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We present a new model for generalized parton distributi@®Ds9, based on the aligned jet model, which
successfully describes the deeply virtual Compton scattdingCS) data from H1, ZEUS, HERMES and
CLAS. We also present an easily implementable and flexible algorithm for their construction. This new model
is necessary since the most widely used models for GPDs, which are based on factorized double distributions,
cannot, in their current form, describe the DVCS data when employed in a full QCD analysis. We demonstrate
explicitly the reason for the shortcoming in the data description. We also highlight several nonperturbative
input parameters which could be used to tune the GPDs, artdiffendence, to the DVCS data using a fitting

procedure.
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I. INTRODUCTION nomiality condition[2,3,11,14: their (N—1)th moments are

polynomials in the square of the skewedness of degree no
Generalized parton distributiof&PD9 have been stud- greater thariN/2.

ied extensively in recent yeafd—12]. This interest was They reduce to the ordinary PDFs in the limit of zero
spurred by the realization that these distributions are not onlgkewedness$the “forward limit” ).
the basic, nonperturbative ingredients in hard, exclusive pro- All of the above features have to be preserved under evo-
cesses such as deeply virtual Compton scattéfngCS), or  lution in scale.
exclusive vector meson production, but that they are gener- Any suggested model of GPDs should adhere to these
alizations of the well known parton distribution functions mathematical features. [A6] such a model, based on double
(PDF3 from inclusive reactions. GPDs incorporate both adistributions(DDs), was suggested for the GPD input distri-
partonic and a distributional amplitude behavior and hencdutions(see alsd17]). In [14] it was realized that an addi-
contain more information about the hadronic degrees of freetional term, the so-calle® term, was required in the ERBL
dom than PDFs. In fact, GPDs are true two-parton correlaregion for the unpolarized quark singlet and gluon distribu-
tion functions, allowing access to the highly non-trivial par-tions in order to satisfy polynomiality for eveé¥ The use of

ton correlations inside hadron&3]. factorized[15] DDs augmented with ® term has become a
GPDs can be broadly characterized by the followingpopular phenomenological model. Unfortunately, when this
features. type of model for input GPDs was used in its current form to

They depend on two momentum fraction variables, a parcalculate deeply virtual Compton scattering at both leading
tonic variable defined with respect to either the incoming orLO) and next-to-leading orddiNLO), the results were not
the average of the incoming and outgoing proton momentunn agreement with the H1 dafd8] on the DVCS photon
and theskewednes$which is the difference between the level cross sectiong(y* p— yp), and the HERMES and
momentum fractions of two adjacent partons in the partorCLAS data[19] on the DVCS single spin asymmetry or
ladde). charge asymmetr{20-22.

For fixed skewedness, they are continuous functions of Another popular model for input GPDs, inspired by the
the dependent variable and span two distinct regions, thaligned jet mode(AJM) [23] and its QCD extensiof4], is
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) region  based on the observation that at a s@fe-1-2 Ge\f and
and the Efremov-Radyushkin-Brodsky-LepaeRBL) re-  a wide range ok,;, soft physics gives the dominant contri-
gion, in which their evolution in scale obeys generalized verbution to the parton densities. As a result the effect of
sions of the DGLAP and ERBL evolution equations, respecskewedness at smal},; should be rather small and hence at
tively, and in which their behavior is qualitatively different. the input scale it is a good approximation to set the GPDs

They are even functions of the skewedness variable andqual to the forward PDFs at the same parton fractin,
the singlet, non-singlet and gluon distributions are eithedefined with respect to th@acoming proton [8] (for any
symmetric or anti-symmetric about the center point of theskewednegs This has the advantage that it automatically
ERBL region(the symmetry obeyed depends on the precisesatisfies the requirements of polynomiality for the first two
definitions useg moments; however one encounters infinities in the quark sin-

The Lorentz structure of their definitions implies a poly- glet GPD in the middle of the ERBL region.
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L " g IC X Xevst xP + (1+y) A2 xP-(ly) A2
1+8) _ _
T T T P+A2 P- A2
H q(v, &)
— — v f=Az-C
-1 -& ¢ 1 2P, 2-0 FIG. 2. Symmetric double distributiondeft), indicating mo-
mentum fractions of the outgoing and returning partons, (aigtit)
l l l their physical domain.
Fﬁ X0 X=E-v
x | } | (1+8) The two distinct transformations betweenand X for the
1 ¢ 0 quark and anti-quark cases are shown explicitly on the left
hand side of Eqg.1),(2) . There are two distinct regions: the
DGLAP ERBL DGLAP region, X>¢ ([v|>£), and the ERBL regionX

FIG. 1. The relationship betweef9(X,¢), ]—"E(X,g) and Jis  ~%¢ (Jol<¢). In the ERBL region, due to the fermion sym-

function H9(v, &) with v e[—1,1] andX [0,1]. metry, 79 and 79 are not independent. In fact9(X,{)=
—F9(¢—X,{), which leads to an anti-symmetry of the un-

Another “forward model,” which may be considered to polarized quark singlet distributioisummed over flavoa),
be an extreme case of a DD model, was adoptelliq FS=3_F9%a4 F92 apout the point/2 (the non-singlet and
where one assumes that the GPD is equal to the forward PDle gluon 9, which is built fromuHY(v,£), are symmetric
at the same parton momentum fractionwith respect to the 4,6yt this point #NS9 are constructed analogously #°
average of thencoming and outgoingroton momentun from HNS9,
=(p+p’)/2 which implicitly contains the skewedness. This  The rest of the paper is organized as follows. Section I
translates to arX which is shifted to lower values by an contains a detailed explanation of why DD-based models in
amount controlled by the skewedness. This ansatz works fingeir current form cannot describe the data. In Sec. Il we
for the DGLAP region. Unfortunately in the ERBL region it construct our alternative forward model for input GPDs,
also involves sampling the forward PDFs right the way downwhich is motivated by the AJM23,24 and describes the
to zero in momentum fraction where they have not yet beemjata well. In Sec. IV we propose a phenomenological model
measuredthis is especially problematic for singular quark for the slope of the dependence in which the slope param-
distributions. In this paper we construct an alternative, finite eter is allowed to change with photon virtualit?= — Q2.
“forward model” for the input GPDs, using the forward in- The model improves the theoretical description of &
put PDFs in the DGLAP region and imposing a simple formdependence of the HERA data, relative to using a constant
in the ERBL region that has the correct symmetries and ensjope. Finally we summarize our findings in Sec. V.
sures that polynomiality is respected in the first two moments
(see[11] for alternative ways of dealing with this problém
As we will demonstrate this forward model reproduces the
available data on DVCS reasonably well.

Throughout this paper we will use the off-diagonal repre-  In this section we discuss factorized double distribution
sentation of GPDsF'(X,¢), defined by Golec-Biernat and based models for GPDs and explain in detail why the sam-
Martin [10] and used, for example, in the numerical solutionpling of the forward PDF at extremely smallin construct-
of the GPD evolution equations i25] (see[10,26,27 for ing the GPD leads to a problem in the quark singlet GPD.
other approaches to numerical evoludiofihey depend on Symmetric DDsFpp(X,Y,t,Q?), were introduced i3]
the momentum fractior [0,1] of the incoming proton’s  with plus momentum fraction,y, of the outgoing and re-
momentum,p, and the skewedness varialijesA"/p" (so  turning partons defined as shown in the left hand plot of Fig.
that {=x,,; for DVCS). For the quark case, the relationship 2. They exist on the diamond-shaped domain shown to the
of the quark and anti-quark distributiorB9(X, ¢), F4(X, ), right of Fig. 2. The outgoing parton lines of course only have

to Ji's GPDHY(v,&) is shown in Fig. 1 withé=A*/2P". a single plus momentum relative to any particular external
More explicitly, fo,rv e[-&1] momenta, so the GPDs are related to these DDs via a reduc-

tion integral, involvingd(v —x— &y), along the off-vertical
lines in the diamondthe dotted line corresponds to= ¢):

II. THE PROBLEM WITH DOUBLE
DISTRIBUTION MODELS

vt+é HY%(v, )
fq'a(x= <= , 1
1+§ 1_§/2 ( ) 1 l-lX’l
.= ax [* ) ay a0 ey -0 Foote v,
and forv e[ —1,£] § 3
Faa x— E—v f)=- HY%v,&) @ In [16,17] a model forFpp(X,y,t, x?), at the input scale
1+¢’ 1-¢/2 ,u2=Q§, was introduced in which the functional form is fac-
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torized inx andy and in thet dependence, an assumption this model. As we will explain below the origin of the en-

born out of convenience rather than physical necessity:  hancement stems from sampling singular forward sea distri-
: X _ _ . butions at extremely smaX in the DD-based model. To un-
pp(X,Y, 15, 1) = 7' (X, y) F1 (X, w)r'(t). (4)  derstand the last statement, one has to first establish the

. . regions inx in which the PDFs are sampled in the double
Heref' andr' are the standard PDF and form factor for the yjstribution model, particularly at smatl

parton distribution of general type Since thet dependence  Fjrst having defined the model for the factorized double
is assumed to factorize and thus of no importance to thgistripution in Eq.(4) one may then perform thg' integra-
following, we will suppress it from now on. The profile func- o in Eq. (3) using the delta function. This then modifies
tions, 7'(x,y), are asymptotic shape functiof for quarks  the jimits on thex’ integration according to the region con-

and gluons of the general form cerned. For the DGLAP regioX>¢ (v>> &) one has for the
2 2 quark GPD
T(Xy)= I'(2b+2)  [(1-[x])*=y?] 5
! 22b+1r2(b+1) (1_|X|)2b+l ! 2 rx
fq'a(x,g):—f dx’ 79

and normalized such that {Jx=01a-9

1- x| ' 2 ’ ’ ary’

f dy m(x,y)=1. (6) X | X ,Z(X—x )+x'=1]g%x"). (V)
—1+|x|

Note thatw is an even function of both its argumen8]. For the anti-quark GPD in the DGLAP regiod>{ (v<

The powerb controls the size of the skewing effects in the — ¢) one has

input GPD. Usuallypb=1 is chosen for the quarks, corre-

sponding to maximum skewedness, wherea is chosen _ 2 [(=X+0I(1-0)

for the gluons. In the limitb— there is no external ]:qva(x,g):_f dx’ 74

skewedness effect; however, since in this lintit(v,¢) ¢J-x

=((v), this translates into internal dependence on the

skewednes&(X, ) =q[ (X—¢/2)/(1—-¢/2)]/(1— ¢/2). Note X

that a consequence of the above model is a ratio of GPD to

PDF for the quark singlet in the DGLAP region At=¢

=Xpj Which is substantially larger than [25,27] for all ex-  Changing variables from— —x and exploiting the fact that

perimentally relevant values of;; . the profile functions are even in both arguments one arrives
Concerning the description of the data using the abovet

model, it was shown ii21] that maximal skewingk{=1) at

“conventional” input scales Qy,=1,2 GeV) overshoots the

x’,—%(x+x’)+x’+1 E’j‘(|x’|). (8)

_ 2 X
H1 data by a factor of 6-10. It was also demonstrated that j:qva(x,g)z—J' dx’ 79
one can describe, in LO only, the H1 data without including {Jx-o1a-9
skewedness effects at the input scalg=2 GeV, if one

neglects evolutiof22]. This simplification, however, is not %
warranted since we know that the effects of skewed evolu-

tion are much stronger in the region Bf~ ¢ compared to

forward evolution[8,25]. Note that this region strongly in- so that the singlet and non-singlet quark distributions are
fluences the cross section at smajlj and some asymmetries given by

at both small and large,; [29], if they are dominated by the

2 —
X’,Z(X—X'HX’—1)qa(|x’|), (€)

imaginary part of the amplitude which is proportional to - 2 rx
FS(¢£,0) at LO (see for examplg21] as well ag30-37). FSX, ()=, FlapFaa=> _ dx’ =9
One may wonder whether one can come closer to the data a a {Jx-oia-0

by choosing a very low input scale and valencelike partons

as in the Glek-Reya-Vogt(GRV) scenario[33], generating XXy DA +g*(x)],
the rise of the parton distributions entirely through evolution.
It turns out that choosing the canonical valuebgt=1 and — 2 (X

GRV98 input distributions Q,=0.51,0.63 GeV in LO and fNSa(X.§)=fq'a—fq’a=Z dx'7(x",y(x"))
NLO, respectively the curves still overshoot the data con- (X=0/(1=0)
siderably. Indeed, even if one tries to minimize the effect of aryry_ Ay

the enhancement due to skewedness at the input scale, by <A =g )], (10
choosing a large value df;= 100, evolution still drives the 5

prediction above the data by at least a factor-gf. Since, wherey(x')=2(X—x")/{+x"—1.

for exampledopycs=|FS(£,¢)|?, the large enhancement of  In the ERBL region,X<{ (Jv|<¢&) integration overy

the quark singlet GPD &= ¢ is the root of the problem in leads to
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X
f dx’ ¢
0

0 2
—J’ dx’wq<x’,—(x—x’)+x’—l>
X—¢ 4

x’,E(X—x’)+x’—1)qa(x’)

2
7q‘a(X,§):Z 7

Xg(|x'])

= 2{ {=X 2
FI4X, ==~ j dx’wq<x’,——(x+x’)+x’+1
{lJo ¢

0 2
an(x’)—J dx’wq(x’,— Z(X+x’)

+x'+1 (X' |. (11)

Again, usingx— —x and 7 (|x’],]y’|), one gets

2
FOX0=%

X ~
fo dx"mx",y(x"))g¥(x")

=X - _
—fo dx’ 79", y(—x")g?(x")

— 2[ [¢x ~
fq’a(X,§)=—Z“o dx’ w4(x", y(=x")gA(x’)

X _ _
—fo dx"9(x",y(x"))g*(x")|. (12
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=FNSa(x ¢) [note thaty(x')—Y(—x') when X—¢—X].
Analogously for the gluon one obtains

2 -

fg(X,i)Z—J’X dx' mo(x’,y(x")x"g(x")
{lx-o1a-9

(14

for the DGLAP region, and

2| (X ~
fg(X,§)=Z fo dx’ 79(x",y(x"))x"g(x")

=X _
+fo dx' 79 J(—x X'g(x) | (15

for the ERBL region(which is symmetric undetX—¢
—X).

Inspection of the integration limits in Eq&L0),(13) high-
lights the main problem. In the limX— ¢, as a result of the
lower limits of the integrals the forward PDF is sampled
closer and closer ta’' =0, where it has not yet been mea-
sured. This will be irrelevant providing the integrand is suf-
ficiently non-singular irx” in this region i.e. it can happen if
the profile functionsz', provide a strong suppression of this
region, or if the PDFs themselves are sufficiently non-
singular. However, we know that phenomenological quark
and sometimes even gluon input distributions are singular in
the smallx region. In the quark case this problem is made
worse by the fact that we sample the number distribution
q(x') rather than the momentum distributiorig(x’) (so
that a non-singular momentum distributie(x)ex® for a
€[0,1] will give a singular number distribution
q(x) =x?h).

It turns out that for realistic quark distributions the region
close isx’=0 is very significantly sampled for small
=Xp; . This leads to two serious problems. First, the forward

Hence, for the singlet and non-singlet combinations one hadistributions are unknown here so one must extrapolate the

— 2 -
FSX, )=, Faaq Faa=>> 7 Joxdx’wq(x’,y(x’))

_ {—X ~
X% )+ @)1 [ e §i-x)

X[g3(x")+q3(x")]

fNSa(x,g)=fq'a—ﬂa=§ fxdx’ﬂ(x’&(x’))
0

X[g3(x")—g3(x")]
(=X ~

+f dx' 79(x’,y(=x"))
0

X[q3(x")—g¥(x")]|. (13

“known” analytic forms downward inx’. Secondly, and
much more importantly, it leads to a very significant en-
hancement of the quark singlet GPDs relative to the PDFs
for X~(, i.e., the region most relevant for DVCS. Though of
paramount importance for DVCS, this region is but a small
region of phase space where the current factorized DD mod-
els fail.

We illustrate this using a series of three figures relating to
the formation of the quark singlet GPD in the DGLAP region
close to X=¢. Figure 3 shows the integrand,(x")
=7(x".y) uXx"), of Eq. (10) for the up quark singletmulti-
plied by ¢) as a function ofx’'/{ for two values of ¢
=0.1,0.0001 and two values &f—¢=0.1,0.001. Clearly as
X approacheg the PDF is sampled at progressively smaller
values ofx’ < ¢, where for small{ it is unknown. Figure 4
shows the average value »f sampled in this integraldi-
vided by ¢) as a function of{ for several values oK—¢.

For very small values ok — ¢ the average value of settles
down to aboutz/4, for small{. Finally in Fig. 5 we show,
for Martin-Roberts-Stirling-ThornéMRST) input PDFs, the
ratio of the quark singlet GPD to PDF &t 0.0001,0.1, for
the canonical value of the powdr,=1, in Eq.(5). Note the

These expressions clearly satisfy the correct symmetry proparge enhancement of the GPD At={, particularly for

erties, ie., F({—X,0)=—-F%X,0), FNS3((—X,0)

small  in the upper plot. We emphasize that this enhance-
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FIG. 3. The integrand of Eq10), illustrating how the up singlet .
PDF is sampled in the DGLAP region close to the boundary of the ' ' ' uon LO
. . —— gluon
ERBL region, to produce the up singletced. singlet LO
) ) . L ——- gluon NLO
ment, which leads to an overshoot of the DVCS data, is buntﬁ 4 —-— singlet NLO
in right at the start in the modeling of the quark singlet GPD §
at the input scale. One also sees that for the gluon, Whicrg
usesx'g(x’), andby=2, the ratio remains close to unity. E 3t T
The most important enhancement effect in the valencen £
region,/=0.1, originates from the relative shift of the parton = \
momentum fractionX to smaller values close t§=¢ (al- &2 [\ ]
though the enhancement from sm@l') is still significan). % | \\\
As we will show in the next section, the assumption that & _,'___":_‘:::_m_nf-_
H,8)=(1-¢2)F(X,{)=q(v) with v=(X-{/2)(1 1~ .
—{12) gives a good description of the data at both small and
large x,; . As stated before, this corresponds to a factorized
DD model with b=, i.e., with no external skewedness. o¢lLoo....... N b NN
However, in terms of a comparison of GPD to forward PDF, 2 X?;C 4 5

065 . .
—— X-¢{=041

06F e X-{=10"

——-X-t=10"

0.55

4
X oas | -
V ;
] // d

o
035 ) -
....... =
......... o s
e - e -
025 -—_I___———"I’ L
107 107 107 _

FIG. 4. The average value & sampled in the DGLAP region

FIG. 5. The ratio GPD to PDF af=0.0001 (upper ploj and
{=0.1 (lower ploY for the quark singlet and gluon in the double
distribution model, using MRSTO1 distributions in LO and NLO, at
the input scaleQy=1 GeV. Note the large enhancement of the

quark singlet close t&X={¢.

there is a residual effect of skewedness since one now has to
compareq(v) with q(X). Since we are comparing number
distributions which are more singular than momentum distri-
butions, any shift in the momentum fraction to smaller val-
ues will lead to a quite a large enhancemeng@f) relative

to q(X). For CTEQ6M, for example, the enhancement at
X=0.1 and {=0.1 is about 1.7 for the quark singlet,
which increases further if more skewedness is added by
decreasingd.

However, as we will demonstrate in Sec. lll, the available
data allow little room for further enhancement due to
skewedness at the input scale since the LO result, at least, is
already close to the upper bound of the experimental errors.

in the double distribution model, for the up singlet GPD, close toTherefore, only the extremald'=c" version of the current
the boundary with the ERBL region as a function of the factorized DD model can be used to describe the data. An

skewedness. Several valuesXof ¢ are shown.

obvious solution to this is to modify the quark singlet profile
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functions in Eq.(4) in such a way as to suppress the region

of very smallx’. However, one must find a new functional 24 "\ — Q' =1Gev. ]
form which achieves this without spoiling the known math- 00 L\ - nggg:xz _
ematical features of GPDs discussed above. Alternatively, N B
one abandons the attempt to model a DD using a factorized 2 1N\ \\ 1
form mr(x,y)f(x), which though appealing due to its sim- NN
L N . AR . . R 18t NN g
plicity is possibly too simplistic in its form. This remains an o™
open problem and has to be addressed by those who wish to 16 L \‘:\ _
use the double distribution framework, factorized or not, to AN
model GPDs. 14 | \\\*\\ 1
Ill. THE FORWARD INPUT MODEL AND THE ALIGNED 127 \\\\\\ |
JET MODEL P N
0 01 02 03 04 05 06 07 08 09 1
In this section we revisit the logic of setting the GPDs A
equal to the forward PDFs by proposing an alternative for- o4l , , ]
ward model to that suggested [iil], with suitably symme- ’ — Q =1GeV,
trized input GPDs in the ERBL region constructed so as to 22 | T nggg:xz |
satisfy the requirements of polynomiality for the first two -
moments. 2 ¢ 1
In [9] DVCS was predicted to be measurable at the N
DESY-ep-collider-HERA and, allowing for the freedom as- R 18 L ]
sociated with choosing the slope parameRrthe predic- 16 F NN _
tions successfully describe both the H1 dii&] and the SN
recent ZEUS result34,35 on the photon-level DVCS cross 14 N 1
section. This was achieved by modeling the imaginary part \\\‘:;\
of the DVCS amplitude at the input scale using the aligned 121 sl T
jet model[24]. This was then compared to the imaginary part 1 e Ty
of the deep inelastic scatterin@®IS) amplitude, calculated 0 01 02 03 04 05 06 07 08 09 1
within the same framework, which was found to be smaller A

by a fa_ctor of about two. Th_e comparisc_m enabled the nor- FIG. 6. The ratidR as a function o = Q'2/Q? for several value
malization of the DVCS amplitude at the input scale to be set, ~," 2

i : . of Q% and two values oM5=0.4 Ge\? (upper ploj and 0.8 Ge¥
using F, structure function data. The DVCS amplitude Was o wer plob
then evolved to higher scales using LO skewed evolution in '
perturbative QCD.

The basic relation between the DVCS and DIS ampli

tudes, using the AJM, is given 4]

This procedure allows one to derive a very important relation
"between the relative momentum fractions of the outgoing
and returning partonX and — (X—¢) of the quark singlet

GPD, and the virtualities of the incoming and outgoing

Im7; 2 M3
= OVCS 14 = |[ 14 —2|=15-25 (16 Photons
Im7pis : Q?
_X-¢{ Q7
whereQ? for the AJM is typically 1-3 GeV? andM, is a A= X @ (18)

hadronic scale which roughly corresponds to the lowest al-
lowed, excited intermediate state in thehannel. Therefore, \yq ilustrate this point in Fig. 6 by plotting as a function of

2 2
M~0.4-0.6 GeV, or aboutmy. The AIM neglects the ) 'tor several values 0® and two values oM3 to demon-
contribution of quarks with large transverse momenta in theStralte the relative insensitivity & (within 2030 % to M.
quark loop attached to the photons in the handbag diagram. 1,4 plot shows that aX increases relative tg in the

Since the contribution of small transverse momenta is mMoreys | Ap region the ratio drops rapidly to its forward limit

symmetric than the one at large transverse momenta, the example, ak = 1/2, i.e.,X=2¢, the curves are very flat

AJM may somewhat ove_restimate the effect .Of skewednesgnd there is only a modest enhancement of 20—40 %. One
at the input scale. Equatidfi6) can be generalized to dem- also encounters this behavior in the DD model if one inves-

onstrate how the forward limit 1fycs=ImTps is achieved, tigates the ratio of the GPD to the PDF in the DGLAP region
i.e., how the skewedness effect is reduced by giving the Out(see for exampld25,27). It would therefore be advanta-

going photon a spacelike virtuality, = —Q *: geous to be able to directly relafeto a ratio of GPD to PDF.
Trusting that perturbative QCD is applicable at the AJM in-
ImZpycs 1+Q%MG |\ 1+ MG /Q? put scale one can, in LO at least where the coefficient func-
- Im7ps =In roi a2 ror g (17 tion is trivial, directly translate the ratio in amplitudes for a
1+Q M5/ 1-Q “/Q particular\ into a ratio of GPD to PDF:
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ROy MToves =€), 2a | — giuon Lo
IMTors 5X) | \ T auenhio

W, —-— singlet NLO

_FAX=L(1-)0),9)
(1= 2/2)9%(X)

(19

FAU(A-N),0=(1-2IRMA(X). (20 _
There are several comments in order at this poinis now

bounded from above through<1—{. This implies that the
relationship between the ratios in Eg0) is only strictly true

for \=0 (i.e., for DVCS for whichQ'2=0). The case\
#0 should be viewed as follows: f@*~2 Ge\?, there is 08 10
still the possibility of having more than one rung in the par- X/C

tonic ladder. Probing the uppermost rung with a virtua@ty

reveals the distribution in momentum fractions, in this case FIG. 7. The ratio GPD to PDF 4t=0.0001 for the quark singlet
X=¢, i.e., X—¢=0 corresponding ta=0. The next rung and gluon, using MRSTO1 distributions in LO and NLO, at the
and its distribution in momentum fractions can be accessetfiPut scaleQo=1 GeV. This ratio is weakly dependent gn for

by “emitting” a photon with spacelike virtualityi.e., Q'2 ~ small¢.

>0). As Q'%increases and one goes further down theMRSTO1 quark singlet and gluon distributioh36] at LO
ladder to whereX>¢{, one approaches the forward limit. If and NLO atQ,=1 GeV are shown in Fig. 7. For a function
one keeps the interpretation of tisechannel cut as being which falls asx decreases, such as the valence quark at small
equal to the imaginary part of the “scattering” amplitude for x or the MRST gluon at LO, this ansatz leads to a suppres-
Q’2+0, which, in LO, is directly proportional to GPD/PDF sion of the pointX={¢ relative to the forward casesee the
at X# ¢ rather than atX=¢, then the ratioR is a direct solid line in Fig. 3. Note that in NLO the MRST gluon
measure of quark singlet GPD to the quark singlet PDF foiactually goes negative at smallso a ratio of GPD to PDF
X# {. However, this logic is valid only at LO. At NLO, the >1 close toX={ in this case leads to a suppression of the
situation radically changes since, first, the gluon directly enDVCS cross section from the gluon contribution, relative to
ters into the amplitude, secondly, the convolution of the co-using PDFs. However, the DVCS cross section is rather in-
efficient function with the GPD is no longer as trivial as in sensitive to the behavior of this ratio closeXe=¢ for the
LO and thirdly, the value ofr at low Q? is quite differentin  gluon, since it only enters in NLO, and is completely insen-
LO and NLO. Therefore such a simple relation as in &4) sitive to it for the non-singlet quark case since this distribu-
should and can no longer be valid. In order to keep the ansation only enters into the evolution.
as simple as possible, we will only require that the model The above reasoning indicates that the physics of the AJM
GPDs, at least in LO, produce a rati®, which is in broad model provides a guide for modeling input GPDs in the
agreement with th&® values obtained in the AJM from Eq. DGLAP region. If one compares the NLO imaginary part of
(20). the DVCS amplitude from the above model to the NLO

If one chooses the forward model ansatz where the GPImaginary part of the DIS amplitude as extracted from a
equals the PDF at in both LO and NLO, due to a lack of a recent H1F, fit [42], we find for MRST2001R=3.8 and for
better ansattsee e.g[11]), CTEQ6M,R=2.7 forQ?=3 Ge\? andx=0.0005. Because

of the enhancement effect of evolution, the AJM resultRor

X—{l2 is basically reproduced for CTEQ6M but not for MRST2001
1-¢2)° using Eq.(21). Given the widely different parametrizations
at NLO, this seems acceptable to us, at present. As we will
which corresponds to thie—c limit of the DD model, one  see below the enhancement effect generated through the shift
obtains a ratio of GPD to PDF &= ¢ of =2.3 for the quark s too strong for both LO and NLO at low values @f near
singlet, in agreement with the AJM prediction although for the input scale.
slightly different values ofQj (directly compare the upper  The prescription in Eq:21) does not dictate what to do in
line in the upper plot of Fig. 6 with the quark singlet in Fig. the ERBL region, which does not have a forward analogue.
7 keeping in mind thalh =0=X/{=1 andA=0.9=X/{ Naturally the GPDs should be continuous through the point
=10). In consequence, our model ansatz corresponds to at=/ and should have the correct symmetries around the
AJM with maximal skewedness. midpoint of the ERBL region. They are also required to sat-

For our forward model in the DGLAP region we, there- isfy the requirements of polynomiality:
fore, choose for simplicity the ansatz of E@Q1) for the L
quark singlet, .the non-singlefi.e., the valenc)e and the MN:J dooN Y HY(v, &)+ HI(v,8)]
gluon. The ratios of GPD to PDF at the input scale for -1

12 ~—_ o .

GPD/PDF MRST forward model
P
7

Hs(v,§)=q5(v)5qs< (21)
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N/2

= go £ Con - (22)

At this point we choose to model the ERBL region with

these natural features in mind. We demand that the resultar

GPDs reproduce the first momeiM,;~3 and the second
momentM ,~1 [37] [with the D term set to zero to remove
the quadratic piece in Eq24)] where

1
M1=J;duH¢N%vg)=3, (23
1
M, fo dvo[HS(v,€) + H9(v,£)]
=1+C¢? (24

andC in Eqg. (24) was computed in the chiral-quark-soliton
model [38]. This reasoning suggests the following simple
analytical form for the ERBL region{<{):

FONXX,0) = FONI [ 1+APNS()CINX, )],
X—={/2
f5<x,z:>=f5<§>( g,g [1+AOCAX.0). (25
where the functions
32-¢ X—¢12\?
o= 325552
S _152—gy (x—yﬂz
C (x’o_i T 1- W (26)

vanish atX=/{ to guarantee continuity of the GPDs. The
A'({) are then calculated for eachby demanding that the
first two moments of the GPDs are explicitly satisfied-
membering to include thB term in the ERBL region which
only provides the quadratic term i in Eq. (23)]. For the
second moment what we do in practice is to set@herm to
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FIG. 8. The quark singlet and gluon GPDs in LO and NLO,
using MRSTOL1 input PDFs, at the input sc&@g=1 GeV for
=0.1 (upper plo; and {=0.001 (lower plop, values typical of
HERA and HERMES kinematics, respectively.

ible in both its implementation and adaption to either other
forward PDFs or other functional forms in the ERBL region.
Therefore it can be easily incorporated into a fitting proce-

zero and demand that for each flavor the whole integral ovedure.

the GPD is equal to the whole integral over the forward PDF

for the input distribution concerneue to the inherent

In Fig. 8 we show the shape of the resulting input GPDs
for two characteristic values @=0.001,0.1. The upper plot

small errors on the PDFs, the sum of such integrals will ben this figure explicitly shows the antisymmetry of the singlet

close to, but not precisely equal to, unityNote that the
modeling of the ERBL region is unimportant at smasince

GPD and the symmetry of the gluon GPD about the point
X={/2.

the unknown subtraction constant in the dispersion relation, The photon level cross section results from this model,

between the real part of the amplitude which formally de-

using MRSTO01[36] and CTEQ€[39] input distributions at

pends on both the ERBL and the DGLAP region, and theLO and NLO, are compared in Figs. 9 and 10 to the[H8]
imaginary part which formally depends only on the DGLAP and ZEUS[35] data at their average kinematic points, re-

region, is proportional t@ and therefore inconsequential at
small Z.

spectively. In these curves we chose to use xamand
Q?-independent slope parameter®E6.5 GeV 2, but re-

It would be straightforward to extend this algorithm to alistically there is a 30—40 % uncertainty associated with the

satisfy polynomiality to arbitrary accuracy by writing the value of this unknown parameter. The figures illustrate that
A'({) explicitly as a polynomial in{ where the first few within the framework of the forward input model for GPDs
coefficients are set by the first two moments and the othethe DVCS cross section remains rather sensitive to the
coefficients are then randomly chosen since nothing ishoice of input PDF and to the accuracy with which the
known about them. The above algorithm is extremely flex-calculation is performedi.e., LO or NLO). It should be

036001-8
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30 - ﬂRgT2001 NLO - = X ZEUS (prelim)
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100 & —— CTEQ6L LO i N e CTEQ6M NLO
............ CTEQSM NLO ) ——- MRST2001 LO
——- MRST2001 LO — 10.0 —‘-;\\\ —-— MRST2001 NLO
—-— MRST2001 NLO a BN x ZEUS (prelim)
~.\ A X g '...‘\ N
= AN H1 Data a N W = 89 GeV
< AN W =75 GeV > DL
= 10 _E O\ Moo
- AN *D.
A =
W) :
o [ R
*3: ................ —— ~—— 01k
5 1 Tt el TS
0-0 1 1 1 1 1 1 1 1 1
2 12 22 32 42 52 62 72 82 92
0 N T S SR B QZ (GeVZ)
2 7 12 17 22
Q? (GeV2) FIG. 10. The photon level cross sectian|y* p— yp), calcu-

lated using the forward model ansatz for input GPDs, in the average
FIG. 9. The photon level cross sectiom(y* p— yp), calcu-  kinematics of the preliminary ZEUS data: as a functionWifat
lated using the forward model ansatz for input GPDs, in the averagfixed Q°=9.6 GeV? (upper plo}, and as a function o®” at fixed
kinematics of the H1 data: as a function ®¥ at fixed Q2 ~ W=89 GeV (lower ploy. A constant slope parameter d

=45 Ge\? (upper plol, and as a function of? at fixed W  =6.5 GeV ? was used.
=75 GeV (lower ploj. A constant slope parameter oB ) ) ] ]
—6.5 GeV 2 was used. steep to describe all of the data. We will return to this point

in the next section.
The difference between the MRST and CTEQ curves at
LO and NLO reflects the relative size of the quark singlet

5 ) and gluon distributions for each set. It is possible that more
Q5=1-1.69 GeV corresponds more to the AJM & precise data on DVCS may eventually allow a discrimination

=3 GeV* (compare Figs. 6 and 7Hence it is not surprising  between various input scenarios using NLO QCD. For this to
that the description at lo®? is not good, suggesting that the be realistic one would first need to pin down the uncertainty
shift in X in Eq. (21) should be less at lower values Q. associated with the slope by explicitly measuring thae-
When we increase the input scale of CTEQ6M, as done bependence.
low, we find an appropriate reduction in the cross section at We also investigated the effect on the cross section of
low Q% much more in line with the lov@? data and the AJM  increasing the input scale for skewed evolution using CTEQ
value. input distributions, from the starting scalg@,=1.3 GeV to

It is important to note that the preliminary ZEUS data lie Q=2.0 GeV. We then use the forward PDFs at the new
systematically above the H1 datsee Fig. 11 of35]). Over-  scale in our model for the GPDs. Figure 11 shows that the
all NLO seems to be doing better than LO, particularly onreduced lever arm for skewed evolution starting at the higher
the slope of the energy dependence. It is fair to say that all ofcale leads to a smaller cross section at LO and NLO, as
the theory curves appear to hav@4 dependence that is too expected, and that, in LO at least, the effect of this change is

noted that the description at the lowest H1 valueQdf is
bad. However, the enhancement we chose using g .at

036001-9
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j ' ’ ! ’ ! i ! ! ) ) 2
15| CTEQIMNLO.G, & 13 GeV _ 2 fo d cog ¢)(do* —do)
——- CTEQSL LO, Q, = 2 GeV CA=
—-— CTEQ6M NLO, Q, = 2 GeV 2m N _
= x ZEUS (prelim) - . d¢(do™ +do™)
%10 [ <G%=9.6GeV? //,/ ] (27)
? //// Heredo',do refer to the differential cross sections with the
a /// lepton polarized along or against its direction of motion, re-
"%- 5| //’ E ] spec_:tively;doﬂ('ja* are the unpolarized dif‘ferential cross
- E I ....... sections for positrons and electrons, respectively.
//// < B3NS S E3 TS Such a comparison of QCD models with the available
- X T high x,; data may be viewed with some skepticism, espe-
b T T cially in the case of the CLAS data which have such a low
% 20 80 80 100 120 140 10  Q?~1-2 GeV? (HERMES data are only slightly better with
W (GeV) a typical Q? of ~2—4 Ge\f). First, it isa priori not clear
T T T T T . y T . that perturbation theory is applicable at such IQ#& values
100.0 . (in particular, higher twist corrections may be expected to
. —— CTEQ6LLO, Q, = 1.3 GeV become important in this region and our approximations cor-
- CTEQGM NLO, Q, = 1.3 GeV respond to the DVCS cross section being divergenQas
100 \ \ . 2}5%;#,‘{0"& SV —0). Secondly, the previously neglected GFs E andE
= LN x ZEUS (prelim) become increasingly important asncrease$21,4Q. In the
a N W = 89 GeV following we will include the dominant twist-3 contributions
= [41], which are entirely kinematic in origin, in our calcula-
o 10k N tion of the differential cross section, neglecting the sub-
"> dominant twist-3 effects. We use the same input models for
© H, E andE as well ast dependence for the various ampli-
01 ¢ tudes i.e. various dipole form factors which are about equiva-
lent with an exponential at smdllwith a slopeB between 5
and 8, as inf21]. For HERMES we perform a full LO and
0.0 ) L . . ) ! ) L . NLO QCD analysis, whereas for CLAS we are restricting
2 12 22 32 42 52 62 72 82 92

ourselves to LO, i.e., we are testing handbag dominance with
no or little evolution. Furthermore, we shall restrict ourselves

FIG. 11. The effect of changing the starting scalg, on pho- 10 MRSTO1 input PDF for simplicity.

ton level cross sectionr(y* p— yp), calculated using the forward ' ! \ > ¢
model ansatz and CTEQ input PDFs, in the average kinematics gfuch thatH is still the leading GPD and within our model

the preliminary ZEUS data: as a function &% at fixed Q? assumption$d, E andE could be set to zero for those val-

=9.6 GeV (upper plo}, and as a function oQ? at fixed W  ues, with negligible difference to the final answgt3].
=89 GeV (lower ploy. A constant slope parameter oB

=6.5 GeV ? was used. nematics (x)=0.11{Q?)=2.56 Ge\},(t)=—0.265 GeV})

rather large. In fact the CTEQ and MRST Collaborations SSA=-0.28 (LO), —0.23 (NLO),

only advocate the use of their forward PDFs ab6ye~3

—4 Ge\? (they start evolution at a lower scal@®? CA=0.12 (LO), 0.09 (NLO), (29
~1-2 GeV due to technicalities associated with a consis- )

tent implementation of charmHence, it is not completely Ccompared to the quoted experimental resj]

clear where one should start skewed evolution, and this con- B

stitutes an additional uncertainty in the theoretical predic- SSA=—0.2110.08,

tions. CA=0.11+0.07. (29

Having compared to smak,; data we will now test the
AJM ansatz for large,; by comparing to data on the single- For
spin asymmetrySSA (HERMES and CLAS19]) and the
charge asymmetryCA) (HERMES only, defined by

the average CLAS kinematics (xj=0.19({Q?)
=1.31 Ge\#,(t)=—0.19 GeV) we find

SSA=0.2 (LO) (30

2
i T—do!
Zfo dé sin(¢)(do” —do) compared to the experimental valgsecond reference of

SSA= , [19))

fzwd¢(d(ﬂ+dai)
0

SSA=0.202+0.041. (31
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This demonstrates that the AJM ansatz works surprisingly ' ' ' ' ' ' ' ' '

r
1

well even at large,; giving us confidence in the AJM-based 1000

model and suggesting that a fit to the available data shoulc — m :g;ggg: h?ng%

be possible without tuning too many input parameters. \ — —- MRST2001 LO, B =(6_)5 Gev™'
—~ 100 | —-— MRST2001 NLO, B = 6.5 GeV™"

IV. A SIMPLE MODEL FOR THE SLOPE PARAMETER 2 3 X ZEUS (prelim)
. . a ) W = 89 GeV
It was pointed out iM9] that thet slope of the DVCS >

cross section at smatishould depend strongly o@? in the b 10¢

transitional region fronQ? of a few GeV” to largeQ?. At -~
©

Q2~2 Ge\? it is natural to expect that the slope will be
pretty close to that for exclusive-meson productionB 01k
~8 GeV ? [45]. For largeQ? the dominant contribution is
governed by evolution trajectories which, at the resolution
Q5~2 GeV#, originate from the gluon field. Hence we ex- 00 . . . . . . . . .
pect that in this case the slope will be given by the square ol T2 12 22 32 42 52 62 72 82 92
the two-gluon form factor of the nucleon &;,X—{>X;. Q°* (GeV?)

Recently[46] it was demonstrated that fog,;=0.05 thist
dependence can be approximated in a wide range adf
1/(1—t/m3,)* with m5,~1.1 Ge\F. This corresponds to &
slope ofB~3 GeV 2 for exponential fit§47]. At smallerx
an increase of the slope is expected which could originate

from several effects, including Gribov diffusion. Hence for o _ o )
the highestQ? point of ZEUS of about 90 Ged/we expect ized parton distributions at the input scale. Within certain
B=3.5+0.5 GeV 2. The recent H1 and ZEU$-meson theoretical uncertaintiegsuch as the exact shape, the input
production data, for & range similar to the DVCS experi- Scale and the functional form & in W andQ?) this model
ments, indicate that the slope pfproduction for bothoy ~ can be used in a NLO QCD analysis to describe the recent
and o drops rather rapidly with increasinQ? reachingB ~ DVCS data from the H1, ZEUS, HERMES, and CLAS ex-

FIG. 12. The effect on the DVCS cross section, in the average
kinematics of the ZEUS data, of introducing our simple
Q?-dependent model of Eq32) for B, the slope of the depen-

ence.

~5 atQ?~10 Ge\? [48]. periments within their experimental errors. In constructing
A simple parametrization which reflects the discussedhis model we have given a simple and flexible algorithm
constraints for the range of2Q?<100 GeV is which can be easily incorporated into a fitting procedure.

We have also demonstrated and explained the failure of

2 the most widely used model for generalized parton distribu-
E tions, the factorized double distribution based model, to de-
0 scribe the available DVCS data, when rigorously applied in a

with Bo=8 GeV 2, Q,=2 Ge\?, C=0.15 being reason- LO or NLO Q_CD analys?s in its current form. N
able values for the various parameters. This giB¢€? The modeling of the input GPDs is now sufficiently ad-
=9.6)=6.1 GeV 2 andB(Q?=4.5)=7.0 GeV ? at the av- vanced to justify attempting to fit some of the input param-
erageQ? values of the ZEUS and H1 data, respectivety ~ eters directly to the available data. A basic analysis of the
broad agreement with our chosen constant valueBof data would seem to favor adependence with a slope pa-
=6.5 GeV 2). Figure 12 illustrates the effect of introducing rameterp, that depends o@?. Hence, an accurate measure-
this simple model on the description of t@& dependence of ment of this slope is of crucial importance for further
the ZEUS data. progress of the comparison of theory and experiment.

This modification of theB slope gives a great improve-
ment in comparison with the data and shows how important
an experimental determination of tBeslope is, since it con- ACKNOWLEDGMENTS
stitutes a large theoretical uncertainty at this point.

B(Q?)=By| 1—Cln (32
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