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Analyzing weak lensing of the cosmic microwave background using the likelihood function

Christopher M. Hirata* and UrošSeljak†
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Future experiments will produce high-resolution temperature maps of the cosmic microwave background
~CMB! and are expected to reveal the signature of gravitational lensing by intervening large-scale structures.
We construct all-sky maximum-likelihood estimators that use the lensing effect to estimate the projected
density ~convergence! of these structures, its power spectrum, and cross-correlation with other observables.
This contrasts with earlier quadratic-estimator approaches that Taylor expanded the observed CMB temperature
to linear order in the lensing deflection angle; these approaches gave estimators for the temperature-
convergence correlation in terms of the CMB three-point correlation function and for the convergence power
spectrum in terms of the CMB four-point correlation function, which can be biased and nonoptimal due to
terms beyond the linear order. We show that for sufficiently weak lensing, the maximum-likelihood estimator
reduces to the computationally less demanding quadratic estimator. The maximum likelihood and quadratic
approaches are compared by evaluating the root-mean-square~rms! error and bias in the reconstructed con-
vergence map in a numerical simulation; it is found that both the rms errors and bias are of order 1 percent for
the case of Planck and of order 10–20 percent for a 1 arcminute beam experiment. We conclude that for
recovering lensing information from temperature data acquired by these experiments, the quadratic estimator is
close to optimal, but further work will be required to determine whether this is also the case for lensing of the
CMB polarization field.

DOI: 10.1103/PhysRevD.67.043001 PACS number~s!: 95.75.Pq, 98.62.Sb, 98.80.Es
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I. INTRODUCTION

Gravitational weak lensing of the cosmic microwa
background~CMB! has been recognized as a potential in
cator of large-scale structure in the universe. Compare
galaxy surveys, weak lensing has the advantage of dire
tracing the matter density, thus avoiding the uncertain
associated with the relationship between the distribution
galaxies and of mass@1#. Because the CMB is the most dis
tant background object that can be used for weak lens
studies, it probes the matter distribution at higher redsh
than can be reached by galaxy weak lensing and is sens
to the largest observable scales in the universe@1–5#.

In addition to providing data on the power spectrum
density fluctuations on these large scales, CMB weak len
may yield constraints on the expansion history of the u
verse by making possible a measurement of the integr
Sachs-Wolfe~ISW! effect. The ISW effect~the change in
temperature of the CMB radiation as it passed throug
changing gravitational potential! is smaller than the primary
CMB fluctuations produced in the early universe and con
quently can be detected only through the cross-correlatio
CMB observations with some tracer of the gravitational p
tential. Because it is sensitive directly to the potential, we
lensing is an ideal candidate for this cross-correlation@6,7#.

Because detection of CMB weak lensing may be poss
with near-future satellite experiments, such as Planck
possibly even the Microwave Anisotropy Probe~MAP!, sev-
eral algorithms have been proposed for estimating ma
distributions, power spectra, and ISW cross-correlati
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from CMB temperature maps. Some of these methods
based on local statistics, such as the products of gradien
the temperature field@1#. Recently Hu@2,3#, working to lin-
ear order in the deflection angle, determined the optimal q
dratic estimator~i.e. quadratic in the CMB temperature ma!
for the deflection field. Within this linear approximation, th
corresponding power spectrum estimator makes full use
the information in the CMB four-point correlation functio
@8,9#. However, the limits to the validity of the linear orde
approximation have not been well determined, and the p
sibility of obtaining more information on lensing from
higher-order correlation functions has not been studied
detail. Neglect of nonlinear terms may also create a bia
the quadratic estimators of the power spectrum. The non
ear terms may be important whenever the deflection ang
comparable to the scale of CMB fluctuation used in the
construction of lensing potential. The deflection angle is
the order of several arcminutes and for high resolution
periments significant amount of lensing information com
from CMB modes on the same scale, indicating that the n
linear terms may be important. In order to address these
sues, we use the likelihood function to construct estimat
rather than assuming an estimator with a particular form~lo-
cal, quadratic, etc.! and avoid linearizing in the deflectio
field except to compare our results to previous work a
where necessary for computational tractability.

We work principally in position space rather than ha
monic space. This is done partly because real data are
tained in position space, and partly to show how t
harmonic-space estimators@2# can be derived from position
space arguments; also, the generalization of the posit
space analysis to anisotropic instrument noise is more tr
parent. We also do not consider the reconstruction of ma
distributions from CMB polarization; although polarizatio
©2003 The American Physical Society01-1
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CHRISTOPHER M. HIRATA AND UROSˇ SELJAK PHYSICAL REVIEW D67, 043001 ~2003!
can theoretically yield much better information about lens
than CMB temperature fluctuations@10#, it is also computa-
tionally more demanding, so we defer a more careful ana
sis to a future work.

We will proceed as follows: Section II introduces our fo
malism and notation, and defines the basic mathematica
erations that will be used in the rest of the paper. Section
considers the likelihood function for the CMB and its depe
dence on the lensing potential~the potential that generate
the deflection field!. In Sec. IV we consider the maximum
likelihood estimators for the power spectrum of the lens
potential and its cross-correlation with the CMB. In Sec.
we describe our numerical implementation of the estima
from Secs. III and IV; the performance of the estimators,
determined numerically, is described in Sec. V E. We c
clude in Sec. VI.

II. FORMALISM

A. CMB

The cosmic microwave background temperature fluct

tion Q̃ in a particular directionn on the unit sphere is define

by Q̃(n)5T(n)/T021 whereT(n) is the CMB temperature
in directionn andT052.72 K is the mean temperature of th
CMB. This temperature fluctuation can be expressed in
monic space as

Q̃~n!5(
l 50

`

(
m52 l

l

Q̃ lmYlm~n!, ~1!

where theYlm are spherical harmonics andQ̃ lm are the cor-
responding coefficients. The spherical harmonics are
thogonal and are normalized so that their squared ampli
integrates to one over the sphere:*S2uYlm

2 udV51, and the
transformation of Eq.~1! can thus be inverted as

Q̃ lm5E
S2

d2nYlm* ~n!Q̃~n!. ~2!

Because the statistical average^Q̃ lm&50, we extensively use
the power spectrum. The power spectrum is defined fo
statistically isotropic temperature fluctuation as the varia

^Q̃ l 8m8
* Q̃ lm&5Cl

Q̃Q̃d l l 8dmm8 . ~3!

For gravitational lensing work, we distinguish three tempe
ture fluctuations: the unlensed temperature fluctuationQ; the

lensed temperature fluctuationQ̃; and the measured tem

perature fluctuationQ̂. Throughout this paper, we will tak
the primary~unlensed! anisotropyQ to be a Gaussian ran
dom field. The measurement is related to the actual temp
ture fluctuation by the instrument noise,e:

Q̂~n!5Q̃~n!1e~n!. ~4!

We assume that the instrument noisee is independent ofQ̃.
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Occasionally we will use the flat-sky approximation,

which a mapQ can be expanded in Fourier modes,Q̃(n)

5(1/A4p)( lQ̃ le
2 i l•n. The Fourier modes are normalize

over an area of 4p, and populate thel plane with a two-
dimensional density of 1/p; this ensures that the flat-sky an
all-sky normalizations are consistent on small scales.

B. Lensing

Gravitational lensing of the CMB by scalar perturbatio
can be expressed in terms of the lensing potentialF, defined
by

Q̃~n!5Q@n1¹F~n!#, ~5!

where¹ is the two-dimensional gradient operator on the u
sphere. The lensing potentialF is the projected gravitationa
potential along the line of sight~see the Appendix for de
tails!,

F~n!522E
0

r ls
drC~rn,2r !S 1

T~r !
2

1

T~r ls!
D , ~6!

wherer ls is the comoving distance to the last-scatter surfa
C(x,t) is the gravitational scalar potential at comoving p
sition x and conformal timet, and T(r ) is the tangentlike
function (tanr , r, or tanhr depending on whether the un
verse is closed, spatially flat, or open!. The convergencek
52 1

2 ¹2F is positive when structures along the line of sig
act as a converging lens~i.e. when they magnify the CMB!
and is negative for a diverging lens. Conceptually, we wo
thus expectk to be a measure of the projected density p
turbation; as shown in the Appendix, this is indeed the ca
We define the power spectraCl

FF and Cl
kk5 l 2( l

11)2Cl
FF/4, and the cross-correlationCl

QF , in analogy to
Eq. ~3!.

We will in several instances require use of the lens
operatorL that performs the operation in Eq.~5!:

L@F#Q~n!5Q@n1¹F~n!#. ~7!

On occasion, we shall refer to the linear approximation to
lensing operator:

Q̃5LQ'Q1¹Q•¹F. ~8!

Note that we have usedQ̃ to represent the lensed CMB
temperature andQ to represent the unlensed temperatu
some authors have used this convention@3#, while others

@1,2,8,10# have usedQ for the lensed andQ̃ for the unlensed
temperature.

C. Convolutions and integrals

A convolution of a functionQ on the unit sphere with
kernelC is written as

CQ~n!5E
V

d2n8C~n,n8!Q~n8!, ~9!
1-2



ne
ol

i

a

s:
n

s-
ro
th

u
t

a-
a

o

au
de

-

a

ro

m
th

M
th
t
i

is

tic
ffi-
e

er-

,
ies
li-

ion
he

py
y
.

od
on
MB

of
l

n
l
e-

cts

b-

be
od
,

d

h

an:
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whereV is the region in which we have data, and the ker
C can be decomposed in multipoles using the Legendre p
nomials:

C~n,n8!5(
l 50

`
2l 11

4p
Cl Pl~n•n8!. ~10!

We will also need to take the inverse operationC21 such that
CC21Q5Q. In the case of a true full-sky experiment~i.e.
one that acquires usable data over the full 4p steradians!, the
C21 operation is trivial: we apply a convolution with aC21

kernel with multipoles (C21) l5(Cl)
21. The inversion is

more difficult on a portion of the sphere, as discussed
Sec. V.

Finally, we make use of the notation derived from line
algebra: our ‘‘column vectors’’ are functions onV, and our
‘‘matrices’’ are linear operators on this set of function
Av(x)5*VA(x,y)v(y)d2y. Example uses of this notatio
areuTv5*Vuvd2n andAT(x,y)5A(y,x).

III. LIKELIHOOD ANALYSIS

We analyze the likelihood function for gravitational len
ing because this function retains all of the information p
vided by the observations. In particular, we can compare
‘‘optimal’’ maximum likelihood estimators~MLEs! to previ-
ous results. We examine the relationship between the q
dratic estimators and the likelihood-based estimators and
criteria for their equivalence, i.e. for optimality of the qu
dratic estimator. In this section we are attempting to estim

F based on the measured temperaturesQ̂, and so we will

treatQ̂ as a random variable whose distribution depends
the fixed parametersF(x). We will allow F to be a random
field when we consider its statistical properties~e.g. the
power spectrumCFF) in Sec. IV.

We will see that the lensing potentialF is detectable be-
cause its presence breaks spherical symmetry and thus c
correlations between the different spherical harmonic mo

of the temperature fieldQ̃, i.e. it creates off-diagonal ele

ments in the covarianceCQ̃Q̃5^Q̃Q̃T& when expressed in
the spherical harmonic basis; this is manifested in real sp

by an anisotropic correlation functionCQ̃Q̃(x,y). Since these
off-diagonal elements are, in the linear approximation, p

portional to the lensing potentialF, we could takeQ̃Q̃T as a

crude estimate of the covarianceCQ̃Q̃ and form linear com-
binations of the off-diagonal elements to construct an esti
tor for F; this is the essence of the quadratic estimator me

ods @2#. ~In the presence of instrument noise we measureQ̂

and notQ̃ but the idea is the same.! Note that while some
quadratic estimators~e.g. Ref.@1#! have been derived from
considering the magnification and shear of small-scale C
features by larger-scale lensing modes, in analogy to
weak lensing of galaxies, such a picture is not essential to
quadratic estimation framework—quadratic estimation

possible whenever the linear approximation toCQ̃Q̃ is valid.
The likelihood method, while somewhat more involved,
04300
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useful to investigate for two reasons: first, unlike quadra
estimators, MLE’s are guaranteed to be asymptotically e
cient ~i.e. it is impossible to achieve lower error than th
MLE in the limit of an infinite amount of data!; and second,
the likelihood approach retains its validity even when high
order @e.g.O(F2)] terms in the covariance are important.

This section will be organized as follows. In Sec. III A
we introduce the likelihood function and its basic propert
and give a formal expression for it. We maximize the like
hood function using the calculus of variations~Sec. III B!
and proceed to show that within the linear approximat
@Eq. ~8!# the maximum likelihood estimator reduces to t
optimally weighted quadratic estimator~Sec. III C!. We ex-
amine our ability to reconstruct the primary CMB anisotro
Q in Sec. III D. We conclude in Secs. III E and III F b
examining the limits of validity of the linear approximation

A. Likelihood function

Likelihood maximization is a generally applicable meth
to statistical estimation problems. A statistical estimati
problem involves a data set, in this case the measured C

temperature fluctuationQ̂(ni) at N points $n1 , . . . ,nN%,
which has a probability distribution determined by a set
parameters, in this case the values of the lensing potentiaF.
The problem is to estimate the unknown parametersF from

the observationsQ̂. We represent the probability distributio
by a density functionP, which is related to the differentia
probability dP for obtaining temperature measurements b

tweenQ̂(ni) andQ̂(ni)1dQ̂(ni):

dP5P~Q̂uF!dQ̂~n1!•••dQ̂~nN!. ~11!

The maximum likelihood estimation method simply sele
the value ofF that yields the largest value ofP, i.e. the value
of F that would have been most likely to generate the o

servedQ̂. While this method is very general and can
applied to a wide range of problems, maximum likeliho
estimators~MLE’s! are frequently very difficult to compute
as is the case here.

For convenience, we will work not with the likelihoo
function but with its negative logarithmL, which is defined
by the relation

L@F#52 ln P~Q̂uF!. ~12!

If we assume Gaussian instrument noise of covarianceCee,

we find that for fixedF, Q̂ is a Gaussian random field wit
covariance

CQ̂Q̂@F#5L@F#CQQL@F#T1Cee, ~13!

where the transposeLT of the linear operatorL is defined by

LT(x,y)5L(y,x). The probability density ofQ̂ is then re-
lated to its covariance via the usual relation for a Gaussi

P~Q̂uF!5
1

~2p!N/2AdetCQ̂Q̂

expS 2
1

2
Q̂TCQ̂Q̂21Q̂ D .

~14!
1-3
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Combining this with the definition in Eq.~12! and the stan-
dard Gaussian probability density formula, we find that

L@F#5
1

2
Q̂T~CQ̂Q̂@F#!21Q̂1

1

2
ln detCQ̂Q̂@F#.

~15!

In some cases, we will use a Gaussian random prior forF, in
which case we will use the negative log posterior probabi
P in place of the negative log likelihoodL. The Gaussian
prior for F is

P~FuCFF!5
1

~2p!N/2AdetCFF
expS 2

1

2
FTCFF21F D ,

~16!

whereN is the number of pixels in the map. From this th
negative log posterior probability can be determined~up to
an irrelevant constant! to be

P@F;CFF#5L@F#2 ln P~FuCFF!5
1

2
Q̂T~CQ̂Q̂@F#!21Q̂

1
1

2
ln detCQ̂Q̂@F#1

1

2
FT~CFF!21F

1
1

2
ln detCFF, ~17!

whereCFF is the covariance of the prior forF.

B. Likelihood-based estimators

We construct estimators for the lensing potentialF using
L andP by setting their functional derivatives with respe
to F(n) equal to zero. Differentiating Eq.~15! gives

dL@F#

dF
52

1

2
Q̂T~CQ̂Q̂@F#!21

dCQ̂Q̂@F#

dF
~CQ̂Q̂@F#!21Q̂

1
1

2
TrF ~CQ̂Q̂@F#!21

dCQ̂Q̂@F#

dF
G . ~18!

Using Eq. ~13!, we calculate the functional derivative o

CQ̂Q̂@F#:

dCQ̂Q̂@F#~y,z!

dF~x!
5E

V
~L@F#CQQ!~y,y8!

dL@F#~z,y8!

dF~x!
d2y8

1transpose. ~19!

We differentiateL using Eq.~7!:
04300
y

d

dF~x!
~L@F#v !~w!

5E
V

d2x8
d¹F~x8!

dF~x!
•

d

d¹F~x8!
~L@F#v !~w!

5@¹wd (2)~w2x!#•~L@F#¹v !~w!. ~20!

Using this relation and integration by parts, we convert E
~19! into

dCQ̂Q̂@F#~y,z!

dF~x!
5E

V
d2y8~L@F#CQQ!~y,y8!

3@¹zd
(2)~z2x!#•~L@F#¹!~z,y8!

1transpose

5@¹zd
(2)~z2x!#•~L@F#¹CQQL@F#T!

3~z,y!1transpose. ~21!

We also express the trace as an expectation value using
identity Tr(X)5^uXC21u& with u drawn from a Gaussian
distribution of covarianceC, and integrate by parts again t
yield

dL@F#

dF
5¹•@Q̂~CQ̂Q̂@F#!21L@F#¹CQQ

3L@F#21~CQ̂Q̂@F#!21Q̂#

2^¹•@Q̂~CQ̂Q̂@F#!21L@F#¹CQQ

3L@F#21~CQ̂Q̂@F#!21Q̂#&. ~22!

The functional derivative ofP differs by the addition of a

CFF21F term. The maximum-likelihood estimatorF̂ for F
is then the solution todL/dF50. If we then define the
likelihood gradientG@F# by

G@F#[
dL
dF

5¹•@~CQ̂Q̂@F̂#21Q̂!L@F̂#¹CQQ

3L@F̂#21~CQ̂Q̂@F̂#!21Q̂

2^~CQ̂Q̂@F̂#!21Q̂!L@F̂#¹CQQ

3L@F̂#21~CQ̂Q̂@F̂#!21Q̂&], ~23!

then the maximum likelihood estimator becomes

G@F̂#50, ~24!

whereas the mode of the posterior probability distributi

~i.e. maximum ofe2P) is the solutionF̂ to

F̂52CFFG@F̂#. ~25!

In deriving Eq. ~23!, we have dropped boundary terms.
our implementation~Sec. V! we simply do not work near the
survey boundaries, however, the formalism can be gene
ized to include these by settingCee5` in the unscanned
1-4
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regions. This does not cause numerical difficulties beca

the infinite eigenvalues ofCee ~and henceCQ̂Q̂) become null

eigenvalues ofCQ̂Q̂21 @11#.
As a final note, the expectation value in Eq.~23!, which

derives ultimately from the determinant in the Gauss
probability density, is small when the noise is small (Cee

!CQQ) and we are far from the boundaries of the region
sky surveyed. This is because substituting the zero-n

limit for Q̂ and CQ̂Q̂ into the expectation value converts
into

L@F̂#^$@~CQQ!21Q#¹Q%&. ~26!

We next note that for a statistically isotropic unlensedQ and
an all-sky survey, the expectation value in Eq.~26! must
vanish because it is a two-vector~i.e. a vector onS2) and
hence a nonzero value would pick out a preferred direct
Near a boundary of the surveyed region, this argument f
because the boundary breaks rotational symmetry. The
pectation value in Eq.~23! thus acquires a nonzero valu
only in the presence of instrument noise and boundary
fects. Conceptually, we understand this as a property of

~13!: noise adds theCee term to CQ̂Q̂, while boundary ef-
fects alter the unit determinant ofL. Without these effects

detCQ̂Q̂5detCQQ5const, and the expectation value in E
~23!, which is merely a derivative of the log determinan
vanishes. We further note that modes with large noise (Cee

@CQQ) do not contribute toG because of theCQ̂Q̂21 which
appears twice in Eq.~23!. Since most CMB experiment
have only a small range ofl for which Cee andCQQ are of
the same order, and it is only in this regime and near bou
aries that the expectation value in Eq.~23! is important, we
will neglect the expectation value in the remainder of t
paper. That is, we approximate

G@F#'¹•@~CQ̂Q̂@F̂#21Q̂!L@F̂#¹CQQ

3L@F̂#21~CQ̂Q̂@F̂#!21Q̂#. ~27!

C. Linearized version of MLE

In order to connect Eq.~24! to previous work on quadratic
estimators, we approximate the right hand side of the eq
tion to linear order inF: G'G01FF, where the likelihood
gradientG is computed from Eq.~27!, F is the matrix of
second derivativesd2L/dFdF ~independent ofF in the
Gaussian approximation!, and G0 is equal toG evaluated
with no lensing:

G0'¹•@Q̂~CQQ1Cee!21¹CQQ~CQQ1Cee!21Q̂#.
~28!

In order to obtain a quadratic~rather than merely a rationa!
estimator, the approximate curvature matrixF must be taken

independent ofQ̂. We will therefore replace it by its expec

tation value^F& averaged overQ̂. This expectation value is
04300
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Fmn'^Fmn&uF5E DQ̂P~Q̂uF!Fmn

5E DQ̂e2L(FuQ̂)
d2L~FuQ̂!

dFmdFn
, ~29!

wherem andn are the matrix indices of the matrix of secon
derivatives. We may compute the last integral by requir

that the probability distribution forQ̂ be properly normal-
ized:

15E DQ̂P~Q̂uF!5E DQ̂e2L(Q̂uF). ~30!

Taking the second derivative of this equation with respec
F gives

052E DQ̂e2L(Q̂uF)
d2L~FuQ̂!

dFmdFn

1E DQ̂e2L(Q̂uF)
dL~FuQ̂!

dFm

dL~FuQ̂!

dFn
, ~31!

which enables us to rewrite Eq.~29! as

Fmn'E DQ̂e2L(Q̂uF)
dL~FuQ̂!

dFm

dL~FuQ̂!

dFn
5^GmGn&.

~32!

Thus the matrix of second derivatives is simply the cova
ance of the likelihood gradient.~Note: we will call the matrix
of second derivatives the Fisher matrix even though the te
nical definition of the Fisher matrix differs fromF for a
non-Gaussian likelihood function.! We choose to evaluateF
at F50 ~no lensing! for convenience, although within th
Gaussian approximationF can be evaluated anywhere. A
F50, Eq. ~27! for G simplifies dramatically and we have

F'^GGT&uF50'^¹•@~CQ̂Q̂21Q̂!¹CQQCQ̂Q̂21Q̂#

3$¹•@~CQ̂Q̂21Q̂!¹CQQCQ̂Q̂21Q̂#%T&, ~33!

which is recognizable as a four-point correlation function

Q̂. If we switch to the flat sky approximation, and assum
the noise is isotropic,CQQ andCee become diagonal in Fou
rier space. Then we can compute the four-point correlat

function for GaussianQ̂ using Wick’s theorem:

^Q̂ l1
Q̂ l2

Q̂ l3
Q̂ l4&5Cl1

Q̂Q̂Cl2
Q̂Q̂d l11 l3,0d l21 l4,0

1Cl1
Q̂Q̂Cl2

Q̂Q̂d l11 l4,0d l21 l3,0

1Cl1
Q̂Q̂Cl3

Q̂Q̂d l21 l3,0d l11 l4,0 . ~34!

This gives the result forF:
1-5
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FL5
1

8p2E
l11 l25L

d2l1
@L•~ l1Cl 1

QQ1 l2Cl 2
QQ!#2

~Cl 1
QQ1Cl 1

ee!~Cl 2
QQ1Cl 2

ee!
, ~35!

Equation~35! is recognizable~apart from a factor of 4p/L2

due to normalization convention! as the noise variance an
optimal weighting derived by Hu@2#. We use the flat-sky
approximation only to compute the noise curves in Fig. 3
our simulations we will evaluateF via a Monte Carlo tech-
nique ~see Sec. V B!.

We can then construct the maximum likelihood estima
for F under this approximation,

F̂MLE52F21G052F21¹•@Q̂~CQQ1Cee!21

3¹CQQ~CQQ1Cee!21Q̂#, ~36!

and the corresponding approximate mode of the poste
probability density:

F̂52@~CFF!211F#21G0

52@~CFF!211F#21

3¹•@Q̂~CQQ1Cee!21¹CQQ~CQQ1Cee!21Q̂#.

~37!

Both of these are recognizable as quadratic estimators

they are second-order polynomials inQ̂. By spherical sym-

metry, if Q̂ is statistically isotropic then the vector quanti

in brackets, and henceF̂, will have expectation value zero

Thus Eqs.~36! and ~37! are measuring the deviation ofQ̂
from statistical isotropy that arises from lensing by a pot
tial F. These deviations from statistical isotropy in positio
space appear as correlations between different spherical
monic modes in harmonic space; see Ref.@2# for the
associated harmonic-space estimator. It can be shown@2# that
within the linear approximation, Eq.~36! provides an unbi-
ased estimate for the lensing potentialF when averaged ove
an ensemble of primary CMB anisotropiesQ.

Having determined these approximations, we consider
conditions of their validity. The linearization of the righ
hand side of Eq.~20! clearly corresponds to a Gaussian a
proximation to the likelihood function, with the second-ord
Taylor expansion ofL carried out aroundF50. This can be
expected to be valid when the maximum likelihood point
‘‘near’’ F50 in the sense thatF!L9/L- ~where the8 de-
notes a functional derivative with respect toF). Therefore it
would be reasonable to expect that the estimators in E
~36! and ~37! break down when the lensing effects becom
large, i.e. whenCFF becomes sufficiently large. We analyz
this possibility analytically in Secs. III E and III F and nu
merically in Sec. V E.

D. Reconstructing the primary CMB

We next wish to reconstruct the primary~unlensed! CMB

Q from observationsQ̂ of the lensed temperature field. Be
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cause our instrument gives us one function on the sky,Q̂, it
is not in general possible to simultaneously reconstruct
primary CMB anisotropy,Q, and the lensing potentialF. If
the CMB and lensing power spectra are given, however,
can use the power spectra as a prior and construct a Baye
posterior probability distribution forQ andF and maximize
it. While this does not permit determination of the prima
anisotropy to arbitrary accuracy, it is the best that one
hope for if only the lensed CMB temperature is availab
The determination of the lensing potential and primary CM
power spectra is discussed in Secs. IV B and IV D.

To estimate the primary CMB anisotropyQ, we take a
Gaussian prior for both the primary CMB and the lensi
potential. This gives us a joint posterior probability distrib
tion for Q andF of e2R, whereR is given~up to an addi-
tive constant! by

R@Q,F#5
1

2
QT~CQQ!21Q1

1

2
FT~CFF!21F

2 ln P~Q̂uQ,F!, ~38!

whereP(Q̂uQ,F) is the conditional probability of observing

temperatureQ̂ given a primary CMB temperatureQ and
lensing potentialF. It is readily noted thatP is simply the
instrument noise curve, which we take to be Gaussian:

2 ln P~Q̂uQ,F!5
1

2
~Q̂2L@F#Q!T~Cee!21~Q̂2L@F#Q!.

~39!

Equations~38! and ~39! formally express the joint poste
rior probability distribution forQ andF. In order to recon-
struct the primary CMB, we integrate out the lensing pote
tial to find the negative log posterior probability distributio
R̄ for Q:

e2R̄[Q]5E DFe2R[Q,F]

5E DF expF2
1

2
~Q̂2L@F#Q!T

3Cee21~Q̂2L@F#Q!

2
1

2
QTCQQ21Q2

1

2
FTCFF21FG . ~40!

This equation is difficult to evaluate. In the linear approx
mation, however, we may replaceL@F#Q with Q
1¹F•¹Q; this makes the integral Gaussian, so it can
evaluated analytically to give

R̄@Q#52
1

2
G@Q#T~CFF211F@Q#!21G@Q#

1
1

2
QTCQQ21Q1

1

2
~Q̂2Q!TCee21~Q̂2Q!

1
1

2
ln det~CFF211F@Q#!, ~41!
1-6
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where

G@Q#~x!5¹•@@Cee21~Q̂2Q!#¹Q#~x! ~42!

and

F@Q#~x,y!5~¹x• !~¹y• !@¹Q~x!Cee21~x,y!¹Q~y!#.

~43!

Note that we have used integration by parts to writeF@Q#
and G@Q#. The matrixF@Q# is manifestly symmetric and
can be seen to have all nonnegative eigenvalues as foll
if we take any real mapX(x), then

XTF@Q#X5~¹Q•¹X!TCee21~¹Q•¹X!. ~44!

Since the inverse noise matrixCee21 is symmetric and
positive-definite, this quantity must be nonnegative. Inde
this can only be zero if¹Q•¹X50 everywhere, that is, ifX
is constant on flows of¹Q. If we have all-sky coverage an
Q is well behaved, then all of the flow curves of¹Q connect
at the maxima, minima, and saddle points ofQ, conse-
quently in this caseF is positive-definite except for the con
stant l 50 mode. Consequently, the matrixCFF211F@Q#
must be positive-definite, which is required for Eq.~41! to
make sense as a probability distribution~this was also im-
plicitly assumed in doing the Gaussian integral!. We next
define the~not symmetric!! matrix H@Q# by

H@Q#X5¹Q•¹X ~45!

so thatF@Q#5H@Q#TCee21H@Q#. We can see, using inte

gration by parts, thatG@Q#5H@Q#TCee21(Q̂2Q).
To make further progress, we use Eq.~45! to rewrite the

first term on the right-hand side of Eq.~41!:

R̄@Q#52
1

2
~Q̂2Q!T~CeeH@Q#T21CFF21

3H@Q#21Cee1Cee!21~Q̂2Q!

1
1

2
QT~CQQ!21Q1

1

2
~Q̂2Q!TCee21~Q̂2Q!

1
1

2
ln det~CFF211F@Q#!. ~46!

Even this equation is too complicated to be useful in t

form, so we will make the replacementsH@Q#→H@Q̂# and

F@Q#→F@Q̂#. This converts Eq.~41! into a Gaussian pos
terior probability distribution. The peak of the posteri
probability distribution is

QPEAK5@Cee212~CeeH@Q̂#T21CFF21

3H@Q̂#21Cee1Cee!211CQQ21#21

3@Cee212~CeeH@Q̂#T21CFF21

3H@Q̂#21Cee1Cee!21#Q̂, ~47!
04300
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and its covariance~i.e. inverse curvature! is

Cov@Q#5@Cee212~CeeH@Q̂#T21CFF21H@Q̂#21Cee

1Cee!211CQQ21#21. ~48!

It is instructive to compare Eq.~47! to other means of
estimatingQ. Note that determination ofQ is a nontrivial
task since both lensing and instrument noise must be ta
into account. In the limit that lensing is negligible (CFF

→0), we derive QPEAK'(Cee211CQQ21)21Cee21Q̂,

which is recognizable as a simple Wiener filter ofQ̂. In the
opposite limit, where instrument noise is negligible com
pared to the effects of lensing~i.e. Cee→0), we derive

Cee212~CeeH@Q̂#T21CFF21H@Q̂#21Cee1Cee!21

'H@Q̂#T21CFF21H@Q̂#21 ~49!

via a first-order Taylor expansion inCFF21. Substituting
this into Eq.~47! yields

QPEAK5~H@Q̂#T21CFF21H@Q̂#211CQQ21!21

3H@Q̂#T21CFF21H@Q̂#21Q̂, ~50!

which is recognizable as a Wiener-filtered temperature m

with H@Q̂#CFFH@Q̂#T playing the role of the noise covari

ance. This is not surprising sinceH@Q̂#CFFH@Q̂#T is the

covariance of the temperature change due to lensingQ̃

2Q, and under our assumptions the correlation betweenQ̃
2Q and Q vanishes. Further simplification is possible b
noting that, for zero noise, the likelihood gradientG0 of Sec.

III C may be written asG052H@Q̂#TCQQ21Q̂. Then the
Fisher matrix of Sec. III C can be approximated as

F5^G0G0
T&F505^H@Q#TCQQ21QQTCQQ21H@Q#&

5^H@Q#TCQQ21^QQT&CQQ21H@Q#&

5^H@Q#TCQQ21H@Q#&'H@Q#TCQQ21H@Q#. ~51!

„The last equality on the first line is justified as follow
sinceH@Q# is a linear function ofQ, andQ is a Gaussian
random field,Q and H@Q# are jointly Gaussian. Thus th
expectation value of the four-point functio
H@Q#TCQQ21QQTCQQ21H@Q# can be expanded usin
Wick’s theorem as a sum of three terms, each of which i
product of two-point functions. SincêG0&50, the final ex-
pression on the first line of Eq.~51! is the only nonvanishing
term.… If we further assume that the lensing effect can
treated as a perturbation on the background CMB—an
sumption that we have made already through the lin

approximation—we can approximateH@Q̂#'H@Q#, which
allows Eq.~50! to be rewritten as
1-7
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QPEAK5H@Q̂#~CFF211F !21CFF21H@Q̂#21Q̂

5Q̂2H@Q̂#~CFF211F !21FH@Q̂#21Q̂

5Q̂2H@Q̂#~CFF211F !21H@Q̂#TCQQ21Q̂.

~52!

Using Eqs.~28! and~45! and integration by parts we see th

H@Q̂#CQQ21Q̂52G0. Also, comparison of Eq.~45! to the
lensing operator definition, Eq.~7!, indicates that in the lin-
ear approximation,L@F1#Q15Q11H@Q1#F1. This allows
us to simplify Eq.~52! to

QPEAK5Q̂1H@Q̂#~CFF211F !21G0

5L@~CFF211F !21G0#Q̂. ~53!

This is the observed temperature map ‘‘corrected’’ for le
ing using the Wiener-filtered potential map, Eq.~37!. It is
thus the temperature analogue of the approach used in
@12# for reconstructing primary polarization.

E. Onset of nonlinearity

We examine the validity of the linear approximation lea
ing to Eqs.~36! and ~37! using the real-space Taylor expa
sion of the lensing formula, Eq~7!:

Q̃5LQ5Q1¹F•¹Q1
1

2
¹F¹F:¹¹Q1O~F3!.

~54!

The quadratic estimator was constructed based on the

order ~i.e. orderF1) effect of lensing onCQ̂Q̂, which ne-
glects the second-order and higher terms in Eq.~54!, as well
as the covariance of the first-order term. Thus we expect
this approximation will be good if the ratio of successi
termsR in Eq. ~54! is small. As a simple~and naive!! first
approach to determining when the linear approximation
valid, we note that ifL denotes the typical multipole ofF,
and l denotes the typical multipole ofQ, then R5LlF.
Since the mean square value ofF is roughly L2CL

FF , we
find that R2'L4CL

FFl 2, so the linear-order approximatio
breaks down atCFF.L24l 22. Given that L4CL

FF has a
maximum of approximately 1026, we would then conclude
that nonlinear effects could become important atl .1000,
i.e. Planck (l max'1600) and higher-resolution experimen
might be susceptible to these effects.

A more refined version of this analysis would examine

covarianceCQ̂Q̂(x,y) of the observed temperature instead
simply the temperature fluctuation. This is because for
long-wavelength lensing (F) modes, the second-order (F2)
corrections to the covariance are significantly less than
culated by the naive method above. Conceptually, one
understand this by noting that, because the primary CMB

statistically isotropic,CQ̂Q̂ is sensitive to the relative, no
absolute, deflection of photon trajectories. In the flat-sky
proximation we have
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CQ̂Q̂~x,y!5Cee~x,y!1CQQ~x2y!

1@¹F~x!2¹F~y!#•¹CQQ~x2y!

1
1

2
@¹F~x!2¹F~y!#@¹F~x!

2¹F~y!#:¹¹CQQ~x2y!1O~F3!. ~55!

We note that if¹F is slowly varying compared to the sepa
ration of x and y ~that is,Lg!1 whereg5ux2yu), a near
cancellation occurs between the linear terms in Eq.~55!. This
cancellation reduces the squared expansion parameteR2

from L4CL
FFl 2 to g2L6CL

FFl 2. Sinceg can take on a wide
range of values from the scale of the lensing mode,L21,
down to the limit of the instrument’s resolutionl max

21 , it is not
at all clear how to proceed analytically with this approach

F. Bias of quadratic estimator

Another way to measure the importance of nonline
terms is to compute the bias in the quadratic estimator@Eq.
~36!# for F, over an ensemble of primary CMB anisotropi
Q and instrument noisese with the same lensing potentia
F. This bias vanishes in the linear approximation@2#. It can
be computed by noting that the expectation value ofFeq (36)
is a linear combination of covariance matrix elements

CQ̂Q̂. We first switch to working in Fourier modes on a fl
sky; in Fourier space, the two-mode correlation function
the observed temperature is given by the Fourier transf
of Eq. ~55!:

^Q̂ l1
Q̂ l2&5~Cl1

ee1Cl1
QQ!d l11 l2,0

1
1

A4p
~ l11 l2!•~ l1Cl 1

1 l2Cl 2
!F l11 l2

1
1

8p (
k1

Fk1
Fk2

@~k1• l1!~k2• l1!Cl 1
QQ

1~k1• l2!~k2• l2!Cl 2
QQ22~k1•J!~k2•J!CJ

QQ#

~56!

where we have setk25 l11 l22k1. Then we may use this
two-mode correlation function to evaluate the expectat
values of Eqs.~28! and hence the quadratic estimator~36!

~^Feq (36)&Q,e!L5FL1
1

32p3/2FL
(
k1

Fk1
Fk2

•(
l1

Y l1 ,l2

3@~k1• l1!~k2• l1!Cl 1
QQ1~k1• l2!

3~k2• l2!Cl 2
QQ22~k1•J!~k2•J!CJ

QQ#,

~57!

where we have setl25L2 l1 , k25L2k1, and J5k12 l1,
and
1-8
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Y l1 ,l2
5

L•~ l1Cl 1
QQ1 l2Cl 2

QQ!

~Cl 1
QQ1Cl 1

ee!~Cl 2
QQ1Cl 2

ee!
. ~58!

We can then compute a mean-squared bias by squaring
bias and ensemble averaging overF. ~Note that since differ-
ent Fourier modes ofF are uncorrelated, the terms in th
sum overk1 will usually add incoherently. The exception t
this rule is that terms related by switchingk1 and k2 are
equal, so the mean squared value of the sum is double
value obtained by summing the mean square of every te!
This mean-squared bias is then given by a quadrilateral i
gral:

^udFLu2&F5^u~^Feq (36)&Q,e2F!uL
2&F

3
1

512p6FL
2 E d2k1Ck1

FFCk2

FF

3 H E d2l1Y l1 ,l2
@~k1• l1!~k2• l1!Cl 1

QQ1~k1• l2!

3~k2• l2!Cl 2
QQ22~k1•J!~k2•J!CJ

QQ#J 2

. ~59!

We can thus construct a nonlinearity parameterR2 that is the
ratio of the rms bias to the rms value of the lensing potent
R2

25^udF lu2&F /Cl
FF . This nonlinearity parameter is plotte

as a function ofL for three experiments in Fig. 1; the param
eters for the three experiments—MAP 4-year data, Plan
and a future high-resolution experiment—are shown in Ta
I. TheR2 nonlinearity parameter is small for all but the hig
resolution experiment, indicating that the bias in the q
dratic estimator@Eq. ~36!# is small.

As a final means of testing the importance of the high

order terms in the expansion ofCQ̂Q̂, we conduct a numeri-
cal ‘‘experiment’’ in Sec. V that compares nonlinear@Eq.

FIG. 1. The dimensionless nonlinearity parameterR2, equal to
the ratio of rms bias in the quadratic lensing potential estimator@Eq.
~36!# to the rms value of the potential, is plotted here for seve
experiments as a function of multipole~wave number!. Note that
this quantity is less than unity for all of the experiments. See Ta
I for experiment parameters.
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~25!, without the small and computationally difficult expe
tation value# and linear@Eq. ~37!# lensing potential estima
tors. There we find only modest~10–20%! improvement in
the rms error of the lensing potential reconstruction even
a high-resolution~1 arcminute beam! experiment.

IV. POWER SPECTRUM ESTIMATION

Having constructed an estimator for the lensing poten
F, we next consider its power spectrumCFF. Conceptually,
the situation here is more complicated because once we
erage over an ensemble of lensing potentials derived f

the same power spectrum, the lensed temperature fieldQ̃ is

once again statistically isotropic witĥQ̃Q̃T& diagonal in
harmonic space.~That is, the off-diagonal elements avera
to zero sincê F&50.! But we can still construct an estima
tor for CFF5^FFT& by taking the quadratic estimator forF
and computing its ‘‘square.’’ The resulting power spectru
estimator is thus constructed from the four-point correlat

function of Q̃ or ~in the presence of noise! Q̂. It is thus

measuring deviations ofQ̂ from Gaussianity. We will show
that in the linear approximation, the maximum likelihoo
estimator reduces to the quadratic estimator.

We begin this section by formally writing out the likeli
hood function for the lensing power spectrumCFF as an
integral, and then approximating this integral as Gaussia
Sec. IV A. In Sec. IV B, we approximate the curvatu
~inverse-covariance! matrix of this Gaussian in order to ob
tain a maximum likelihood estimator that is computationa
tractable. We show in Sec. IV C that within the linear a
proximation, the MLE and quadratic estimator are equiv
lent. Computation of the primary CMB power spectrumCQQ

is considered in Sec. IV D, and cross-correlations, e.g.CQF,
are considered in Sec. IV E.

A. Likelihood function and Gaussian approximation

In principle, we could estimate the power spectrumCl
FF

by constructing a grand likelihood functionL̄ given~up to an
additive constant toL̄, or equivalently a multiplicative con-
stant toe2L̄) by

L̄52 lnE DFP~FuCFF!e2L52 lnE DF

3expS 2L@F#2
1

2
FTCFF21F D

52 lnE DFe2P, ~60!

l

le

TABLE I. Reference parameters for CMB experiments.

Experiment w21/2/2.725 K radian s/arcmin

MAP ~4 yr! 5.631028 13
Planck 2.931029 6
High-res. 5.0310210 1
1-9
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where the integral overDF is a functional integral with the
usual measure onRN whereN is the number of pixels in the
map. Note thatL̄ is a function of the covarianceCFF; how-
ever, we cannot simply maximize the grand likelihood fun
tion, Eq. ~60!, and thus obtain an estimate ofCFF, because
our map provides us withN real observations whereasCFF

hasN(N11)/2 independent parameters. In order to obtai
meaningful result for the power spectrum, we must rest
the form ofCFF. Fortunately, the sphericalSO(3) symme-
try of the sky provides us with just such a restriction—
forcesCFF to be diagonal inl space. We will thus assume i
this section thatCFF can be written as a linear combinatio

CFF~x,y!5(
a

Ca
FFCa~x,y!, ~61!

where thea ’s are indices labeling the basis covariance fun
tions and we wish to evaluate the coefficientsCa

FF . There
are two interesting choices of basis functionCa . The first is
the Legendre polynomials, which span the space ofCFF that
are consistent with symmetry requirements. These b
functions are given by

Cl~x,y!5
2l 11

4p
Pl~x•y!. ~62!

This results in coefficientsCl
FF that are the power spectrum

of F. The other choice, useful in the low singal-to-noi
ratio ~SNR! case, is to add several functions of the Eq.~62!
type together to boost the overall SNR, i.e. to estimate
lensing power spectrum in a band rather than for each i
vidual l. In this case the coefficientCa

FF is a weighted aver-
age of the power spectrum over the range ofl values covered
by the basis functionCa .

We have now set up the maximum likelihood estimati
problem for CFF. Before proceeding to compute th
maximum-likelihood point, we warn the reader that there
no guarantee that the likelihood function is devoid of loc
maxima. Most of the methods described here cannot av
local maxima, nor can they be readily adapted to detect lo
maxima. The exception is the Markov chain method,
though the number of iterations required to escape from
local maximum may be prohibitively large.

Since N is a large number~typically 106–107), brute-
force integration of Eq.~60!, does not appear feasible. The
are at least two conceivable approaches to this problem
Markov chain~MC! integration, or a Taylor expansion of th
integrand. While the MC approach is dramatically faster th
a brute-force integration, it is apparent from the high dime
sionality ~one dimension for each map pixel! of the problem
that many iterations in the sequence will be necessary
convergence. We have not found a computationally feas
implementation of MC for this problem. The alternate a
proach is to Taylor expandP to quadratic order inF around
its minimum Fmin , i.e. to approximate the posterior prob
ability distribution forF as a Gaussian. This gives
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L̄@Ca
FF#52 lnE DFe2P[F,Ca

FF]

52 lnE DF expS 2L@F#2
1

2
FTCFF21F D

'2 lnE DF expS 2P@Fmin ,Ca
FF#

2
1

2
~F2Fmin!

T
d2P@Fmin ,Ca

FF#

dFdF
~F2Fmin! D

'P@Fmin ,Ca
FF#1

1

2
ln det

d2P@Fmin ,Ca
FF#

dFdF

[P@Fmin ,Ca
FF#1

1

2
ln detK, ~63!

where the curvature matrixK ~the matrix of second deriva
tives of P with respect toF, evaluated atFmin) has been
introduced and an irrelevant additive constant has b
dropped. Using Eq.~63!, we seek to minimize the gran
likelihood functionL̄. To do this, we differentiate the fina
result of Eq.~63!, yielding

05
]L̄

]Ca
FF

5
]

]Ca
FF S P@Fmin ,Ca

FF#1
1

2
ln detK D

5
]P

]Ca
FF

1
1

2

]

]Ca
FF

ln detKuFmin

1
1

2

]Fmin
T

]Ca
FF

d ln detK

dF U
Fmin

, ~64!

where the final~chain-rule! term reflects the shifting position
Fmin of the minimum as we changeCFF. There is no cor-
responding chain-rule term forP because at the minimum
dP/dF vanishes. We may now evaluate the derivative ofP,
noting that only the prior term in Eq.~17! has a dependenc
on CFF. Combining the log-determinant ofCFF from the
prior with the log-determinant ofK in Eq. ~64! transforms
Eq. ~64! into

052
1

2
Fmin

T ~CFF!21Ca~CFF!21Fmin

1
1

2

]

]Ca
FF

ln det~CFFK !uFmin

1
1

2

]Fmin
T

]Ca
FF

d ln detK

dF U
Fmin

. ~65!

At this point we are confronted with the difficulty of com
puting the curvature matrixK. Unfortunately, brute force
computation ofK requiresO(N2) computations ofP, each
of which must require at leastO(N) elementary operations
1-10
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since it accessesN data points; in practice, a computation
P involves spherical harmonic transforms consisting
O(N3/2) operations.

B. Approximating the curvature matrix

In order to compute the curvature matrix in Eq.~65!, we
split it into two parts: the curvature of the likelihood functio
(F, which is the Fisher matrix in the Gaussian approxim
tion! and the curvature of the prior, which is alway
(CFF)21: K5F1(CFF)21. This provides us with the iden
tity

CFFK5CFFF11N3N , ~66!

where 1N3N denotes theN3N identity matrix. We use the
value ofF from the Gaussian approximation:F5^GGT&. If
we are far from boundaries or regions of nonuniform noi
F is diagonal in harmonic space and we may approximat
in bins accordingly:

F21~x,y!'(
a

@F21#aCa~x,y![(
a

1

Fa
Ca~x,y!, ~67!

where the last equality defines the binned Fisher matrixFa .
In this approximation,F5^GGT& reduces to

Fa5
1

da
^GTCaG&, ~68!

where the expectation value can be computed by a Mo
Carlo analysis, andda is the number of lensing modes in th
band covered byCa . Technically it is best to compute th
Fisher matrix at the value ofFmin , however for purposes o
computational tractability we only compute it once atCFF

50, Fmin50 @see Eq.~96!#. In this approximationdK/dF
vanishes so we will drop the final term in Eq.~65!. We can
then differentiate the log determinant ofCFFK with respect
to a power spectrum coefficient:

]

]Ca
FF

ln det~CFFK !5Tr@~CFFF11N3N!21CaF#

5Tr @~CFF1F21!21Ca#. ~69!

With this approximation, Eqs.~65! and ~69! give

Fmin
T ~CFF!21Ca~CFF!21Fmin5

da

Ca
FF1Fa

21
, ~70!

where the denominator in the second term uses theCl
FF

value appropriate for the range of multipoles covered by
a basis function.

C. Linearization

If the lensing is sufficiently weak, i.e. if we are in th
linear regime~see Sec. III E!, and we are only using theF ’s
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far from our boundary, we can solve Eq.~70! directly. To do
this, begin by examining Eq.~70! in l space~assuming di-
agonality!:

(
lm

uF lmu2

~Ca
FF!2

5
1

Ca
FF1Fa

21
, ~71!

where the sum is over theda lensing modes grouped into th
band a. If we now take the multipole momentsF lm

5(Ca
FF211Fa)21G0lm given by Eq.~37!, we derive

Ca
FF5

1

daFa
2 (

lm
uG0lmu22Fa

21 , ~72!

which is the same result derived by Hu@2# in the flat-sky
approximation.~It is valid in the all-sky approximation if we
re-interpretF andG0 as all-sky variables.!

D. Primary CMB power spectrum

The grand likelihood functionL̄ defined in Eq.~60! con-
tains the complete dependence of the probability density

Q̂ on the primary CMB power spectrum,CQQ. Thus it can
be simultaneously maximized overCFF andCQQ. We first
parametrize the primary temperature power spectrumCQQ in
analogy to Eq.~61!:

CQQ~x,y!5(
a

Ca
QQWa~x,y!, ~73!

where theWa’s are the basis functions. Then we differentia
the Gaussian approximation, Eq.~64!, with respect to the
coefficientsCa

QQ to determine the condition for maximiza

tion of the likelihoode2L̄:

05
]L̄

]Ca
QQ

'
]

]Ca
QQ S P@Fmin ,Ca

FF#1
1

2
ln detK D

5
]P

]Ca
QQ

1
1

2

]

]Ca
QQ

ln detKuFmin

1
1

2

]Fmin
T

]Ca
QQ

d ln detK

dF U
Fmin

. ~74!

We proceed in analogy to our analysis of the lensing pot
tial power spectrum in Sec. IV B. We neglect the change
detK with F, thus eliminating the last term in Eq.~74!. We
can simplify the first term by noting thatP consists of a prior
and the unmarginalized likelihoodL; the prior has no depen
dence onCa

QQ , while the unmarginalized likelihood@given
by Eq. ~15!# has derivative
1-11
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]L
]Ca

QQ
52

1

2
Q̂TCQ̂Q̂21L@F#WaL@F#TCQ̂Q̂21Q̂

1
1

2
Tr~CQ̂Q̂21L@F#WaL@F#T!. ~75!

Combining this with Eq.~74!, and using Eq.~66! to elimi-
nateK in favor of F in the last term, gives us

052
1

2
Q̂TCQ̂Q̂21L@F#WaL@F#TCQ̂Q̂21Q̂

1
1

2
Tr~CQ̂Q̂21L@F#WaL@F#T!

1
1

2
TrF ~F1CFF21!21

]F

]Ca
QQG . ~76!

One can readily see that in the absence of lensing, the
term in this equation vanishes, theL@F# matrices become
the identity, and this equation reduces to the standard m
mum likelihood result for CMB power spectrum estimatio

052
1

2
Q̂TCQ̂Q̂21W aCQ̂Q̂21Q̂1

1

2
Tr~CQ̂Q̂21Wa!.

~77!

E. Correlation of lensing with other observables

We may want to compute the correlation of the lens
potential F with some other quantity. Examples could i

clude the CMB temperatureQ̃, Sunyaev-Zel’dovich or x-ray
observations of hot gases, or galaxy maps. Since the focu
this paper is on likelihood methods, and approximations
them, we will restrict our attention here to the case of de
mining Cl

ZF where Z is an observable which has a joint
Gaussian distribution withF. This situation is expected to
be a very good approximation for the CMB-lensing corre

tion Cl
Q̃F introduced by the ISW effect, since ISW is e

pected to be apparent primarily on large scales which are
in the linear regime; some non-Gaussianity in the potent

induced Q̃ fluctuations may be expected from nonline
growth atl .100 @13#, but this should have negligible effec
on the expected signal to noise. For the other observab
the situation is complicated by nonlinear evolution and
method described here should be used with caution.

We will neglect any error in the determination ofZ. This
is not as restrictive an assumption as it might seem; if
wish to cross-correlateF with an observable that has Gaus
ian error bars, we may write

Z5Ž1z, ~78!

whereZ is the measured value of the observable,Ž is the
actual value, andz is the error. Ifz is Gaussian and indepen
dent ofŽ or F, andŽ is jointly Gaussian distributed with th
lensing potentialF, we infer the relations
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Cl
ZZ5Cl

ŽŽ1Cl
zz and Cl

ZF5Cl
ŽF , ~79!

so that estimating the cross-correlation ofZ andF becomes

equivalent to measuring the desired correlationCl
ŽF . We can

then construct the likelihood function

L̄@Ca
FF ,Ca

ZF#52 lnE DF expF2L@F#2
1

2S Z

F
D T

3S CZZ CZF

CFZ CFFD 21S Z

F
D G . ~80!

The estimators of Secs. III B and IV B need only min
modification in order to do a joint maximum-likelihoo
analysis ofCFF and CZF. To see this, note that for a join
distribution with specified covariance, the expected value
F given Z is

E@FuZ#[^F&uZ5CFZCZZ21Z[AZ, ~81!

where we have defined the slope matrixA5CFZCZZ21. The
variance givenZ is

CFFuZ[^~F2^F&uZ!2&5CFF2CFZCZZ21CZF, ~82!

where we have usedCZF(x,y)[^Z(x)F(y)&. ~Note that
CFZ is the matrix transpose ofCZF.! Equations~81! and
~82! are general for any joint Gaussian distribution, hen
they are valid here even considering the existence of bou
aries. Using them, we can re-write the likelihood functi
@Eq. ~80!# as

L̄@Ca
FF ,Ca

ZF#5
1

2
ZTCZZ21Z2 lnE DF

3expH 2L@F#2
1

2
~F2E@FuZ# !T

3@CFFuZ#21~F2E@FuZ# !J , ~83!

which is of the same form as the first~exact!! line of Eq.
~60!. The additive constant12 ZTCZZ21Z has no effect since
we takeZ andCZ to be constant, so the estimators develop
earlier in this paper to computeF andCFF can be re-written
to computeF2E@FuZ# and CFFuZ , respectively. We next
construct these estimators before turning our attention to
problem of estimating the slope matrixA that relatesZ to
E@FuZ#.

If we are sufficiently far from a boundary, we can diag
nalize in harmonic space to yield

EFuZu5FACl
FF

Cl
ZZ

r l
ZFGZ5AlZ

and

CFF
Z5CFF~12r l

ZF2!, ~84!
1-12
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wherer l
ZF is the correlation coefficient of thel th-order mul-

tipoles. We note at this point that~assumingCZZ is known or
has been separately measured! that the sets of variable
(Cl

FF ,Cl
ZF), (Cl

FF ,r l
ZF), and (Cl

FFuZ ,Al) are merely dif-
ferent parametrizations of the same space of models. We
estimate any of these pairs; (Cl

FFuZ ,Al) is introduced here
precisely because it is the easiest to estimate directly. We
now immediately convert Eq.~25!, without the trace, to yield

F5E@FuZ#1CFFuZG ~85!

as the mode of the posterior probability distribution@where
G is the likelihood gradient as specified in Eq.~28!#. The
power spectrum estimator result, Eq.~70!, becomes

15
Ca

FFuZ1Fa
21

da
GTCaG, ~86!

whereG in Eq. ~86! is evaluated at the solution to Eq.~85!.
These equations specify the conditions for the likeliho
L̄(CFF,rZF) to be stationary with respect to first-ord
variations inCFFuZ with Al constant. In order to complet
the analysis, we must also identify the condition forL̄ to be
stationary with respect to first-order variations in theAl
~slope! coefficients in Eq.~84! with CFFuZ constant. For
these variations, if we again approximate the Fisher ma
asF5^GGT&uF50, we derive a constant curvature matrixK.
Then, parametrizing theAl in bands in analogy to Eq.~61!
gives

A~x,y!5(
a

AaBa~x,y!, ~87!

where it is assumed thatBa and henceA are symmetric. We
obtain a maximum likelihood condition onAa by differenti-
ating L̄:

]L̄
]Aa

5
]P
]Aa

5
]L
]Aa

5E
V

d2x
dL

dF~x!

]F~x!

]Aa

5E
V

d2x
dL

dF~x!

]E@FuZ#~x!

]Aa
5ZTBaG. ~88!

Note that we have takenF2E@FuZ# to be constant here
this was merely a convenient choice.@Since we have maxi-
mized P with respect toF, we can choose any first-orde
variation inF without affecting the derivative in Eq.~88!.# It
follows that the joint maximum-likelihood estimator fo
(CFF,A) satisfies

ZTBaG50. ~89!

We can then reconstruct the full lensing power spectrum
cross-correlation using the relations

Cl
ŽF5Cl

ZZAl and Cl
FF5Al

2Cl
ZZ1Cl

FFuZ . ~90!
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If we take the linear approximation of Sec. III E, thatG
'G01FF, and approximate diagonality in harmonic spa
as in Sec. IV C, Eq.~89! becomes

Aa52
ZTBaG0

ZTBaFBaZ
. ~91!

If we note thatCZF5CZZAl , we note that this is the sam
result as obtained by correlating the linearized maxim

likelihood estimator, Eq.~36! with Z. In the case of theQ̃F

correlation (Z5Q̂), which is of interest for investigating the

ISW effect, the numerator is cubic inQ̂, i.e. the maximum
likelihood estimator forAa is the same as that compute
from the bispectrum.

As a final point, we note that for theQ̃F correlation, the

error z5e in Z5Q̂ is not entirely independent of the est
mation procedure forF, since we are after all determiningF
from the CMB temperature measurements. Since we
sumedz to be uncorrelated withF and its determination,
this is a potential flaw in our calculations as applied to t

Q̃F correlation. We expect the error induced by this effect
be small, since the ISW effect is most important on the la
scales where the instrument noise is small:Cl

ee!Cl
QQ . We

additionally note that the determination ofF primarily uses
information from much higherl.

V. IMPLEMENTATION AND RESULTS

In order to demonstrate the feasibility of computing t
estimators above in a realistic situation, and to assess
performance, we ran several simulations in which a data
was generated and analyzed. The data sets are generate
full sphere assuming isotropic Gaussian temperature fluc
tions, lensing potential, and instrument noise. For Planck
the high-resolution reference experiment (l max'3500, beam
full width at half maximum51 arcminute!, we reconstruct
the lensing potential and compare the reconstruction
original map. The lensing power spectrum was estimated
the Planck-type experiment, but computer time constra
prevented a similar analysis for the high-resolution expe
ment.

A. Utilities

A lensing simulation requires the capability to work wi
maps on the unit sphere, or some subset thereof, particu
the capability to perform the elementary algebraic and ca
lus operations and to perform convolutions and both forw
and reverse spherical harmonic transforms~SHT!. We there-
fore require the use of a map projection or grid. In order
perform SHT in a reasonable amount of time, we must use
isolatitude projection, i.e. one in which horizontal lines a
parallels of the same latitude. Furthermore, we found con
mality to be convenient for differentiation and useful for r
ducing gridding errors~see Sec. V B!. The only projection
with these properties is the Mercator projection, in which t
1-13
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map coordinatesx and y are related to the longitudef and
colatitude u by the formulas f5t(x2x0) and cosu
5tanh(ty).

The conformal magnificationG defined byds25G2(dx2

1dy2) satisfiesG5t sinu. A map of some quantityA is
stored as a two-dimensional arrayA(x,y) of values at the
points of integerx andy. Spherical harmonic transforms a
performed by transforming first the longitude (x or f) direc-
tion to produce the Fourier coefficients ofA at constant lati-
tude and then the latitude (y or u) direction. On a grid with
N points, this is anO(N3/2) process. Convolutions are pe
formed with two successive SHT’s.

B. Estimator for map of lensing potential

Our implementation presently approximates the estima
~25! as follows. The expectation value is ignored since it
expected to be small; see the discussion following Eq.~25!.
We must also approximate the vector

V52@~CQ̂Q̂@F#21Q̂!L@F#¹CQQL@F#21

3~CQ̂Q̂@F#!21Q̂#, ~92!

and use it to determine the likelihood gradientG5¹•V.
~Note thatG5dL/dF is a scalar function onV.! Because of

difficulties computingC21Q̂ in a reasonable amount of time

we chose to approximateC21Q̂ by a sequence of~i! filtering

of L21Q̂ using the harmonic-space kernelCQQ/(CQQ

1Cee) and~ii ! convolution with the (Cl)
21 kernel. Of these

steps, both break down near the boundaries and~ii ! breaks
down when the lensing is strong enough so that the noiseCee

in Q̂ is no longer a good approximation to the noise

L21Q̂. We note that ifCee were flat ~i.e. l 2Cee} l 2), this
approximation would become exact far from the boundar
~‘‘Real’’ instrument errors show some increase inCee at high
l due to finite beam size@14#.! In order to reduce gridding
errors, the (Cl)

21 operation is performed by convolving wit
the kernel@ l ( l 11)Cl #

21 and then taking the Laplacian. I
order to avoid boundary effects,V is multiplied by a function
q that is equal to one insideV far from the boundary, bu
falls off smoothly to zero at the boundary.

After computingV, we take its divergenceG5¹•V; then
we must determineCFFG. In order to reduce errors due t
the gridding ~pixelization!, we perform the convolution in
two steps. First, we apply an inverse Laplacian opera
¹22, and then we apply the remainder of the convolutio
l ( l 11)Cl

FF . Because we use a conformal coordinate s
tem, the inverse Laplacian can be done in the plane wh
gridding errors vanish~the forward and reverse Fourier tran
forms are exact inverses of each other, even on a disc
grid, which does not occur for SHT!. This is important since
the low-l modes of G, which correspond to the lensin
modes that can be recovered at moderate signal-to-nois
tio, are buried in high-l noise due to the power spectru
l 2Cl

GG}' l 5 in the range of interest 50< l<1000. The in-
verse Laplacian operation does not add significant time to
computation because it utilizes a fast Fourier transform
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quiring O(N logN) operations, whereas the computatio
time is dominated by SHT’s requiringO(N3/2) time. With
some attention paid to gridding issues, this two-step proc
may turn out to be unnecessary.

An iterative procedure is needed for solving Eq.~25!. The
obvious iterative procedure,Fn115CFFG@Fn#, is ~in the
linear approximation! unstable for any lensing mode wit
SNR25CFFF.2, and hence is not a good choice. W
therefore use the underrelaxed version,

Fn115~12 f !Fn1 f CFFG@Fn#, ~93!

wheref is a convergence parameter. In the linear approxim
tion, convergence would require 0, f ,2/(11SNR2), how-
ever, a smaller value off is necessary in practice to avoi
instabilities resulting from boundary effects and nonline
lensing effects.

C. Power spectrum

We use Eq.~70! to estimate the power spectrumCFF.
The basis functions of choice have constantl 2( l 11)2Cl

FF

within some bandl min<l<lmax. The number of modes cov
ered by the basis functionCa can be estimated as

da5A~V! (
l 5 l min

l max 2l 11

4p
5

A~V!

4p
@~ l max11!22 l min

2 #.

~94!

The estimator, Eq.~70!, then can be written in the iterativ
form:

Ca
FF5Ca

FFFCa
FF1Fa

21

da
~¹22G!TPa¹22GGb

, ~95!

wherePa is the projector onto the bandl a,min<l<la,max, i.e.
the operation that filters out all multipoles not included
this band. We use¹22G here because it and its spheric
harmonic transform are already being computed for the e
mation of the map ofF. The parameterb is an adjustable
convergence parameter. The Fisher matrixFa is computed
by the Monte Carlo procedure:

Fa5
1

da
^~¹22G0!TPa¹22G0&, ~96!

where the average is taken over an unlensed tempera
field ~including noise!.

Note that Eq.~95! exhibits a difference from the quadrat
estimator, Eq.~72!: while Eq.~72! can, in principle, be nega
tive, Pa is positive definite and hence Eq.~95! can never
yield any result less than zero. It is straightforward to sh
that in this case, assuming the linearized approximation
Secs. III C and IV C, and assuming a positive initial guess
used for the power spectrum to start the iteration, that
~95! tends to zero~estimates no power!. Because negative
results are replaced by zeroes, Eq.~95! technically converges
to a biased estimator, with expectation value
1-14
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^Ca
FF~est.!&

Ca
FF~actual!

512
1

2
erfc

x

A2
1

1

A2p
x21e2x2/2

511p21/2e2x2/2

3~x2323x2515!!x272••• !, ~97!

where x5daCa
FFFa/2 is the squared signal-to-noise rat

(SNR2) in the power spectrum determination. If the sign
to-noise ratio is large (x@1) then this bias is irrelevant. Not
that in the context of maximum likelihood estimation,
negative power spectrum estimate does not make sense
cause the corresponding probability distribution forF and
hence the likelihood integral, Eq.~60!, are ill defined. In
particular, the avoidance of negative power spectra is no
artifact of any approximation we have made.

Obtaining convergence from the coupled iterative estim
tors, Eqs.~93! and ~95! requires some care. Convergen
depends not only on the values of the parametersf andb, but
also on the pattern of how many times the map is upda
using Eq.~93! each time the power spectrum is updated
ing Eq.~95!. As an extreme example, we note that iff andb
are taken to be very small, and we alternate between up
ing the map and power spectrum, convergence can be
pected only for negativeb; whereas if we iterate the ma
many times between iterations of the power spectrum, c
vergence requires positiveb. After some experimentation
we found that iterating the map many (M@1/f ) times be-
tween iterations of the power spectrum and takingb51 re-
sulted in convergence.

D. Improvements

While the implementation described here is sufficient
evaluating the importance of nonlinear effects, much w
remains before it could be used to analyze real data. F
real data have boundaries~if for no other reason than th
presence of a galactic plane cut! and usually have inhomo
geneous noise. Thus, theC21 operation used here will nee
to be performed by actual matrix inversion rather than
convolution. The latter also becomes necessary in the e
of nonuniform noise. Also, the iteration of equation Eq.~95!
converges slowly and for long-wavelength modes (1/l com-
parable to the size of the gridded region! may fail to con-
verge entirely.

Additionally, it would be desirable to use a better appro
mation to Eq.~60! than the Gaussian approximation, E
~63!, but we were unable to identify a computationally tra
table method of doing this.

E. Results

Here we investigate the effects of nonlinearity on futu
CMB experiments. We use the form for the instrument no
@14#:

Cl
ee5w21el ( l 11)s2/8 ln 2, ~98!

where the weightw and beam full-width at half maximums
are parameters, and the beam spot is assumed to be Gau
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We use a primary CMB power spectrumCl
QQ generated by

CMBFAST, assuming a flat universe with a cosmological co
stant and parametersH0572 km/s/Mpc, TCMB52.725 K,
YHe50.24, Nn53 ~massless!, Vb50.04, Vcdm50.30. The
primary CMB model is shown in Fig. 2. The lensing pow
spectrum, shown in Fig. 3, is computed normalized tos8
51.

We compare the linearized estimator to the ‘‘full’’ nonlin
ear estimator~as implemented here! for two experiments: the
upcoming Planck satellite mission, and the proposed A
cama Cosmology Telescope~ACT! as an example of upcom
ing high resolution, low noise experiments. The parame
for the Planck and the high-resolution reference experime
are shown in Table I.~The MAP 4-year experiment is als
shown for comparison.! For purposes of computational trac
tability, we have restricted ourselves to a small portion of

FIG. 2. The solid line illustrates the model primary CMB tem
perature power spectruml ( l 11)Cl

QQ/2p. The noise curvesl ( l
11)Cl

ee/2p are shown for MAP 4-year data~top, long-dashed!,
Planck~center, short-dashed!, and the high resolution reference e
periment~bottom, dotted!.

FIG. 3. The solid line illustrates the model convergence pow
spectrum Cl

kk5 l 2( l 11)2CFF/4. The noise curves l 2( l
11)2(Fl

FF)21/4 are shown for~top to bottom! MAP 4-year data,
Planck, and the high-resolution reference experiment, using cu
ture matrix elementsFl computed from Eq.~35!.
1-15
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sky: the Planck simulation was run on a 7513751 grid with
spacing at equatort5531024 radians~even though Planck
is an all-sky experiment!, and the high-resolution simulatio
was run on a 125131251 grid witht51.531024 radians.
~Note that the ACT survey region is a long, rectangular str
on the sky as opposed to a more compact patch. Becau
our implementation’s susceptibility to boundary effects,
cannot do our simulations on a stripe.! The solid angles cov-
ered by the simulations are 0.14 sr (;2% of the Planck
survey area! for the Planck-type experiment and 0.035 sr f
the high-resolution experiment.

The results of these simulations are shown in Fig. 4. T
convergence map errors~i.e. kest2k) for both the nonlinear
estimator, Eq.~95! and the linear estimator, Eq.~37! were
computed. The convergence map errors were then Fou
transformed~since we are working on a small patch of sky!,
yielding the error amplitudek l for each Fourier mode. The
modes were then sorted into bins ofD l 520 according to

their l value, and an RMS amplitudeAk̄ l* k l was computed
for each bin. The ratios of these RMS amplitudes are plo
in Fig. 4. Note that for the Planck experiment, there is onl
slight advantage in using the nonlinear estimator, whereas
the high-resolution experiment, the accuracy of the rec
struction is improved by using the full nonlinear estimat
Eq. ~37!.

Both the comparison via simulation of the linear and no
linear estimators~Fig. 4! and the semianalytic bias calcula
tion ~Fig. 1! are methods of assessing the validity of t
linear approximation. Both of them suggest that nonlin
effects are more important for the higher-resolution exp
ment than for Planck, but~at least for the experiment con
sidered here! are not dominant. Note, however, that for th
high-resolution experiment the semianalytic calculat
found nonlinear effects to be more important at highel,
whereas the simulation found a greater improvement
switching to the nonlinear estimator at lowerl. Note, how-

FIG. 4. The ratio of the root mean squared error (AMSE) for the
nonlinear estimator, Eq.~93!, to that of the linear estimator, Eq
~37!, in bins of D l 520. Results are obtained from a Monte Car
simulation, which is responsible for the bumpiness of the gra
The solid line is for Planck parameters, and the dotted line is for
high-resolution experiment~see Table I!.
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ever, that the semianalytical calculations of Sec. III E and
simulation of this section are not measuring the same qu
tity: in Sec. III E we were examining the bias of Eq.~36!,
whereas here we are considering the mean squared err
the optimally filtered version of that estimator.

We also simulated the performance of the linear@Eq. ~72!#
and nonlinear@Eq. ~95!, 16 iterations# convergence powe
spectrum estimators for Planck parameters. These were
formed on the aforementioned 0.14 sr patch of sky, for se
l bins: 100–150, 150–200, 200–280, 280–360, 360–4
440–520, and 520–600. The results are shown in Fig. 5.
~Monte Carlo! mean of each estimator, computed fromn
510 trials of area 0.14 sr each, are shown. Note the sim
performance of the estimators except in the low-l bands.
Note that in the full Planck experiment ('8 sr), the error
bars would be smaller by a factor of'A1.4/8.

We may test both the linear and nonlinear estimators
bias using thet test. Thet statistic for banda is given by

t@a#5
SampleMean~Ca

FF!2Ca
FF

As2/n
, ~99!

wheres2 is the sample variance of theCa
FF . The t-test re-

sults are shown in Table II. A positivet statistic indicates tha
we are overestimating the power spectrum, a negativet sta-
tistic indicates that we are underestimating it. Thet statistics
here are designatedt9 in the table because they have 9 d
grees of freedom. Also shown in the table is the two-tai

.
e

FIG. 5. The true convergence power spectrum,Cl
kk , is shown

by the solid line. The points~with error bars! indicate estimated
convergence power spectra from the linear (1points) and nonlinear
(3points) estimators@Eqs.~72! and ~95! respectively#. To prevent
the error bars from overlapping and causing confusion, we h
displaced the data point for the linear estimator slightly to the
and the data point for the nonlinear estimator slightly to the rig
The error bars are the 1s Monte Carlo error bars on the expectatio
value of the estimator. The estimated power spectra plotted are
erages over 10 trials of 0.14 sr solid angle each using Planck
rameters, and thus shows the error bar on the power spectrum u
data from a region of areaA(V)51.4 sr.
1-16
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p-value, i.e. the probability of a perfectt random variable
~with 9 degrees of freedom! having absolute value exceedin
t9:

p52E
ut9u

` G~n/211/2!

AnpG~n/2!
S 11

x2

n D 2(n11)/2

dx. ~100!

If the power spectrum estimator is unbiased and norm
distributed, thep value for eachl bin is uniformly distributed
between 0 and 1.~Warning: because, for each estimator, w
derived thep values for all thel bins from the same 10
simulations, there is no reason to believe that thep values are
independent.! We note that, for the high-l bins (l .200), the
linear and nonlinear estimators give similar results; both
consistent with being unbiased, although the nonlinear e
mator shows a lower sample variance.~This is partially the
result of negative power-spectrum estimates being set to
by the nonlinear estimator.! In the two lowest-l bins, the
sample variance of the nonlinear estimator is enormous.
note that in some of our simulations, the nonlinear estima
assigned anomalously large~in one case.431027) values
of Ckk to these bins; this suggests a problem with the e
mator. This may be due to smearing of the bins by the fin
width of the scanned region~width '0.38 sr) or may repre-
sent a problem with the iterative procedure~e.g. convergence
to a local maximum of the likelihood!.

Due to the excessive computation time requirements,
were unable to run a similar simulation of power spectr
estimators for the high-resolution experiment. Such a sim
lation would be interesting because the nonlinear lensing
tential estimator showed improvements at the>10% level
over the quadratic estimator for this experiment.

VI. CONCLUSIONS

Weak lensing of CMB temperature maps has been rec
gized for some time as a potential probe for mapping
mass distribution of the universe~in projection!, and deter-
mining quantities derivable from such a map: its power sp
trum and cross-correlation with the CMB or other maps.
the past several years, methods for carrying out this stat
cal analysis have been proposed@1,7# and dramatically im-
proved @2#. We have shown, by comparison to likelihoo
based approaches, that quadratic estimator@2# for the lensing
potential@equivalent to our Eq.~36!# is very close to optimal
for the Planck experiment. That is, for this experiment, th

TABLE II. Convergence power spectrum estimators:t test.

l range da linear t9 linear p nonlin. t9 nonlin. p

100–150 127 25.08 0.0007 20.23 0.8200
150–200 178 22.23 0.0527 0.79 0.4523
200–280 392 22.16 0.0592 23.66 0.0052
280–360 522 0.73 0.4822 20.19 0.8558
360–440 653 0.17 0.8654 0.31 0.7670
440–520 783 20.51 0.6238 20.71 0.4976
520–600 914 0.49 0.6352 0.03 0.9763
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is no hope of further reduction in the statistical noise of t
lensing potential. Similarly, simulations of the fully nonlin
ear power spectrum estimator do not show much impro
ment over the linear version.

If the lensing potentialF can be treated as a Gaussi
random field, and for experiments for which the lineariz
approximation suffices, then our maximum-likelihood ana
sis indicates that the CMB temperature bispectrum a
trispectrum are optimal estimators for the temperatu

lensing potential cross-correlation (CQ̃F) and lensing power
spectrum, respectively. There is, in this case, no additio
information in the fifth-order and higher statistics of th
CMB. These higher-order statistics may be useful if the le
ing potential is non-Gaussian; for example, the matter d
sity bispectrum will result in a similar bispectrum in th
quadratic estimator, Eq.~36!, i.e. it its effect will be seen in
the CMB six-point correlation function.

For the higher-resolution experiments, our results indic
that the residual error in the lensing potential maps can
reduced by switching from the quadratic estimator to
‘‘full’’ likelihood-based estimator. In order to make this ap
proach practical, further work will be needed to develop
version of the algorithm that works near the survey bou
aries and to improve the stability of the algorithm. Oth
approaches to the functional integral in Eq.~60! besides the
Gaussian approximation used here, such as Markov cha
could be used. It is even possible that, due to use of a be
approximation to the integral, the error can be reduced
ther. However, given that the high-resolution~1 arcminute
beam! simulation only showed improvement in RMS error
the 10–20% level, it may be preferable to simply use
quadratic estimator for these experiments, accept this m
loss in signal-to-noise ratio, and avoid the difficulties as
ciated with the nonlinear estimator.

One problem for both the quadratic estimator approa
@2# and our likelihood-based approach are extremely se
tive to errors in the primary CMB power spectrum,Cl

QQ . In
the quadratic approach, this can be seen by noting that
power spectrumCFF is obtained by differencing two quan
tities which may be very close to each other in Eq.~72!; the
inverse Fisher matrixFa

21 may be tens of times greater tha
Ca

FF for Planck~see Fig. 3! and consequently the quantitie
being subtracted in Eq.~72! may differ by only several per-
cent. In the likelihood approach of Sec. V C this problem
masked by the formalism of the iterative scheme, but it
still there. Note that this problem is more serious for t
lower-resolution experiments. It is apparent that a lens
power spectrum analysis must be accompanied by extrem
accurate determination ofCl

QQ , or an estimation schem
must be introduced that is robust against small errors inCl

QQ

must be introduced, or both.
We have performed no analysis here of lensing estima

using the CMB polarization. In Ref.@10# a quadratic estima-
tor analysis for the CMB polarization has been perform
Because the polarization is a Gaussian random field wh
covariance depends on the lensing potential~i.e. there are

observed covariancesCQ̂Ê, CÊB̂, etc. analogous to theCQ̂Q̂

used here!, an analysis analogous to that of Secs. III and
1-17
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establishes that the quadratic estimator approach is optim
the lensing is sufficiently weak. Because our simulation co
cannot handle polarization, we cannot determine whethe
alistic lensing is sufficiently weak or whether a nonline
maximum-likelihood analysis is required to make full use
polarization data sets. Any high resolution polarization e
periment will have one of its main goals gravity wave dete
tion in B mode. Since weak lensing creates B modes out o
modes@15# it is important to remove this contamination a
well as possible by using the weak lensing reconstruc
@12,16#. Given that polarization and its E and B decompo
tion is sensitive to the direction of polarization in addition
its amplitude, it may be more susceptible to the errors
duced by the linearization procedure. In this case the non
ear analysis will be essential to exploit fully the potential
any future high resolution CMB polarization experiment.
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APPENDIX: POTENTIALS, CONVERGENCE,
AND PROJECTED DENSITY

Here we sketch a derivation of Eq.~6!, and use this to
relate the lensing potentialF to quantities of more direc
physical interest. We use a Robertson-Walker metric wit
Newtonian perturbation~i.e. a weak perturbationuCu!1 in-
duced by nonrelativistic matter!:

ds25a2@2~122C!dt21~112C!„dr21S~r !2dv2
…#

~A1!

wherea is a function of the conformal timet, andC is the
gravitational potential, generally a function of all the coord
nates. The comoving distance isr, andvPS2 is a direction
on the unit sphere with the usual line elementdv2. We have
used the sinelike functionS(r )5k21/2sin(k1/2r ), and will use
its derivative, the cosinelike functionC(r )5cos(k1/2r ), and
their ratioT(r )5S(r )/C(r ), wherek is the spatial curvature
We use as an initial conditiont50 at present, and normaliz
a(t50)51. The simplest way to find the photon deflectio
is to consider the conformal metric~which must have exactly
the same null geodesics!:

ds̃252~124C!dt21dr21S~r !2dv2. ~A2!

In this metric we compute for the null geodesics~to linear
order inC and assuming that the geodesic is nearly radi!:

d2v

dr2 5
C~r !

S~r !

dv

dr
22

]C

]v
. ~A3!
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In the Born approximation, where the gradient overv is
evaluated along the unperturbed line of sight, this is an
homogeneous linear equation inn which can be solved by
the Green’s function method to findv at the last scattering
surface. The result is that the null geodesic arriving at ‘‘u
(r 5t50) from directionn is found to have originated in
directionn1¹F(n), where

F~n!522E
0

r ls
drC~rn,2r !S 1

T~r !
2

1

T~r ls!
D . ~A4!

Through the use of the trigonometric identities and their h
perbolic counterparts we can show that:

1

T~r !
2

1

T~r ls!
5

S~r ls2r !

S~r !S~r ls!
~A5!

with which Eq. ~A4! can be shown to be equivalent to th
forms provided by, e.g. Refs.@2,3#.

Since the lensing potentialF is represented here as
projected gravitational potential, it would make sense that
second derivativek52 1

2 ¹2F would represent a projecte
density perturbation. This is indeed the case, although th
are other contributions tok. If we defineD to be the comov-
ing three-dimensional Laplacian@i.e. ondr21S(r )2dv2], as
distinguished from the two-dimensional Laplacian¹2 on the
unit sphere, we have the usual relation forD:

D5
1

S~r !2 F¹21
]

]r S S~r !2
]

]r D G . ~A6!

If we solve this relation for¹2, we can splitk52 1
2 ¹2F

into two terms: one involving theD operator and one involv-
ing the radial operator:

k5E
0

r ls
drS 1

T~r !
2

1

T~r ls!
D FS~r !2DC2

]

]r S S~r !2
]C

]r D G .
~A7!

The first term can be replaced with a density using Poisso
equation, thus generating a projected density. To study
second term, we replace the partial derivative overr ~at con-
stantt) with a total derivative along the line of sight and
time derivative. The time derivative can be neglected her
the matter is nonrelativistic.@Indeed we have already mad
this assumption implicitly when we write Eq.~A1!.# Next
integrate by parts so that thed/dr acts on 1/T(r )
21/T(r ls). ~SinceS(0)50, the surface terms generated b
the integration by parts will vanish.! Then we use the identity
(d/dr)@1/T(r )#521/S(r )2 to convert Eq.~A7! into

k~n!54pGNE
0

r ls
drS 1

T~r !
2

1

T~r ls!
D

3S~r !2a~2r !2dr~rn,2r !2C~r lsn,2r ls!1C~0!

~A8!
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whereGN is the universal gravitation constant anddr is the
density perturbation. Note that convergence can be bro
into two components: a component due to the density fl
tuationsdr along the line of sight, and a component due
the potential difference between the source and observer.
second component is due to tidal forces acting to separate
trajectories of CMB photons; conceptually, it has the sa
origin as the compression of the sky into a small solid an
near the zenith as seen by an observer near a black
despite the absence of any mass energy along the lin
sight.
Re
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Finally, we attempt to determine the magnitude of t
potential-difference contribution to the convergence. H
C(0) is a constant~isotropic! and can be removed by
gauge transformation, so we do not consider it further. T
termC(r ls) can be estimated based on the CMB temperat
fluctuation using the Sachs-Wolfe relationC(r ls)53Q @17#;
thus the contribution of theC(r ls) term tok is 23Q. Since
Cl

23Q,23Q59Cl
QQ is always at least a factor ofl 2 less than

the overall power spectrumCl
kk , its effect on the conver-

gence power spectrum is subdominant with respect to cos
variance.
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