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Isotropization in brane gas cosmology
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Brane gas cosmolog§BGC) is an approach to unifying string theory and cosmology in which matter is
described by a gas of strings and branes in a dilaton gravity background. The Universe is assumed to start out
with all spatial dimensions compact and small. It has previously been shown that, in this context, in the
approximation of neglecting inhomogeneities and anisotropies, there is a dynamical mechanism which allows
only three spatial dimensions to become large. However, previous studies do not lead to any conclusions
concerning the isotropy or anisotropy of these three large spatial dimensions. Here, we generalize the equations
of BGC to the anisotropic case, and find that isotropization is a natural consequence of the dynamics.
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[. INTRODUCTION rarely discussed in the literature.
An alternative approach to string or M theory cosmology

The standard big ban@BBB) cosmology has become an is the string gas or Brandenberger-Vafa scenario. This model
extremely successful model that has been well tested by exegan with19,2Q in which the effects of string gases on the
periment. However, the model is incomplete. The underlyingcosmological evolution of the low energy effective string
theory of classical general relativity and the description oftheory background geometry including the dilaton were ex-
matter as an ideal gas break down at the high temperatures pfored. The most important result to emerge from these
the early Universe, and the solutions of the theory in facworks is a dynamical mechanism, tied to the existence of
have an initial singularity. Moreover, SBB cosmology doesstring winding modes, which yields a nonsingular cosmology
not address many important cosmological questions such and may explain why at most three spatial dimensions can
the observed homogeneity and spatial flatness, and the orighecome large if the initial state is chosen to correspond to a
of structure in the Universe. Cosmological inflatigsee, Universe that is small in all spatial directions.
e.g.,[1,2] for textbook treatises ar{®,4] for shorter reviews This work has been generalized to include the cosmologi-
builds on SBB cosmology, providing a solution to some ofcal effects ofp-brane gases and leads to the current model of
these issues, but ifat least in the context of scalar-field- brane gas cosmolog¢BGC) [21]. In BGC, the Universe
driven inflation suffers from the same initial singularity starts in a way analogous to the SBB picture, i.e., hot, dense,
problem[5] and other conceptual problerf¥], which indi-  and with all fundamental degrees of freedom in thermal equi-
cate that inflation cannot be the complete story of early Unidibrium. The Universe is assumed to be toroidal in all nine
verse cosmology. spatial dimensions and filled with p-brane gas. The as-

In recent years, many models motivated by string theorysumption of toroidal geometry of the background space leads
and M theory have emerged as possible solutions to the oute the existence of string winding modes, since the back-
standing problems of early Universe and inflationary cosmolground space admits cycles on which branes of the relevant
ogy (see, e.g.[6,8] for recent but incomplete reviewsBe-  dimensionalities(in particular one-brang¢scan wrap. This
ginning with the work on pre-big-bang cosmolofg,10] it  wrapping is associated with a winding energy which—in the
was realized that a dynamical dilation should play an impor-context of dilaton gravity—acts as a confining potential for
tant role in the very early Universe. More recently, modelsthe scale factor preventing further expansion of the spatial
have become prominent in which our Universe consists of @imensions. Also associated with the brane are oscillatory
three-brane embedded in a higher dimensional bulk spacejodes described by scalar fields and momentum modes
with the standard model constrained to live on the branevhich correspond to the center of mass motion of the brane.
[11-17. Although these models can resolve a number ofThe momentum modes are related bguality to the wind-
issues, such as the hierarchy problem, they introduce severalg modes and this duality results in the nonsingular behav-
other difficulties in the process. For example, large extra diior of the model. In order for dimensions to decompactify,
mensions should be explained by classical general relativityp-brane winding modes must annihilate with antiwinding
and it has been shown this results in problems stabilizing thenodes and it is argued that this only occurs in a maximum of
brane[18]. More importantly, in most of these models the six 2p+ 1 dimensiong21]. Since stringsf=1) are the lowest
“extra” spatial dimensions are taken to be compactifiad, dimensional objects that admit winding modes, since they
priori, with no explanation provided for how this could come are the lightest of all winding modes and hence fall out of
about dynamically. Although it appears to be an importantequilibrium later than other winding modes, it follows that
concern for the naturalness of these models, this issue the number of large space-time dimensions can be at most

(3+1).
In the context of the background equations of dilaton
*Email address: watson@het.brown.edu gravity, the winding modes yield a confining potential for the
"Email address: rhb@het.brown.edu scale factor which also gives rise to a period of cosmological
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loitering (expansion rate near zerfor the three large spatial H denotes the field strength corresponding to the bulk anti-
dimensions. This is due to the time needed for windingsymmetric tensor field,,, andx is determined by the ten-
modes to annihilate and produce closed strings or [P dimensional Newton constant.
This is of great interest since loitering can explain the hori- Fluctuations of each of the-branes are described by the
zon and relic problems of standard cosmology without re-Dirac-Born-Infeld (DBI) action[25] and are coupled to the
sorting to inflation® It was also shown ifi22] that by con-  ten-dimensional action via delta function sources. The DBI
sidering loop production at late times BGC naturally evolvesaction is
into the SBB scenario, with a (81)-dimensional, radiation
dominated Universe.

There are important issues that remain to be addressed Sp:Tpf dP* e ?\—delgmn+ bt 2ma’ Frop),
within BGC. The fact that toroidal geometry was assumed (2.2)
for the background space was used for the existence and
topological stability of winding modes. However, Calabi-Yau yhere T, is the tension of the brana,,, is the induced
manifolds are more realistic choices for backgrounds withinyetric on the brandy,,, is the induced antisymmetric tensor
string theory and they do not admit one-cyclescessary 10 field, andF ,, is the field strength tensor of gauge fiekig
have topologically stable winding mode®romising results living on the brane. The constamt’~|2t is given by the
have recently appeared which indicate that the conclusion&ring length scalé S
of BGC extend to a much wider class of spatial backgrounds, St

including backgrounds that are K3 or Calabi-Yau manifoldsta| strings p=1), since strings play the critical role in the

[7,23,24. dynamics[21]. We will also i
o . . . gnore the effects of fluxes and
Perhaps the main issue to be addressed in BGC is that Qfyjng oscillatory modes since we are working in the low

spatial inhomogeneities. That is, we would na.tqr.ally expec‘anergy regime. Our basic approach is to consider the string
fluxes .a”.dp'br%’?‘? Sources tp lead to the possibility of Cata'gas as a matter source for the dilaton-gravity background.
strophic instabilities of spatial fluctuation modes. AIthoughT e string winding modes play a key role. The main point is

we do not address this issue here, we plan to study the role ‘ﬂ{]at we want to find the first departures from the standard

inhomogeneities in follow-up work. Friedmann-Robertson-WalkéFR icture resulting from
Other important issues for BGC are the questions of sta €FRW) p d

S . ) . . .>"“consideringstringy effects. This should result from the wind-
bilization of the six small extra dimensions and |sotr0p|za-ing modes of the strings and the presence of the dilaton in
tion of the three dimensions that grow large. Although thesgy, equations of motion.
topics may seem to be unrelated, they can both be addresse In this paper, we generalize the equations of BGC to the

by_generalizi_ng the BGC scenario_ to th(_a anisotropic Ca‘Seanisotropic case. Thus, we take the metric to be of the form
This paper will concentrate on the isotropization of the three

In this paper we will concentrate on the role of fundamen-

large dimensions, but the generalization of BGC to the an- D
isotropic case achieved in this paper will be valuable to ad- d<2=d2— 2 e2Mi(dx)2 2.3
dress the issue of stabilization in later work. =1 v '

Il. BRANE GAS COSMOLOGY where the label runs over theD spatial indicesy; are the
comoving spatial coordinates, is physical time, and the

g g e scale factor in theth direction is logk;). We again stress that
reader is referred tp21]. Consider compactification of 11- inhomogeneities are of vital importance; however, we will

. . 1 . . .
d|mens_|onal M_theory or§’, which yields type IA string leave their investigation to future work and take the string
theory in ten dimensions. The fundamental degrees of free-

dom in the theory are zero-branes, strings, two-branes fivel®S to be homogeneous. ; ; -
) X ’ ' ' By varying the total action we obtain the following equa-
branes, six-branes, and eight-branes. The low energy eﬁeﬁ’ons-
tive action of the theory is that of supersymmetrized dilation '
gravity, D

We begin with a brief review of BGC; for more details the

1 — > N+ p?=e‘E, (2.4
Sbulk:ﬁf di%\/-Ge 2 =t
D
v 1 va _E x.+"—£e¢E (25)
X | R+4G* VM¢VV¢—1—2HMMH“ , (2.1 a MiTe=5 , .
whereG is the determinant of the background metg, , ¢ 1
is the dilaton given by the radius of ti8 compactification, xi_‘;D).\i: Ee«ppi , (2.6)

However, to obtain a solution of the flatness and entropy probWhereE is the total energy of the strings af¥ is the pres-
lems, a phase of inflation following the decoupling of the threesure in theith direction, and we have introduced a “shifted”

large spatial dimensions may be required. dilation field
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D states and the energy and pressure of the creation of loops
(pZZd)-E Ni. (2.7 must be taken into account when considering the dynamics.
=1 The strings in the expanding space will become of macro-
We can see immediately from the first equation tat scopic size and the required pressure and energy terms will
cannot change sign. To ensure that the low energy apprOX|lze analogous to that of a cos_m|c_str|_ng netwﬁﬁ@_,27_|._
. We know that the energy in winding modes is given by

mation remains valid we chooge<0 and¢>0. This causes A ; .
the dilaton to have a dampi%effectﬁn the equations o]Eq.(2.9). Considering the time rate of change of this energy,

motion? Another important observation is that these equa-We find

tions reduce to the standard FRW equations for a fixed dila- D D

ton as was discussed |&0]. This is comforting because at E¥=" uNi(t)ehi+ > uN(t)ehir;. (2.12
i=1 =1

late times it is expected that the dilaton will gain a mass,
perhaps associated with supersymmetry breaking, and as_rarl]

result we naturally regain the usual SBB cosmology. The enf(ljrstt terrrr: $n tlhe n?r:]tt h"’::}g S'Ide of t?'? Z?Ut?t':n (r::jrrtfl_
string winding states will appear at late times as solitong’PONas 10 energy 10ss Into string 1oops or radiation, a €
second term corresponds to the gain in total energy of the

[21]. strings due to the stretching by the expansion of space.
A. Winding modes The energy in loops can be written [@22]
The energy and pressure terms follow from varying the E'°P=g(t)V,, (213

brane action2.2). The energy associated with the winding
modes in theth direction is given by(taking the winding
strings to be straight for simplicity

whereg(t) is the energy density in string loogplus radia-
tion) per initial comoving volumgand is a constant if no
loop production or energy loss from winding strings into
W_ N ()= uN:(t)eNi radiation occurs and Vy=expE\y) is the initial volume,
B = pNi(a(t) =uNi(De, 28 \oi being the initial values of the logarithms of the scale
whereN,; is the number of winding modes in tih direction ~ factors. Since string loops are likely to be produced relativ-
and u is the mass per unit length of the string multiplied by istically, we will use the equation of state of radiation to

the initial spatial dimension. It follows that the total energy is describe them. This approximation also allows us to treat the
given by string loops and other radiation together. This approximation

could easily be relaxed without changing our basic conclu-
w 0 N sions. Thus, we use the equation of state of relativistic radia-
ET:i:El uN;(t)et. (2.9 tion p=(1/3)p (p andp denoting energy density and pres-
sure, respective)y which implies
In the same approximation that the winding strings are

straight, the corresponding pressure terms are givef2bly P'°°F’S:%g(t)vo. (2.14
PY'=— uN;(t)eM, (2.10 ) L
To find howg(t) evolves we equate the loss in winding
PY=0 (j#i) (2.1 energy due to energy transféhne first term on the right hand
! ' ' side of Eq.(2.12] with the change in loop energy,
It follows then by inserting Eq(2.10 into Eq. (2.6) that D
winding strings give rise to a confm_mg potential for the scal_e _ 2 ,uNi(t)e*i —§(t)Vo. (2.15
factor, and hence prevent expansion. In order for a spatial i=1

dimension to be able to become large, the winding modes in o ] .
that direction must be able to annihilate. Thus, the loop production is determined by the change in the

number of winding modes, as expected:

B. Annihilation and loop production D

As argued earlier, the fact that strings are likely to anni- 9(t)=-V, 1;1 pN; (et (2.1
hilate in a maximum of three space dimensions leads to three
of the initial nine spatial dimensions growing large. As the|t remains to determine the rate of winding mode annihila-
background continues to expand the three-dimensional spag@n, but before doing so let us consider the specific case of a
will be filled with loops resulting from the annihilation of the 2+ 1 anisotropic Universe.
winding states. The corresponding energy loss in winding

I1l. ANISOTROPIC GENERALIZATION
2Alternatively, we could considep>0 and one might anticipate As three of the nine spatial dimensions grow large there is
that this could lead to inflation. However, this is a false conclusion,N0 & priori reason to expect that this should happen in an

since the presence of winding modes act as a confining potentialsotropic manner. Moreover, since the expanding dimensions
which can be seen from the negative pressure term inE§). correspond to the annihilation of winding modes due to
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string intersections, we might expect this process to occur at . 2

differing rates leading to anisotropic dimensions. However, N(t)=—TyN?(t) m)t_l

we might also expect that as the winding modes annihilate in

one dimension and that dimension begins to expand faster = —cy\tN?(t)e M, 3.9
there are then fewer winding modes left to annihilate. In this

way the remaining dimensions are given an opportunity tovhereTy is a dimensionless constant, aog is this same
isotropize. To explore if this is indeed the case, let us conconstant rescaled by the basic length dimensions relatad to
sider the case of a-21 anisotropic background, whose met- andb. Similarly, for M(t) we have

ric we write in the form

t2
%gt_lz —ENN2(t)

M(t)=—cytM2(t)e 2. (3.10

—At2_ a2\ 2 2\ _ A2v,
ds*=dt*— e (dx* +dy) —e*dZ. @D Using these expressions in Eg.16) gives us the evolu-

. . tion of loop production,
The scale factor corresponding xds denoteda(t); the one

corresponding ta is denotedb(t). g(t)=ute 2o [2cyN2(t)e "+ cyM?(t)e 2 7],
The equations of motiof2.4) then become (3.11)

S For computational simplicity we definE(t)EX, aq(t)=v,
— 2\ v+ @ =e’E, (3.2 andf(t)=¢, which leaves us with the following set of first
order ordinary differential equations:

. 1 _912_ Q2 2_ A0 A v 2N+ v,
2K 124 = = e, (3.3 21°— g+ =e’[2uN(t)e* + uM(t)e"+g(t)e 0" o],
2 (3.12
SR f=212+q%+ 1e<P[2 N(t)e*+ uM(t)e"+g(t)e? ot o]
K= ph=eP,, (3.4 2 - LK " ’
(3.13
i ‘P 3 1 1
V—or= Ee v ( 5) iZI(P+ Ee‘p( _,U/N(t)e)\‘f' gg(t)GZ)‘OJ”’O), (314)

The energy and pressure terms are given by

1 1
S + —eel — vy 2\g+ vg .
E:E_IV\_/+ ElOOpS:ZMN(t)eA+MM(t)ev+g(t)e2ho+yo1 q qQD 2e ( MM(t)e 3g(t)e )1 (3 15)

(3.6)
L N(t)=—cptN2(t)e 7, (3.16
P,=—uN(t)e*+ §g(t)e2“0+”0, (3.7
M(t)=—cytM2(t)e 2, (3.17
1
P,=—uM(t)e"+ Zg(t)e*o" ", B8 g(t)=pte 2o [2cNA(t)e "+cyM2A(t)e 2 ]V, T,
(3.18

whereN(t) andM (t) are the numbers of winding modes in

the N and v directions, respectively. [(t)=X\, (3.19
We now consider the effect of loop production as a result

of winding mode annihilation. To simplify the analysis, we

will assume that winding modes i and v directions form q(t)=7, (3.20
two separate, noninteracting gases. We expect that this ap-
proximation will reducethe isotropization of winding modes, f(t)=¢. (3.21)

and hence that including the interactions we omit will lead to
accelerated isotropization. This issue is being studied cur- The system(3.12—(3.21) is overdeterminedthere are
rently [28]. more equations than unknownsTherefore we take Eg.
Winding mode annihilation results from string intersec-(3.12 as a constraint on the initial conditions. We find from
tion, which depend§26,27 on the square of the number of numerical analysis that the winding modi$t) and M(t)
modes, inversely on the cross-sectional area available for thepproach zero as the system evolves in time, as expected
interaction, and is proportional to the Hubble length of thefrom winding mode annihilatiofsee Fig. 1. As a result loop
string. Since causality plays a role in the interaction, we musproduction continues until all the winding modes are annihi-
scale our dimensions by the Hubble timeHence, lated, at which timeg(t) approaches a constafsee Fig. 2
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FIG. 1. Aplot of the numberbl (upper curve for small values of
t) and M (lOWer CUrVe as a function of time. We see that the FIG. 3. A p|ot of the two expansion ratds(upper curve for
number of winding modes approaches zero as winding annihilatiogmall values of) andq as a function of time. It is seen that, as the
continues. winding modes annihilate, the expansion rates converge to each

] ) other before converging to zero.
Note from Fig. 1 that before converging to zero the two

winding numbers converge to each other. This is a necessary D —

it isotropizati i 1o (NN
condition for isotropization. This result seems reasonable, E_z (3.23
since the rate of annihilation depends on the number of D=1 32 ' ‘

winding states present. Thus, as the number of winding
modes decreases in one direction, the other direction shoul
have a larger rate of annihilation. This suggests a sort o
equilibration process due to the presence of winding modes.
However, the above alone is not enough evidence to prove
that isotropization of the dimensions occurs. To prove that [1(t)—q(t)]?
isotropization occurs we need to study the geometry of the AZZW- (3.29
background. We can see from Fig. 3 that the expansion rates

[(t) andq(t) converge at late times. Note, however, that at We find that, for any amount of initial anisotropy, ap-

the same time the ratio of scale factors continues to increasﬁroaches a maximum value and then goes to zero, as can be

A.more quar;.titgtivehdefinition of ilsotropization can bﬁ ob- seen from Fig. 4. Furthermore, for the case of isotropic initial
tained by defining the averagéubble parameteh and the o, hansion but inequivalent winding mode numbers we find

anisotropy parametes [29], that A reaches a larger maximum but the conclusion of
isotropization at later times is unchanged.

our case we hav® =3 and the anisotropy parameter
ecomes

A=

D
2 )\i , (3_22 0.50 a
=1

|+

0.40 -

/ 0.30 -
3_

/

0.10

/ 0.00

L
1] 0.0 500.0 1000.0 1500.0 2000.0

i FIG. 4. A plot of the anisotropy parametgt as a function of
time t for a range of initial anisotropies. Cuna represents no
FIG. 2. A plot of the comoving energy density in loogsas a  initial anisotropy, but varying winding numbers. Curbehas an
function of timet. As the winding modes annihilate, loop produc- initial anisotropy ofA=0.025 and curve hasA=0.160. We see
tion continues until all the winding modes have vanished and thehat the anisotropy parameter reaches a maximum early on in the
loop energy becomes constant. evolution and in all cases tends to zero at late times.
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IV. CONCLUSION how isotropy arises as a natural consequence of BGC.
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