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The would-be Majoron in R-parity-violating supersymmetry
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In lepton-number-violating supersymmetric models, there is no natural choice of basis to distinguish the
down-type Higgs and lepton superfields. We employ basis-independent techniques to identify the massless
Majoron and associated light scalar in the case of spontaneously broken lepton nunbathen explicitL
violation is added, these two scalars can acquire masses of the order of the electroweak scale and can be
identified as massive sneutrinos.
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[. INTRODUCTION We consider the most genelilalviolating low-energy su-
persymmetric model, with the MSSM field content. In addi-

Recent data that exhibit neutrino mixing phenomena im4ion to the effects of the explicit-violating terms, one must
ply that the lepton sector of the standard model must bé&lso consider the -violating effect that depends on the
extended 1]. The simplest extension involves adding right- vacuum expectation values of the sneutrino fields. Of course,
handed neutrinos, and then tuning the neutrino masses to e latter is basis-dependent, and it is often convenient to
less thanO(1 eV) (if neutrinos are Dirac fermionsor by ~ define the Higgs field such that the orthogonal physical
invoking the seesaw mechanisifi neutrinos are Majorana sheutrino fields have no vacuum expectation value. However,
fermiong_ In |0W_energy Supersymmetric models, it is pos- other choices are possible, which suggests that the model can
sible to introduce neutrino masses in a phenomenologicallpe viewed as a model of spontaneously broken lepton num-
acceptab|e way without add|ng right-handed neutrinos. On®¢€er with additional eXpliCiﬂ.-ViOlating terms. Since models
simply allows for renormalizable terms that violate lepton©f spontaneously broken lepton number possess a massless
number (), while imposing baryon numbéB) invariance. ~Majoron, when explicitL-violating terms are included, the
This can be achieved by replacifyparity of the minimal ~Majoron acquires a squared-mass proportional to the relevant
supersymmetric modéMSSM) with a Z, triality [2]. This ~ €xplicit lepton-number-violating term. Two questions imme-
model provides an alternative framework for neutrinodiately arise(i) How do we identify the would-be Majoron?
masses. Eventually, one must try to understand why thand (i) If explicit lepton-number violation is very small
L-violating parameters of the model are small enough tdwhich is needed to explain the magnitude of neutrino
yield neutrino masses at the observed | masses how does one avoid a very light would-be Ma-

In the B-conservingl-violating alternative to the MSSM, joron? These questions have been previously examined in the
the L-violating terms are explicit. One can also generate literature[9,10]. In this paper, we revisit both these questions
violation directly in the MSSM if one of the sneutrinos ac- and demonstrate how they can be addressed in a basis-
quires a vacuum expectation vali/g. In the latter casd, is  independent formalisrfil1,12.
spontaneously broken, which implies that a massless Gold-
stone boson, the Majoron, must exist in the spectf&in Il. THE SCALAR POTENTIAL
Since the sneutrino is an electroweak doublet, one can show AND MINIMUM CONDITIONS
that the spectrum must also include a very light CP-even
scalar partner to th€ P-odd Majoron[6]. Models of this
type are excluded since the decay of thanto the Majoron
and itsCP-even scalar partner is not obsenféd6]. Thus,
any viable L-violating supersymmetric model whose field 9 -~ ~
content is identical to that of the MSSM must possess ex- Vieutra™ (MG + ] 1£[2)[hu [+ (M) apt+ pasfy Ivavh
plicit L-violating terms. There are also ways to extend the

In the notation of Ref13], the contribution of the neutral
scalar fields to the scalar potential, before impodingon-
servation, is

model of spontaneous-violating supersymmetry by adding —(b,vahy+bgvahg)
additional chiral superfieldéncluding electroweak singlets 1,2, 2 5 1~ 122
such that the Majoron is dominantly a singlet and all other +2(97+ 9" )hy[*—[valT% (1)

scalar masses lie above; [8]. However, such models lie

outside the scope of this paper where hy, is the neutral component of the up-type scalar

doublet, and we have combined the neutral component of the
down-type scalar doublei;u=hp and the three sneutrinos,

This is a feature of both the nonsupersymmetric and supersym; into a generalized sneutrino fieldv,, where
metric doublet Majoron models. a=0, ... ng (for ng=3 generations In minimizing the full
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scalar potential, we assume that only neutral scalar fieldx SU(2)xU(1) gauge symmetry, but are distinguished by
acquire vacuum expectation valuethy)=(1/\2)v, and  their L quantum numbersz, is neutral while thev; possess
(ve)=(12)v,. From Eq.(1), the minimization conditions nonzeroL. Hence if any one of the; acquires a vacuum

are expectation valuel. will be spontaneously broken. Noting
, - o , . thatM?,=M§; =0 in the basis defined above, Ed) implies
(MG +| |9 vl =bw,—5(9°+9 ) (Juy|*—|vdl*)vy that M{jv;=0. Thus, if at least one of the; is nonzero, it

(2 follows that deM2=0. This is a necessary(basis-
2 e x independentcondition for spontaneous lepton number vio-
[(M[)a,@—i_/u‘alu“ﬁ]vﬁ:bavu lation.
1,2, 12 2 112y * We assume that,# 0 andvy,# 0. Without loss of gener-
T3(9°+9" ) (Juul*~ lodl*)vz, ality, we may perform a rotation of the sneutrino fields
(3) among thev; such thatv;#0 while v,=vz=0.% It then
follows from Eqgs.(2) and(3) that

where
2 '
; ; (M) 1=5(g*+g"*)(vi—v5—v9), ©)
val?=2 [val® (@)
o | (MG +(MP) 11+ | 2oy =buo, (10
The normalization of the vacuum expectation values has
been chosen such that 5 9 )
(M= (M) 11+ |u|Hvo=buy, (13)
2my
UE(|UU|2+|Ud|2)1/2:T:246 GeV. (5) wheremZDE(Mﬁ)oo. These equations have a consistent so-

lution for nonzerov,, vg, andv, only if
It is convenient to introduce two additional quantities. We

define M3+ (ME) 11+ | DB = (ME) 11+ | w[D=b2. (12)

2 ’ . . . ...
M25=(M?) g+ pomh—§(9°+09' %) (vi—v5) .5 (6)  For this very particular choice of parameters, the quantities

_ ' _ o o vylve andv2—v3—wv? are fixed, but this is not enough in-
Using this quantity, we can simplify the second minimum formation to determine all three vacuum expectation values

condition[Eq. (3)] which now reads uniquely at the tree level. That is, there is a flat direction in
the scalar potential at tree-level. Referef@edemonstrates
Miﬁvzzvuba' (7 that by considering the renormalization group evolution of
_ _ the potential parameters, there is generically some momen-
Itis also useful to define the vectoy, as follows: tum scaleQ, for which Eq.(12) is satisfied. Then, when the
5 one-loop effective potential is evaluated, the flat direction is
M2 gbs=1b|%c,, (8  lifted and the undetermined vacuum expectation value is

fixed via dimensional transmutation in terms@f§. The pa-
rameters of the model must be tuned to get the obsezved
mass,m3=(g%+g'?)(v3+vi+v3), as well as the correct

lIl. SPONTANEOUS LEPTON NUMBER VIOLATION hierarchyv;<v needed to explain the light neutrino mass.

IN THE MSSM If lepton number is spontaneously broken, then there must

be a massless Goldstone boson—the Majd&inWe shall
exhibit this explicitly in the case above where Et) holds.

For simplicity, we assume that the modeld$-conservind'

é{Ve can then comput€ P-even andC P-odd scalar squared-
ass matrices. In Refl12], we showed that after removing

where|b|?=2 ,b*b,,.

We begin by considering the possibility of spontanebus
violation in low-energy R-parity-conserving(RPQ super-
symmetry consisting only of the MSSM fields. We impdse
conservation on the MSSM Lagrangian, which constrains th
scalar potentialEq. (1)]. In the usual basis choice in which m
hp is a Higgs field ancT/j (j=1,2,3) are the lepton number
carrying sneutrino flezlds, I fchIIows thap““_(/'LLO’O’O)’ 31f v,=0, then Eqs(2) and (3) simply reduce to the usual RPC
b,=(b,0,0,0), and M7);0=(M{)o;=0. Note thatvo=hp  MSSM equations fow, andvy=v,. If we had assumed that,
and the 7,]. transform the same way under the SU(3) =vo=0, then one finds that lepton number is spontaneously broken

with v2= 78(M§)11/(gz+g’2). In this case, there is a consistent
solution if (Mf)11<0. However, a model withh ,=v,=0 would
°Note that one can always choose the vacuum expectation valug®t generate any quark masses, so we will not consider this case
v, andv, real by suitable phase re-definitions of the scalar fields.any further.
Henceforth, we assume that all vacuum expectation values are takeriln a basis where the vacuum expectation values are real, it then
to be real. follows thatu,, b, and (M%)Q,B are real.
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the Goldstone boson that gives mass to Zhehe CP-odd —vy
scalar squared-mass matrix in a genér&iolating model is »
given by J.= _ (15)
P vglv-b)b,X,;
, v2(v-b)/(v,wh)  vbeXgilvg o X b|?

= : (13
odd VXjabalvg  XjaM25Xg

A simple calculation shows thal\/(ﬁdd) «pdp=0 [after apply-
ing Eq. (7)], if

wherev-b=v,b, and theX are chosen so that the set ) )

{vglvg,Xg} forms an orthonormal set of vectors in an (v-b)My D=0 b, =0. (16)

(ng+1)-dimensi0”aT' vector spacdor ng generations In s easy to check that EGL6) is satisfied under the assump-
our notation X;,=X,;, where the superscrifit denotes the tjon of L conservation of the MSSM Lagrangifit is inter-

matrix transpose. The following relations will be useful:  esting to note that Eq.16) can be written more simply as
b,=(v-blv,)c,, wherec, is defined in Eq.(8). It then
VU follows that|bx c|?=0, and we conclude that the necessary
VaXai=0, XyiXoj=8ij, XaiXgi=0up— —2- and sufficient basis independent condition for spontaneously
Vd (14 broken lepton number i X c|?=0, with |v Xb|?#0.”

We now turn to theC P-even scalar that is associated with
_ ) ) the CP-odd Majoron. Again following Ref.[12], the
TO ShOW that there IS a Ma]oron N the case Of Spontaneousl@ P_even Sca|ar Squared_masses Of the mode| can be deter-
brokenL, we exhibit the eigenvector 13, with zero ei-  mined by computing the eigenvalues of the following

genvalue. Consider the eigenvector: squared-mass matrix:
|
m2co$23 —m2sin 2 cos 28 0
M2,=| —mzsin2Bcos28 msiP2p+v2(v-b)/(vwd —vbgXgilvg |, (17)
0 _ij'aba/vd XjaMinBi

where tarB=v,/vq, with vy given by Eq.(4). First, we is, there exists a massleG$-even scalar at the tree level,

note that if cos =0, then there is a massless scalar state aassociated with the massless MajorédriWhen radiative cor-

the tree level in all circumstancéise., conserved., sponta-  rections are incorporated, the massas not protectedit is
neously brokenL or explicitly brokenL). In the case of not a Goldstone bosgnThus, p gains a small mass of
spontaneously brokeh, we can identify this state as the O(v,;). Nevertheless, the experimental absence of the decay
massless scalar state associated with the Majoron. Hencg-—Jp implies that the model of spontaneously broken
forth, we shall assume that co820. Then, one can easily R-parity described above is ruled out.

verify that the eigenvector

IV. EXPLICIT L VIOLATION AND THE

vusinZ8 WOULD-BE MAJORON
v Cos 2B
We now consider the introduction of expliditviolating
_ Yu terms. Clearly, the Majoron eigenstate identified in Eldp)
Pp= v ' (18 is no longer an eigenstate of tid&2P-odd squared-mass ma-
vg(v-b)b X, trix. But, to the extent that explicit-violation is small, the
p Majoron identified above is an approximate eigenstate, but

lvXDb|? with a nonzero mass. We denote this state as the would-be

Majoron. It is a simple matter to use first-order perturbation
satisfies (\/Iéve,)aﬂpﬁzo provided that Eq(16) holds. That theory to compute its mass.

®Although the cross product technically exists only in three di- L conservation implies that one can choose a basis in which
mensions, the dot product of two cross products can be expressed ng = Mj20: b;j=0. Equation 7 then implies thad (2)0:Uub/vo-
terms of dot products and thus exists in any number of dimensions. ‘Note that from Eq(7), |vxb|?=0 implies thatlbx c|?=0, but
For examplejvxb|2=v§b2—(u»b)z. Note that by assumption in the converse is true only if/liﬂ is an invertible matrix. But, we
this calculation,b,=(b,0,0,0) andv,=(vgq,v1,0,0) with v,#0. noted previously that dé?=0 is a necessary condition for spon-
Hence|v X b|?#0. taneously broken lepton number.
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Suppose we writeM3,,= M Q2+ ME)Z, whered,; [Eq. S w2
(15)] is the eigenvector af1 Q7 with zero eigenvalue. Using = ijUiv] v2
first order perturbation theory, the squared-mass is computed m§: 1+0 7) } (23
by evaluating the expectation value Mf{})? with respect to > 2 v
|

the unperturbed normalized eigenvalie., J; normalized

to unit length. Since the unperturbed Majoron is massless . )

this is equivalent to computing the expectation value of thel© understand the physical implication of this result, let us
full squared-mass matrif12,,. Thus, the squared-mass of choosezthe g'recuon_afi to point along thekth direction.
the would-be Majorony, is Thenmj=Mj,. But, in the limit of small explicitL viola-
tion, Mg, is the squared-mass of theh sneutrino(in the
RPC limit). Thus we have identified the would-be Majoron
as one of the sneutrinos. Since the model parameters can
easily be chosen such trmﬁk~ O(v?), we see that there is
no contradiction in having the would-be Majoron mass of
) o O(v), even in the limit of arbitrarily small explicit break-
where N;o=X,J,J,. After much algebraic simplification, jng [10]. Nevertheless, the limit of vanishing explicit lepton

o (M&adapdads

) 19

the end result is number violation is smooth. In particular, note that far
=0, Eq.(7) implies thatM v o= —Mfuv; . In the limit of an
, vﬁvz(v-b)[(v~b)Mi5babﬁ—vub4] L-conserving L_agrangian in V\_/hich is sponta_lm_eous_ly bro-
m3j= 2 SO rrmt (200  ken,M;p=0 while one of the; is nonzero. This implies that
[vXb[Tvivxb|*+v(v-b)7] MZviv;=0 and the massless Majoron is regained.

These results can also be understood in a basis-
where b?=3 _b,b,. It is useful to define the basis- independent language using the results of E2R). The
independent quantity: squared-mass of the would-be Majoron is proportional to the
dimensionless ratio of two small parameters,X([)- (b
Xc)[(v- b)vf]. The numerator is a consequence of explicit
L breaking and the denominator is proportional to the square
of the sneutrino vacuum expectation value in the case of
spontaneous breaking. Nevertheless, the ratio of these two
Note that in a basis wherig;=0, one obtaing)?=vi—v}3 small quantities can b&(1), in which casem; is of order

=02, That is,v, <vq, assuming that-violating effects ~ the electroweak scale. ,
are small. Hence, we can drop the first term relative to the To see that this last result does not contradict our usual

second in the denominator of E@QO). In addition, using the mf[u.ition about explicit symmetry breaking, consider for sim-
definition of c, [Eq. (8)], the above result can be further Plicity the one generation case. Then, we can writg
simplified. We then obtain =M{;=—Mipo/v;. We then see explicitly than; is lin-
ear in the explicitL-violating parameteM3,. Nevertheless,
in the limit of small M2,, becauseM?j/v; can be of the
§_ > (22) same order as, it follows thatm§ can be ofo(v?) without
(v-b)vf an unnatural tuning of the parameters. A simple exercise
shows that this is in accord with the expectations of Dashen’s
Note that if we go to the spontaneousviolating limit in ~ formula[14]. For example, consider the linear4) sigma
which |bXxc|=0 [with v, #0], one finds a massless Ma- model[15] consisting ofe and a7, with the usual Mexican
joron as expected. Further, in the case of explicifolation,  hat potential and corresponding vacuum expectation walue
it is easy to check that, #0.% One notable feature of Eq. If we now break the @) symmetry with Ly, eq=ao, then
(22) is that it provides a basis-independent expression for théhe Goldstone bosona() acquires a mass that is linearan

o loxbl* _, (v-b)?
V=TT TUaT T (21

_vi(vxb)-(bxc)

mass of the would-be Majoron. and is given by Dashen’s formula:
Finally, we can address the puzzle of how the would-be -
Majoron mass can be @(m,) even if the explicitL viola- v?m;=(0|[Q,[Q, Loread]|0) = a0, (24)

tion is small[10]. It is convenient to choose a basis in which _ _
bi=0. Using the minimum conditiofEq. (7)] and Eq.(20), ~ WhereQ is the Noether symmetry charge ane(0|c|0) is
and assuming that, <v, we end up with the vacuum expectation value in the absence of explicit sym-

metry breaking. Thusnffa/v, which has the same behav-
ior as m«M?/v,. Of course, in QCD the relevant chiral
8n a basis wheré; =0, v, =0 implies thaty;=0. Then from Eq. Symmetry breaking parameters are such that< A ~4mv
(7) one obtaingl%=0. In this case, barring the unlikely cancella- [16]. In contrast, one must choob&,~ O(vov4) in order to
tion Mfoz(M%)io-Fp,i,u,O:O for nonvanishing M%)io and u;, it  ensure that the sneutrino mass is of order the electroweak
follows that the scalar potential Is conserving in contradiction to ~ scale(light sneutrinos are ruled out by the absenc& afe-
our assumption. cay into sneutrino paijs
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For completeness, we evaluate the mass ofQReeven  Am? can be significantly smaller tha@®(vZ/v?). Conse-

scalarp associated with the Majoron when explititviola-  guently, one must not neglect the radiative corrections that
t|on is introduced. Following the method of computation of coyld end up as the dominant contribution to the squared-
m3, we again use first-order perturbation theory. Writingmass difference.

MZe=MO2+ME)2, and using the fact that, [Eq. (18)]

is an eigenvector oM {22 with zero eigenvalue, it follows V. CONCLUSIONS

that In models of R-parity-violating supersymmetry, there is

no longer a distinction between the hyperchaige —1
5 > , (25 Higgs superfield and the lepton superfields. In computing
Ne physical quantities involving the scalar Higgs and slepton
sectors, one can either choose a basis in the generalized
Higgs-lepton flavor space or employ basis-independent tech-

2
m2= (M even) aBPaPp

whereN2== pp, . The end result is

200 -b)(vXb b)M2 b, b b*1coL2 nigues. For example, one could choose to define the Higgs
f) vav*(v: )(Uz 2)[(v 2) asPalp— Vb7 ’8, field direction so that the neutral slepton vacuum expectation
lvxb|?[v§lv X b|?+v3(v-b)*cos2p] values vanish. However, in this case, the distinction between

(260 spontaneous lepton number violatigtypically associated
with non-zero sneutrino vacuum expectation vajuesl ex-

plicit lepton number violation is unclear. By employing
basis-independent methods, we are able to provide an unam-

the presence of_-\_/|ola_t|ng terms. Assuming thacos 23| . biguous condition for the existence of spontaneous lepton
>y, lv and thatL-violating effects are small, we may again number violation.

dlfoé) trzgglrspt\ tet:n; relative tgtthe second in the denominator y, ye |atter case, the spectrum contains a massless Gold-
of Eq. (26). As before, we obtain stone boson—th€ P-odd Majoron. The simplest models of

As noted previously[see discussion below Eq17)], if
cos =0, thenm,=0 is an exact tree-level result, even in

5 vﬁ(v Xb)-(bXc) this type also predict the existence of a very ligh-even
m,= (v-b)oZ : (27) scalar partner. Such models are ruled out by precigide-
L cay data. Thus, any realisticviolating model(based solely
That is, on the superfields of the MSSNinust contain some explicit

5 L breaking. The would-be Majoron acquires a squared-mass

L that depends linearly on the explidit-breaking squared-
_2) mass parameter. We demonstrate how to compute the mass

of the would-be Majoron using basis-independent tech-
Following the discussion below E@3), we identifyp as a  niques, and identify thi€ P-odd scalar and it€ P-even sca-
sneutrino(in the RPC limi}. Moreover, sincep andJ are  |ar partner as approximate sneutrino states. Finally, we have
degenerate in the RPC limit, these two real scalars can bshown how it is possible for the mass of the would-be Ma-
combined to make @compleX sneutrino state of definite joron and itsC P-even scalar partner to be 6f(v) despite
lepton numbef17]. the fact that the explicit violation must be small enough to
At the tree level, the squared-mass Splittirnganm,z, account for neutrino masses less tharGgeV).

—m§ is nonzero when explicit-violation is present. The
analysis above seems to imply thian?~ O(vZ/v?). How- ACKNOWLEDGMENTS
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