(a) infla-  about the central values for the parametersn, and
tion ends €>1), or (b) the evolution reaches a late-time gn/dlogk. Also plotted is the corresponding reconstructed

fixed point =‘Ay=00=const). _ potential for each path. Surprisingly, while quite complex
(4) If the evolution reaches a late-time fixed point, calcu-pehavior is possible for the slow roll parameters, this behav-
late the observables n—1, anddn/d Ink at this point. ior is only weakly reflected in the shape of the potential

(5) If inflation ends, evaluate the flow equations backwardjiself.
N efolds from the end of inflation. Calculate the observable
parameters at this point. o . IV. MONTE CARLO RECONSTRUCTION IN PRACTICE
(6) If the observable parameters lie within the specified
window of parameter space, compute the potential and add We now describe two concrete applications of this
this model to the ensemble of “reconstructed” potentials. method. First, we select central values in various regions of
(7) Repeat step&2) through(6) until the desired number the observable parameter space with the error bars expected
of models have been found. from the Planck satellite, and reconstruct the inflationary po-
In principle it is possible to carry out Monte Carlo recon- tential based on this “synthetic” data. We find that the
struction with no assumptions about the convergence of thlanck satellite will allow us to determine the qualitative
hierarchy of slow roll parameters. In practice, the flow equaform of the potential, but is insufficiently precise for well-
tions (13) must be truncated at some finite order and evalu<constrained reconstruction. This is consistent with the con-
ated numerically. Moreover, for any given path in the param<lusions of other studigd,16]. Second, we choose a region
eter space, we do not know priori the correct number of of parameter space centered on the valuesrfor and
e-folds N at which to evaluate the observables, since thisin/dIink for a specified potential—in this case
depends on details such as the energy density during inflatiovi( ¢) = ¢*—and apply our reconstruction algorithm with dif-
and the reheat temperaturg]. Consequently, after truncat- ferent sized error bars, thus determining the observational
ing to orderM in slow roll, we select our models’ parameters precision that is needed in order to reliably reconstruct a
randomly from the following uniform distributions: known potential.

2See Ref[3] for a detailed discussion of the fixed-point structure °As usual in all analyses of inflation we ignore the back reaction
of the slow roll space. of quantum fluctuations on the background evolution.
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FIG. 1. Paths in thed,€) plane (left column and the corre-
sponding potentialsV(¢) (right column for r=0.0, n=0.93,

dn/d logk=0.0.

Figure 4 shows the results of two different “reconstruc-
tions:” for r=0.02, n=0.95 anddn/d logk=0, and forr
=0, n=.93 anddn/d logk=0. In both cases the errors bars
are those anticipated for the Planck mission’s measureme
of the spectrum 14,22, namely 6r ~0.01, n~0.01 and
odn/dlogk~0.01. The first case has a tensor contribution
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FIG. 3. Paths in thed,€) plane (left column and the corre-
sponding potentialsV(¢) (right column for r=0.18, n=0.6,
dnd/logk=—0.02. This parameter region is observationally disfa-
vored, but shows the complicated behavior possible for solutions to
the flow equations at higher order.

that would be resolved by the Planck satellite, and the nor-
malization of the potential is relatively tightly constrained,

~10 my,. The second reconstruction assumes that the
tensor amplitude is not detectable by the Planck satellite,
with a central valug=0.0. In this case, the normalization of
the potential is very poorly constrained, although the shape
of the potential is consistent with standard “small-field”
models[13]. The clear conclusion from these plots, and the
other cases that we have examined, is that the Planck satellite
may be able to determine the qualitative features of the po-
tential, but it will not permit the quantitative reconstruction
of the inflationary potential on its own.

It should not come as any particular surprise that Monte
Carlo reconstruction does not yield a tight constraint on the
possible form of the inflationary potential. However, the
question this immediately raises is how much more
accurately—relative to the precision expected from the
Planck satellite—would we need to measure the spectrum in
order to be able to make a quantitative statement about the
functional form of the potential. We tackle this issue by
choosing values oh, r and dn/dlogk consistent with a
known potential, in this case the canonicaip* model,
which is typical of “large-field” models and has a tensor
fluctuation amplitude observable by the Planck satellite.
With this assumption, the central values for the spectral in-
dex and tensor-to-scalar ratio are=0.943 andr=0.02
(evaluated 50=-folding before the end of inflation For V
= ¢* dn/dlogk is close to zero, and we take the central
value to be precisely zero.

Using the above choices for the central values, we have
performed Monte Carlo reconstruction with Planck-sized er-
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FIG. 4. The upper panel shows 100 reconstructed potentials,
assuming r =0.02+0.01, n=0.95+0.01, dn/dlogk=0.0+0.01 2. 4. 6. 8. 10. 12. 14.
(the errors bars expected from the Planck missidris choice
implies that the tensor modes are unambiguously detected, and FIG. 5. These two histograms show the values of the pawer
leads to a tight constraint on the normalization of the potential. Thehorizontal axesobtained by fitting Eq(24) to 100 potentials gen-
field ¢ is defined such that the observational parameters are calc@rated by the Monte Carlo reconstruction algorithm, where the mea-
lated at¢=0. The lower plot shows 100 reconstructed potentials,sured spectra are assumed to have the central values predicted by
for r=0.0+0.01, n=0.93+0.01, dn/d logk=0.0+0.01. In this N ¢* inflation. The vertical axes indicate the number of models in a
case, tensor modes are not resolved, and the normalization of tH@rticular bin inm. In the top panel we assume that the error bars on
potential is poorly constrained. The one anomalous potential in théhe spectral parameters are equal to those expected from the Planck
top figure corresponds to a potential that, by chance, has comparaatellite, or ~0.01, n~0.01 andsdn/d logk~0.01, whereas the
tively large slow roll parameters, but which cancel in just the rightbottom panel corresponds tosr~0.002, én~0.002 and
way to produce the specified cosmological spectrum. édn/d logk~0.005. In the former case, the functional form of the
potential cannot be meaningfully recovered, but in the lower case
] the results are consistent witdi«c¢*. In both plots we have
rors bars and withbn=0.002, or =0.002 andédn/dlogk  gropped a few cases for which the least squares solver did not
=0.005. The second choice leads to a box in thg) plane  converge.
that is 25 times smaller than the bound predicted for the
Planck satellite and thus represents a substantial improves=0 and then fit it to the following functional form:
ment in experimental precision. We divided tde/d logk
bound by 2 rather than 5 solely for computational conve-
nience. The second reconstruction involved computing ap- (1-co)™ (24)
proximately 90 million “trial” inflationary models in order
to filter out 100 solutions that passed through the specifiedthis choice forces the fitte¢and rescaledpotential to be
window in parameter space. This took several days of CPYnity when$=0. Adding normalization as a third parameter
time on a fast desktop machine, and would have taken evef the fit does not have a significant impact on the computed
longer if we had applied the same scalingd@n/dlogk as  values ofm.
we did toon and or. The results for both simulations are shown in Fig. 5. The
If we plot graphs analogous to those in Fig. 4 for theseerror bars expected from the Planck mission do not allow

two reconstructions we find that, unsurprisingly, the overallone to conclude tha¥= ¢*, but the tighter bounds omand
shape of both sets of reconstructed potentials are consistentdo rule out values ofn markedly different from 4.

but that there is less spread in the set with the smaller error

bars. However, to determine whether any sort of quantitative———

reconstruction is possible, we adopt the prior that the poten-4n reality, if the computed value af is significantly different
tials are proportional togg— ¢o)™, whereg is an unknown  from 4, what we actually learn is that the potential cannot be well
offset, and then perform a least-squares fit to determine th@escribed by Eq(24— since settingm to a value significantly
best-fit value ofm. In practice, it is sufficient to normalize different from 4 produces values of and r well outside our as-
the height of the reconstructed potential to precisely unity asumed range.
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We thus tentatively conclude that while the Planckthe forthcoming data from the Microwave Anisotropy Probe
satellite cannot measure the perturbation spectruniMAP) satellitg for which direct functional reconstruction of
accurately enough to put even mild quantitative constraintshe potential will likely be impossible. While this method
on the potential, increasing the accuracy with whichsuffers from the same fundamental limitations as any other
bothn andr can be recovered by a factor of 5 would allow method, it will allow us to at least answer qualitative ques-
one to start making meaningful reconstructions of thetions about the form of the inflationary potential: for ex-
potential. ample, is the potential convex or concave? Higher quality

data will allow for more quantitative constraints on the po-
V. DISCUSSION f[ential. I_Detection of a nonzero tensor component W_iII give
information about the normalization of the potential, to

We have presented a novel method for reconstructing th@ithin an order of magnitude or two with the accuracy
inflationary potential, based on the powerful flow equationprojected for the Planck satellite. Even absent a detection
approach to inflationary dynamics. This method, which weof tensor modes, it may be possible to reach conclusions
dubMonte Carlo reconstructigndiffers from other prescrip-  about the shape of the potential, if not its normalization.
tions for reconstruction in that it is stochastic in nature andyjgre quantitative information can be gleaned from more
involves extremely weak prior assumptions about the formpccurate data sets. For instance, an improvement in
of the potential. A stochastic approach to reconstruction hagarameter resolution by a factor of five or so over the Planck
distinct advantages compared with, for example, methodgatellite will make information about the exponest of
which expand the potential in a Taylor series and fit thethe potential available in at least a rough sense. Other
coefficients of the Taylor expansion to observable parampossible applications would be plotting the results of the
eters. In particular, the method can be applied equally well tgyonte Carlo reconstruction in the space of derivatives of the
both poor data sets and to high-quality data: parameters Su‘f:i?)tential,v,v’,v”, and so on, for comparison with Refs.
as the tensor spectral index do not enter the reconstruction 25,26
any direct way, making the method very simple and robust. \onte Carlo reconstruction is easily generalizable. For
Also, Monte Carlo reconstruction naturally produces shapegxamme, one need not use the slow roll approximation to
for the potential outside the region directly constrained bycglculate the power spectrum associated with a particular
observation. This follows from our principal assumption, choice of “slow roll” parameters generated by the flow equa-
single field inflation, and the attractor behavior of the infla-tjgns. (Note that the slow roll expansion is completely dis-
tionary dynamics which tends to ensure that the recontinct from the slow roll approximation The solutions we
structed potentials overlap outside the region in which weyenerate for the background evolution are exd@tr calcu-
have direct observational input. ~ lating the fluctuation spectrum associated with a particular

We want to make clear what Monte Carlo reconstructionpath in the parameter space, one could equally well apply the
is not it is a stochastic method, but not a statistical one. Wemethod of uniform approximations introduced by Habib et
do not have a metric on the space of initial conditions. Cony|. [27]. It is also straightforward to solve for the perturba-
sequently, we cannot use the “density” of models in anytjon spectrum by numerically solving the exact equation for
particular parameter space to infer the relative likelihood quuantum modes in the inflationary spacetime: as in the cal-
one parameter region over another. Plots of models in eith&fyjation of the potential itself, all the information required to
the space of possible potentials or the space of expament (o 5o is contained in the solution to the flow equations. Thus
(from ¢™, as in Fig. 3 are properly interpreted as exclusion the method is not only exact in principle, but can be made so
plots, indicating which regions are either consistent or inconip, practice if necessary. In addition, the same techniques
sistent with the data. However, we cannot determine the rela:oyid be applied to a set of flow equations based around an
tive likelihood of different initial pOintS in slow roll space expansion other than the Hubble slow roll expansion of
without an understanding of inflationary initial conditions. | jqdie et al., such as the expansion used in [R2f]. Doing
Many other reconstruction attempts truncate the slow rolsg would be useful to investigate the dependence of the re-
expansion at second or third order, but the approach here ca@nstructed potentials on the details of the truncation scheme

be extended to arbitrary order in slow roll, and we havefor the flow equations. We expect this dependence to be
checked that our results do not depend on the specific level gl

which we truncate slow roll. However, any slow roll ansatz
effectively rules out potentials with small features where the
higher order derivatives of the potential aHd ¢) are large
[23]. If the feature is located in the region of the potential
that corresponds to the primordial spectrum, strict limits can R.E. and W.H.K. are supported by ISCAP and the Colum-
be placed on the size and slope of the feaf@rd. However,  bia University Academic Quality Fund. I.S.C.A.P. gratefully
if the feature is outside this region then we will obviously not acknowledges the generous support of the Ohrstrom Founda-
be able to reconstruct it. tion. We would like to thank Ed Copeland for useful discus-
The most straightforward application of Monte Carlo re-sions. R.E. thanks the Aspen Center for Physics, where part
construction is to simply generate an ensemble of potentialef this work was conducted. Some of the computational time
consistent with some observational constraint. This simpleised for these calculations were kindly provided by the High
and robust procedure can be applied to data[$etexample  Energy Theory group at Brown University.
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