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Chaos and preheating
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We study the semiclassical particle creation in the preheating phase after inflation. We work in the long-
wavelength limit, in which all fields are considered homogeneous. The particle creation is shown to be
intrinsically connected to the existence of chaos in the system.
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I. INTRODUCTION

One of the most successful ideas to describe the e
universe is inflation@1#. Its main problem may be how to
leave behind an exponential scale factor and reac
radiation-dominated universe in thermal equilibrium. A po
sible way to solve this question is to turn on the interact
of the inflaton with another scalar field, typically radiatio
when the former reaches the bottom of its potential. Initia
this interaction was introduced via a somewhatad hocdissi-
pation term characterizing the so-calledreheating process
@2#. Later on, it was assumed a quadratic coupling betw
two scalar fields, which allowed for the transfer of ener
from the inflaton to the radiation by parametric resonan
this is thepreheatingphase@3–6#. This model yields a much
more effective amplification of particular modes of the rad
tion, at the same time raising some questions about the
mal state of the universe after the process is over@10,11#.

In the usual approach to preheating models, one assu
a fixed evolution for the inflaton, and calculates the equat
for a given mode of the coupled fieldx, which depends on
the particular inflaton potential chosen. In any case, the
flaton behaves as an infinite reservoir of energy, driving
exponential amplification

xk}exp~mkt ! ~1!

characterized by the Floquet exponentmk , of particular
modesk of the radiation fieldx indefinitely.

In this paper we consider both fields as a coupled sys
in a given background and investigate their properties;
particular interest are the issues of how chaotic the dynam
is and what is the relation between the resonance effects
its chaotic character.

Indeed, as we will shortly show, chaos arises precisel
the time when exponential amplification occurs. We furth
propose a relationship between the metric entropy, usu
defined for chaotic systems, and the entropy correspon
to the particles produced after inflation by parametric re
nance.
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As will be seen below, in our simple model there is n
interaction among different modes; thus, as in any sys
with a finite number of degrees of freedom, the energy w
keep oscillating from one field to the other indefinitely.
practice, we expect that it will eventually be transferred in
other fields. We conjecture this can be taken into acco
introducing by hand a viscosity term in the equation of m
tion for the radiation—this analysis will be accomplishe
elsewhere@7#.

Note that there are fundamental differences between
work and previous papers in similar subjects. In Ref.@8#, the
existence of chaos on the evolution of thescale factorwas
investigated; here, the background evolution is givena pri-
ori. We stress that we are interested in the beginning of
preheating phase, when back reaction—the effect of the
plified field on the evolution of the scale factor—is n
strong enough yet. Actually, we will consider astatic uni-
verse, since the parametric resonance happens in a m
shorter time scale than the expansion of a radiati
dominated universe@3#. The authors of Ref.@9# also dis-
cussed the chaotic behavior in the case of two-field inflati
but they used a symmetry breaking potential and investiga
the enhancement on the production of topological defe
We have chosen a single-well potential for the sake of s
plicity; a double-well potential would eclipse our poin
somehow. Reference@10# studies the approach to equilibrium
for a couple of different potentials, but being interested in
turbulent phase rightafter preheating, the authors introduce
‘‘normalized distance’’ in the phase space, according
which chaos sets inafter the preheating is over. Here w
apply the usual recipe@12,13# for computing the larges
Lyapunov exponent, as explained below. As we mention
above, we will show that parametric resonance and ch
seem to be fundamentally related.

In spite of the aforementioned assumptions, our mode
able to grasp important qualitative features such as the
ergy threshold above which the dynamics becomes cha
The next section illustrates the relation between
Lyapunov~LE! and the Floquet~FE! exponents for two well
known problems: the parametrically excited pendulum a
the Mathieu equation. In Sec. III we introduce the analogo
question for the coupled scalar fields in cosmology, follow
by a brief description of the classical chaotic properties
the system. In Sec. IV, we follow a simple and transpar
©2003 The American Physical Society01-1
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method@14#, consistent with Heisenberg’s principle, to o
tain a semiclassical approximation for our model. We th
study the onset of chaos on the effective equations of mo
which describe the particle production process. Then we
cuss the relationship between~a priori! different entropy
definitions in Sec. V.

II. PARAMETRIC RESONANCE

A positive Lyapunov Exponent~LE! is the main charac-
teristic of chaotic motion, as it indicates a strong sensitiv
to small changes in the initial conditions. The LE measu
the mean separation of two initially neighboring trajector
in the phase space, in logarithmic scale:

l i5 lim
t→`

H 1

t
lnF Li~ t !

Li~0!G J . ~2!

Because such separation soon approaches the size of th
tractor, a naive computation using the expression ab
would fail to detect the local rates of expansion. Thus
distance between the trajectories must be periodically n
malized; the LE will then be the average of the exponen
rates obtained this way.

The parametrically excited pendulum

ü12hu̇1@11p cos~vt !#sin~u!50 ~3!

is known to be chaotic@15#. Indeed, one can calculate i
largest Lyapunov exponent and find a positive quantity.
the other hand, the Floquet theorem assures that the sol
of Eq. ~3! is given by

u~ t !5 f P~ t !exp~6mt ! ~4!

wherem is the Floquet exponent. It is easy to see that b
exponents must actually be the same, since the only di
ence between them is the normalization procedure in the
culation of the LE. In the parametrically excited pendulu
such procedure is not needed, since the independent var
u is cyclic: it is never too large. The same reasoning app
to the study of metric perturbations in a chaotic backgrou
the rate of growth of perturbations—valid only in thelinear
regime—is given by the LE, as shown in Ref.@16#.

The relation between both exponents is also clearly s
in the typical parametric resonance phenomenon, descr
by the Mathieu equation

R̈~ t !52@V21g2x2~ t !#R~ t ! ~5!

where x(t)5sin(vt). We usedv510, V5A4/5v, and g
52v/A10. The FE for the above equation can be exac
calculated @17#, and for the used values one obtainsm
50.5. For the sake of completeness and as a test of
numerical code, we calculated it by plotting (1/2t)ln(nR) ver-

sus t, where nR5V/2„uR(t)u21uṘ(t)u2/V2
… can be inter-

preted as the energy. Figure 1 shows that the LE and both
calculated and theoretical values for the FE converge to
same value.
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If the phase space is not limited—as in the case of ex
parametric resonance described by the Mathieu equation~5!
—one cannot rely on the LE to tell if the system is chaotic
not @23#. Nevertheless, actual physical systems will ha
only a finite amount of energy available. Then, the availa
phase space will be finite and the LE criterium for the ex
tence of chaos will hold.

III. COUPLED FIELDS

Most of the work in preheating has been made asumin
biquadratic coupling between the inflatonf and the second-
ary field x:

Vint5g2f2x2. ~6!

We assume a flat Friedmann-Robertson-Walker~FRW!
universe background whose line element is written as

ds25dt22a2~ t !dx2

5a~h!~dh22dx2! ~7!

where a(h) is the scale factor in conformal time. In thi
metric the equations of motions are

FIG. 1. Plot of the LE for the exact parametric resonance~upper
curve!. The straight line is the theoretical value for the FE~for the
parameters indicated in the text!; the lower curve is the FE as ca
culated by us.
1-2
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Y9~h!1V2~h!Y~h!50, ~8!

X9~h!1v2~h!X~h!50, ~9!

where V25a2M21g2X22a9/a and v25a2m21g2Y2

2a9/a, X[ax and Y[af. If we restrict ourselves to the
beginning of the preheating phase, the back reaction ca
safely neglected. In this case, the evolution of the univers
nearly a radiation dominated phase, witha(h)5h/2 and
thusa9/a50. Actually, for the sake of simplicity, we rely on
the much faster dynamics of preheating to assume a s
universe, and, for convenience we adopta(h)51 ~and thus
t[h). By doing so we are neglecting the time depende
of the instability bands; we expect the qualitative aspects
the results presented here to remain unaltered in a more
fined analysis@7#. We work in the long-wavelength limit and
assume all fields as homogeneous. Indeed, the main co
bution to the parametric resonance is due to the zero m
@18#.

At the classical level, the system of Eqs.~8!, ~9! describes
a well know chaotic system@19#. Indeed, if we use the stan
dard technique@12,13# we can calculate the largest LE fo
two different trajectories. Figure 2 shows two such plots, o
of which is nonchaotic. Since this system presents a fi
number of degrees of freedom, the energy will oscillate b
and forth between them. Thus a given variable will increa
exponentially only during the energy transfer. The naive w
to determine the FE is to look at the plot o
1/2h ln@Y2(h)/Y2(0)# but, because of the oscillation just me
tioned, we would have to reset the time variable at the
ginning of each phase, just as for the chaotic pendulum.
stead, we decided to plot1

2 ln@Y2(h)/Y2(0)# vs h and looked at
the angular coefficients of the straight lines. Figure 3 sho
such a plot for the same two initial conditions used in t
previous figure.

The last two figures seem to show that the LE and the
are numerically equal. For the parameters chosen the r
nance period, although clearly noticeable, is too short fo
statistical analysis that would allow for a measure of
small discrepancy between the obtained values for the
and LE.

FIG. 2. Plot of the Lyapunov exponent for two different initi
conditions. For both trajectories,M510, m51 and g51. The
dashed line indicates the limiting value for the nonvanishing LE
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Energy threshold

We were able to numerically determine the existence
an energy threshold below which there is no amplification
the secondary field. Figures 4 and 5 show a plot of the
and FE, respectively, for ten randomly chosen initial con
tions. One can see that the trajectories with energies belo
critical value are restricted to a certain region, mainly bel
the horizontal axis of the latter graph, while the ones abo
that limit oscillate with a much larger amplitude. Note th

FIG. 3. Plot of ln(mt) vs t for the same initial conditions used fo
the previous graph. The angular coefficient of the straight das
lines are given by the nonvanishing LE from the previous gra
their horizontal positions are arbitrary.

FIG. 4. Plot of the LE for ten different initial conditions. Th
upper line corresponds to a trajectory above a critical value for
energy.
1-3



s
s
ac
in
to

ta

g

nt
n
th

ld-
do
r-
an-
od
-
st
. We
ming

e is

-

is-

i-

ro,
nd

o-

he
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the trajectory presenting a nonvanishing LE correspond
the upper curve in Fig. 5, precisely because it indicate
nonvanishing net value for its angular coefficient. An ex
calculation of the energy threshold can be done by plott
the fraction of the phase space covered with invariant
@20#; this analysis will be presented elsewhere@7#.

In order to explore this statement, we shall study the s
bility properties of the potentialV(X,Y). From Eq.~6! we
know the potential~both mass and interaction terms! is

V~X,Y!5
1

2
~M2Y21m2X21g2Y2X2!. ~10!

Using the Toda-Brumer-Duff test for instabilities@21#, we
find that the system develops instabilities for energies lar
than

E* .
m2M2

g2
, ~11!

which indeed lies between the two energy ranges prese
in the two previous plots. We stress that this result does
mean that chaos must not happen for energies below
critical value.

FIG. 5. Plot of the FE for the same initial conditions used in t
previous graph.
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IV. PARTICLE PRODUCTION

As we saw in the last section, even the classical-fie
theory version of our model exhibits chaos. Note that we
not have the right to use words like ‘‘preheating’’ and ‘‘pa
ticle creation’’ because they only have meaning in the qu
tum version of the model. In this section, we use the meth
presented in Ref.@14# in order to take into account the quan
tum effects. We will show that most of the results of the la
section can be used to describe the semiclassical system
called this system semiclassical because we are assu
that Y(h) is a classicalfield andX(h) is treated as aquan-
tum operator. We have to stress here that this procedur
equivalent to taking the largeN approximation~see Ref.
@22#!.

Let us expand the quantum fieldX in the Heisenberg rep
resentation

X~h!5 f ~h!a1 f * ~h!a†, ~12!

wherea anda† are annihilation and creation operators sat
fying the standard commutator@a,a†#51. From this result,
the mode functionf (h) has to satisfy the Wronskian cond
tion

f 8*f 2 f * f 852 i , ~13!

and from Eq.~9!

f 9~h!1v2~h! f ~h!50. ~14!

In order to satisfy Eqs.~13! and ~14! we use the ansatz

f ~h!5
1

A2W~h!
expS 2 i Eh

dh8W~h8! D . ~15!

Choosing the vacuumu0& of the number operatorn5aa†,
defined byau0&50, to compute averages^•••&, we obtain
an effective LagrangianLe f f5^L&

Le f f5
a2

2 FY821R822
1

2R2
2a2m2Y22v2R2G , ~16!

where we have defined a new fieldR2(h)51/2W(h). In this
case, the equations of motion are

Y9~h!1V2~h!Y~h!50, ~17!

R9~h!1v2~h!R~h!2
1

4R3~h!
50, ~18!

where the averaging process redefinedV2(h)5a2M2

1g2R22a9/a. BecauseR25^X2& the centrifugal term,
1/4R3, keeps the quantum expectation value away from ze
consistently with the Heisenberg’s uncertainty principle a
splits in two the phase space ofR(h). Note that now the
amplification ofR can actually be interpreted as particle pr
duction if also the number
1-4
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nR5
v

2
F Ṙ2

2v
1R2G2

1

2
, ~19!

grows.
The question is: Is the system described by Eqs.~17!, ~18!

chaotic? As we have described in Sec. II, the main featur
chaotic motion is a positive Lyapunov exponent, whi
shows a sensitivity to small changes in the initial conditio
Another way to reveal chaotic behavior is the study of Po
carésections. A Poincare´ section or a surface of section is
two-dimensional map of the phase space obtained by in
cepting the Hamiltonian flow at a fixed position during t
motion. For integrable systems, the map is a collection
lines and regions of stability. As soon as the system beco
chaotic, the lines become distorted and the stability regi
disappeared. Our investigation of this issue for the system
Eqs.~17!, ~18! shows that it is indeed chaotic.

Our task is made somewhat easier if we separate
analysis between theR@1 andR;1 regions. WhenR@1,
the system~17!, ~18! behaves similarly as described in th
last section, i.e. Eqs.~8!, ~9!, but constrained to one of th
two halves of the phase space. This last statement is
rigorously required, because we can leave the system ev
ing through the barrier atR50 without affecting the genera
properties of the chaotic system, e.g. both have the same

In the smallR region, where the centrifugal term is im
portant, we find an interesting saturation effect. Because
assume that initially the fluctuationR is not big~its minimum
is around 1/A2v), there is a transient period, where althou
a resonance condition is fulfilled, theR field grows until the
nonlinear term breaks the resonant tuning. This fact is ind
connected with the existence of a critical energy under wh
the system does not amplify the field, as we see later. Un
tunately, we were not able to calculate the LE here beca
of the very phenomenon we are studying, the parame
resonance itself. As theR oscillation amplitude is increased
R gets closer and closer to the origin, and then the centrifu
barrier just explodes. Therefore, one cannot follow the e
lution of the system for a time long enough to allow t
graph to reach the constant value which would correspon
the largest LE.

Nevertheless, we can show the existence of chaos,
even conjecture about a threshold, by plotting Poincare´ sec-
tions valid for both regions (R@1 andR;1) for different
values of energy, as shown in Fig. 6.

By using the Toda-Brumer-Duff instability condition w
can estimate a critical energy under which the system d
not amplify efficiently the fieldR. For the caseR@1 the
result is Eq.~11!. In Fig. 6 we can see the gradual destructi
of the tori as the energy increases. For the values in
numerical example,M510, m51, g51 we obtain E!

;100. The upper panel shows theE550 case well inside the
integrable region, shows clearly continuous lines with
single stability region, the central one. The central pa
shows theE5150 case, beyond our estimation for stabili
where is possible to see that the original continuous exte
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lines have disappeared, and in their place there is a ban
scattered points. The caseE5200 shows the same effec
even more dramatically.

V. ENTROPY PRODUCTION

In the previous sections we have shown evidence fo
relation between classical chaos and particle production v
correspondence between the FE, which characterizes e
nential growth during preheating, and the maximal posit
LE for the associated chaotic system. In this section we
cuss further consequences of this relation.

On one hand, we know that for a chaotic dynamical s
tem we can define ametricor Kolmogorov entropyK @13# in
terms of the LEsl i as

K< (
$l i %.0

l i , ~20!

—where the equality holds fortypical Hamiltonian systems
@23#—which gives the rate of change of the available info
mation. Local trajectories get stretched in the direction
which the eigenvaluesl i are positive, and get compressed
the directions in which they are negative. If there are
positive LEs then there is no change in the amount of inf
mation available, and the Kolmogorov entropy vanishes.
our problem, there are at least two directions in phase sp
with comparable, actually equal, LE:R and Ṙ. Thus

K<2l. ~21!

On the other hand, the process of particle creation can
be described as a period of entropy production. The prob
is then to try to find a formula for entropy valid during th
transfer of energy between the oscillators, i.e., in a none
librium system. A lot of work has been done in this conte
~see Ref.@24# for a review!, each one arguing in favor of a
different definition for the entropy and its physical reasoni
as such. In spite of their different conceptual foundations,
of them agree that, in the high squeezing limit,

S' ln~nk!, ~22!

wherenk is the number of particles in the modek. In our
case, it is given bynk}exp(2mt), and then

S'2mt, ~23!

showing the equivalence between the Lyapunov and the
quet exponents once more.

VI. DISCUSSION

We notice that the reheating process after inflation, in p
ticular the initial stage called preheating, could be driven
a different dynamical behavior, more complicated than
currently believed parametric resonant picture. We inve
gated the preheating phase by using a system comprise
two interacting background fields. We showed that the stu
of this model simplifies to that of two coupled harmon
oscillators. Our main results suggest a strong correspond
1-5
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FIG. 6. Poincare´ sections (Ṙ vs R) for E550, 150 and 200. One can clearly see the gradual destruction of the tori as the e
increases.
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between the parametric resonance phenomenon and the
otic properties of the system, namely the numerical equ
lence of its Floquet and Lyapunov exponents.

We study the onset of chaos on the effective equation
motion which describes the particle production process. N
ertheless, we can only say the system isstrongly dependen
04350
ha-
-
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v-

on the initial conditions, since the LE are not unambiguous
characterizing chaos in General Relativity. We can talk ab
chaos with additional information, for example in our ca
by computing Poincare´ sections.

In fact, we showed that chaos arises precisely when
ponential amplification occurs, showing that the real sou
1-6
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for these amplifications is not a particular resonance co
tion, but it is a consequence of the dynamical chaos of
background fields.

The evidence for an increasing destruction of the invari
tori shows, together with instability analysis, the existence
an energy threshold above which the dynamics becomes
otic, and the amplifications become important.

We also address the subtle issue concerning the pre
relationship between chaos and parametric resonance. In
context we showed a relationship between the metric
tropy, which is a measure of chaos, and the thermodyna
entropy, computed in the high squeezing limit, which is a
another way to see the equivalence between the exponen
may seem natural that both FE and LE are equal, since
show exponential behavior of the system. Nevertheless,
authors of Ref.@10# take the exponential behavior as ‘‘rath
formal,’’ and, being interested only in the turbulent pha
after preheating, define a normalized distance in the ph
space

D~ t !5(
a

S f a82 f a

f a81 f a
D 2

1S ḟ a82 ḟ a

ḟ a81 ḟ a
D 2

, ~24!
tt.

d
ng

,
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according to which chaos sets in only when the prehea
period is over. The fundamental difference between this
mula and the one we used@12,13# is the normalization fac-
tors in the denominators. However, as we showed in Sec.
the parametric resonance makes it chaotic from the very
ginning, by construction. Of course, we restrict ourselves
the preheating period. Therefore, our results do not conc
the turbulent phase, i.e. interaction with other modes, wh
would account for the thermalization process.
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