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Separability of rotational effects on a gravitational lens

Hideki Asada,* Masumi Kasai,† and Tatsuya Yamamoto
Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

~Received 5 August 2002; published 28 February 2003!

We derive the deflection angle up toO(m2a) due to a Kerr gravitational lens with a massm and specific
angular momentuma. It is known that at the linear order inm anda the Kerr lens is observationally equivalent
to the Schwarzschild one because of the invariance under the global translation of the center of the lens mass.
We show, however, that nonlinear couplings break the degeneracy so that the rotational effect becomes in
principle separable for multiple images of a single source. Furthermore, it is distinguishable also for each
image of an extended source and/or a point source in orbital motion. In practice, the correction atO(m2a)
becomesO(10210) for the supermassive black hole in our galactic center. Hence, these nonlinear gravitational
lensing effects are too small to detect by near-future observations.
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I. INTRODUCTION

It is of great importance to elucidate the nature of co
pact objects such as black holes and neutron stars. In par
lar, general relativity predicts the frame-dragging effe
around rotating objects, which has not been detected. A
of studying rotational effect of the curved spacetime is
measuring the light propagation as well as monitoring sa
lite motion. As for the gravitational lensing caused by rot
ing objects@1#, it is known that at linear order the rotation
effect is not distinguishable from the translation of the cen
of the lens mass@2,3#. In other words, the Kerr lens would b
equivalent to the Schwarzschild lens without any knowled
of the precise position of the lens@3#. Cannonlineareffects
break the degeneracy between the Schwarzschild and
lenses? The main purpose of the present paper is to an
this. We will assume a considerably compact object to t
into account a coupling between the angular momentum
the mass. Actually, recent observations@4,5# have suggested
that there might be in our universe very compact obje
such as aquarkstar whose radius is several kilometers, ab
half that of a neutron star, though some arguments are
going on@6#.

The light propagation in the Kerr spacetime was form
lated by using the constants of the null geodesics in p
coordinates@7–10#. However, the approach is not suitab
for description of the gravitational lens, which is a mappi
between 2-dimensional vectors on lens and source pla
@11#. Hence, we follow another approach developed rece
for the gravitational lens@3#.

II. FORMULATION OF THE STATIONARY
GRAVITATIONAL LENS

First, we summarize notations and equations for grav
tional lensing. We basically follow the notation of Ref.@11#,
but the signature is (2,1,1,1). It is convenient to expres
the metric of a stationary spacetime in the following form
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ds25gmndxmdxn52h~cdt2widxi !21h21g i j dxidxj ,
~1!

where

h[2g00, wi[2
g0i

g00
, ~2!

and

g i j dxidxj[2g00S gi j 1
g0ig0 j

g00
Ddxidxj[d,2. ~3!

This is essentially the same as the Landau-Lifshitz 311 de-
composition of a stationary spacetime@12#. One difference is
the definition of the spatial metric. They use

g̃ i j [S gi j 1
g0ig0 j

g00
D5h21g i j ~4!

as the spatial metric. We will hereafter use the conforma
rescaledg i j , since the spatial distanced, defined by Eq.~3!
behaves as the affine parameter of the null geodesics in
spacetime@3#. The conformal factorh corresponds to the
gravitational redshift factor.

For a future-directed light ray, the null conditionds250
gives

c dt5
1

h
Ag i j dxidxj1widxi . ~5!

Since the spacetime is stationary,h,g i j , andwi are functions
only of the spatial coordinatesxi . Then, the arrival time of a
light ray is given by the integration from the source to t
observer denoted by the subscriptS andO, respectively,

t[E
tS

tO
dt5

1

cES

OS 1

h
Ag i j e

iej1wie
i Dd,, ~6!

whereei5dxi /d, is the unit tangent vector along the ligh
ray. Hereafter, lowering and raising the indices of the spa
vectors are done byg i j and its inverseg i j .
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Fermat’s principle statesdt50, which provides the Euler
Lagrange equation for the light ray, fully valid in any statio
ary spacetime

dei

d,
52~g i j 2eiej !] j lnh2g i l S g l j ,k2

1

2
g jk,l Dejek

1hg i j ~wk, j2wj ,k!e
k. ~7!

The deflection anglea is defined as the difference be
tween the ray directions at the source (,52`) and the ob-
server (,5`) in the asymptotically flat regions,

a[eS2eO52E
2`

`

d,
de

d,
. ~8!

The lens equation relates the angular position of the
ageu to the source angular positionb

b5u2
DLS

DOS
a~DOLu!, ~9!

whereDOS is the distance from the observer to the sour
DOL is from the observer to the lens, andDLS is from the
lens to the source, respectively. The vectorsa, b andu are
2-dimensional vectors in the sense that they are orthogon
the ray directione within our approximation. In a cosmologi
cal situation, the unlensed positionb is not an observable
because we cannot remove the lens from the observed
tion.

We choose the origin of the spatial coordinate as the
cation of the lens. We use a freedom in choosing the origin
,, so that the closest point of the light ray to the lens,
noted byj i , can be set at,50, namelyj i5xi(,50). We
denote the tangential vector at the closest point byēi[ei(,
50). The impact parameterb is the distance from the lens t
a fiducial straight linex̄(,) which is the tangent to the ligh
ray at the observer, while the impact parameter is defi
usually at the emitter in the standard context of the class
mechanics: This is due to the geometrical configuration fr
which the lens equation foru5b/DOL is derived @11#.
Hence, the impact parameterb is defined as

b5 x̄~,50!. ~10!

III. GRAVITATIONAL LENSING IN THE KERR
SPACETIME

For a slowly rotating case, the Kerr metric is written a

ds252S 12
2m

r Ddt22
4masin2u

r
dtdf1

dr2

12
2m

r

1r 2~du21sin2udf2!1O~a2!, ~11!

where we used the units ofG5c51.
In order to change this metric into a spatiallyisotropic

form, we perform a coordinate transformation as
04300
-

,

to

si-

-
f
-

d
al

r 5RS 11
m

2RD 2

, ~12!

so that we obtain

ds252S 12
m

2R

11
m

2R

D 2

S dt1
2m~a3x!•dx

R3S 12
m

2RD 2 D 2

1S 11
m

2RD 4

dx•dx1O~a2!, ~13!

where we introduced a 3-dimensional vector notation

x5~x,y,z!5~R sinu cosf,R sinu sinf,R cosu!,
~14!

a5~0,0,a!. ~15!

The correspondence between the metric and our~311!
expression given by Eq.~1! is

h5S 12
m

2R

11
m

2R

D 2

1O~a2!, ~16!

w52
2m~a3x!

R3S 12
m

2RD 2 1O~a2!, ~17!

g i j 5S 12
m2

4R2D 2

d i j 1O~a2!, ~18!

whered i j is Kronecker’s delta. It is worthwhile to note

]

]xj
ln h5

2mxj

R3
1O~a2,m3!. ~19!

A condition for the closest point is expressed as

d

d,
~g i j x

ixj !u,5050, ~20!

which means

j•ē5O~a2,m2!, ~21!

where we used

g i j 5d i j 1O~a2,m2!. ~22!

A. O„m0a0
…

The metric is expanded as

h511O~a2,m!, ~23!
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wi5O~a2,m!, ~24!

g i j 5d i j 1O~a2,m2!. ~25!

At the lowest order, Eq.~7! is expanded as

dei

d,
5O~a2,m!, ~26!

which is integrated immediately as

ei5ēi1O~a2,m!. ~27!
04300
Consequently, we obtain a straight trajectory of the light r
as

xi5j i1,ēi1O~a2,m!. ~28!

For later convenience, we definej5uju and R0

5Auju21,2.

B. O„m1a1
…

Using the parametrization of the photon trajectory at
lowest order, we obtain
dei

d,
52

2mj i

R0
3

1mS 4~a3ē! i

R0
3

1
6$~a3j!•ē%~j i1,ēi !26,~a3j! i26,2~a3ē! i

R0
5 D 1O~a2,m2!, ~29!
e-

cu-

act
Eq.
which is integrated as

ei5ēi22mF ,j i

j2R0

2~a3ē! iS ,

j2R0

1
,

R0
3D

2
3$~a3j!•ē%j i

j4 S ,

R0
2

,3

3R0
3D

1$~a3j!•ē%ēiS 1

R0
3

2
1

j3D
2~a3j! iS 1

R0
3

2
1

j3D G1O~a2,m2!, ~30!

where we usedei(,50)5ēi . By integrating this, we obtain
the light ray trajectory as

xi5j i1,ēi22mF j i~R02j!

j2
2~a3ē! iS R02j

j2
2

1

R0
1

1

j D
2

$~a3j!•ē%j i

j4 S R02j1
,2

R0
D1

$~a3j!•ē%ēi

j2 S ,

R0
2

,

j D
2

~a3j! i

j2 S ,

R0
2

,

j D G1O~a2,m2!, ~31!

wherexi(,50)5j i was used.
The deflection angle is evaluated as
a5
4mj

j2
2

4m

j4
„2$~a3j!•ē%j1j2~a3ē!…1O~a2,m2!.

~32!

This angle is found to agree with previous results@1# by
noticing an identity

a3ē5
a•j

j2
~j3ē!2

~a3j!•ē

j2
j. ~33!

C. O„m2a1
…

We substitute Eqs.~30! and ~31! into Eq. ~8!. After
lengthy but straightforward calculations, we obtain the d
flection angle atO(m2a) as

a5
4mj

j2
2

4m

j4
„2$~a3j!•ē%j1j2~a3ē!…

14m2F S 15p

16
22D j

j3
2S 5p

4
24Da3ē

j3

2S 15p

4
210D $~a3j!•ē%j

j5 G1O~a2,m3!. ~34!

It should be noted that some of the coefficients take a pe
liar form like p plus a rational number.

Up to this point, we have usedj which is the vector for
the closest point. We are in a position to consider the imp
parameter, which is defined at asymptotic regions by
~10!. Asymptotic expansions of Eq.~31! for a large, give us
the tangent to the light ray at the observer as
6-3
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x̄5j12mF j

j
2

$~a3j!•ē%j

j3
1

a3j2$~a3j!•ē%ē

j2
sgn~, !G1,F ē22mS j2j22$~a3j!•ē%j2j2~a3ē!

j4
sgn~, !

1
a3j2$~a3j!•ē%ē

j3 D G1O~a2,m2!, ~35!
ua
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less
where we denoted a signature function,/u,u by sgn(,). Sub-
stituting this into Eq.~10!, we obtain

b5F112mS 1

j
2

~a3j!•ē

j3 D Gj1O~a2,m2!, ~36!

where we used sgn(0)50. Hence, we find

j5F122mS 1

b
2

~a3b!•ē

b3 D Gb1O~a2,m2!, ~37!

where we definedb5ubu. We substitute this into Eq.~34!, so
that we obtain

a5
4mb

b2
2

4m

b4
„b2~a3ē!22$~a3ē!•b%b…

14m2F15pb

16b3
2

5p~a3ē!

4b3
1

15p$~a3ē!•b%b

4b5 G
1O~a2,m3!. ~38!

IV. DISCUSSION AND CONCLUSIONS

At O(ma), we find out an infinitesimal translation as@3#

b̄5b2a3ē, ~39!

so that the deflection angle given by Eq.~32! can be rewrit-
ten as

a5
4mb̄

b̄2
1O~a2,m2!. ~40!

This is a global transformation, under which the lens eq
tion is invariant. As a result, we could not separate the ro
tional effect without independent knowledge of the locati
of the lens@3#. Namely, lensing properties caused by a K
lens, such as the image positions, magnifications and
delay, could be reproduced by a Schwarzschild lens at
suitable position.

At the next order, we can discover an infinitesimal tran
formation as

b̄5b2a3ē2
5pm

16b S ~a3ē!2
$~a3b!•ē%b

b2 D , ~41!

so that the deflection angle in Eq.~38! is rewritten as
04300
-
-

r
e
e

-

a5
4mb̄

b̄2
1

15pm2b̄

4b̄3
1O~a2,m3!. ~42!

However,u2b is not invariant under thislocal transforma-
tion. As a consequence, the lens equation is not invarian
that we can distinguish the rotational effect onmultiple im-
ages of apoint source, such as changes in relative positio
of images. Furthermore, we can recognize it for anextended
source~e.g. spherical stars, binary stars and luminous dis!
and even for a point source if itmovesfor instance on a
straight line or a Keplerian orbit.

In order to illustrate the rotational effects on the relati
separation between images, let us consider the lens equ
in the unit of the Einstein ring radius angle as

uS5uI2
uI

u I
2

2l
uI

u I
3

1lS s3ē

u I
2

2
2$~s3ē!•uI%uI

u I
4 D

1
4

3
l2F s3ē

u I
3

2
3$~s3ē!•uI%uI

u I
5 G1O~s2,l3!, ~43!

where we defined@3#

uE5A4mDLS

DLDS
, ~44!

uS5
b

uE
, ~45!

uI5
u

uE
, ~46!

l5
15pDSuE

64DLS
, ~47!

s5
16

15p

a2~a•ē!ē

m
, ~48!

s5usu. ~49!

Here, it should be noted that the rotational effect comes fr
s which is proportional to the projection of the spin vect
onto the lens plane. For a nearby stellar mass black hole
a supermassive one in our galactic center, the dimension
parameterl becomes respectively
6-4
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l;1027S m

10M (
D 1/2S 100 pc

DS
D 1/2

, ~50!

l;1025S m

106M (

D 1/2S 8 kpc

DS
D 1/2

, ~51!

where we assumedDL;DLS .
For simplicity, we solve perturbatively Eq.~43! for

sources on the equatorial plane, namelyb•a50. The solu-
tions which are on the equatorial plane take a form as

u65f61lx61l2c61O~l3!, ~52!

where we defined

f65
1

2
~uS6A41uS

2!, ~53!

x65
~16s!

f6A41uS
2

, ~54!

c65F1

2
uS7

616uS
21uS

4

2~41uS
2!3/2

1
s

3 S 1416uS
21uS

4

~41uS
2!3/2

7uSD G . ~55!

Hence, the angular separation between the double ima
which is one of the important observables, becomes
et

.

04300
es,

Du[u12u25A41uS
21lS 12s

uS

A41uS
2D

2l2S 616uS
21uS

4

~41uS
2!3/2

1
2

3
suSD 1O~s2,l3!. ~56!

The term ofO(ls) can be absorbed into the leading term
A41(uS2ls)2, which corresponds to the global translatio
given by Eq. ~39!. The correction due to the terms a
O(m2a) is of the order ofl2s, which becomesO(10210) for
the supermassive black hole in our galactic center even ifs is
of the order of unity. It might be interesting to study som
models in detail. For instance,~1! how do light curves
change due to a Kerr lens?,~2! what changes occur in imag
positions and motions when a source is a binary star part
larly a binary pulsar?, and~3! what do images look like when
a source is an accretion disk?

Our result is in marked contrast to rotational effects on
polarization: The difference in the polarization angle b
tween double images from a fixed point source appears
exactly the same orderO(m2a) @13,14#. In practice, how-
ever, these nonlinear gravitational lensing effects are
small to detect by near-future observations@15–18#.
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