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Separability of rotational effects on a gravitational lens
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We derive the deflection angle up @ m?a) due to a Kerr gravitational lens with a massand specific
angular momentura. It is known that at the linear order im anda the Kerr lens is observationally equivalent
to the Schwarzschild one because of the invariance under the global translation of the center of the lens mass.
We show, however, that nonlinear couplings break the degeneracy so that the rotational effect becomes in
principle separable for multiple images of a single source. Furthermore, it is distinguishable also for each
image of an extended source and/or a point source in orbital motion. In practice, the correclitm?ai)
becomegD (1019 for the supermassive black hole in our galactic center. Hence, these nonlinear gravitational
lensing effects are too small to detect by near-future observations.
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. INTRODUCTION ds?=g,,, dx“dx"= —h(cdt—w;dx)2+h " y;dxdx,
1)
It is of great importance to elucidate the nature of com-
pact objects such as black holes and neutron stars. In particihere
lar, general relativity predicts the frame-dragging effect
around rotating objects, which has not been detected. A way h=— __ Yi
. . . . =—0oo: Wi= ) (2
of studying rotational effect of the curved spacetime is by Joo

measuring the light propagation as well as monitoring satel-

lite motion. As for the gravitational lensing caused by rotat-and

ing objects[1], it is known that at linear order the rotational

effect is not distinguishable from the translation of the center

of the lens masg2,3]. In other words, the Kerr lens would be

equivalent to the Schwarzschild lens without any knowledge

of the precise position of the lefi8]. Cannonlineareffects ~ This is essentially the same as the Landau-Lifshitzl3de-

break the degeneracy between the Schwarzschild and KegPmposition of a stationary spacetifife2]. One difference is

lenses? The main purpose of the present paper is to answie definition of the spatial metric. They use

this. We will assume a considerably compact object to take

into account a coupling between the angular momentum and

the mass. Actually, recent observatidds5] have suggested

that there might be in our universe very compact objects

such as ajuarkstar whose radius is several kilometers, abou@s the spatial metric. We will hereafter use the conformally

half that of a neutron star, though some arguments are stiflescaledy;;, since the spatial distancl defined by Eq(3)

going on[6]. behaves as the affine parameter of the null geodesics in this
The light propagation in the Kerr spacetime was formu-spacetime[3]. The conformal factoh corresponds to the

lated by using the constants of the null geodesics in polagravitational redshift factor.

coordinateg 7—10]. However, the approach is not suitable  For a future-directed light ray, the null conditiais’=0

for description of the gravitational lens, which is a mappinggives

between 2-dimensional vectors on lens and source planes

[11]. Hence, we follow another approach developed recently _ 1 AT A el v A
for the gravitational len§3]. cdt h vijdx dxi+widx. ®)

9oiY0;j
00

dxdxi=de2. (3)

¥ijdX d¥'=—goo| gij+

JoiJ0j
Joo

Yii=|gi+ ):h_l')’ij 4

Since the spacetime is stationdnyy;; , andw; are functions
only of the spatial coordinates. Then, the arrival time of a
light ray is given by the integration from the source to the

First, we summarize notations and equations for gravitaobserver denoted by the subscripandO, respectively,
tional lensing. We basically follow the notation of Rgf1],
but the signature is{,+,+,+). It is convenient to express _[to,. 1(9/1 P i

. . . . . . t= dt=— - 'yijee +w;e de, (6)

the metric of a stationary spacetime in the following form: tg h

Il. FORMULATION OF THE STATIONARY
GRAVITATIONAL LENS

wheree'=dx/d¢ is the unit tangent vector along the light
*Electronic address: asada@phys.hirosaki-u.ac.jp ray. Hereafter, lowering and raising the indices of the spatial
TElectronic address: kasai@phys.hirosaki-u.ac.jp vectors are done by;; and its inversey'.
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Fermat’s principle stateét=0, which provides the Euler- 2

m
Lagrange equation for the light ray, fully valid in any station- r=R[1+52], (12
ary spacetime
i so that we obtain
de i (PN il 1 j ok
W:—(V —e'el)gjinh—y Yk~ 5 Yikl | &€ m\ 2
1_ R
i 2R 2m(axx) - dx
+h'yll(Wk,j_Wj,k)ek- (7 ds?=— - dt+(—r)n2-
31— —
The deflection anglex is defined as the difference be- 1+ 2R R (1 ZR)
tween the ray directions at the sourde<—o°) and the ob- A
N ) . m
server ¢ =«) in the asymptotically flat regions, +| 1+ >R dx-dx+0(a?), (13
B © de
=6~~~ f_wdeﬁ' (8 where we introduced a 3-dimensional vector notation
The lens equation relates the angular position of the im- x=(x,y,z)=(Rsing cos¢,Rsinésin¢,R coso), (14)
age 0 to the source angular positigh
a=(0,0a). (15

Dis
=0— —a(Dg 0), 9 _
A Dos (Do) © The correspondence between the metric and (8url)
) ) expression given by Eql) is
whereD g is the distance from the observer to the source,

Do, is from the observer to the lens, aly g is from the m\ 2
lens to the source, respectively. The vectarsB and 6 are 1- 2R
2-dimensional vectors in the sense that they are orthogonal to h= +0(a?), (16
the ray directiore within our approximation. In a cosmologi- 1+ m
cal situation, the unlensed positighis not an observable, 2R
because we cannot remove the lens from the observed posi-
tion. 2m(axx) )
We choose the origin of the spatial coordinate as the lo- w=-— W“Lo(a ), (17
cation of the lens. We use a freedom in choosing the origin of RS( 1- ﬁ)

€, so that the closest point of the light ray to the lens, de-

noted by¢', can be set af =0, namely&'=x'(€=0). We m2 \ 2

denote the tangential vector at the closest poine'sye'(¢ Yij= ( 1- —) 8;+0(a?), (18
=0). The impact parametéris the distance from the lens to 4R?

afiducial straight "”ex(f? Wh'Ch.'S the tangent to the “ght where g;; is Kronecker’s delta. It is worthwhile to note
ray at the observer, while the impact parameter is defined

usually at the emitter in the standard context of the classical i
; L . ! . d 2mx
mechanics: This is due to the geometrical configuration from — Inh=
which the lens equation fo®=b/Dy, is derived [11]. ax! R®
Hence, the impact parameteris defined as

+0(a?,md). (19

A condition for the closest point is expressed as

b=x(£=0). (10) q
@(%jxlxj)hzozol (20
[ll. GRAVITATIONAL LENSING IN THE KERR
SPACETIME which means
For a slowly rotating case, the Kerr metric is written as — s 5
& e=0(a”,m?), (21)
2m 4masirf 6 dr?
ds?=—|1—- —|dt?— ——dt where we used
r 1 2m
r ¥ij= 6, +0(a?,m?). (22
+r2(d6?+sinfod¢?)+0(a?), 11
( ¢?)+0(a?) (11) A OO
where we used the units @=c=1. The metric is expanded as
In order to change this metric into a spatiallotropic
form, we perform a coordinate transformation as h=1+0(a?m), (23
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=0(a?m),

yij= &j+0(a%,m?).

At the lowest order, Eq(7) is expanded as

ei
_ 2
] O(a,m),

which is integrated immediately as

e'=e'+0(a% m).

(24)

(25

(26)

(27)
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Consequently, we obtain a straight trajectory of the light ray
as

x'=¢+ (el +0(a%,m). (28)
For later convenience, we definé=|g and Rq
= [+ 2.
B. O(m?al)

Using the parametrization of the photon trajectory at the
lowest order, we obtain

i i i i i 2 _i
d_e:_ 2mé 4(ax e) 6{(a>< &) e} & +€e) 6¢(ax §)'—6£¢“(axe) o), 29
d¢ R3 R3 R
|
which is integrated as Aamé  4m _ _
a= s ?(z{mx &) el &+ X (axe))+0(a%,m?).
(32

-2

e_gi_(axg)i L_Fi
" &R, &R, R

+0(a%,m?),

where we use@‘(€=0)=€r. By integrating this, we obtain

the light ray trajectory as

Ro—¢ 1 1

i s 7 g( 0 f) oy
X'=&+0e— [ Iz (axe)( 2 R, E

{(ax §) & {(ax§)-efe
- & (RO =t Ro) &2 (

+0(a?,m?),

Ro

wherex! (£=0)=¢' was used.
The deflection angle is evaluated as

(30

|

=

(31

This angle is found to agree with previous resuli§ by
noticing an identity

—af — (axd-e
a><e=?(§><e)— =z &

(33

C. O(m?a?)

We substitute Eqs(30) and (31) into Eq. (8). After
lengthy but straightforward calculations, we obtain the de-
flection angle aD(m?a) as

A4m§ 4m — VIR
- o ?(2{(a>< £)-eté+¢(axe)
(1577

ET

axe

53

§ (577
e |4

M

+4m?

+0(a%2,md). (39

157
-l

It should be noted that some of the coefficients take a pecu-
liar form like 7r plus a rational number.

Up to this point, we have useglwhich is the vector for
the closest point. We are in a position to consider the impact
parameter, which is defined at asymptotic regions by Eq.
(10). Asymptotic expansions of E31) for a largef give us
the tangent to the light ray at the observer as
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._ — ._ _ 2 — ._ — 2 e
giom El@xOdE axi-{axpde | e_Zm(§ £-2{(axg g
§ & & ¢
| ax §—{(;>< 5 %) o) -
|
where we denoted a signature functiofi¢| by sgn¢). Sub- 4mb  157m2b
stituting this into Eq.(10), we obtain a= ?4‘ T +0(a%,md). (42)

' (axg)-e||
b=| 1+ Zm( T s £+0(a®>,m?), (360  However,6— g is not invariant under thitocal transforma-
. § - tion. As a consequence, the lens equation is not invariant, so
where we used sgn(830. Hence, we find that we can distinguish the rotational eff_ect mml_'uplelmf_
ages of gpoint source, such as changes in relative positions

i 1 (axb)-s - of images. Furthermore, we can recognize it foreatended
&= 1—2m<—— _j b+0O(a%m?), (37) source(e.g. spherical stars, binary stars and luminous dlisks
I b b3 and even for a point source if inovesfor instance on a
] _ o straight line or a Keplerian orbit.
where we defineth= |b|. We substitute this into Eq34), so In order to illustrate the rotational effects on the relative
that we obtain separation between images, let us consider the lens equation
in the unit of the Einstein ring radius angle as
Amb _AM 2 axe — 2((ax e - blb
= ————(b%(axXe)—2{(aXe)- — —
O e e 2i@xe b 6 6 [s<e 2((s<a-0)0
- - 0320|——2—)\E+)\ ?—T
am? 157b 5w(axe) N 157{(axe)-bib ! ! ! !
m — — —
16b3 4h3 4h® 4 _|sXe 3{(sxe)-6}86
3\ —3—{(—)5'}' +0(s2\3), (43)
+0(a%,m?). (39) ) 0

where w fin
IV. DISCUSSION AND CONCLUSIONS ere we define3]

At O(ma), we find out an infinitesimal translation &3] 4mD, g
%=\ DD (44)
— — LYS
b=b—aXxe, (39
so that the deflection angle given by E82) can be rewrit- 0s= E (45)
ten as 73
B 4mb 5 g — 0 (46)
a—?+0(a ,m). (40 I_HE'
This is a global transformation, under which the lens equa- 157D gl
tion is invariant. As a result, we could not separate the rota- A= 64D < (47)
tional effect without independent knowledge of the location LS
of the lens[3]. Namely, lensing properties caused by a Kerr _
lens, such as the image positions, magnifications and time . 16 a—(a-ee 49
delay, could be reproduced by a Schwarzschild lens at the 157 m '
suitable position.
At the next order, we can discover an infinitesimal trans- s=|d. (49)

formation as

Here, it should be noted that the rotational effect comes from
(41) s which is proportional to the projection of the spin vector

onto the lens plane. For a nearby stellar mass black hole and

a supermassive one in our galactic center, the dimensionless
so that the deflection angle in E@8) is rewritten as parametein becomes respectively

b axg. 2T — {(axb)-¢gb
= —aXe—E (a><e)——2
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m 1/2 100 p 1/2
107
A~10 (10M® De (j , (50)
A~107° m | "8 kpe) ** 51
10fM Ds | &

where we assumed, ~D s.

For simplicity, we solve perturbatively Eq(43) for
sources on the equatorial plane, namgha=0. The solu-
tions which are on the equatorial plane take a form as

.=+ Ay +N.+O(N%), (52
where we defined
1
¢i=§(0si VA+ 6%, (53
B (1xs) (54)
= b \a+ 62
1 6+66%+6%
Ve=| 5057
2(4+ 63)
s 14+66%+ 6% , 55
to|l———m F .
3 (4+ 02)3/2 *+Us
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1-s

AO=6,—0_= 4+ 62+\

Os
Va+ 0%)

6+602+0% 2
s s +0O(s2\3).

2 + 556
(4+ 6232  37°°

(56)

The term ofO(As) can be absorbed into the leading term as
J4+(6s—\s)?, which corresponds to the global translation
given by Eq. (39). The correction due to the terms at
O(m?a) is of the order of\?s, which become® (109 for

the supermassive black hole in our galactic center eveisif

of the order of unity. It might be interesting to study some
models in detail. For instancel) how do light curves
change due to a Kerr lens(2) what changes occur in image
positions and motions when a source is a binary star particu-
larly a binary pulsar?, an@8) what do images look like when

a source is an accretion disk?

Our result is in marked contrast to rotational effects on the
polarization: The difference in the polarization angle be-
tweendoubleimages from a fixed point source appears at
exactly the same ordeD(m?a) [13,14. In practice, how-
ever, these nonlinear gravitational lensing effects are too
small to detect by near-future observatigt§—18§.
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