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The would-be Majoron in R-parity-violating supersymmetry
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In lepton-number-violating supersymmetric models, there is no natural choice of basis to distinguish the
down-type Higgs and lepton superfields. We employ basis-independent techniques to identify the massless
Majoron and associated light scalar in the case of spontaneously broken lepton number (L). When explicitL
violation is added, these two scalars can acquire masses of the order of the electroweak scale and can be
identified as massive sneutrinos.
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I. INTRODUCTION

Recent data that exhibit neutrino mixing phenomena
ply that the lepton sector of the standard model must
extended@1#. The simplest extension involves adding righ
handed neutrinos, and then tuning the neutrino masses
less thanO(1 eV) ~if neutrinos are Dirac fermions! or by
invoking the seesaw mechanism~if neutrinos are Majorana
fermions!. In low-energy supersymmetric models, it is po
sible to introduce neutrino masses in a phenomenologic
acceptable way without adding right-handed neutrinos. O
simply allows for renormalizable terms that violate lept
number (L), while imposing baryon number~B! invariance.
This can be achieved by replacingR-parity of the minimal
supersymmetric model~MSSM! with a Z3 triality @2#. This
model provides an alternative framework for neutri
masses. Eventually, one must try to understand why
L-violating parameters of the model are small enough
yield neutrino masses at the observed level@3#.

In theB-conserving,L-violating alternative to the MSSM
the L-violating terms are explicit. One can also generateL
violation directly in the MSSM if one of the sneutrinos a
quires a vacuum expectation value@4#. In the latter case,L is
spontaneously broken, which implies that a massless G
stone boson, the Majoron, must exist in the spectrum@5#.
Since the sneutrino is an electroweak doublet, one can s
that the spectrum must also include a very light CP-e
scalar partner to theCP-odd Majoron@6#.1 Models of this
type are excluded since the decay of theZ into the Majoron
and itsCP-even scalar partner is not observed@7,6#. Thus,
any viable L-violating supersymmetric model whose fie
content is identical to that of the MSSM must possess
plicit L-violating terms. There are also ways to extend
model of spontaneousL-violating supersymmetry by addin
additional chiral superfields~including electroweak singlets!
such that the Majoron is dominantly a singlet and all oth
scalar masses lie abovemZ @8#. However, such models lie
outside the scope of this paper.

1This is a feature of both the nonsupersymmetric and supers
metric doublet Majoron models.
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We consider the most generalL-violating low-energy su-
persymmetric model, with the MSSM field content. In add
tion to the effects of the explicitL-violating terms, one mus
also consider theL-violating effect that depends on th
vacuum expectation values of the sneutrino fields. Of cou
the latter is basis-dependent, and it is often convenien
define the Higgs field such that the orthogonal physi
sneutrino fields have no vacuum expectation value. Howe
other choices are possible, which suggests that the mode
be viewed as a model of spontaneously broken lepton n
ber with additional explicitL-violating terms. Since models
of spontaneously broken lepton number possess a mas
Majoron, when explicitL-violating terms are included, the
Majoron acquires a squared-mass proportional to the rele
explicit lepton-number-violating term. Two questions imm
diately arise:~i! How do we identify the would-be Majoron?
and ~ii ! If explicit lepton-number violation is very smal
~which is needed to explain the magnitude of neutri
masses!, how does one avoid a very light would-be Ma
joron? These questions have been previously examined in
literature@9,10#. In this paper, we revisit both these questio
and demonstrate how they can be addressed in a b
independent formalism@11,12#.

II. THE SCALAR POTENTIAL
AND MINIMUM CONDITIONS

In the notation of Ref.@13#, the contribution of the neutra
scalar fields to the scalar potential, before imposingL con-
servation, is

Vneutral5~mU
2 1umu2!uhUu21@~ML̃

2
!ab1mamb* #ñañb*

2~bañahU1ba* ña* hU* !

1 1
8 ~g21g82!@ uhUu22uñau2#2, ~1!

where hU is the neutral component of the up-type sca
doublet, and we have combined the neutral component of
down-type scalar doublet,ñ0[hD and the three sneutrinos
ñ i into a generalized sneutrino fieldña , where
a50, . . . ,ng ~for ng53 generations!. In minimizing the full
-
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scalar potential, we assume that only neutral scalar fie
acquire vacuum expectation values:^hU&[(1/A2)vu and

^ña&[(1/A2)va . From Eq.~1!, the minimization conditions
are

~mU
2 1umu2!vu* 5bava2 1

8 ~g21g82!~ uvuu22uvdu2!vu* ,
~2!

@~ML̃
2
!ab1mamb* #vb* 5bavu

1 1
8 ~g21g82!~ uvuu22uvdu2!va* ,

~3!

where

uvdu2[(
a

uvau2. ~4!

The normalization of the vacuum expectation values
been chosen such that

v[~ uvuu21uvdu2!1/25
2mW

g
5246 GeV. ~5!

It is convenient to introduce two additional quantities. W
define

Mab
2 [~ML̃

2
!ab1mamb* 2 1

8 ~g21g82!~vu
22vd

2!dab . ~6!

Using this quantity, we can simplify the second minimu
condition @Eq. ~3!# which now reads2

Mab
2 vb* 5vuba . ~7!

It is also useful to define the vectorca as follows:

Mab
2 bb5ubu2ca , ~8!

whereubu2[(aba* ba .

III. SPONTANEOUS LEPTON NUMBER VIOLATION
IN THE MSSM

We begin by considering the possibility of spontaneouL
violation in low-energyR-parity-conserving~RPC! super-
symmetry consisting only of the MSSM fields. We imposeL
conservation on the MSSM Lagrangian, which constrains
scalar potential@Eq. ~1!#. In the usual basis choice in whic
hD is a Higgs field andñ j ( j 51,2,3) are the lepton numbe
carrying sneutrino fields, it follows thatma5(m,0,0,0),
ba5(b,0,0,0), and (ML̃

2) j 05(ML̃
2)0 j50. Note thatñ0[hD

and the ñ j transform the same way under the SU(

2Note that one can always choose the vacuum expectation va
vu andva real by suitable phase re-definitions of the scalar fiel
Henceforth, we assume that all vacuum expectation values are t
to be real.
03600
s

s

e

3SU(2)3U(1) gauge symmetry, but are distinguished
their L quantum numbers:ñ0 is neutral while theñ j possess
nonzeroL. Hence if any one of theñ j acquires a vacuum
expectation value,L will be spontaneously broken. Notin
thatM j 0

2 5M0 j
2 50 in the basis defined above, Eq.~7! implies

that Mi j
2 v j50. Thus, if at least one of thev j is nonzero, it

follows that detM250. This is a necessary~basis-
independent! condition for spontaneous lepton number vi
lation.

We assume thatvuÞ0 andv0Þ0. Without loss of gener-
ality, we may perform a rotation of the sneutrino field
among theñ j such thatv1Þ0 while v25v350.3 It then
follows from Eqs.~2! and ~3! that

~ML̃
2
!115

1
8 ~g21g82!~vu

22v0
22v1

2!, ~9!

„mU
2 1~ML̃

2
!111umu2…vu5bv0 , ~10!

„mD
2 2~ML̃

2
!111umu2

…v05bvu , ~11!

wheremD
2 [(ML̃

2)00. These equations have a consistent
lution for nonzerovu , v0, andv1 only if

„mU
2 1~ML̃

2
!111umu2…„mD

2 2~ML̃
2
!111umu2…5b2. ~12!

For this very particular choice of parameters, the quanti
vu /v0 and vu

22v0
22v1

2 are fixed, but this is not enough in
formation to determine all three vacuum expectation val
uniquely at the tree level. That is, there is a flat direction
the scalar potential at tree-level. Reference@9# demonstrates
that by considering the renormalization group evolution
the potential parameters, there is generically some mom
tum scaleQ0 for which Eq.~12! is satisfied. Then, when th
one-loop effective potential is evaluated, the flat direction
lifted and the undetermined vacuum expectation value
fixed via dimensional transmutation in terms ofQ0. The pa-
rameters of the model must be tuned to get the observeZ
mass,mZ

25 1
4 (g21g82)(vu

21v0
21v1

2), as well as the correc
hierarchyv1!v needed to explain the light neutrino mass

If lepton number is spontaneously broken, then there m
be a massless Goldstone boson—the Majoron@5#. We shall
exhibit this explicitly in the case above where Eq.~12! holds.
For simplicity, we assume that the model isCP-conserving.4

We can then computeCP-even andCP-odd scalar squared
mass matrices. In Ref.@12#, we showed that after removin

es
.
en

3If v150, then Eqs.~2! and ~3! simply reduce to the usual RPC
MSSM equations forvu and vd5v0. If we had assumed thatvu

5v050, then one finds that lepton number is spontaneously bro
with v1

2528(ML̃
2)11/(g21g82). In this case, there is a consiste

solution if (ML̃
2)11,0. However, a model withvu5v050 would

not generate any quark masses, so we will not consider this
any further.

4In a basis where the vacuum expectation values are real, it
follows thatma , ba and (ML̃

2)ab are real.
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the Goldstone boson that gives mass to theZ, the CP-odd
scalar squared-mass matrix in a generalL-violating model is
given by

Modd
2 5S v2~v•b!/~vuvd

2! vbbXb i /vd

vXj aba /vd Xj aMab
2 Xb i

D , ~13!

where v•b[vaba and theXb i are chosen so that the s
$vb /vd ,Xb i% forms an orthonormal set of vectors in a
(ng11)-dimensional vector space~for ng generations!. In
our notation,Xj a[Xa j

T , where the superscriptT denotes the
matrix transpose. The following relations will be useful:

vaXa i50, Xa iXa j5d i j , Xa iXb i5dab2
vavb

vd
2 .

~14!

To show that there is a Majoron in the case of spontaneo
brokenL, we exhibit the eigenvector ofModd

2 with zero ei-
genvalue. Consider the eigenvector:5
e

e
n
y

di
ed
on

03600
ly

Jb[S 2vu

v

vd~v•b!brXr i

uv3bu2
D . ~15!

A simple calculation shows that (Modd
2 )abJb50 @after apply-

ing Eq. ~7!#, if

~v•b!Mab
2 bb2vub2ba50. ~16!

It is easy to check that Eq.~16! is satisfied under the assump
tion of L conservation of the MSSM Lagrangian.6 It is inter-
esting to note that Eq.~16! can be written more simply a
ba5(v•b/vu)ca , where ca is defined in Eq.~8!. It then
follows thatub3cu250, and we conclude that the necessa
and sufficient basis independent condition for spontaneo
broken lepton number isub3cu250, with uv3bu2Þ0.7

We now turn to theCP-even scalar that is associated wi
the CP-odd Majoron. Again following Ref. @12#, the
CP-even scalar squared-masses of the model can be d
mined by computing the eigenvalues of the followin
squared-mass matrix:
Meven
2 5S mZ

2cos22b 2mZ
2sin 2b cos 2b 0

2mZ
2sin 2b cos 2b mZ

2sin22b1v2~v•b!/~vuvd
2! 2vbbXb i /vd

0 2vXj aba /vd Xj aMab
2 Xb i

D , ~17!
f
cay

en

-

but
-be

on

ich

-

where tanb[vu /vd , with vd given by Eq.~4!. First, we
note that if cos 2b50, then there is a massless scalar stat
the tree level in all circumstances~i.e., conservedL, sponta-
neously brokenL or explicitly broken L). In the case of
spontaneously brokenL, we can identify this state as th
massless scalar state associated with the Majoron. He
forth, we shall assume that cos 2bÞ0. Then, one can easil
verify that the eigenvector

rb[S vusin 2b

v cos 2b

vu

v

vd~v•b!brXr i

uv3bu2

D , ~18!

satisfies (Meven
2 )abrb50 provided that Eq.~16! holds. That

5Although the cross product technically exists only in three
mensions, the dot product of two cross products can be express
terms of dot products and thus exists in any number of dimensi
For example,uv3bu25vd

2b22(v•b)2. Note that by assumption in
this calculation,ba5(b,0,0,0) andva5(v0 ,v1,0,0) with v1Þ0.
Henceuv3bu2Þ0.
at

ce-

is, there exists a masslessCP-even scalar at the tree level,r,
associated with the massless Majoron,J. When radiative cor-
rections are incorporated, the mass ofr is not protected~it is
not a Goldstone boson!. Thus, r gains a small mass o
O(v1). Nevertheless, the experimental absence of the de
Z→Jr implies that the model of spontaneously brok
R-parity described above is ruled out.

IV. EXPLICIT L VIOLATION AND THE
WOULD-BE MAJORON

We now consider the introduction of explicitL-violating
terms. Clearly, the Majoron eigenstate identified in Eq.~15!
is no longer an eigenstate of theCP-odd squared-mass ma
trix. But, to the extent that explicitL-violation is small, the
Majoron identified above is an approximate eigenstate,
with a nonzero mass. We denote this state as the would
Majoron. It is a simple matter to use first-order perturbati
theory to compute its mass.

-
in

s.

6L conservation implies that one can choose a basis in wh
M0 j

2 5M j 0
2 5bj50. Equation 7 then implies thatM00

2 5vub/v0.
7Note that from Eq.~7!, uv3bu250 implies thatub3cu250, but

the converse is true only ifMab
2 is an invertible matrix. But, we

noted previously that detM250 is a necessary condition for spon
taneously broken lepton number.
2-3
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Suppose we write:Modd
2 5Modd

(0)21Modd
(1)2 , whereJb @Eq.

~15!# is the eigenvector ofModd
(0)2 with zero eigenvalue. Using

first order perturbation theory, the squared-mass is comp
by evaluating the expectation value ofModd

(1)2 with respect to
the unperturbed normalized eigenvalue~i.e., Jb normalized
to unit length!. Since the unperturbed Majoron is massle
this is equivalent to computing the expectation value of
full squared-mass matrixModd

2 . Thus, the squared-mass
the would-be Majoron,J, is

mJ
25

~Modd
2 !abJaJb

No
2

, ~19!

where No
2[(aJaJa . After much algebraic simplification

the end result is

mJ
25

vd
2v2~v•b!@~v•b!Mab

2 babb2vub4#

uv3bu2@vu
2uv3bu21v2~v•b!2#

, ~20!

where b2[(ababa . It is useful to define the basis
independent quantity:

vL
2[

uv3bu2

b2 5vd
22

~v•b!2

b2 . ~21!

Note that in a basis wherebj50, one obtainsvL
2[vd

22v0
2

5( iv i
2 . That is,vL!vd , assuming thatL-violating effects

are small. Hence, we can drop the first term relative to
second in the denominator of Eq.~20!. In addition, using the
definition of ca @Eq. ~8!#, the above result can be furthe
simplified. We then obtain

mJ
25

vd
2~v3b!•~b3c!

~v•b!vL
2 . ~22!

Note that if we go to the spontaneousL-violating limit in
which ub3cu50 @with vLÞ0], one finds a massless Ma
joron as expected. Further, in the case of explicitL violation,
it is easy to check thatvLÞ0.8 One notable feature of Eq
~22! is that it provides a basis-independent expression for
mass of the would-be Majoron.

Finally, we can address the puzzle of how the would
Majoron mass can be ofO(mZ) even if the explicitL viola-
tion is small@10#. It is convenient to choose a basis in whic
bi50. Using the minimum condition@Eq. ~7!# and Eq.~20!,
and assuming thatvL!v, we end up with

8In a basis wherebi50, vL50 implies thatv i50. Then from Eq.
~7! one obtainsMi0

2 50. In this case, barring the unlikely cancell
tion Mi0

2 5(ML̃
2) i01m im050 for nonvanishing (ML̃

2) i0 and m i , it
follows that the scalar potential isL conserving in contradiction to
our assumption.
03600
ed

,
e

e

e

e

mJ
25

(
i j

M i j
2 v iv j

(
i

v i
2

F11OS vL
2

v2D G . ~23!

To understand the physical implication of this result, let
choose the direction ofv i to point along thekth direction.
Then mJ

25Mkk
2 . But, in the limit of small explicitL viola-

tion, Mkk
2 is the squared-mass of thekth sneutrino~in the

RPC limit!. Thus we have identified the would-be Majoro
as one of the sneutrinos. Since the model parameters
easily be chosen such thatMkk

2 ;O(v2), we see that there is
no contradiction in having the would-be Majoron mass
O(v), even in the limit of arbitrarily small explicitL break-
ing @10#. Nevertheless, the limit of vanishing explicit lepto
number violation is smooth. In particular, note that forbi

50, Eq.~7! implies thatMi0
2 v052Mi j

2 v j . In the limit of an
L-conserving Lagrangian in whichL is spontaneously bro
ken,Mi050 while one of thev i is nonzero. This implies tha
Mi j

2 v iv j50 and the massless Majoron is regained.
These results can also be understood in a ba

independent language using the results of Eq.~22!. The
squared-mass of the would-be Majoron is proportional to
dimensionless ratio of two small parameters, (v3b)•(b
3c)/@(v•b)vL

2#. The numerator is a consequence of expli
L breaking and the denominator is proportional to the squ
of the sneutrino vacuum expectation value in the case
spontaneousL breaking. Nevertheless, the ratio of these tw
small quantities can beO(1), in which casemJ is of order
the electroweak scale.

To see that this last result does not contradict our us
intuition about explicit symmetry breaking, consider for sim
plicity the one generation case. Then, we can writemJ

2

5M11
2 52M10

2 v0 /v1. We then see explicitly thatmJ
2 is lin-

ear in the explicitL-violating parameterM10
2 . Nevertheless,

in the limit of small M10
2 , becauseM10

2 /v1 can be of the
same order asv0, it follows thatmJ

2 can be ofO(v2) without
an unnatural tuning of the parameters. A simple exerc
shows that this is in accord with the expectations of Dashe
formula @14#. For example, consider the linear O~4! sigma
model @15# consisting ofs and p¢ , with the usual Mexican
hat potential and corresponding vacuum expectation valuv.
If we now break the O~4! symmetry withLbreak5as, then
the Goldstone boson (p) acquires a mass that is linear ina
and is given by Dashen’s formula:

v2mp
2 5^0u†Q,@Q,Lbreak#‡u0&5av, ~24!

whereQ is the Noether symmetry charge andv5^0usu0& is
the vacuum expectation value in the absence of explicit s
metry breaking. Thus,mp

2 5a/v, which has the same behav
ior as mJ

2}M10
2 /v1. Of course, in QCD the relevant chira

symmetry breaking parameters are such thatmp!L;4pv
@16#. In contrast, one must chooseM10

2 ;O(v0v1) in order to
ensure that the sneutrino mass is of order the electrow
scale~light sneutrinos are ruled out by the absence ofZ de-
cay into sneutrino pairs!.
2-4
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For completeness, we evaluate the mass of theCP-even
scalarr associated with the Majoron when explicitL viola-
tion is introduced. Following the method of computation
mJ

2 , we again use first-order perturbation theory. Writi
Meven

2 5Meven
(0)21Meven

(1)2 , and using the fact thatrb @Eq. ~18!#
is an eigenvector ofMeven

(0)2 with zero eigenvalue, it follows
that

mr
25

~Meven
2 !abrarb

Ne
2

, ~25!

whereNe
2[(arara . The end result is

mr
25

vd
2v2~v•b!~v3b!@~v•b!Mab

2 babb2vub4#cos22b

uv3bu2@vu
2uv3bu21v2~v•b!2cos22b#

.

~26!

As noted previously@see discussion below Eq.~17!#, if
cos 2b50, thenmr50 is an exact tree-level result, even
the presence ofL-violating terms. Assuming thatucos 2bu
@vL /v and thatL-violating effects are small, we may aga
drop the first term relative to the second in the denomina
of Eq. ~26!. As before, we obtain

mr
25

vd
2~v3b!•~b3c!

~v•b!vL
2 . ~27!

That is,

mr
25mJ

2F11OS vL
2

v2D G . ~28!

Following the discussion below Eq.~23!, we identifyr as a
sneutrino~in the RPC limit!. Moreover, sincer and J are
degenerate in the RPC limit, these two real scalars can
combined to make a~complex! sneutrino state of definite
lepton number@17#.

At the tree level, the squared-mass splitting,Dm2[mr
2

2mJ
2 is nonzero when explicitL-violation is present. The

analysis above seems to imply thatDm2;O(vL
2/v2). How-

ever, an explicit expression forDm2 to first order invL
2/v2

would require a second-order perturbation theory comp
tion of mJ

2 andmr
2 . In the presence of explicitL violation, if

mJ , mr;O(v) then we may use the results of Ref.@12# to
obtain a basis-independent expression forDm2. This case
corresponds to sneutrino masses of order the electrow
scale, and we indeed verify thatDm2;O(vL

2/v2). On the
other hand, ifmJ , mr!v, then the results of Ref.@12# do not
directly apply, since there is an independent small param
which must be treated consistently in the expansion aro
the L-conserving limit. In this case, the tree-level value
le
b-

03600
f

r

be

a-

ak

er
d

f

Dm2 can be significantly smaller thanO(vL
2/v2). Conse-

quently, one must not neglect the radiative corrections t
could end up as the dominant contribution to the squar
mass difference.

V. CONCLUSIONS

In models ofR-parity-violating supersymmetry, there i
no longer a distinction between the hyperchargeY521
Higgs superfield and the lepton superfields. In comput
physical quantities involving the scalar Higgs and slep
sectors, one can either choose a basis in the genera
Higgs-lepton flavor space or employ basis-independent te
niques. For example, one could choose to define the H
field direction so that the neutral slepton vacuum expecta
values vanish. However, in this case, the distinction betw
spontaneous lepton number violation~typically associated
with non-zero sneutrino vacuum expectation values! and ex-
plicit lepton number violation is unclear. By employin
basis-independent methods, we are able to provide an un
biguous condition for the existence of spontaneous lep
number violation.

In the latter case, the spectrum contains a massless G
stone boson—theCP-odd Majoron. The simplest models o
this type also predict the existence of a very lightCP-even
scalar partner. Such models are ruled out by precisionZ de-
cay data. Thus, any realisticL-violating model~based solely
on the superfields of the MSSM! must contain some explici
L breaking. The would-be Majoron acquires a squared-m
that depends linearly on the explicitL-breaking squared-
mass parameter. We demonstrate how to compute the m
of the would-be Majoron using basis-independent te
niques, and identify thisCP-odd scalar and itsCP-even sca-
lar partner as approximate sneutrino states. Finally, we h
shown how it is possible for the mass of the would-be M
joron and itsCP-even scalar partner to be ofO(v) despite
the fact that the explicitL violation must be small enough t
account for neutrino masses less than ofO(eV).
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