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Chaos and preheating
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We study the semiclassical particle creation in the preheating phase after inflation. We work in the long-
wavelength limit, in which all fields are considered homogeneous. The particle creation is shown to be
intrinsically connected to the existence of chaos in the system.
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I. INTRODUCTION As will be seen below, in our simple model there is no
interaction among different modes; thus, as in any system
One of the most successful ideas to describe the earlwith a finite number of degrees of freedom, the energy will
universe is inflation1]. Its main problem may be how to keep oscillating from one field to the other indefinitely. In
leave behind an exponential scale factor and reach practice, we expect that it will eventually be transferred into
radiation-dominated universe in thermal equilibrium. A pos-other fields. We conjecture this can be taken into account
sible way to solve this question is to turn on the interactionimroducing by hand a viscosity term in the equation of mo-
of the inflaton with another scalar field, typically radiation, tion for the radiation—this analysis will be accomplished
when the former reaches the bottom of its potential. Initially,e|sewhere{7]_
this interaction was introduced via a somewadthocdissi- Note that there are fundamental differences between this
pation term characterizing the so-calleeheating process \ork and previous papers in similar subjects. In R&f, the
[2]. Later on, it was assumed a quadratic coupling betweegxistence of chaos on the evolution of theale factorwas
two scalar ﬁelds, which allowed for the transfer of energyinvestigated; here, the background evolution is g“aepn_
from the inflaton to the radiation by parametric resonancepyri. \We stress that we are interested in the beginning of the
this is thepreheatingphasg 3—6]. This model yields a much preheating phase, when back reaction—the effect of the am-
more effective amplification of particular modes of the radia-pjified field on the evolution of the scale factor—is not
tion, at the same time raising some questions about the thegtrong enough yet. Actually, we will considersgatic uni-
mal state of the universe after the process is ¢¢6r11]. verse, since the parametric resonance happens in a much
In the usual approach to preheating models, one assumggorter time scale than the expansion of a radiation-
a fixed evolution for the inflaton, and calculates the equatiorjominated univers¢3]. The authors of Ref[9] also dis-
for a given mode of the coupled fiefgl, which depends on  cussed the chaotic behavior in the case of two-field inflation,
the particular inflaton potential chosen. In any case, the inpyt they used a symmetry breaking potential and investigated
flaton behaves as an infinite reservoir of energy, driving thghe enhancement on the production of topological defects.

exponential amplification We have chosen a single-well potential for the sake of sim-
plicity; a double-well potential would eclipse our point
Xk expl pit) (1 somehow. Referendé0] studies the approach to equilibrium

for a couple of different potentials, but being interested in the
characterized by the Floquet exponemf, of particular  turbulent phase righifter preheating, the authors introduce a
modesk of the radiation fieldy indefinitely. “normalized distance” in the phase space, according to

In this paper we consider both fields as a coupled systerwhich chaos sets imfter the preheating is over. Here we
in a given background and investigate their properties; obpply the usual recip§12,13 for computing the largest
particular interest are the issues of how chaotic the dynamicsyapunov exponent, as explained below. As we mentioned
is and what is the relation between the resonance effects arthove, we will show that parametric resonance and chaos
its chaotic character. seem to be fundamentally related.

Indeed, as we will shortly show, chaos arises precisely at In spite of the aforementioned assumptions, our model is
the time when exponential amplification occurs. We furtherable to grasp important qualitative features such as the en-
propose a relationship between the metric entropy, usuallgrgy threshold above which the dynamics becomes chaotic.
defined for chaotic systems, and the entropy correspondinfhe next section illustrates the relation between the
to the particles produced after inflation by parametric resotyapunov(LE) and the FloquetFE) exponents for two well
nance. known problems: the parametrically excited pendulum and

the Mathieu equation. In Sec. Ill we introduce the analogous
question for the coupled scalar fields in cosmology, followed
*Email address: joras@if.ufrj.br by a brief description of the classical chaotic properties of
"Email address: victor.cardenas.v@mail.ucv.cl the system. In Sec. IV, we follow a simple and transparent
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method[14], consistent with Heisenberg’s principle, to ob- 1.2
tain a semiclassical approximation for our model. We then
study the onset of chaos on the effective equations of motior
which describe the particle production process. Then we dis-
cuss the relationship betweda priori) different entropy n
definitions in Sec. V. f

Il. PARAMETRIC RESONANCE

A positive Lyapunov ExponentLE) is the main charac- 0.8+
teristic of chaotic motion, as it indicates a strong sensitivity
to small changes in the initial conditions. The LE measures
the mean separation of two initially neighboring trajectories

in the phase space, in logarithmic scale: 0.6-
N = lim | 1| 2
A T @

Because such separation soon approaches the size of the :0'4
tractor, a naive computation using the expression above
would fail to detect the local rates of expansion. Thus the
distance between the trajectories must be periodically nor-
malized; the LE will then be the average of the exponentialo-z'
rates obtained this way.

The parametrically excited pendulum

6+276-+[1+p coq wt)]sin(6)=0 (3) 0
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. . . t

is known to be chaoti¢15]. Indeed, one can calculate its

largest Lyapunov exponent and find a positive quantity. On FIG. 1. Plot of the LE for the exact parametric resonafugper
the other hand, the Floquet theorem assures that the soluti@arve. The straight line is the theoretical value for the §&r the
of Eq. (3) is given by parameters indicated in the tgxthe lower curve is the FE as cal-

culated by us.
6(t) =fp(t)exp( = ut) 4
If the phase space is not limited—as in the case of exact

whereu is the Floquet exponent. It is easy to see that bottharametric resonance described by the Mathieu equéion
exponents must actually be the same, since the only differ=—gne cannot rely on the LE to tell if the system is chaotic or
ence between them is the normalization procedure in the cahot [23]. Nevertheless, actual physical systems will have
culation of the LE. In the parametrically excited pendulumonly a finite amount of energy available. Then, the available
such procedure is not needed, since the independent variajease space will be finite and the LE criterium for the exis-
0 is cyclic: it is never too large. The same reasoning appliesence of chaos will hold.
to the study of metric perturbations in a chaotic background:
the rate of growth of perturbations—valid only in theear
regime—is given by the LE, as shown in REE6].

The relation between both exponents is also clearly seen Most of the work in preheating has been made asuming a
in the typical parametric resonance phenomenon, describdsiquadratic coupling between the inflatgnand the second-

IIl. COUPLED FIELDS

by the Mathieu equation ary field y:
R()=—-[Q*+g>*(D)]R(t) ) Vin=9%¢%x°. (6)
where x(t) =sin(wt). We usedw=10, Q= \4/50, and g We assume a flat Friedmann-Robertson-WalkeRW)

=2w/\/10. The FE for the above equation can be exactlyuniverse background whose line element is written as
calculated[17], and for the used values one obtaips

=0.5. For the sake of completeness and as a test of our ds?=dt?>—a?(t)dx?
numerical code, we calculated it by plotting ()&(ng) ver-
sus t where ng=Q/2(|R(t)|>+|R(t)|?/Q?) can be inter- =a(7)(dn?—dx?) (7)

preted as the energy. Figure 1 shows that the LE and both the
calculated and theoretical values for the FE converge to thevhere a(#) is the scale factor in conformal time. In this
same value. metric the equations of motions are
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FIG. 2. Plot of the Lyapunov exponent for two different initial
conditions. For both trajectoried =10, m=1 andg=1. The
dashed line indicates the limiting value for the nonvanishing LE.
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Y'(7)+ Q7)Y (7)=0, (®)

X"(7)+ w?(9)X(7)=0, 9

where Q%=a?M?+g?X?—a"/la and w?=a’m?+g?Y?
—a"la, X=ay andY=ad¢. If we restrict ourselves to the
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FIG. 3. Plot of Inft) vst for the same initial conditions used for
the previous graph. The angular coefficient of the straight dashed

lines are given by the nonvanishing LE from the previous graph;
their horizontal positions are arbitrary.

Energy threshold

We were able to numerically determine the existence of
an energy threshold below which there is no amplification of
the secondary field. Figures 4 and 5 show a plot of the LE
and FE, respectively, for ten randomly chosen initial condi-
tions. One can see that the trajectories with energies below a
critical value are restricted to a certain region, mainly below

beginning of the preheating phase, the back reaction can b[ﬁ
safely neglected. In this case, the evolution of the universe ifh
nearly a radiation dominated phase, wiili»)= »/2 and
thusa”/a=0. Actually, for the sake of simplicity, we rely on

e horizontal axis of the latter graph, while the ones above
at limit oscillate with a much larger amplitude. Note that

the much faster dynamics of preheating to assume a stati
universe, and, for convenience we adapt)) =1 (and thus 3-
t=7). By doing so we are neglecting the time dependence
of the instability bands; we expect the qualitative aspects of
the results presented here to remain unaltered in a more re
fined analysig7]. We work in the long-wavelength limitand 5 g |
assume all fields as homogeneous. Indeed, the main contri
bution to the parametric resonance is due to the zero modt
[18].

At the classical level, the system of E@8), (9) describes 5]
a well know chaotic systerfi9]. Indeed, if we use the stan-
dard techniqug12,13 we can calculate the largest LE for
two different trajectories. Figure 2 shows two such plots, one
of which is nonchaotic. Since this system presents a finite, . |
number of degrees of freedom, the energy will oscillate back
and forth between them. Thus a given variable will increase
exponentially only during the energy transfer. The naive way
to determine the FE is to look at the plot of
1/25 In[Y?(5)/Y?(0)] but, because of the oscillation just men-
tioned, we would have to reset the time variable at the be-
ginning of each phase, just as for the chaotic pendulum. In-
stead, we decided to plétn[Y?(#)/Y?(0)] vs » and looked at ]
the angular coefficients of the straight lines. Figure 3 shows™
such a plot for the same two initial conditions used in the
previous figure.

-

The last two figures seem to show that the LE and the FE

are numerically equal. For the parameters chosen the resc
nance period, although clearly noticeable, is too short for a

0 200 400 600 800
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statistical analysis that would allow for a measure of the FIG. 4. Plot of the LE for ten different initial conditions. The

small discrepancy between the obtained values for the Flgpper line corresponds to a trajectory above a critical value for the
and LE. energy.
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IV. PARTICLE PRODUCTION

FI\W - As we saw in the last section, even the classical-field-
theory version of our model exhibits chaos. Note that we do

not have the right to use words like “preheating” and “par-
ticle creation” because they only have meaning in the quan-
tum version of the model. In this section, we use the method
presented in Refl14] in order to take into account the quan-
tum effects. We will show that most of the results of the last
section can be used to describe the semiclassical system. We
called this system semiclassical because we are assuming
thatY(#n) is aclassicalfield andX(#) is treated as guan-
tum operator. We have to stress here that this procedure is
equivalent to taking the larg®l approximation(see Ref.
[22]).

Let us expand the quantum fielin the Heisenberg rep-
resentation

|'1' \\‘ \ "Q‘q‘ - l;'

i v i

“l‘ ‘“ l !

i ‘ It i

" v'wlui'~ l'l‘;" lu (i
| h | | X(m=f(ma+ti*(pal, (12)

‘ wherea anda' are annihilation and creation operators satis-

fying the standard commutat@a,a’r]= 1. From this result,

the mode functiorf () has to satisfy the Wronskian condi-
tion

£ —f*f=—i, (13

and from Eq.(9)

0

200 400 600 800 1000 1200 1400 1600

n 2 —
FIG. 5. Plot of the FE for the same initial conditions used in the () +o*()f(7)=0. (14)

i h. .
previous grap In order to satisfy Eqs(13) and(14) we use the ansatz

the trajectory presenting a nonvanishing LE corresponds to 1 .

the upper curve in Fig. 5, precisely because it indicates a f(77)=—ex;{ —if dr]'W(n’)). (15

nonvanishing net value for its angular coefficient. An exact V2W(7)

calculation of the energy threshold can be done by plotting

the fraction of the phase space covered with invariant torlch0osing the vacuur0) of the number operatan=aa’,

[20]; this analysis will be presented elsewhgré defined bya|0)=0, to compute averagds - -), we obtain
In order to explore this statement, we shall study the staan effective Lagrangiahes=(L)

bility properties of the potentia/(X,Y). From Eq.(6) we

know the potentialboth mass and interaction terjis 2 1
potentia( " o=y | Y/ 2H R —atmPY2- w?R2), (16

1
V(X,Y)= = (M2Y2+m?X%+g2Y2X?). (10
2 where we have defined a new figkd(7) = 1/2W( 7). In this
case, the equations of motion are

Using the Toda-Brumer-Duff test for instabilitig21], we

" 2 —
find that the system develops instabilities for energies larger Y () + Q5 (Y () =0, (17)
than
R'(7)+w*(n)R(7)— =0, (18)
202 4R%(7)
Ef~— 0o, (11) - - —22M2
g where the averaging process redefin€tf(»)=a’M

+g?R?—a"/a. BecauseR?=(X?) the centrifugal term,

1/4R3, keeps the quantum expectation value away from zero,

which indeed lies between the two energy ranges presentamnsistently with the Heisenberg’s uncertainty principle and
in the two previous plots. We stress that this result does naiplits in two the phase space B{ 7). Note that now the
mean that chaos must not happen for energies below thamplification ofR can actually be interpreted as particle pro-
critical value. duction if also the number

043501-4



CHAOS AND PREHEATING PHYSICAL REVIEW D67, 043501 (2003

ol R? 1 lines have disappeared, and in their place there is a band of
NR=7% Z+R2 5 (199  scattered points. The case=200 shows the same effect
even more dramatically.
V. ENTROPY PRODUCTION
grows.
The question is: Is the system described by Etj8), (18) In the previous sections we have shown evidence for a

chaotic? As we have described in Sec. II, the main feature ofelation between classical chaos and particle production via a
chaotic motion is a positive Lyapunov exponent, whichcorrespondence between the FE, which characterizes expo-
shows a sensitivity to small changes in the initial conditions.nential growth during preheating, and the maximal positive
Another way to reveal chaotic behavior is the study of Poin-LE for the associated chaotic system. In this section we dis-
caresections. A Poincareection or a surface of section is a CusS further consequences of this relation. _
two-dimensional map of the phase space obtained by inter- On one hand, we know that for a chaotic dynamical sys-
cepting the Hamiltonian flow at a fixed position during the €M we can define metric or Kolmogorov entropyC [13] in
motion. For integrable systems, the map is a collection ofé'ms of the LEs\; as

lines and regions of stability. As soon as the system becomes

chaotic, the lines become distorted and the stability regions K= Z Ni, (20
disappeared. Our investigation of this issue for the system in (i}=0

Egs.(17), (18) shows that it is indeed chaotic. —where the equality holds fdypical Hamiltonian systems

Our task is made somewhat easier if we separate thg3] _which gives the rate of change of the available infor-
analysis between thR>1 andR~1 regions. WherR>1,  matjon. Local trajectories get stretched in the direction in
the system(17), (18) behaves similarly as described in the which the eigenvalues; are positive, and get compressed in
last section, i.e. Eq¥8), (9), but constrained to one of the the directions in which they are negative. If there are no
two halves of the phase space. This last statement is ngfositive LEs then there is no change in the amount of infor-
rigorously required, because we can leave the system evolynation available, and the Kolmogorov entropy vanishes. In
ing through the barrier &= 0 without affecting the general our problem, there are at least two directions in phase space
properties of the chaotic system, e.g. both have the same LEith comparable, actually equal, LR andR. Thus

In the smallR region, where the centrifugal term is im-
portant, we find an interesting saturation effect. Because we K<2\. (21)
assume that initially the fluctuatidRis not big(its minimum
is around 1{2w), there is a transient period, where although
a resonance condition is fulfilled, thfield grows until the is then to try to find a formula for entropy valid during the
nonlinear term breaks the resonant tuning. This fact is indeef - er of energy between the oscillators, i.e., in a nonequi-
connected with the existence of a critical energy under whiclypium system. A lot of work has been done in this context
the system does not amplify the field, as we see later. Unfor(See Ref[24] for a review, each one arguing in favor of a
tunately, we were not able to calculate the LE here becausgifferent definition for the entropy and its physical reasoning

of the very phenomenon we are studying, the parametrigs such. In spite of their different conceptual foundations, all
resonance itself. As thR oscillation amplitude is increased, of them agree that, in the high squeezing limit,

R gets closer and closer to the origin, and then the centrifugal
barrier just explodes. Therefore, one cannot follow the evo- S~In(ny), (22
lution of the system for a time long enough to allow the i ) ,
graph to reach the constant value which would correspond t¥hereni is the number of particles in the mode In our
the largest LE. case, it is given by cexp(2ut), and then

Nevertheless, we can show the existence of ghaos, and S~2ut 23)
even conjecture about a threshold, by plotting Poincaie i

tions valid for both regionsR>1 andR~1) for different  spowing the equivalence between the Lyapunov and the Flo-
values of energy, as shown in Fig. 6. guet exponents once more.
By using the Toda-Brumer-Duff instability condition we

can estimate a critical energy under which the system does
not amplify efficiently the fieldR. For the caseR>1 the
resultis Eq(11). In Fig. 6 we can see the gradual destruction We notice that the reheating process after inflation, in par-
of the tori as the energy increases. For the values in thécular the initial stage called preheating, could be driven by
numerical exampleM =10, m=1, g=1 we obtain E* a different dynamical behavior, more complicated than the
~100. The upper panel shows tBe= 50 case well inside the currently believed parametric resonant picture. We investi-
integrable region, shows clearly continuous lines with agated the preheating phase by using a system comprised by
single stability region, the central one. The central panetwo interacting background fields. We showed that the study
shows theE=150 case, beyond our estimation for stability, of this model simplifies to that of two coupled harmonic
where is possible to see that the original continuous exteriooscillators. Our main results suggest a strong correspondence

On the other hand, the process of particle creation can also
be described as a period of entropy production. The problem

VI. DISCUSSION
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FIG. 6. Poincaresections R vs R) for E=50, 150 and 200. One can clearly see the gradual destruction of the tori as the energy
increases.

between the parametric resonance phenomenon and the ctoar the initial conditionssince the LE are not unambiguously

otic properties of the system, namely the numerical equivaeharacterizing chaos in General Relativity. We can talk about

lence of its Floquet and Lyapunov exponents. chaos with additional information, for example in our case
We study the onset of chaos on the effective equations dfy computing Poincarsections.

motion which describes the particle production process. Nev- In fact, we showed that chaos arises precisely when ex-

ertheless, we can only say the systenstiongly dependent ponential amplification occurs, showing that the real source
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for these amplifications is not a particular resonance condiaccording to which chaos sets in only when the preheating
tion, but it is a consequence of the dynamical chaos of th@eriod is over. The fundamental difference between this for-
background fields. mula and the one we usg¢d?2,13 is the normalization fac-
The evidence for an increasing destruction of the invariantors in the denominators. However, as we showed in Sec. IIl,
tori shows, together with instability analysis, the existence othe parametric resonance makes it chaotic from the very be-
an energy threshold above which the dynamics becomes chgmning, by construction. Of course, we restrict ourselves to
ofic, and the amplifications become important. the preheating period. Therefore, our results do not concern

We also address the subtle issue concerning the precisge tyrbulent phase, i.e. interaction with other modes, which
relationship between chaos and parametric resonance. In this,1d account for the thermalization process.

context we showed a relationship between the metric en-
tropy, which is a measure of chaos, and the thermodynamic
entropy, computed in the high squeezing limit, which is also
another way to see the equivalence between the exponents. It
may seem natural that both FE and LE are equal, since both _
show exponential behavior of the system. Nevertheless, the The authors wish to thank Robert Brandenberger for use-
authors of Ref[lo] take the exponentia| behavior as “rather fUI comments and dlSCUSSIOI’IS. S.E.J. and V.H.C. thank the
formal,” and, being interested only in the turbulent phaseHigh Energy Theory Group at Brown University where this
after preheating, define a normalized distance in the phaswork started. S.E.J. acknowledges financial support from
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