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Analyzing weak lensing of the cosmic microwave background using the likelihood function
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Future experiments will produce high-resolution temperature maps of the cosmic microwave background
(CMB) and are expected to reveal the signature of gravitational lensing by intervening large-scale structures.
We construct all-sky maximum-likelihood estimators that use the lensing effect to estimate the projected
density (convergenceof these structures, its power spectrum, and cross-correlation with other observables.
This contrasts with earlier quadratic-estimator approaches that Taylor expanded the observed CMB temperature
to linear order in the lensing deflection angle; these approaches gave estimators for the temperature-
convergence correlation in terms of the CMB three-point correlation function and for the convergence power
spectrum in terms of the CMB four-point correlation function, which can be biased and nonoptimal due to
terms beyond the linear order. We show that for sufficiently weak lensing, the maximum-likelihood estimator
reduces to the computationally less demanding quadratic estimator. The maximum likelihood and quadratic
approaches are compared by evaluating the root-mean-s@uageerror and bias in the reconstructed con-
vergence map in a numerical simulation; it is found that both the rms errors and bias are of order 1 percent for
the case of Planck and of order 10—20 percemtafdl arcminute beam experiment. We conclude that for
recovering lensing information from temperature data acquired by these experiments, the quadratic estimator is
close to optimal, but further work will be required to determine whether this is also the case for lensing of the
CMB polarization field.
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I. INTRODUCTION from CMB temperature maps. Some of these methods are
based on local statistics, such as the products of gradients of
Gravitational weak lensing of the cosmic microwave the temperature fielfil]. Recently Hu2,3], working to lin-
backgroundCMB) has been recognized as a potential indi-ear order in the deflection angle, determined the optimal qua-
cator of large-scale structure in the universe. Compared tdratic estimatofi.e. quadratic in the CMB temperature map
galaxy surveys, weak lensing has the advantage of directlfor the deflection field. Within this linear approximation, the
tracing the matter density, thus avoiding the uncertaintiegorresponding power spectrum estimator makes full use of
associated with the relationship between the distributions ofhe information in the CMB four-point correlation function
galaxies and of mad4]. Because the CMB is the most dis- [8,9]. However, the limits to the validity of the linear order
tant background object that can be used for weak lensingpproximation have not been well determined, and the pos-
studies, it probes the matter distribution at higher redshiftsibility of obtaining more information on lensing from
than can be reached by galaxy weak lensing and is sensitivéigher-order correlation functions has not been studied in
to the largest observable scales in the univéises). detail. Neglect of nonlinear terms may also create a bias in
In addition to providing data on the power spectrum ofthe quadratic estimators of the power spectrum. The nonlin-
density fluctuations on these large scales, CMB weak lensingar terms may be important whenever the deflection angle is
may yield constraints on the expansion history of the uni-comparable to the scale of CMB fluctuation used in the re-
verse by making possible a measurement of the integratecbnstruction of lensing potential. The deflection angle is of
Sachs-Wolfe(ISW) effect. The ISW effectthe change in the order of several arcminutes and for high resolution ex-
temperature of the CMB radiation as it passed through g@eriments significant amount of lensing information comes
changing gravitational potentjais smaller than the primary from CMB modes on the same scale, indicating that the non-
CMB fluctuations produced in the early universe and conselinear terms may be important. In order to address these is-
guently can be detected only through the cross-correlation aues, we use the likelihood function to construct estimators
CMB observations with some tracer of the gravitational po-rather than assuming an estimator with a particular fdom
tential. Because it is sensitive directly to the potential, wealkcal, quadratic, etg.and avoid linearizing in the deflection
lensing is an ideal candidate for this cross-correlaf®y]. field except to compare our results to previous work and
Because detection of CMB weak lensing may be possiblevhere necessary for computational tractability.
with near-future satellite experiments, such as Planck and We work principally in position space rather than har-
possibly even the Microwave Anisotropy ProdAP), sev-  monic space. This is done partly because real data are ob-
eral algorithms have been proposed for estimating mattetained in position space, and partly to show how the
distributions, power spectra, and ISW cross-correlationdiarmonic-space estimatdrd] can be derived from position-
space arguments; also, the generalization of the position-
space analysis to anisotropic instrument noise is more trans-
*Electronic address: chirata@princeton.edu parent. We also do not consider the reconstruction of matter
"Electronic address: useljak@princeton.edu distributions from CMB polarization; although polarization
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can theoretically yield much better information about lensing Occasionally we will use the flat-sky approximation, in

than CMB temperature fluctuatioh$0], it is also computa-  \ynich a map® can be expanded in Fourier modé(n)
tionally more demanding, so we defer a more careful analy-

Sis 10 A future work. =(1\47)3,0,e """ The Fourier modes are normalized
We will proceed as follows: Section Il introduces our for- Over an area of # and populate thé plane with a two-
malism and notation, and defines the basic mathematical Olsi_|menS|onaI dgns!ty of 4, this ensures that the flat-sky and

erations that will be used in the rest of the paper. Section 1IR/I"SKy normalizations are consistent on small scales.
considers the likelihood function for the CMB and its depen- )

dence on the lensing potenti&he potential that generates B. Lensing

the deflection fieltl In Sec. IV we consider the maximum  Gravitational lensing of the CMB by scalar perturbations

likelihood estimators for the power spectrum of the lensingcan be expressed in terms of the lensing potertiatiefined
potential and its cross-correlation with the CMB. In Sec. V,py

we describe our numerical implementation of the estimators
from Secs. Il and IV; the performance of the estimators, as é(n):@[n+ Vo(n)], (5)
determined numerically, is described in Sec. V E. We con-
clude in Sec. VI. whereV is the two-dimensional gradient operator on the unit
sphere. The lensing potenti@l is the projected gravitational
Il. FEORMALISM potential along the line of sightsee the Appendix for de-

tails),
A. CMB

1

T T ©

. . Ms
The cosmic microwave background temperature fluctua- ®(n)= _ZJ drw(rn —r)(
tion ® in a particular directiom on the unit sphere is defined 0

by ©(n) =T(n)/To—1 whereT(n) is the CMB temperature \ynerer,, is the comoving distance to the last-scatter surface,

in directionn andTo=2.72 K is the mean temperature of the \(x 1) is the gravitational scalar potential at comoving po-
CMB. This temperature fluctuation can be expressed in halsition x and conformal timer, and T(r) is the tangentlike

monic space as function (tarr, r, or tanhr depending on whether the uni-

w verse is closed, spatially flat, or opehe convergence
~ ~ _ l 2 . -y . -
O(n)= E 2 OmYim(N), (1) =—53V°Dis positive when structures along the line of sight
=0 m=—I act as a converging lerigée. when they magnify the CMB

B and is negative for a diverging lens. Conceptually, we would
where theY,,, are spherical harmonics arj,, are the cor- thus expect to be a measure of the projected density per-
responding coefficients. The spherical harmonics are orturbation; as shown in the Appendix, this is indeed the case.
thogonal and are normalized so that their squared amplitud&/e define the power spectra«C’® and C{*=I%(
integrates to one over the sphefez|Y?,|dQ=1, and the +1)?C{"®/4, and the cross-correlatia®® , in analogy to
transformation of Eq(1) can thus be inverted as Eqg. (3).

We will in several instances require use of the lensing
o, — J zdanf‘m(n)(@(n)- @ operatorA that performs the operation in E(b):
S A[P]O(N)=O[n+Vd(n)]. (7)

Because the statistical avera@®,)=0, we extensively use On occasion, we shall refer to the linear approximation to the
the power spectrum. The power spectrum is defined for #ensing operator:

statistically isotropic temperature fluctuation as the variance

L - 0=A0=~0+VO -V, (8)
(O O1m)=C1" Bit Spu - (3 _
Note that we have use@ to represent the lensed CMB
For gravitational lensing work, we distinguish three temperatemperature an® to represent the unlensed temperature;
ture fluctuations: the unlensed temperature fluctuafipithe  some authors have used this conventj8h while others

lensed temperature quctuatidﬁ; and the measured tem- [1,2,8,10 have used® for the lensed an@ for the unlensed

perature fluctuatior®. Throughout this paper, we will take temperature.
the primary(unlensed anisotropy® to be a Gaussian ran-
dom field. The measurement is related to the actual tempera- C. Convolutions and integrals

ture fluctuation by the instrument noise, A convolution of a function® on the unit sphere with

" - kernelC is written as
O(nN)=0(n)+e(n). (4)

_ L ~ C@(n)zf d?n’C(n,n")O(n’), (9
We assume that the instrument noisés independent 06 . Q
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where(} is the region in which we have data, and the kerneluseful to investigate for two reasons: first, unlike quadratic
C can be decomposed in multipoles using the Legendre polyestimators, MLE’s are guaranteed to be asymptotically effi-

nomials: cient (i.e. it is impossible to achieve lower error than the
MLE in the limit of an infinite amount of dajaand second,

* ol+1 the likelihood approach retains its validity even when higher-
C(n,n’)=|20 . C/Py(n-n"). (100 order[e.g.O(®?)] terms in the covariance are important.

This section will be organized as follows. In Sec. Il A,

. . 4 we introduce the likelihood function and its basic properties
We will also need to take the inverse operat@n” such that 44 give a formal expression for it. We maximize the likeli-

CC?0=0. In the case of a true full-sky experimefile.  nood function using the calculus of variatiotSec. Il B)
on_elthat acquires u_sgble data over the fuiIStt_aradla_ln)s tbf and proceed to show that within the linear approximation
C™" operation is trivial: Welapply a C?”V‘)'U“Q” WIth@ " [Eq. (8)] the maximum likelihood estimator reduces to the
kernel with multipoles C7),;=(C,)"~. The inversion is  gptimally weighted quadratic estimaté®ec. 11l O). We ex-
more difficult on a portion of the sphere, as discussed iymine our ability to reconstruct the primary CMB anisotropy
Sec. V. 0 in Sec. llID. We conclude in Secs. llE and Il F by

Finally, we make use of the notation derived from linearexamining the limits of validity of the linear approximation.
algebra: our “column vectors” are functions di, and our

“matrices” are linear operators on this set of functions: A. Likelihood function
Av(X)= [ oA(X,y)v(y)d?y. Example uses of this notation

areu’s = [ qUuud?n andAT(x.y) = A(y,x). Likelihood maximization is a generally applicable method

to statistical estimation problems. A statistical estimation
problem involves a data set, in this case the measured CMB

temperature fluctuatior®(n;) at N points{nq, ... ,ny},

We analyze the likelihood function for gravitational lens- which has a probability distribution determined by a set of
ing because this function retains all of the information pro-parameters, in this case the values of the lensing potehtial
vided by the observations. In particular, we can compare théhe problem is to estimate the unknown paramederfsom

“optimal” maximum likelihood estimator§MLESs) to previ-  the observation®. We represent the probability distribution
ous results. We examine the relationship between the quayy a density functiorP, which is related to the differential

dratic estimators and the likelihood-based estimators and thﬁ*obab”ﬂy dII for Obtaining temperature measurements be-
criteria for their equivalence, i.e. for optimality of the qua- tween@)(n-) and(n-)+d(:)(n-)'
dratic estimator. In this section we are attempting to estimate : : v

@ based on the measured temperatuesand so we will dH:p((:)|q))d(n1). . -d@(nN). (1)

treat® as a random variable whose distribution depends o

the fixed parameter® (x). We will allow ® to be a random h | & that vields the | tval e th I
field when we consider its statistical propertiésg. the feq;/a#eo Idahyle E € argesl_\k/alueéf €. evahue b
power spectrun€®®) in Sec. IV, of ® that would have been most likely to generate the ob-

We will see that the lensing potentidl is detectable be- served®. While this method is very general and can be
cause its presence breaks spherical symmetry and thus caug@plied to a wide range of problems, maximum likelihood
correlations between the different spherical harmonic modegstimators MLE’s) are frequently very difficult to compute,

- : as is the case here.
of the temperature fiel®, i.e. it creates off-diagonal ele- For convenience, we will work not with the likelihood
; ; 00 _ /T ; !
ments in the covarianc€™”=(0©®") when expressed in fnction but with its negative logarithn, which is defined
the spherical harmonic basis; this is manifested in real SPagsy the relation
by an anisotropic correlation functid@®®(x,y). Since these -
off-diagonal elements are, in the linear approximation, pro- L[®]=-InP(O|D). (12

portional to the lensing potentiét, we could taked®@T asa  |f we assume Gaussian instrument noise of covariae

; ; OO i i . A . . .
crude estimate of the covarian@® and form linear com- e find that for fixed®, © is a Gaussian random field with
binations of the off-diagonal elements to construct an estimagzgyariance
tor for @; this is the essence of the quadratic estimator meth-

ods[2]. (In the presence of instrument noise we meagre COP[@]=A[P]COPA[®]T+C*, (13

and not® but the idea is the sameNote that while some \yhere the transposk of the linear operaton is defined by
guadratic estimatorée.g. Ref.[1]) have been derived from T(x.y) = A(y.x). The probability density ob is then re-

considering the magnification and shear of small-scale CM ated to its covariance via the usual relation for a Gaussian:
features by larger-scale lensing modes, in analogy to the '

lll. LIKELIHOOD ANALYSIS

I1‘he maximum likelihood estimation method simply selects

weak lensing of galaxies, such a picture is not essential to the 1 1 .
quadratic estimation framework—quadratic_estimation is p(@|d)= _ exp( S (:)TC@)@—l) .
possible whenever the linear approximatiorad8® is valid. (27)N2\/ detCc®®

The likelihood method, while somewhat more involved, is (14
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Combining this with the definition in Eq12) and the stan-
dard Gaussian probability density formula, we find that

L[d]= % OT(COD]) 16 + % In detCO®[ @ ].
(15

In some cases, we will use a Gaussian random prio®foin

which case we will use the negative log posterior probability

P in place of the negative log likelihood. The Gaussian
prior for & is

1

(2m)N?\/detC®®

1
P(®|C*?)= exp( - E(IﬂC‘I"I"l(D) :

(16)

whereN is the number of pixels in the map. From this the

negative log posterior probability can be determiried to
an irrelevant constanto be

1. - .
PlD;C*?]=L[D]-InP(P|C*?)= > CH{AN I RC)
1 - 1
+ 5 INdetCO¥ D]+ 5 dT(CH) 1o

1
+ = IndetC®?,

> 17

C<I><I>

where is the covariance of the prior fab.

B. Likelihood-based estimators

We construct estimators for the lensing potendialising

L andP by setting their functional derivatives with respect

to d(n) equal to zero. Differentiating Eq15) gives

SC[®] 1. o 5COO[d] o .

=~ 5 OT(CO@]) L (OO ) 16
1 [ e 8Co%[@]

+5r (CO9r@]) —p (18)

Using Eq.(13), we calculate the functional derivative of
Cco%9ld]:

5CO[d](y,z

) o A[PI(zy')
e = | arercooyyn o

2\,
5o 9

+ transpose. (29

We differentiateA using Eq.(7):

PHYSICAL REVIEW D67, 043001 (2003

1)
G (ALPTv)(w)

oD (X)
SVP(x')
= 2/ .
fndx oP(X)  SVD(X)

=[P (W=x)]- (A[P]Vv)(W).

(A[®]Jv)(w)

(20)

Using this relation and integration by parts, we convert Eg.

(19) into
5CO°[0](y.2)

_ 2\, 006 ’

X[V,6(z=x)]- (A[®]V)(z,y")

+transpose
=[V,69(z=x)]-(A[®]VCOOA[®]T)

X (z,y)+transpose. (21

We also express the trace as an expectation value using the
identity Tr(X)=(uXC~u) with u drawn from a Gaussian
distribution of covarianc€, and integrate by parts again to
yield

SL[D]
5

=V.[6(CO°[@])TA[D]VCP®

X A[®]7{COP[®]) 18]
—(V-[O(COO[D]) IA[D®]VCO®
X A[®]{COP[@])201]). (22

The functional derivative ofP differs by the addition of a

C®®~1d term. The maximum-likelihood estimatdr for ®
is then the solution todL/6P=0. If we then define the
likelihood gradientG[ ®] by

D)= 25 _v.[(COO[d]10)A[H]VCOO

50
X A[D]HCOO[D])"16

—((CO®[D])"20)A[D]VCO®

X A[B]-1(CO[d])10)], 23)
then the maximum likelihood estimator becomes
G[d]=0, (24)

whereas the mode of the posterior probability distribution
(i.e. maximum ofe” ") is the solution® to

d=—-CPPG[D]. (25)

In deriving Eq.(23), we have dropped boundary terms. In
our implementatioriSec. \) we simply do not work near the
survey boundaries, however, the formalism can be general-
ized to include these by setting*“=< in the unscanned
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regions. This does not cause numerical difficulties because
the infinite eigenvalues @< (and henc&®®) become null

eigenvalues o991 [11].

As a final note, the expectation value in Eg3), which :J De—g(cmé)
derives ultimately from the determinant in the Gaussian
probability density, is small when the noise is small“{
<C%9) and we are far from the boundaries of the region ofwherem andn are the matrix indices of the matrix of second
sky surveyed This is because substituting the zero-noisderivatives. We may compute the last integral by requiring

limit for ® and COO into the expectation value converts it that the probability distribution fo® be properly normal-
into ized:

mn%<an>|<D: f D(:) P(é)l(b)an

S2L(D|0)

5D 0D, 29

A[DI{[(CO®) 1OV O}). (26) 1= f DOP(O|d)= f DHe LOD) (30)

We next note that for a statistically isotropic unleng2énd
an all-sky survey, the expectation value in E86) must
vanish because it is a two-vect@re. a vector onS?) and
hence a nonzero value would pick out a preferred direction. -
Near a boundary of the surveyed region, this argument fails o—— [ poe-c@l®) S°L(P]0)
because the boundary breaks rotational symmetry. The ex- o € 5D 6D,
pectation value in Eq(23) thus acquires a nonzero value

Taking the second derivative of this equation with respect to
d gives

only in the presence of instrument noise and boundary ef- _c(B|®) ,c(q>|(3)) 5/;(c1>|®)

fects. Conceptually, we understand this as a property of Eq. + f DOe 5D, 5D, (31
(13): noise adds th&€< term to C®?, while boundary ef-

fects alter the unit determinant df. Without these effects, which enables us to rewrite ER9) as
detC®®=detC®®=const, and the expectation value in Eq.

(23), which is merely a derivative of the log determinant, SRR L(P|O) 5L(D|O)

vanishes. We further note that modes with large nofS€ ( an“f DOe 5D, 5D, =(GmGn)-
>C%9) do not contribute t@ because of th€®® 1 which (32

appears twice in Eq(23). Since most CMB experiments

have only a small range dffor which C¢¢ andC®® are of ~ Thus the matrix of second derivatives is simply the covari-
the same order, and it is only in this regime and near boundance of the likelihood gradientNote: we will call the matrix
aries that the expectation value in Eg3) is important, we  of second derivatives the Fisher matrix even though the tech-
will neglect the expectation value in the remainder of thisnical definition of the Fisher matrix differs frort for a

paper. That is, we approximate non-Gaussian likelihood functionWe choose to evaluate
at ®=0 (no lensing for convenience, although within the
V. [(OOrHT-1A 2 00 Gaussian approximatioRr can be evaluated anywhere. At
GLP]=V-[(C [(D]A A®)A[¢]VC ®=0, Eq.(27) for G simplifies dramatically and we have
XA[D] H(COC[D]) 1O, 27 T T
F~(GG")|gp_o~(V-[(C?®~1O)VC?°C? 10]
C. Linearized version of MLE X{V- [(C(:)(:)—l@)VC@)@C(:)(:)—lé)]}T> (33)

In order to connect Eq24) to previous work on quadratic
estimators, we approximate the right hand side of the equaNhich is recognizable as a four-point correlation function of
tion to linear order inb: G~G,+F®, where the likelihood @, |f we switch to the flat sky approximation, and assume
gradientG is compuzted from Eq(27), F is the matrix of  the noise is isotropicC®® andC< become diagonal in Fou-
second derivativess"L/ 5P 6® (independent ofd in the  rier space. Then we can compute the four-point correlation

Gaussmn apprgxmatl()mand G, is equal 10G evaluated function for Gaussia® using Wick’s theorem:
with no lensing:

Go=V-[O(COO+Ce€)~LyCcOO(CO®+Ccee) 1] (6,,0,0,0,)=Cf 0Cf§°5|1+|3 081,+1,.0
(28
. . . + C'?@C'G;@éll“woé'z“@o
In order to obtain a quadraticather than merely a rational o
estimator, the approximate curvature maixnust be taken +CPocP9s, 1,00 1,0- (39
independent o®. We will therefore replace it by its expec-

tation value(F) averaged ove®. This expectation value is This gives the result foF:
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Fu

1 [L- (|1C|(")l(")+|zC|(Z®)]2 cause our instrument gives us one function on the €kyit
Zﬁf - ly 00  mec ~00  ~ecr (39 is not in general possible to simultaneously reconstruct the
p+l=t (Cll +C,l)(C,2 +CI2) primary CMB anisotropy®, and the lensing potentigb. If
the CMB and lensing power spectra are given, however, we
Equation(35) is recognizableapart from a factor of 4/L?  can use the power spectra as a prior and construct a Bayesian
due to normalization conventipras the noise variance and posterior probability distribution fo® and® and maximize
optimal weighting derived by H{2]. We use the flat-sky it. While this does not permit determination of the primary
approximation only to compute the noise curves in Fig. 3; inanisotropy to arbitrary accuracy, it is the best that one can
our simulations we will evaluaté via a Monte Carlo tech- hope for if only the lensed CMB temperature is available.

nigue (see Sec. V B The determination of the lensing potential and primary CMB
We can then construct the maximum likelihood estimatorPower spectra is discussed in Secs. IV B and IV D.
for ® under this approximation, To estimate the primary CMB anisotro®y, we take a
Gaussian prior for both the primary CMB and the lensing
: _ 1A -1 A eey—1 otential. This gives us a joint posterior probability distribu-
Pue=—F "Go=—F V- [0(CT+C™) 'Ei)on for @ anddg of e ®, v{/herepR is giveﬁ(up to a¥1 addi-
xvc(ﬂ(ﬁ(c(@@_{_cés)—l@]’ (36) tive constant by

. . . 1 1
and the corresponding approximate mode of the posterior R[O,D]==07(C?°) "0+ -dT(C*?) 1
probability density: 2 2

. ~InP(0]0,d), 38
(I):—[(C‘D‘D)fl_y F]flGO ( | ) ( )
=—[(C*®)~14F] L whereP(0|0,d) is the conditional probability of observing
R ~ temperature® given a primary CMB temperatur® and
XV-[0(CPP+Ce)~1vco9(Cc?9+Cce)10]. lensing potentialp. It is readily noted thaP is simply the

37) instrument noise curve, which we take to be Gaussian:

R 1 . R
Both of these are recognizable as quadratic estimators, i.e-InP(0|0,®)= §(®—A[<I>]®)T(C“)‘1(—A[d)]).
they are second-order polynomials@ By spherical sym- (39)

metry, if 0 is statisticzilly isotropic then the vector quantity Equations(38) and (39) formally express the joint poste-

in brackets, and hencg, will have expectation value zero. rior probability distribution for® and®. In order to recon-
Thus EQgs.(36) and (37) are measuring the deviation f struct the primary CMB, we integrate out the lensing poten-
from statistical isotropy that arises from lensing by a potendial to find the negative log posterior probability distribution
tial ®. These deviations from statistical isotropy in position- R for @:
space appear as correlations between different spherical har-
monic modes in harmonic space; see REl] for the e_ﬁ[@]:f Dpe—RIO.]
associated harmonic-space estimator. It can be sh@jithat
within the linear approximation, Eq36) provides an unbi-
) X 1.

ased estimate for the lensing potentialvhen averaged over = f Db exp{ —Z(O-A[D]O)T
an ensemble of primary CMB anisotropi®s 2

Having determined these approximations, we consider the

conditions of their validity. The linearization of the right XCe HO—-A[P]O)
hand side of Eq(20) clearly corresponds to a Gaussian ap- 1 1
proximation to the likelihood function, with the second-order -3 0'c%9 1p - 5q)T(:‘I"I’—lqp . (40

Taylor expansion of. carried out around = 0. This can be

expected to be valid when the maximum likelihood point isThis equation is difficult to evaluate. In the linear approxi-
“near” ®=0 in the sense thab<,"/L" (where the’ de- mation, however, we may replac\[®]O with ©
notes a functional derivative with respect®). Therefore it +V®-VO: this makes the integral Gaussian, so it can be
would be reasonable to expect that the estimators in Eqg.aiuated analytically to give

(36) and (37) break down when the lensing effects become
large, i.e. wherC®® becomes sufficiently large. We analyze
this possibility analytically in Secs. Il E and Il F and nu-
merically in Sec. V E.

R[O]=- % qoe1(Ccr* i+ 0] g e]

1 1 - “
. . +-07C?" 19+ -(0-0)"C 1(0-0)
D. Reconstructing the primary CMB 2 2

We next wish to reconstruct the primafynlensed CMB

1
- - D1
from observation® of the lensed temperature field. Be- * 2 IndetC 0D, (42)
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where and its covariancé.e. inverse curvatuyeas

g[@](x)zv[[cee—l(_@)]VG)](X) (42) COV[@]:[Cee—l_(CesH[(:)]T—1Cd>d>—lH[®]—1Cse

and +Ce) 4oL (48)

O1(x,y)= (Ve ) (V) [VO(X)C (x,y)VO(y)].
ABIN =T ) (W )IVOR) (VO] It is instructive to compare Eq47) to other means of

43 estimating®. Note that determination o is a nontrivial
Note that we have used integration by parts to wi{e | task since both lensing and instrument noise must be taken
and g[®]. The matrix 7/{®] is manifestly symmetric and into account. In the limit that lensing is negligibl€??®
can be seen to have all nonnegative eigenvalues as foIIows_:>0), we derive @ pga=(C L1+CO0 1) -1cee-1G,

if we take any real ma , then L : ) , oA
T Y KO) which is recognizable as a simple Wiener filter@f In the

XTAOIX=(VO-VX)TC (VO VX). (44) opposite limit, where instrument noise is negligible com-
pared to the effects of lensinge. C*“—0), we derive

Since the inverse noise matri€<¢~ ! is symmetric and
positive-definite, this quantity must be nonnegative. Indeed, ce—1_ (e qr OIT—1ADD 111 @1 Leet ~eey—1
this can only be zero iW®-VX=0 everywhere, that is, X c (C*H[O]C HLO ] "C=+C%)
is constant on flows oV ®. If we have all-sky coverage and ~H[OTT1C®P~1Hr @7 L 4
is well behaved, then all of the flow curvesv® connect [e1c (0] 49
at the maxima, minima, and saddle points @f conse-

quently in this caseF is positive-definite except for the con- Via @ first-order Taylor expansion i@®®~1. Substituting

stant|=0 mode. Consequently, the mat@®® -1+ 7 @] this into Eq.(47) yields

must be positive-definite, which is required for E41) to

make sense as a probability distributiGhis was also im- @PEAK:(H[(:)]T*1CCI><1>*1H[(3)]*1+ coo-1)-1

plicitly assumed in doing the Gaussian integrale next R R R

define the(not symmetric) matrix H[ @] by XH[O]T1Cc?*H[O] 10, (50)
H[®]X=V0O VX (45)

which is recognizable as a Wiener-filtered temperature map
so thatZ]®]=H[®]TC 1H[O]. We can see, using inte- with H{®]C®®H[@]T playing the role of the noise covari-
gration by parts, thag[©@]=H[©]TC* }(©—0). ance. This is not surprising sindé[® JC**H[O]T is the

To make further progress, we use E45) to rewrite the

) - ) covariance of the temperature change due to Iensfhg,
first term on the right-hand side of EGt1):

— 0, and under our assumptions the correlation betw@en

_ 1 . —0 and O vanishes. Further simplification is possible by
R[O]=-5(0 —0)T(CeH[O]T tcP? ! noting that, for zero noise, the likelihood gradi€ of Sec.
i Il C may be written asGy=—H[®]TC®?®1@. Then the
XH[O®] 1C+C*) 1(O®-0) Fisher matrix of Sec. lll C can be approximated as
1 N ~ 96 — 06 —
+507(C°) 10+ 5(6-0)'C 1O -0) F=(GoGp)a-o=(H[O]'C?*'0OTC® H[0])
L :<H[®]Tc®®fl<®®T>C®®le[®]>
+5Inde(CT* "+ A O]). (46) —(H[O]C®® H[@])~H[O]'C® H[O]. (51)

Even this equation is too complicated to be useful in this(The last equality on the first line is justified as follows:
form, so we will make the replacemert§ ®] —H[®] and  sinceH[O] is a linear function 0f®, and® is a Gaussian
F[@]—>F[@)]. This converts Eq(41) into a Gaussian pos- random field,® and H[®] are jointly Gaussian. Thus the

: e P : tation value of the four-point  function
terior probability distribution. The peak of the posterior epoecT 00—10 @ T~OO-1 )
probability distribution is H[O®]'C 00'C H[®] can be expanded using

Wick’s theorem as a sum of three terms, each of which is a
product of two-point functions. Sindg5,)=0, the final ex-

_ ee—1__ €€ AN1T-1~dd—1
Opeac=1C (C*H[O]"C pression on the first line of E451) is the only nonvanishing

YHIO1 lCe+ cee) 14 00 -17-1 term) If we further assume that the lensing effect can be
HIO]Cere 7+ C ] treated as a perturbation on the background CMB—an as-
X[ceefl_(ceeH[@]Tflclblbfl sumption that we have made already through the linear
. ~ approximation—we can approximak$] ® [=H[®], which
XH[O®] 1C+C) 110, (47  allows Eq.(50) to be rewritten as
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O peax=H[O](CPP 14 F) 1P 1H[H] 10 CO®(x,y) = C(x,y) + COO(x~y)
—O—H[O](C*® 1+F) FH[O] 16 +[VO(X)=Vd(y)]- VCOO(x—y)
=O—H[O](C** 1+F) H[0]C®° 10, + ;[V@(x)—WI)(y)][V(D(x)

(52

—V®(y)]:VVC29(x—y)+O(P3). (55
Using Eqgs(28) and(45) and integration by parts we see that
H[@]C*@)z —G,. Also, comparison of Eq45) to the  We note that ifV® is slowly varying compared to the sepa-
lensing operator definition, Eq7), indicates that in the lin- ration of x andy (that is,Ly<1 wherey=|x—yl|), a near
ear approximationA[®,]0,=0,+H[0®,]®,. This allows cancellation occurs between the linear terms in(&f). This

us to simplify Eq.(52) to cancellation reduces the squared expansion paranfter
A A from LC®12 to 42L°C{"®I2. Sincey can take on a wide
Opeac=0+H[O](CP* 1+ F)1G, range of values from the scale of the lensing made?,
R down to the limit of the instrument’s resolutidg.,, it is not
=A[(C**1+F) 1Go]0. (53  at all clear how to proceed analytically with this approach.

This is the observed temperature map “corrected” for lens-
ing using the Wiener-filtered potential map, E§7). It is
thus the temperature analogue of the approach used in Ref. Another way to measure the importance of nonlinear

F. Bias of quadratic estimator

[12] for reconstructing primary polarization. terms is to compute the bias in the quadratic estimiiay.
(36)] for @, over an ensemble of primary CMB anisotropies
E. Onset of nonlinearity ® and instrument noises with the same lensing potential

®. This bias vanishes in the linear approximatj@n It can
be computed by noting that the expectation valu@gf (s
is a linear combination of covariance matrix elements of

C®9. We first switch to working in Fourier modes on a flat
~ 1 _ 3 sky; in Fourier space, the two-mode correlation function of
O=A0=0+VO-VO+VOVE:VVO+O(D). the observed temperature is given by the Fourier transform

(54) of Eq. (55):

We examine the validity of the linear approximation lead-
ing to Egs.(36) and(37) using the real-space Taylor expan-
sion of the lensing formula, E):

The quadratic estimator was constructed based on the first-(@),l(:),z):(Cfer Cr?) 31, 1,0

order (i.e. orderd?) effect of lensing onC®®, which ne-

glects the second-order and higher terms in (&4), as well L
as the covariance of the first-order term. Thus we expect that N
this approximation will be good if the ratio of successive

termsR in Eq. (54) is small. As a simplgand naive) first

(I1+12) - (LG +12C )Py 4y,

006
approach to determining when the linear approximation is + 8 %‘4 CDkl(I)kz[(kl'll)(kZ'll)Cll
valid, we note that ifL denotes the typical multipole @b,
and | denotes the typical multipole o, then R=LI®. +(k1.|2)(k2-|2)c,‘2®—2(k1-3)(k2.J)c§"“’

Since the mean square value ®fis roughly L°C??, we
find that R?~L*C’®1?, so the linear-order approximation
breaks down aC®®>L "% "2 Given thatL*C’® has a
maximum of approximately I(°, we would then conclude
that nonlinear effects could become importantl 21000,
i.e. Planck (ha=1600) and higher-resolution experiments
might be susceptible to these effects. 1
A more refined version of this analysis would examine the (Deq 36)6.L =Py = El Oy Dy |El Yo,

+
covarianceC®®(x,y) of the observed temperature instead of 32m%%F X
simply the temperature fluctuation. This is because for the 06
long-wavelength lensing®) modes, the second-ordebf) XLke- ) (ke 1) Cr 7+ (Ky o)
corrections to the covariance are significantly less than cal- 00 _ 00
culated by the naive method above. Conceptually, one can ><(k2-I2)C|2 2(k1-J) (k- 9)C571,
understand this by noting that, because the primary CMB is (57)

statistically isotropic,C®® is sensitive to the relative, not
absolute, deflection of photon trajectories. In the flat-sky apwhere we have seb=L—1;, k,=L—k;, andJ=k;— 1y,
proximation we have and

(56)
where we have sét,=1;+1,—k;. Then we may use this

two-mode correlation function to evaluate the expectation
values of Eqs(28) and hence the quadratic estima(86)
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R for different experi TABLE |. Reference parameters for CMB experiments.
j MAP dyr ——
oanck T ; -1/ : :
high res. -~ Experiment w~+92.725 K radian o/arcmin
Pt MAP (4 yp) 5.6x 10 8 13
oy i Planck 2.%10°° 6

High-res. 5.x10 %0 1

(25), without the small and computationally difficult expec-
tation valug and linear[Eqg. (37)] lensing potential estima-
tors. There we find only mode$t0—-20% improvement in
the rms error of the lensing potential reconstruction even for
a high-resolution1 arcminute beajnexperiment.

Nonlinearity parameter, Ry(L)

0.01 |

Multipole, L

IV. POWER SPECTRUM ESTIMATION
FIG. 1. The dimensionless nonlinearity parameRgr equal to Having constructed an estimator for the lensing potential

the ratio of rms bias in the quadratic lensing potential estin{&qr @, we next consider its power spectrlmq"b Conceptually.

(36)] to the rms value of the potential, is plotted here for several,o iy ation here is more complicated because once we av-

experiments as a function of multipol@ave number Note that

) Lo . ) r ver an ensemble of lensin ntial rived from
this quantity is less than unity for all of the experiments. See Tablee age over an ensemble of lensing potentials derived fro

| for experiment parameters. the same power spectrum, the lensed temperature @Giekl
once again statistically isotropic with®®T) diagonal in
L. (|1C|@i®+|zcl@;®) harmoniq spacegThat is, the off—diagonal elements average
b= T80 e 66 i (58 to zero sincg®)=0.) But we can still cor!struc_t an estima-
(G +CIC +C) tor for C*®=(®®T) by taking the quadratic estimator fdr

and computing its “square.” The resulting power spectrum
We can then compute a mean-squared bias by squaring thgtimator is thus constructed from the four-point correlation
bias and.ensemble averaging over (Note that since differ' function of ® or (in the presence of noi};e(:). It is thus
ent Fourier modes of are uncorrelated, the terms in the ) . - - .
sum overk, will usually add incoherently. The exception to Measuring deviations d from Gaussianity. We will show
this rule is that terms related by switching and k, are tha.t in the linear approxmatlon,. the maximum likelihood
equal, so the mean squared value of the sum is double tffestimator reduces to the quadratic estimator. o
value obtained by summing the mean square of every term. We begl_n this section by formally writing outq;[he likeli-
This mean-squared bias is then given by a quadrilateral intd?00d function for the lensing power spectu@?® as an

gral: integral, and then approximating this integral as Gaussian in
Sec. IVA. In Sec. IVB, we approximate the curvature
(169 1%)e=(|((Peq @6)0.c—P)Do (inverse-covariangematrix of this Gaussian in order to ob-

tain a maximum likelihood estimator that is computationally
tractable. We show in Sec. IV C that within the linear ap-
proximation, the MLE and quadratic estimator are equiva-
lent. Computation of the primary CMB power spectr@f®

1
2 OO ~DD
X 512:°F2 J PhaCiy g

2 ) _ 00 _ is considered in Sec. IV D, and cross-correlations, 64",
X fd LYy LRl (ke 1) G (kg 2) are considered in Sec. IV E.
2
X (Ko I2)Cg®—2(k1~J)(k2-J)C?®] . (59 A. Likelihood function and Gaussian approximation

o _ In principle, we could estimate the power spectr@i®
We can thus construct a nonlinearity param&egthatis the 1y constructing a grand likelihood functiaghgiven (up to an
ratio of the rms bias to the rms value of the lensing potentlalzadditive constant t. or equivalently a multilicative con-
R5=(|6®|?)/C® . This nonlinearity parameter is plotted o » 0T €d y P
as a function oL for three experiments in Fig. 1; the param- Stant toe" =) by
eters for the three experiments—MAP 4-year data, Planck,
and a future high-resolution experiment—are shown in Table L=— |nf DOP(d|CPP)e F=— |nf DD
I. The R, nonlinearity parameter is small for all but the high-
resolution experiment, indicating that the bias in the qua- 1
dratic estimatofEq. (36)] is small. X ex;{ —L[P]- E‘DTCM_lq’)
As a final means of testing the importance of the higher-
order terms in the expansion 6°°, we conduct a numeri- — f _p
« ; . . =—In| Dde ", (60)
cal “experiment” in Sec. V that compares nonlinegqg.
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where the integral oveP® is a functional integral with the — _ o At
usual measure oRN whereN is the number of pixels inthe  £[C, 1= —|nJ DPe " a

map. Note that is a function of the covarianc8®®; how- L

ever, we cannot simply maximize the grand likelihood func- _ _ T HTedo-1

tion, Eq.(60), and thus obtain an estimate 6%, because B Inf b ex;{ LLe] ZCD ¢ (b)

our map provides us witl real observations where&@s*®

hasN(N+1)/2 independent parameters. In order to obtain a ~ _|nf DD exr{ —PD,.,CP?]

meaningful result for the power spectrum, we must restrict min e

the form of C*®. Fortunately, the spheric®O(3) symme- ) b

try of the sky provides us with just such a restriction—it _ }(q)_q) T AL Prin.Ca ](q)_q) _ ))

forcesC®? to be diagonal in space. We will thus assume in 2 mn 5P 5P min

this section thaC®® can be written as a linear combination, 5 S
7)[(I)minacoz ]

1
_  ~DDy,
PLP min,C, ]+2Inde 505D

CP®(x,y)=2, C¥®C,(x,y), 61) .
’ =P, CH ]+ Indetk, 63

where thea’s are indices labeling the basis cov%riance funCyyhere the curvature matri (the matrix of second deriva-
tions and we wish to evaluate the coefficie@$® . There tives of P with respect tod, evaluated atb,) has been

are two interesting choices of basis functiop. The firstis  jntroduced and an irrelevant additive constant has been

the Legendre polynomials, which span the spac8®t that  gropped. Using Eq(63), we seek to minimize the grand

are pon3|stent_ with symmetry requirements. These baSIITleIihood function£. To do this, we differentiate the final
functions are given by

result of Eq.(63), yielding

L

21+1
C|(X,Y)=?P|(X‘Y)- (62 0= PR T T

1
(P[@min,ch’]+ 5 n detK)

This results in coefficienté‘,l‘l"p that are the power spectrum P 1
of . The other choice, useful in the low singal-to-noise = IGO0 + EW In detK|q>min
ratio (SNR) case, is to add several functions of the E&R) @ @
type together to boost the overall SNR, i.e. to estimate the 1 9T 5indetk
: : R min

lensing power spectrum in a band rather than for each indi- 5 o0 o
vidual I. In this case the coefficie@®*® is a weighted aver- 2 4Cy o
age of the power spectrum over the rangé @dlues covered
by the basis functio,, . where the finalchain-rulg term reflects the shifting position

We have now set up the maximum likelihood estimation®y;, of the minimum as we chang@®®. There is no cor-
problem for C*®. Before proceeding to compute the responding chain-rule term foP because at the minimum,
maximume-likelihood point, we warn the reader that there is6P/ 6P vanishes. We may now evaluate the derivativePpf
no guarantee that the likelihood function is devoid of localnoting that only the prior term in Eq17) has a dependence
maxima. Most of the methods described here cannot avoidn C*®. Combining the log-determinant @&®® from the
local maxima, nor can they be readily adapted to detect locgbrior with the log-determinant oK in Eq. (64) transforms
maxima. The exception is the Markov chain method, al-Eq. (64) into
though the number of iterations required to escape from a
local maximum may be prohibitively large.

Since N is a large numbeftypically 16-10), brute-
force integration of Eq(60), does not appear feasible. There
are at least two conceivable approaches to this problem: a

, (64)

min

P

1
0=— 5 ®r(C"") 1 (CP") Dy,

o0
Markov chain(MC) integration, or a Taylor expansion of the ts JCPP Inde(C* Kl
integrand. While the MC approach is dramatically faster than “
a brute-force integration, it is apparent from the high dimen- T

) ; . : ) 1 9P, SIndetk
sionality (one dimension for each map pixelf the problem 5T oo s (65)
that many iterations in the sequence will be necessary for 2.4Cy o ® i

convergence. We have not found a computationally feasible

implementation of MC for this problem. The alternate ap-At this point we are confronted with the difficulty of com-
proach is to Taylor expan® to quadratic order ib around  puting the curvature matriX. Unfortunately, brute force
its minimum ®,,;,, i.e. to approximate the posterior prob- computation ofK requiresO(N?) computations ofP, each
ability distribution ford as a Gaussian. This gives of which must require at leasd(N) elementary operations
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since it accessdd data points; in practice, a computation of far from our boundary, we can solve EJO) directly. To do
P involves spherical harmonic transforms consisting ofthis, begin by examining Eq.70) in | space(assuming di-

O(N®?) operations. agonality:
2
B. Approximating the curvature matrix | Pl _ 1
i M (CP™)2 P4t (7
In order to compute the curvature matrix in E§5), we @ a @

split it into two parts: the curvature of the likelihood function

(F, which is the Fisher matrix in the Gaussian approxima-yhere the sum is over the, lensing modes grouped into the
tion) and the curvature of the prior, which is always pand «. If we now take the multipole moment,,,
(C?*®) "L K=F+(C*®®) "1, This provides us with the iden- —(C** 14 F.)1Gy, given by Eq.(37), we derive
tity “ “ " '
CP*’K=CP’F+1y«n., (66) 1
Ce' =gz 2 |Goml®~F. ", (72

where 1« denotes theN X N identity matrix. We use the
value of F from the Gaussian approximatioR=(GG"). If
we are far from boundaries or regions of nonuniform noisewhich is the same result derived by H8] in the flat-sky
F is diagonal in harmonic space and we may approximate iapproximation(It is valid in the all-sky approximation if we
in bins accordingly: re-interpretF and G, as all-sky variableg.

1
Fix,y) =2 [F .Culxy)=2 = Cu(x)y), (67) D. Primary CMB power spectrum

The grand likelihood functiort defined in Eq(60) con-
where the last equality defines the binned Fisher m&tix  tains the complete dependence of the probability density of

. . . _ T ~
In this approximationF=(GG") reduces to O on the primary CMB power spectrurG®®. Thus it can
L be simultaneously maximized ov&®® and C®?. We first
F.,=—(G"C,G), (68) parametrize the primary temperature power spec@itfl in
da analogy to Eq(61):

where the expectation value can be computed by a Monte
Carlo analysis, and, is the number of lensing modes in the
band covered by,. Technically it is best to compute the
Fisher matrix at the value @b ,,, however for purposes of . . . )
computational tractability we only compute it onceGt®  where theV,’s are the basis functions. Then we differentiate
=0, ®,,,;=0 [see Eq.(96)]. In this approximationsK/5® the Gaussian approximation, E(4), with respect to the
vanishes so we will drop the final term in E(@S) We can coefficientsCS(") to dete_rmine the condition for maximiza-
then differentiate the log determinant 6 ®K with respect  tion of the likelihoode ™ %:

to a power spectrum coefficient:

COxy) =2 C2OW,(xy), (73)

aL J 1
— ~ . P -
coa N de( C®®K) =T (CP®F + 1y n) ~1C.F] 0= o —aCS@(P[q)mln’Ca J+50n detK)
=Tr[(C*®+F H~1c,]. 69
[( )" Cal. (69 1 -
With this approximation, Eqg65) and (69) give N acf,?@ + 2 5C§)® ndet |<1>min

1 bl Sndetk
2 5000 5D

@Liac:‘”)*lca(c%*1<I>mm=ci,?“ﬁl, (70 (74)

cI)min
where the denominator in the second term usesGfi&
value appropriate for the range of multipoles covered by th
a basis function.

MVe proceed in analogy to our analysis of the lensing poten-
tial power spectrum in Sec. IV B. We neglect the change of
detK with ®, thus eliminating the last term in E¢r4). We
can simplify the first term by noting tha consists of a prior
and the unmarginalized likelihoog, the prior has no depen-

If the lensing is sufficiently weak, i.e. if we are in the dence onC®®, while the unmarginalized likelihoofgiven
linear regime(see Sec. Il i and we are only using th@'’s by Eqg.(15)] has derivative

C. Linearization
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. . 27__ ~7Z 1 g4 Z0_ ~ZD

iZ_E@TC®®71A[CD]W A[@]TC®®71@ CI _C| +C| and C| _Cl y (79)
00 2 @

9C so that estimating the cross-correlationZodnd ® becomes

1 06 equivalent to measuring the desired correla@if . We can
- 001 T
* 2Tr(C A[PIWLALP]). (79) then construct the likelihood function
Combining this with Eq.(74), and using Eq(66) to elimi- = oD ~7Zd !
nateK in favor of F in the last term, gives us LIC, " .Co7l=~In| DPexp —L[P]-5| o
1 “ o R CZZ CZCIJ -1 Z
_ A3T~O0-1 T~O0-1
0——5 C A[OIW,A[P]'C (C) X oz oo (q)” (80
n ETr(C(:)(:)flA[(I)]WaA[(D]T) Thg egtimgtors of Secs. Il B gnd IV B _need qnly_minor
2 modification in order to do a joint maximum-likelihood
L e analysis ofC®® and C?®. To see this, note that for a joint
+ 2T (Frcre-y-1 T | (76) d|str_|but|on_ with specified covariance, the expected value of
2 ,9(;20 ® givenZis
One can readily see that in the absence of lensing, the final E[®[Z]=(®)|,=C**C**"'Z=AZ (81

term in this equation vanishes, tig ®] matrices become . 7771
the identity, and this equation reduces to the standard maxivhere we have defined the slope matx C“C*“"~. The
mum likelihood result for CMB power spectrum estimation; Varance giverZ is

1. o . A 1 . C(D(D|ZE<((I)_<(I)>|Z)2>:C¢(D_ClI“JZCZZ—1CZCI>' (82)
0=-507C% "W, C%° 'O+ Tr(C®~'W,).
2 2 where we have use@Z®(x,y)=(Z(x)®(y)). (Note that
(7D c%Z is the matrix transpose o£“®.) Equations(81) and
(82) are general for any joint Gaussian distribution, hence
E. Correlation of lensing with other observables they are valid here even considering the existence of bound-

We may want to compute the correlation of the Iensingaries' Using them, we can re-write the likelihood function
potential & with some other quantity. Examples could in- [Ed- (80)] as

clude the CMB temperatur®, Sunyaev-Zel'dovich or x-ray _ 1
observations of hot gases, or galaxy maps. Since the focus of £[C®® ,Ci‘D]IEZTCZZ’ 17— Inj DP

this paper is on likelihood methods, and approximations to

them, we will restrict our attention here to the case of deter- 1

mining C® whereZ is an observable which has a jointly Xex;{ —L[P]- §(¢—E[¢|Z])T
Gaussian distribution witllb. This situation is expected to
be a very good approximation for the CMB-lensing correla-

tion C?® introduced by the ISW effect, since ISW is ex-
pected to be apparent primarily on large scales which are still ) _
in the linear regime; some non-Gaussianity in the potentialWhich is of the same form as the firexact) line of Eq.
induced ® fluctuations may be expected from nonIinear\(Isg)t'algg ;:ggg’focé):zganrgé n? . tﬁeheasstir?wc;t?)?sgte\slggee d
growth atl>100[13], but this should have negligible effect ' P

on the expected signal to noise. For the other observablegdarchc?r:]mug(‘;’) p_)aé)[eqr)i[;]czr:gg%qﬁndcres gigvt:j rev\\//(\; ”::Qt
the situation is complicated by nonlinear evolution and theconstrue:t these estimators beforé ’turnirFl) our a%tention to the
method described here should be used with caution. 9

We will neglect any error in the determination &f This problem of estimating the slope matrk that relatesZ to

iS not as restrictive an assumption as it might seem; if WeE[(D|Z]'

wish to cross-correlaté® with an observable that has Gauss- nallifz\év?nar:Zr?#;?:i:(I:egtch:rt:)roirZI:ji boundary, we can diago-
ian error bars, we may write P y

><[Cq’d’|z]_1(¢>—E[q>|Z])], (83

Z=7+¢ (79) v
: Ed|Z|= ?pfcb Z=AZ
. [
whereZ is the measured value of the observaldeis the
actual value, and is the error. If{ is Gaussian and indepen- and
dent ofZ or @, andZ is jointly Gaussian distributed with the 00 _—
lensing potentiatP, we infer the relations C™z=C""(1-pi), (84)
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wherep?? is the correlation coefficient of theh-order mul-  If we take the linear approximation of Sec. Ill E, th@t
tipoles. We note at this point théassumingC%4 is known or ~ ~Gg+F®, and approximate diagonality in harmonic space
has been separately measyrddat the sets of variables as in Sec. IV C, Eq(89) becomes

(cP®,ct?y, (cP?,pf?), and CF'?|;,A)) are merely dif-

ferent parametrizations of the same space of models. We can 7'B,G,
estimate any of these pairsC{®|,,A)) is introduced here A== e . (91)
precisely because it is the easiest to estimate directly. We can Z' B.FB.Z

now immediately convert Eq25), without the trace, to yield
If we note thatC?®=C?%%A,, we note that this is the same
d=E[D|Z]+C*?|,G (85  result as obtained by correlating the linearized maximum

likelihood estimator, Eq(36) with Z. In the case of th® ®

as the mode of the posterior probability distributiovhere correlation Zz), which is of interest for investigating the

G is the likelihood gradient as specified in E@8)]. The

power spectrum estimator result, qu), becomes ISW effect, the numerator is cubic @, i.e. the maximum
likelihood estimator forA, is the same as that computed
Ce?,+F 1 from the bispectrum.
__a @ AT ~
- d G'C.G, (86) As a final point, we note that for th@ ® correlation, the

error {=¢e in Z=0 is not entirely independent of the esti-
whereG in Eqg. (86) is evaluated at the solution to E@®5).  mation procedure fo, since we are after all determinirdig
These equations specify the conditions for the likelihoodfrom the CMB temperature measurements. Since we as-
[_;(C‘P‘D,qu’) to be stationary with respect to first-order sumed{ to be uncorrelated witlb and its determination,

variations inC®®|, with A, constant. In order to complete this is a potential flaw in our calculations as applied to the

the analysis, we must also identify the condition ftobe O correlation. We expect the error induced by this effect to

stationary with respect to first-order variations in thg  be small, since the ISW effect is most important on the large

(slope coefficients in Eq.(84) with C®®|, constant. For scales where the instrument noise is smafic<CcP?®. we

these variations, if we again approximate the Fisher matribadditionally note that the determination @f primarily uses

asF=(GG")|4—o, we derive a constant curvature matkix  information from much highet.

Then, parametrizing th&, in bands in analogy to Eq61)

gives V. IMPLEMENTATION AND RESULTS

B In order to demonstrate the feasibility of computing the

A(x,y)—Z“ AdBa(XY), (87) estimators above in a realistic situation, and to assess their

performance, we ran several simulations in which a data set

where it is assumed th#, and henceA are symmetric. We Was generated and analyzed. The data sets are generated on a

obtain a maximum likelihood condition oA, by differenti- full sphere assuming isotropic Gaussian temperature fluctua-
“ tions, lensing potential, and instrument noise. For Planck and

ating £: the high-resolution reference experimeht {~3500, beam
— full width at half maximunm=1 arcminutg¢, we reconstruct

L P _IL :J 2, 0L 9P the lensing potential and compare the reconstruction and

A, JA, A, Ja ToDP(x) IA, original map. The lensing power spectrum was estimated for

the Planck-type experiment, but computer time constraints

[ o, 0L GE[®|ZI(x) _. prevented a similar analysis for the high-resolution experi-
- ~7'B,G. (89
o  0D(Xx) dA, ment.
Note that we have take® —E[®|Z] to be constant here; A. Utilities

this was merely a convenient choid&ince we have maxi- . . . . . .
mized P with respect tod, we can choose any first-order A lensing smulanon requires the capability to Work_wnh
variation in® without affecting the derivative in E¢g8).] It ~Maps on the unit sphere, or some subset thereof, particularly

follows that the joint maximum-likelihood estimator for the capability to perform the elementary algebraic and calcu-
(C®® A) satisfies lus operations and to perform convolutions and both forward

and reverse spherical harmonic transforf®bIiT). We there-
7B .G=0. (89) fore require the use of a map projection or grid. In order to
“ perform SHT in a reasonable amount of time, we must use an
'E?olatitude projection, i.e. one in which horizontal lines are
parallels of the same latitude. Furthermore, we found confor-
mality to be convenient for differentiation and useful for re-
. ducing gridding errorg§see Sec. VB The only projection
Ci*=Cf*A and CP"=AJC{?+CI"®[;.  (90)  with these properties is the Mercator projection, in which the

We can then reconstruct the full lensing power spectrum an
cross-correlation using the relations
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map coordinatex andy are related to the longitude¢ and  quiring O(N logN) operations, whereas the computation
colatitude ¢ by the formulas ¢=r7(x—Xo) and co® time is dominated by SHT’s requirin@(N®?) time. With

=tanh(y). some attention paid to gridding issues, this two-step process
The conformal magnificatiol defined byds?=T?(dx?  may turn out to be unnecessary.
+dy?) satisfiesI'=7sind. A map of some quantity is An iterative procedure is needed for solving E2p). The

stored as a two-dimensional arréx,y) of values at the obvious iterative procedureb,,,=C*®G[®,], is (in the
points of integex andy. Spherical harmonic transforms are linear approximation unstable for any lensing mode with
performed by transforming first the longitude ¢r ¢) direc- SNR=C®®F>2, and hence is not a good choice. We
tion to produce the Fourier coefficients Afat constant lati-  therefore use the underrelaxed version,
tude and then the latitude (or #) direction. On a grid with
N points, this is arO(N®?) process. Convolutions are per- d,,q=(1-1)D,+fCPG[D,], (93
formed with two successive SHT’s.
wheref is a convergence parameter. In the linear approxima-

B. Estimator for map of lensing potential tion, convergence would require<0f <2/(1+ SNR?), how-
pver, a smaller value df is necessary in practice to avoid
Iinstabilities resulting from boundary effects and nonlinear
lensing effects.

Our implementation presently approximates the estimato
(25) as follows. The expectation value is ignored since it is
expected to be small; see the discussion following (26).

We must also approximate the vector
C. Power spectrum

V=—[(C®°[®] 1@)A[P]VCOPA[D] ! We use EQ70 (o estimate the power SpeciruGi®®.
0 -1Q The basis functions of choice have consttft +1)2CP®

006 1 I
X (CO°[d]) 0], 92 Within some band ,<|<lmax. The number of modes cov-

and use it to determine the likelihood gradiga&=Vv-V. ered by the basis functiaf}, can be estimated as

(Note thatG= 5L/ 6P is a scalar function of.) Because of lmax o) 4 1 AQ)

difficulties computingC 1@ in a reasonable amount of time, da=A(Q)I Z A " am [(Imat 1)2—121.
= 'min

we chose to approximate™ e) by a sequence df) filtering (94)
of A"1® using the harmonic-space kern@®®/(C®®

+C*€) and(ii) convolution with the C,) ! kernel. Of these The estimator, Eq(70), then can be written in the iterative
steps, both break down near the boundaries @ncdreaks form:

down when the lensing is strong enough so that the rofSe

in ® is no longer a good approximation to the noise in

A~10. We note that ifC* were flat(i.e. 12C¢¢x|?), this
approximation would become exact far from the boundaries.
(“Real” instrument errors show some increasedf at high ~ WhereP,, is the projector onto the bang min<I<lmax, i-€.
| due to finite beam sizf14].) In order to reduce gridding the operation that filters out all multipoles not included in
errors, the C,) ~* operation is performed by convolving with this band. We us& ~2G here because it and its spherical
the kernel[I(I+1)C,]~* and then taking the Laplacian. In harmonic transform are already being computed for the esti-
order to avoid boundary effectd, is multiplied by a function ~mation of the map ofb. The parametep is an adjustable
g that is equal to one insid® far from the boundary, but convergence parameter. The Fisher makixis computed
falls off smoothly to zero at the boundary. by the Monte Carlo procedure:

After computingV, we take its divergenc&=V -V, then
we must determin€®®G. In order to reduce errors due to
the gridding (pixelization), we perform the convolution in
two steps. First, we apply an inverse Laplacian operator
V"2, and then we apply the remainder of the convolutionyhere the average is taken over an unlensed temperature
I(1+1)C"®". Because we use a conformal coordinate sysfield (including noise.
tem, the inverse Laplacian can be done in the plane where Note that Eq(95) exhibits a difference from the quadratic
gridding errors vaniskthe forward and reverse Fourier trans- estimator, Eq(72): while Eq.(72) can, in principle, be nega-
forms are exact inverses of each other, even on a discretfe, P, is positive definite and hence E(5) can never
grid, which does not occur for SHTThis is important since  yield any result less than zero. It is straightforward to show
the lowd modes of G, which correspond to the lensing that in this case, assuming the linearized approximation of
modes that can be recovered at moderate signal-to-noise rgecs. Il C and IV C, and assuming a positive initial guess is
tio, are buried in high- noise due to the power spectrum ysed for the power spectrum to start the iteration, that Eq.
12C%=~I% in the range of interest 501<1000. The in- (95 tends to zerolestimates no powgr Because negative
verse Laplacian operation does not add significant time to theesults are replaced by zeroes, E&p) technically converges
computation because it utilizes a fast Fourier transform reto a biased estimator, with expectation value

P -1 B
crP=co® “d “(V2G)"P,V 2G|, (95

[e3

1
Fo=g((V2Go) TP,V *Gy), (96)
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[oY) CMB temperature and noise power spectra

<Ca (est)> _ _E i 1 1 %2 1x107° — T T T ™ T e

dP =1 2 erfc + X e / MAP 4yr noise

Cy*(actua) V2 \2m gk e

=1+ ,ﬂ_*l/ZE*XZ/Z 1x107°k I
g
g
X (X 3=3x"%+5lIx "—...), (97 %
. ] ) ] ~ EmoM

where x=d,C_, F_,/2 is the squared signal-to-noise ratio Tg
(SNR?) in the power spectrum determination. If the signal- 5

to-noise ratio is largex>>1) then this bias is irrelevant. Note € .|/
that in the context of maximum likelihood estimation, a e O ]
negative power spectrum estimate does not make sense, b T

cause the corresponding probability distribution fbrand mo_'aé ;o . o | | |
hence the likelihood integral, Eq60), are ill defined. In 0 X0t e 020 w00 w0 400
particular, the avoidance of negative power spectra is not an '

artifact of any approximation we have made. FIG. 2. The solid line illustrates the model primary CMB tem-

Obtaining convergence from the coupled iterative estimaperature power spectruri(l+1)CP®/27. The noise curved(l
tors, Egs.(93) and (95) requires some care. Convergence +1)C;“/2x are shown for MAP 4-year datéop, long-dashed
depends not only on the values of the paramdtarsi 8, but  Planck(center, short-dashgdand the high resolution reference ex-
also on the pattern of how many times the map is updatederiment(bottom, dotted
using Eq.(93) each time the power spectrum is updated us-

ing Eq.(95). As an extreme example, we note that #nds  We use a primary CMB power spectru@f’® generated by
are taken to be very small, and we alternate between updagvsrasT, assuming a flat universe with a cosmological con-
ing the map and power spectrum, convergence can be eXtant and parameterd ;=72 km/s/Mpc, Teys=2.725 K,
pected only for negativgd; whereas if we iterate the map vy, =0.24, N,=3 (massless Q,=0.04, Q.4,=0.30. The
many times between iterations of the power spectrum, COMprimary CMB model is shown in Fig. 2. The lensing power

vergence requires positivg. After some experimentation, spectrum, shown in Fig. 3, is computed normalizedotp
we found that iterating the map manWé 1/f) times be- =1,

tween iterations of the power spectrum and takfhg1 re- We compare the linearized estimator to the “full” nonlin-
sulted in convergence. ear estimatofas implemented heréor two experiments: the
upcoming Planck satellite mission, and the proposed Ata-
D. Improvements cama Cosmology Telescof&CT) as an example of upcom-

While the implementation described here is sufficient fori"9 high resolution, low noise experiments. The parameters
evaluating the importance of nonlinear effects, much wor or the Planpk and the high-resolution referenpe expenments
remains before it could be used to analyze real data. Firs@® Shown in Table I(The MAP 4-year experiment is also
real data have boundarig# for no other reason than the Shown for comparisopFor purposes of computational trac-
presence of a galactic plane raind usually have inhomo- tability, we have restricted ourselves to a small portion of the
geneous noise. Thus, ti@& ! operation used here will need
to be performed by actual matrix inversion rather than by Convergence and convergence folse powar spectrum
convolution. The latter also becomes necessary in the ever . S T convergence sigral —
of nonuniform noise. Also, the iteration of equation E@5) i high Fes. noig -
converges slowly and for long-wavelength moded ¢bim-
parable to the size of the gridded regianay fail to con-
verge entirely.

Additionally, it would be desirable to use a better approxi-
mation to Eq.(60) than the Gaussian approximation, Eg.
(63), but we were unable to identify a computationally trac-
table method of doing this. 1x107} .

ot
=)
&
T
1

Power spectrum, Cf™

E. Results

Here we investigate the effects of nonlinearity on future ;¢ . )
CMB experiments. We use the form for the instrument noise 1 ool L 1000
[14]:

FIG. 3. The solid line illustrates the model convergence power
Clee:Wflewl)oZ/s n2 (98)  spectrum C[*=1%(1+1)2C®®/4. The noise curves I¥(l
+1)%(F®)~1/4 are shown fortop to bottom MAP 4-year data,
where the weightv and beam full-width at half maximura Planck, and the high-resolution reference experiment, using curva-
are parameters, and the beam spot is assumed to be Gausstare matrix element&, computed from Eq(35).
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PHYSICAL REVIEW D67, 043001 (2003

Test of q

power sp
1.8x107 :

1.6x107 |
1.4x107 [

1.2x107

-
[

1x107 b

8x10° |

Convergence power,

ex10° |

4x10°} 1

2x10%

L L . L L
350 400 450 500 550
Multipole, L

0 L L L L
100 150 200 250 300 600

K

FIG. 5. The true convergence power spectr@fi;, is shown
by the solid line. The point§with error bar$ indicate estimated

(37), in bins of Al=20. Results are obtained from a Monte Carlo convergence power spectra from the lineappints) and nonlinear
simulation, which is responsible for the bumpiness of the graph(X points) estimator$Egs.(72) and(95) respectively. To prevent
The solid line is for Planck parameters, and the dotted line is for théhe error bars from overlapping and causing confusion, we have

high-resolution experimer{see Table )l

sky: the Planck simulation was run on a 36751 grid with
spacing at equator=>5x 10" * radians(even though Planck
is an all-sky experimentand the high-resolution simulation
was run on a 125%¢ 1251 grid with 7=1.5x 10 * radians.

displaced the data point for the linear estimator slightly to the left
and the data point for the nonlinear estimator slightly to the right.
The error bars are the?dlMonte Carlo error bars on the expectation
value of the estimator. The estimated power spectra plotted are av-
erages over 10 trials of 0.14 sr solid angle each using Planck pa-
rameters, and thus shows the error bar on the power spectrum using
data from a region of area())=1.4 sr.

(Note that the ACT survey region is a long, rectangular stripe

on the sky as opposed to a more compact patch. Because of
our implementation’s susceptibility to boundary effects, we

cannot do our simulations on a strip&he solid angles cov-
ered by the simulations are 0.14 s+2% of the Planck

survey arepfor the Planck-type experiment and 0.035 sr for

the high-resolution experiment.

The results of these simulations are shown in Fig. 4. The

convergence map errofse. k. k) for both the nonlinear
estimator, Eq(95) and the linear estimator, Eq37) were

computed. The convergence map errors were then Fourie

transformedsince we are working on a small patch of gky
yielding the error amplitude, for each Fourier mode. The
modes were then sorted into bins &f =20 according to

their | value, and an RMS amplitud¢ «; k; was computed

ever, that the semianalytical calculations of Sec. Ill E and the
simulation of this section are not measuring the same quan-
tity: in Sec. Il E we were examining the bias of E@®6),
whereas here we are considering the mean squared error of
the optimally filtered version of that estimator.

We also simulated the performance of the lingzg). (72)]

and nonlineafEq. (95), 16 iteration$ convergence power
spectrum estimators for Planck parameters. These were per-
formed on the aforementioned 0.14 sr patch of sky, for seven
[bins: 100-150, 150-200, 200-280, 280—-360, 360—440,
440-520, and 520—-600. The results are shown in Fig. 5. The
(Monte Carlg mean of each estimator, computed fram
=10 trials of area 0.14 sr each, are shown. Note the similar
performance of the estimators except in the lowands.

in Fig. 4. Note that for the Planck experiment, there is only ay5,s would be smaller by a factor ef \1.4/8.
slight advantage in using the nonlinear estimator, whereas for s may test both the linear and nonlinear estimators for
the high-resolution experiment, the accuracy of the reconp;,g using the test. Thet statistic for bandu is given by
struction is improved by using the full nonlinear estimator,
Eq. (37).

Both the comparison via simulation of the linear and non-
linear estimatorgFig. 4) and the semianalytic bias calcula- t[ o]
tion (Fig. 1) are methods of assessing the validity of the
linear approximation. Both of them suggest that nonlinear
effects are more important for the higher-resolution experi-
ment than for Planck, butat least for the experiment con- wheres? is the sample variance of tHe®® . The t-test re-
sidered hereare not dominant. Note, however, that for the sults are shown in Table Il. A positivtestatistic indicates that
high-resolution experiment the semianalytic calculationwe are overestimating the power spectrum, a negatsta-
found nonlinear effects to be more important at higher tistic indicates that we are underestimating it. Ttetatistics
whereas the simulation found a greater improvement irhere are designated in the table because they have 9 de-
switching to the nonlinear estimator at lowlerNote, how-  grees of freedom. Also shown in the table is the two-tailed

SampleMeafC®?®)—c®?®

Js?/n '

(99
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TABLE Il. Convergence power spectrum estimatdrest. is no hope of further reduction in the statistical noise of the
: : : : lensing potential. Similarly, simulations of the fully nonlin-
Irange  d, linearty linearp nonlin.ts  nonlin.p  ear power spectrum estimator do not show much improve-

100-150 127 -508 00007 —023 08200  mMentover the linear version.

150-200 178 —2.23  0.0527 0.79 0.4523 If the lensing potentialb can be treated as a Gaussian
200-280 392 —2.16 00592 —3.66 0.0052 random field, and for experiments for which the linearized
280-360 522 0.73 04822 —0.19 0.8558 approximation suffices, then our maximume-likelihood analy-
360-440 653 017 0.8654 0.31 0.7670 Sis indicates that the CMB temperature bispectrum and
440-520 783 —0.51 0.6238 —0.71 0.4976 trispectrum are optimal estimators for the temperature-

520—600 914 0.49 0.6352 0.03 0.9763 lensing potential cross-correlatio€{®) and lensing power
spectrum, respectively. There is, in this case, no additional
information in the fifth-order and higher statistics of the
p-value, i.e. the probability of a perfettrandom variable CMB. These higher-order statistics may be useful if the lens-
(with 9 degrees of freedonmaving absolute value exceeding ing potential is non-Gaussian; for example, the matter den-

to: sity bispectrum will result in a similar bispectrum in the
guadratic estimator, Eq36), i.e. it its effect will be seen in
= T'(n/2+1/2) x2| ~(n+ )2 the CMB six-point correlation function.
p:2ft9 \/n_T(nIZ) ﬁ) dx. (100 For the higher-resolution experiments, our results indicate

that the residual error in the lensing potential maps can be

If the power spectrum estimator is unbiased and normallj€duced by switching from the quadratic estimator to a
distributed, thep value for each bin is uniformly distributed  ull” likelihood-based estimator. In order to make this ap-

between 0 and IWarning: because, for each estimator, weProach practical, further work will be needed to develop a
derived thep values for all thel bins from the same 10 Version of the algorithm that works near the survey bound-

simulations, there is no reason to believe thagtvalues are ~ @res and to improve the stability of the algorithm. Other
independent.We note that, for the highbins (>200), the approa}ches to thg funcnonal integral in E60) besides the .
linear and nonlinear estimators give similar results; both ar&aussian approximation used here, such as Markov chains,
consistent with being unbiased, although the nonlinear est€ould be used. Itis even possible that, due to use of a better
mator shows a lower sample varian¢ghis is partially the approximation to_the integral, th_e error can be redl_Jced fur-
result of negative power-spectrum estimates being set to zef§er- However, given that the high-resoluti¢h arcminute

by the nonlinear estimatorin the two lowest- bins, the beamn simulation only showed improvement in _RMS error at
sample variance of the nonlinear estimator is enormous. W€ 10-20% level, it may be preferable to simply use the
note that in some of our simulations, the nonlinear estimatofiu@dratic estimator for these experiments, accept this minor

assigned anomalously largi one case>4x 10" ) values Iqss in s_lgnal-to-n0|_se ratio, _and avoid the difficulties asso-
ciated with the nonlinear estimator.

of C** to these bins; this suggests a problem with the esti- . .
gd P One problem for both the quadratic estimator approach

mator. This may be due to smearing of the bins by the finit o :
width of the scanned regiofwidth ~0.38 sr) or may repre- e1[2] and our I|_keI|hood_-based approach are extrerggly sensi-
tive to errors in the primary CMB power spectru@, - . In

sent a problem with the iterative procediyesg. convergence X ) 4
to a local maximum of the likelihogd the quadratic approach, this can be seen by noting that the

Due to the excessive computation time requirements, w&9Wer spectrunc‘b‘b is obtained by differencing two quan-
were unable to run a similar simulation of power spectrumfiti€s which may be very close to each other in Exp); the
estimators for the high-resolution experiment. Such a simulverse Fisher matri¥, = may be tens of times greater than
lation would be interesting because the nonlinear lensing pdCs " for Planck(see Fig. 3and consequently the quantities
tential estimator showed improvements at thé0% level  being subtracted in Eq72) may differ by only several per-

over the quadratic estimator for this experiment. cent. In the likelihood approach of Sec. V C this problem is
masked by the formalism of the iterative scheme, but it is
VI. CONCLUSIONS still there. Note that this problem is more serious for the

lower-resolution experiments. It is apparent that a lensing
orpower spectrum analysis m@l)Jgt be accompanigd by extremely
hccurate determination of;”", or an estimation scheme
must be introduced that is robust against small erro{if

Weak lensing of CMB temperature maps has been rec
gized for some time as a potential probe for mapping t
mass distribution of the univerd@ projection, and deter- \
mining quantities derivable from such a map: its power specMust be introduced, or both. _ _
trum and cross-correlation with the CMB or other maps. In e have performed no analysis here of lensing estimators
the past several years, methods for carrying out this statist¥Sing the CMB polarization. In Ref10] a quadratic estima-
cal analysis have been propoddd7] and dramatically im- tor analysis for theT CMB polarlzatlon_ has been pgrformed.
proved[2]. We have shown, by comparison to likelihood- Becal_Jse the polarization is a Ga_ussmn raljdom field whose
based approaches, that quadratic estinf@pfor the lensing ~covariance depends on the lensing potential. there are
potential[equivalent to our Eq(36)] is very close to optimal  observed covarianced®F, CEB, etc. analogous to the®®
for the Planck experiment. That is, for this experiment, theraised herg an analysis analogous to that of Secs. Ill and IV
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establishes that the quadratic estimator approach is optimal i the Born approximation, where the gradient overis

the lensing is sufficiently weak. Because our simulation codevaluated along the unperturbed line of sight, this is an in-
cannot handle polarization, we cannot determine whether rdrkomogeneous linear equation mnwhich can be solved by
alistic lensing is sufficiently weak or whether a nonlinearthe Green’s function method to find at the last scattering
maximum-likelihood analysis is required to make full use ofsurface. The result is that the null geodesic arriving at “us”
polarization data sets. Any high resolution polarization ex-(r =7=0) from directionn is found to have originated in
periment will have one of its main goals gravity wave detec-directionn+V®(n), where

tion in B mode. Since weak lensing creates B modes out of E

modes[15] it is important to remove this contamination as s 1

well as possible by using the weak lensing reconstruction <I>(n)=—2f df‘l’(m,—f)<m— T
[12,16. Given that polarization and its E and B decomposi- 0 's
};gnaI;SﬁtzﬁgY?tt?ng]ye ggerﬁg?g gzspgé?)rt'if)?gotg 'S]gdgr'ﬂ,org ti?]_Through the use of the trigonometric idgntities and their hy-
duced by the linearization procedure. In this case the nonlinperbOIIC counterparts we can show that.
ear analysis will be essential to exploit fully the potential of
any future high resolution CMB polarization experiment.

. (A4)

1 1 S(re-n)
T TSNS

(A5)
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APPENDIX: POTENTIALS, CONVERGENCE,
AND PROJECTED DENSITY 1

A= ver -
- S(n)?

ar

(A6)

J
S(r)zﬁ) .
Here we sketch a derivation of E¢6), and use this to
relate the lensing potentiab to quantities of more direct
physical interest. We use a Robertson-Walker metric with
Newtonian perturbatiofi.e. a weak perturbatiop¥’|<1 in-
duced by nonrelativistic matter

Jf we solve this relation folv2, we can splitk=—3V2®d
Into two terms: one involving thA operator and one involv-
ing the radial operator:

1 1 ) n &(s 2&\?)
T T (XY E 05|
(A7)

d2=a?[— (1-2W)d 2+ (1+2%)(dr?+ S(r)2dw?)] o J”Sdr

(A1) 0

wherea is a function of the conformal time, and¥ is the
gravitational potential, generally a function of all the coordi- The first term can be replaced with a density using Poisson’s
nates. The comoving distancerisandw € S is a direction  equation, thus generating a projected density. To study the
on the unit sphere with the usual line elemdnt>. We have  second term, we replace the partial derivative avéat con-
used the sinelike functio8(r) =k~ “?sinkY?r), and will use  stant7) with a total derivative along the line of sight and a
its derivative, the cosinelike functioB(r)=coskY%), and  time derivative. The time derivative can be neglected here if
their ratioT(r)=S(r)/C(r), wherek is the spatial curvature. the matter is nonrelativisti¢indeed we have already made
We use as an initial condition=0 at present, and normalize this assumption implicitly when we write EqA1).] Next
a(7=0)=1. The simplest way to find the photon deflection integrate by parts so that thel/dr acts on IT(r)
is to consider the conformal metrfwhich must have exactly —1/T(r,s). (SinceS(0)=0, the surface terms generated by
the same null geodesics the integration by parts will vanishThen we use the identity
(d/dr)[1/T(r)]=—1/S(r)? to convert Eq(A7) into
ds?=—(1—4¥)d 72+ dr?+S(r)2d w?. (A2)

In this metric we compute for the null geodesits linear K(n)=4WGNfrlsdr(i— 1 )
order in¥ and assuming that the geodesic is nearly radial T(r)  T(rys)
Pw C(r)do oW X S(r)2a(—r)?sp(rn,—r)—W(rsn,— 1)+ ¥ (0)

=2 (A3) (A8)
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whereGy is the universal gravitation constant add is the Finally, we attempt to determine the magnitude of the
density perturbation. Note that convergence can be brokepotential-difference contribution to the convergence. Here
into two components: a component due to the density fluc (0) is a constan{isotropig and can be removed by a
tuationsSp along the line of sight, and a component due togauge transformation, so we do not consider it further. The
the potential difference between the source and observer. THerm ¥ (rs) can be estimated based on the CMB temperature
second component is due to tidal forces acting to separate tiictuation using the Sachs-Wolfe relatitf(rs) =30 [17];
trajectories of CMB photons; conceptually, it has the saméhUS the contrlbutlon of th#(rs) term tox is —30. Since
origin as the compression of the sky into a small solid angleC; 3 ~39=9CP? is always at least a factor ¢f less than
near the zenith as seen by an observer near a black holee overall power spectrur@“, its effect on the conver-
despite the absence of any mass energy along the line gence power spectrum is subdominant with respect to cosmic
sight. variance.
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