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Isotropization in brane gas cosmology

Scott Watson* and Robert H. Brandenberger†

Department of Physics, Brown University, Providence, Rhode Island 02912
~Received 9 December 2002; published 26 February 2003!

Brane gas cosmology~BGC! is an approach to unifying string theory and cosmology in which matter is
described by a gas of strings and branes in a dilaton gravity background. The Universe is assumed to start out
with all spatial dimensions compact and small. It has previously been shown that, in this context, in the
approximation of neglecting inhomogeneities and anisotropies, there is a dynamical mechanism which allows
only three spatial dimensions to become large. However, previous studies do not lead to any conclusions
concerning the isotropy or anisotropy of these three large spatial dimensions. Here, we generalize the equations
of BGC to the anisotropic case, and find that isotropization is a natural consequence of the dynamics.
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I. INTRODUCTION

The standard big bang~SBB! cosmology has become a
extremely successful model that has been well tested by
periment. However, the model is incomplete. The underly
theory of classical general relativity and the description
matter as an ideal gas break down at the high temperatur
the early Universe, and the solutions of the theory in f
have an initial singularity. Moreover, SBB cosmology do
not address many important cosmological questions suc
the observed homogeneity and spatial flatness, and the o
of structure in the Universe. Cosmological inflation~see,
e.g.,@1,2# for textbook treatises and@3,4# for shorter reviews!
builds on SBB cosmology, providing a solution to some
these issues, but it~at least in the context of scalar-field
driven inflation! suffers from the same initial singularit
problem@5# and other conceptual problems@4#, which indi-
cate that inflation cannot be the complete story of early U
verse cosmology.

In recent years, many models motivated by string the
and M theory have emerged as possible solutions to the
standing problems of early Universe and inflationary cosm
ogy ~see, e.g.,@6,8# for recent but incomplete reviews!. Be-
ginning with the work on pre-big-bang cosmology@9,10# it
was realized that a dynamical dilation should play an imp
tant role in the very early Universe. More recently, mod
have become prominent in which our Universe consists o
three-brane embedded in a higher dimensional bulk sp
with the standard model constrained to live on the bra
@11–17#. Although these models can resolve a number
issues, such as the hierarchy problem, they introduce se
other difficulties in the process. For example, large extra
mensions should be explained by classical general relati
and it has been shown this results in problems stabilizing
brane@18#. More importantly, in most of these models the s
‘‘extra’’ spatial dimensions are taken to be compactifieda
priori , with no explanation provided for how this could com
about dynamically. Although it appears to be an import
concern for the naturalness of these models, this issu
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rarely discussed in the literature.
An alternative approach to string or M theory cosmolo

is the string gas or Brandenberger-Vafa scenario. This mo
began with@19,20# in which the effects of string gases on th
cosmological evolution of the low energy effective strin
theory background geometry including the dilaton were
plored. The most important result to emerge from the
works is a dynamical mechanism, tied to the existence
string winding modes, which yields a nonsingular cosmolo
and may explain why at most three spatial dimensions
become large if the initial state is chosen to correspond
Universe that is small in all spatial directions.

This work has been generalized to include the cosmolo
cal effects ofp-brane gases and leads to the current mode
brane gas cosmology~BGC! @21#. In BGC, the Universe
starts in a way analogous to the SBB picture, i.e., hot, de
and with all fundamental degrees of freedom in thermal eq
librium. The Universe is assumed to be toroidal in all ni
spatial dimensions and filled with ap-brane gas. The as
sumption of toroidal geometry of the background space le
to the existence of string winding modes, since the ba
ground space admits cycles on which branes of the rele
dimensionalities~in particular one-branes! can wrap. This
wrapping is associated with a winding energy which—in t
context of dilaton gravity—acts as a confining potential f
the scale factor preventing further expansion of the spa
dimensions. Also associated with the brane are oscillat
modes described by scalar fields and momentum mo
which correspond to the center of mass motion of the bra
The momentum modes are related byT duality to the wind-
ing modes and this duality results in the nonsingular beh
ior of the model. In order for dimensions to decompacti
p-brane winding modes must annihilate with antiwindin
modes and it is argued that this only occurs in a maximum
2p11 dimensions@21#. Since strings (p51) are the lowest
dimensional objects that admit winding modes, since th
are the lightest of all winding modes and hence fall out
equilibrium later than other winding modes, it follows th
the number of large space-time dimensions can be at m
(311).

In the context of the background equations of dilat
gravity, the winding modes yield a confining potential for th
scale factor which also gives rise to a period of cosmolog
©2003 The American Physical Society10-1
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loitering ~expansion rate near zero! for the three large spatia
dimensions. This is due to the time needed for wind
modes to annihilate and produce closed strings or loops@22#.
This is of great interest since loitering can explain the ho
zon and relic problems of standard cosmology without
sorting to inflation.1 It was also shown in@22# that by con-
sidering loop production at late times BGC naturally evolv
into the SBB scenario, with a (311)-dimensional, radiation
dominated Universe.

There are important issues that remain to be addre
within BGC. The fact that toroidal geometry was assum
for the background space was used for the existence
topological stability of winding modes. However, Calabi-Ya
manifolds are more realistic choices for backgrounds wit
string theory and they do not admit one-cycles~necessary to
have topologically stable winding modes!. Promising results
have recently appeared which indicate that the conclus
of BGC extend to a much wider class of spatial backgroun
including backgrounds that are K3 or Calabi-Yau manifo
@7,23,24#.

Perhaps the main issue to be addressed in BGC is th
spatial inhomogeneities. That is, we would naturally exp
fluxes andp-brane sources to lead to the possibility of ca
strophic instabilities of spatial fluctuation modes. Althou
we do not address this issue here, we plan to study the ro
inhomogeneities in follow-up work.

Other important issues for BGC are the questions of
bilization of the six small extra dimensions and isotropiz
tion of the three dimensions that grow large. Although the
topics may seem to be unrelated, they can both be addre
by generalizing the BGC scenario to the anisotropic ca
This paper will concentrate on the isotropization of the th
large dimensions, but the generalization of BGC to the
isotropic case achieved in this paper will be valuable to
dress the issue of stabilization in later work.

II. BRANE GAS COSMOLOGY

We begin with a brief review of BGC; for more details th
reader is referred to@21#. Consider compactification of 11
dimensional M theory onS1, which yields type IIA string
theory in ten dimensions. The fundamental degrees of f
dom in the theory are zero-branes, strings, two-branes, fi
branes, six-branes, and eight-branes. The low energy e
tive action of the theory is that of supersymmetrized dilat
gravity,

Sbulk5
1

2k2 E d10xA2Ge22f

3FR14Gmn¹mf¹nf2
1

12
HmnaHmnaG , ~2.1!

whereG is the determinant of the background metricGmn , f
is the dilaton given by the radius of theS1 compactification,

1However, to obtain a solution of the flatness and entropy pr
lems, a phase of inflation following the decoupling of the thr
large spatial dimensions may be required.
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H denotes the field strength corresponding to the bulk a
symmetric tensor fieldBmn , andk is determined by the ten
dimensional Newton constant.

Fluctuations of each of thep-branes are described by th
Dirac-Born-Infeld~DBI! action @25# and are coupled to the
ten-dimensional action via delta function sources. The D
action is

Sp5TpE dp11ze2fA2det~gmn1bmn12pa8Fmn!,

~2.2!

where Tp is the tension of the brane,gmn is the induced
metric on the brane,bmn is the induced antisymmetric tenso
field, andFmn is the field strength tensor of gauge fieldsAm

living on the brane. The constanta8; l st
2 is given by the

string length scalel st.
In this paper we will concentrate on the role of fundame

tal strings (p51), since strings play the critical role in th
dynamics@21#. We will also ignore the effects of fluxes an
string oscillatory modes since we are working in the lo
energy regime. Our basic approach is to consider the st
gas as a matter source for the dilaton-gravity backgrou
The string winding modes play a key role. The main point
that we want to find the first departures from the stand
Friedmann-Robertson-Walker~FRW! picture resulting from
consideringstringyeffects. This should result from the wind
ing modes of the strings and the presence of the dilaton
the equations of motion.

In this paper, we generalize the equations of BGC to
anisotropic case. Thus, we take the metric to be of the fo

ds25dt22(
i 51

D

e2l i~dxi !
2, ~2.3!

where the labeli runs over theD spatial indices,xi are the
comoving spatial coordinates,t is physical time, and the
scale factor in thei th direction is log(li). We again stress tha
inhomogeneities are of vital importance; however, we w
leave their investigation to future work and take the stri
gas to be homogeneous.

By varying the total action we obtain the following equ
tions:

2(
i 51

D

l̇ i1ẇ25ewE, ~2.4!

2(
i 51

D

l̇ i1ẅ5
1

2
ewE, ~2.5!

l̈ i2ẇl̇ i5
1

2
ewPi , ~2.6!

whereE is the total energy of the strings andPi is the pres-
sure in thei th direction, and we have introduced a ‘‘shifted
dilation field

-

0-2
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w52f2(
i 51

D

l i . ~2.7!

We can see immediately from the first equation thatw
cannot change sign. To ensure that the low energy appr
mation remains valid we choosew,0 andẇ.0. This causes
the dilaton to have a damping effect in the equations
motion.2 Another important observation is that these eq
tions reduce to the standard FRW equations for a fixed d
ton as was discussed in@20#. This is comforting because a
late times it is expected that the dilaton will gain a ma
perhaps associated with supersymmetry breaking, and
result we naturally regain the usual SBB cosmology. T
string winding states will appear at late times as solito
@21#.

A. Winding modes

The energy and pressure terms follow from varying
brane action~2.2!. The energy associated with the windin
modes in thei th direction is given by~taking the winding
strings to be straight for simplicity!

Ei
w5mNi~ t !ai~ t !5mNi~ t !el i, ~2.8!

whereNi is the number of winding modes in thei th direction
andm is the mass per unit length of the string multiplied
the initial spatial dimension. It follows that the total energy
given by

ET
w5(

i 51

D

mNi~ t !el i. ~2.9!

In the same approximation that the winding strings
straight, the corresponding pressure terms are given by@21#

Pi
w52mNi~ t !el i, ~2.10!

Pj
w50 ~ j Þ i !. ~2.11!

It follows then by inserting Eq.~2.10! into Eq. ~2.6! that
winding strings give rise to a confining potential for the sc
factor, and hence prevent expansion. In order for a spa
dimension to be able to become large, the winding mode
that direction must be able to annihilate.

B. Annihilation and loop production

As argued earlier, the fact that strings are likely to an
hilate in a maximum of three space dimensions leads to th
of the initial nine spatial dimensions growing large. As t
background continues to expand the three-dimensional s
will be filled with loops resulting from the annihilation of th
winding states. The corresponding energy loss in wind

2Alternatively, we could considerw.0 and one might anticipate
that this could lead to inflation. However, this is a false conclusi
since the presence of winding modes act as a confining poten
which can be seen from the negative pressure term in Eq.~2.6!.
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states and the energy and pressure of the creation of lo
must be taken into account when considering the dynam
The strings in the expanding space will become of mac
scopic size and the required pressure and energy terms
be analogous to that of a cosmic string network@26,27#.

We know that the energy in winding modes is given
Eq. ~2.9!. Considering the time rate of change of this ener
we find

ĖT
w5(

i 51

D

mṄi~ t !el i1(
i 51

D

mNi~ t !el il̇ i . ~2.12!

The first term on the right hand side of this equation cor
sponds to energy loss into string loops or radiation, and
second term corresponds to the gain in total energy of
strings due to the stretching by the expansion of space.

The energy in loops can be written as@22#

Eloops5g~ t !V0 , ~2.13!

whereg(t) is the energy density in string loops~plus radia-
tion! per initial comoving volume~and is a constant if no
loop production or energy loss from winding strings in
radiation occurs!, and V05exp((l0i) is the initial volume,
l0i being the initial values of the logarithms of the sca
factors. Since string loops are likely to be produced rela
istically, we will use the equation of state of radiation
describe them. This approximation also allows us to treat
string loops and other radiation together. This approximat
could easily be relaxed without changing our basic conc
sions. Thus, we use the equation of state of relativistic ra
tion p5(1/3)r ~r and p denoting energy density and pre
sure, respectively!, which implies

Ploops5
1

3
g~ t !V0 . ~2.14!

To find how g(t) evolves we equate the loss in windin
energy due to energy transfer@the first term on the right hand
side of Eq.~2.12!# with the change in loop energy,

2(
i 51

D

mṄi~ t !el i5ġ~ t !V0 . ~2.15!

Thus, the loop production is determined by the change in
number of winding modes, as expected:

ġ~ t !52V0
21(

i 51

D

mṄi~ t !el i. ~2.16!

It remains to determine the rate of winding mode annihi
tion, but before doing so let us consider the specific case
211 anisotropic Universe.

III. ANISOTROPIC GENERALIZATION

As three of the nine spatial dimensions grow large ther
no a priori reason to expect that this should happen in
isotropic manner. Moreover, since the expanding dimensi
correspond to the annihilation of winding modes due

,
al,
0-3
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string intersections, we might expect this process to occu
differing rates leading to anisotropic dimensions. Howev
we might also expect that as the winding modes annihilat
one dimension and that dimension begins to expand fa
there are then fewer winding modes left to annihilate. In t
way the remaining dimensions are given an opportunity
isotropize. To explore if this is indeed the case, let us c
sider the case of a 211 anisotropic background, whose me
ric we write in the form

ds25dt22e2l~dx21dy2!2e2ndz2. ~3.1!

The scale factor corresponding tol is denoteda(t); the one
corresponding ton is denotedb(t).

The equations of motion~2.4! then become

22l̇22 ṅ21ẇ25ewE, ~3.2!

22l̇22 ṅ21ẅ5
1

2
ewE, ~3.3!

l̈2ẇl̇5
1

2
ewPl , ~3.4!

n̈2ẇṅ5
1

2
ewPn . ~3.5!

The energy and pressure terms are given by

E5ET
w1Eloops52mN~ t !el1mM ~ t !en1g~ t !e2l01n0,

~3.6!

Pl52mN~ t !el1
1

3
g~ t !e2l01n0, ~3.7!

Pn52mM ~ t !en1
1

3
g~ t !e2l01n0, ~3.8!

whereN(t) andM (t) are the numbers of winding modes
the l andn directions, respectively.

We now consider the effect of loop production as a res
of winding mode annihilation. To simplify the analysis, w
will assume that winding modes inl andn directions form
two separate, noninteracting gases. We expect that this
proximation will reducethe isotropization of winding modes
and hence that including the interactions we omit will lead
accelerated isotropization. This issue is being studied
rently @28#.

Winding mode annihilation results from string interse
tion, which depends@26,27# on the square of the number o
modes, inversely on the cross-sectional area available fo
interaction, and is proportional to the Hubble length of t
string. Since causality plays a role in the interaction, we m
scale our dimensions by the Hubble timet. Hence,
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Ṅ~ t !52 c̃NN2~ t !S t2

areaD t2152 c̃NN2~ t !S t2

a~ t !b~ t ! D t21

52cNtN2~ t !e2l2n, ~3.9!

where c̃N is a dimensionless constant, andcN is this same
constant rescaled by the basic length dimensions relateda
andb. Similarly, for M (t) we have

Ṁ ~ t !52cMtM2~ t !e22l. ~3.10!

Using these expressions in Eq.~2.16! gives us the evolu-
tion of loop production,

ġ~ t !5mte22l02n@2cNN2~ t !e2n1cMM2~ t !e22l1n#.
~3.11!

For computational simplicity we definel (t)[l̇, q(t)[ṅ,
and f (t)[ẇ, which leaves us with the following set of firs
order ordinary differential equations:

22l 22q21 f 25ew@2mN~ t !el1mM ~ t !en1g~ t !e2l01n0#,
~3.12!

ḟ 52l 21q21
1

2
ew@2mN~ t !el1mM ~ t !en1g~ t !e2l01n0#,

~3.13!

l̇ 5 lw1
1

2
ewS 2mN~ t !el1

1

3
g~ t !e2l01n0D , ~3.14!

q̇5qw1
1

2
ewS 2mM ~ t !en1

1

3
g~ t !e2l01n0D , ~3.15!

Ṅ~ t !52cNtN2~ t !e2l2n, ~3.16!

Ṁ ~ t !52cMtM2~ t !e22l, ~3.17!

ġ~ t !5mte22l02n@2cNN2~ t !e2n1cMM2~ t !e22l1n#V0
21,
~3.18!

l ~ t !5l̇, ~3.19!

q~ t !5 ṅ, ~3.20!

f ~ t !5ẇ. ~3.21!

The system~3.12!–~3.21! is overdetermined~there are
more equations than unknowns!. Therefore we take Eq
~3.12! as a constraint on the initial conditions. We find fro
numerical analysis that the winding modesN(t) and M (t)
approach zero as the system evolves in time, as expe
from winding mode annihilation~see Fig. 1!. As a result loop
production continues until all the winding modes are anni
lated, at which timeg(t) approaches a constant~see Fig. 2!.
0-4
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Note from Fig. 1 that before converging to zero the tw
winding numbers converge to each other. This is a neces
condition for isotropization. This result seems reasona
since the rate of annihilation depends on the number
winding states present. Thus, as the number of wind
modes decreases in one direction, the other direction sh
have a larger rate of annihilation. This suggests a sor
equilibration process due to the presence of winding mod

However, the above alone is not enough evidence to pr
that isotropization of the dimensions occurs. To prove t
isotropization occurs we need to study the geometry of
background. We can see from Fig. 3 that the expansion r
l (t) andq(t) converge at late times. Note, however, that
the same time the ratio of scale factors continues to incre
A more quantitative definition of isotropization can be o
tained by defining the averageHubble parameterl and the
anisotropy parameterA @29#,

l̄[
1

D (
i 51

D

l i , ~3.22!

FIG. 1. A plot of the numbersN ~upper curve for small values o
t! and M ~lower curve! as a function of timet. We see that the
number of winding modes approaches zero as winding annihila
continues.

FIG. 2. A plot of the comoving energy density in loopsg as a
function of timet. As the winding modes annihilate, loop produ
tion continues until all the winding modes have vanished and
loop energy becomes constant.
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D
~l i2l̄ !2

l̄2
. ~3.23!

In our case we haveD53 and the anisotropy paramete
becomes

A52
@ l ~ t !2q~ t !#2

@2l ~ t !1q~ t !#2 . ~3.24!

We find that, for any amount of initial anisotropy,A ap-
proaches a maximum value and then goes to zero, as ca
seen from Fig. 4. Furthermore, for the case of isotropic ini
expansion but inequivalent winding mode numbers we fi
that A reaches a larger maximum but the conclusion
isotropization at later times is unchanged.

FIG. 4. A plot of the anisotropy parameterA as a function of
time t for a range of initial anisotropies. Curvea represents no
initial anisotropy, but varying winding numbers. Curveb has an
initial anisotropy ofA50.025 and curvec hasA50.160. We see
that the anisotropy parameter reaches a maximum early on in
evolution and in all cases tends to zero at late times.

n

e

FIG. 3. A plot of the two expansion ratesl ~upper curve for
small values oft! andq as a function of timet. It is seen that, as the
winding modes annihilate, the expansion rates converge to e
other before converging to zero.
0-5
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IV. CONCLUSION

We have generalized the equations of BGC to the an
tropic case, including the effects of winding state annihi
tion and loop production. We address the issue of isotrop
tion of the three large dimensions quantitatively
introducing the anisotropy parameterA. Our analysis indi-
cates that, for an arbitrary amount of initial anisotropy, t
anisotropy will reach a maximum early in the evolution a
then approach zero at later times. Thus, we have expla
y

n-

tt
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ys
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how isotropy arises as a natural consequence of BGC.
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