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Domain wall fermion and CP symmetry breaking
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We examine theCP properties of chiral gauge theory defined by a formulation of the domain wall fermion,

where the light field variablesq and q̄ together with Pauli-Villars fieldsQ andQ̄ are utilized. It is shown that
this domain wall representation in the infinite flavor limitN5` is valid only in the topologically trivial sector,
and that the conflict among lattice chiral symmetry, strict locality andCP symmetry still persists for finite
lattice spacinga. TheCP transformation generally sends one representation of lattice chiral gauge theory into
another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A
modified form of latticeCP transformation motivated by the domain wall fermion, which keeps the chiral
action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way
to understand the breaking ofCP symmetry at least in the topologically trivial sector. We note that the conflict
with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the
definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.
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I. INTRODUCTION

It has been recently shown thatCP symmetry in chiral
gauge theory@1–3# and also the Majorana reduction in th
presence of chiral symmetric Yukawa couplings@4# have a
certain conflict with lattice chiral symmetry, doubler-fre
and locality conditions in the framework of Ginsparg-Wilso
operators@5–19#. There exists a closely related formulatio
of lattice fermions which is called the domain wall fermio
@20–26#. In one representation of the domain wall fermion
the infinite flavor limit, the domain wall fermion become
identical to the overlap fermion@27–29# and thus to the
Ginsparg-Wilson fermion. In such a case, the conflict w
CP symmetry in chiral theory naturally persists if one us
the conventional representation of Ginsparg-Wilson fer
ons. There are, however, other representations of the dom
wall fermion when discussing chiral symmetry@21,22,24#,
and in those representations~and also in the conventiona
overlap fermion@27–29#!, the conflict withCP symmetry is
less obvious. It is therefore desirable to examine in de
how the conflict observed in the framework of Ginspa
Wilson fermions persists in the domain wall fermion.

We analyze this issue in a formulation of the domain w
fermion where the light field variablesq andq̄ together with
Pauli-Villars fieldsQ and Q̄ are utilized@22–24#. To make
this analysis as definite as possible, we concentrate on
infinite flavorN5` limit of the domain wall fermion, where
chiral symmetry is well defined. It is shown that this repr
sentation of the domain wall fermion is valid only in th
topologically trivial sector and that the conflict withCP
symmetry persists. We also analyze in detail a modified fo
of lattice CP transformation motivated by the domain wa
fermion, which keeps the chiral action in the Ginspa
Wilson fermion invariant, and show thatCP symmetry is
0556-2821/2003/67~3!/034506~19!/$20.00 67 0345
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still violated. In the analysis ofCP symmetry, it turns out
that topological considerations play an essential role and
fact, the conflict withCP symmetry could be regarded as
topological obstruction.

In connection with the definition of Majorana fermion
and its application to supersymmetry, we note a possibility
replacing the Pauli-Villars fields in the domain wall formu
lation by the auxiliary field in the Wess-Zumino model.
fact this formulation agrees with a past suggestion@4,30# of
the Wess-Zumino action in terms of the Ginsparg-Wils
operators.

In this paper we take as a basis of our analysis a Herm
ian lattice operator defined by

H5ag5D5H†5aD†g5 , ~1.1!

where D stands for the lattice Dirac operator anda is the
lattice spacing. The Ginsparg-Wilson operator is then defi
by the algebraic relation

g5H1Hg552H2 ~1.2!

and its solution agrees with the overlap operator@7# ~and its
variants!.

Although the above simplest form of the Ginsparg-Wils
relation is relevant to our analysis of the domain wall fe
mion, the generality of the conflict withCP ~or C) symme-
try is best understood if one considers a more general a
braic relation@2#

g5H1Hg552H2f ~H2!, ~1.3!

where f (H2) is assumed to be a regular function ofH2 and
f (H2)†5 f (H2): f (x) is assumed to be monotonous and no
decreasing forx>0. The explicit construction of the opera
tor D is known for f (H2)5H2k with nonnegative integersk
©2003 The American Physical Society06-1
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@18,19#, and k50 gives rise to the conventional Ginspar
Wilson relation@17#. In our analysis ofCP symmetry, the
operator defined by

G55g52H f ~H2! ~1.4!

or g5G5 plays a central role. This operator satisfies the re
tion

G5H1HG550 ~1.5!

andg5G5 vanishes for some momentum variables inside
basic Brillouin zone.

This vanishing ofg5G5 is shown on the general ground o
locality and species doubler-free conditions ofH. We here
briefly illustrate the basic reasoning, since it is closely
lated to the basic issue of the domain wall fermion: One
confirm the relation

g5H25~g5H1Hg5!H2H~g5H1Hg5!1H2g55H2g5

~1.6!

which implies H25g5H2g5 and thus DH25H2D. The
above defining relation~1.3! is also written as

g5H1Hĝ550, g5D1Dĝ550, ~1.7!

and ĝ5
251, where

ĝ55g522H f ~H2!. ~1.8!

We note that

Dg5G52g5G5D50 ~1.9!

and also the relation

g5G5ĝ55g52G5
22g5G5g55g5~g5G51G5g5!2g5G5g5

5g5~g5G5!. ~1.10!

We now examine the action defined by

S5E c̄Dc[(
x,y

a4c̄~x!D~x,y!c~y! ~1.11!

which is invariant under the lattice chiral transformation

dc5 i eĝ5c, dc̄5c̄ i eg5 . ~1.12!

If one considers the field redefinition

q5g5G5c, q̄5c̄ ~1.13!

the above action is written as

S5E q̄D
1

g5G5
q ~1.14!

which is invariant under the naive chiral transformation
03450
-

e

-
n

dq5g5G5dc5g5G5i eĝ5c5 i eg5q,

dq̄5q̄i eg5 . ~1.15!

This chiral symmetry implies the relation

H g5 ,D
1

g5G5
J 50. ~1.16!

On the basis of the standard argument of the no-go theor
D/(g5G5) and thus 1/(g5G5) have singularities inside the
Brillouin zone for local and species doubler-freeH
5ag5D. In fact it is shown that@18#

G550 ~1.17!

just on top of the would-be species doublers forf (H2)
5H2k with non-negative integersk in the case of free fermi-
ons and also for the topological modes in the presence
instantons~see also the Appendix!. The fieldq, which plays a
central role in the domain-wall fermion@21–24#, is thus ill
defined for these configurations.

It is shown that the domain wall variablesq and q̄ in the
infinite flavor limit satisfy the normal charge conjugatio
properties as well as the continuum chiral symmetry, thou
they are defined in terms of the nonlocal action. Moreov
one can rewrite all the correlation functions forq and q̄ in
terms of the local variables by usingq5g5G5c and q̄5c̄
@24#. One might thus naively expect that we do not encoun
any difficulty associated withCP and charge conjugation
properties. The purpose of this paper is to clarify this a
related issues.

II. DOMAIN WALL FERMIONS
AND CP TRANSFORMATION

A. Chiral properties

The domain wall fermion is defined by a set of coupl
fermion fields@20,21#

a5LDW5c̄1@~g5a5HW11!c12P2c21mP1cN#

1 (
i 52

N21

c̄ i@~g5a5HW11!c i2P2c i 112P1c i 21#

1c̄N@~g5a5HW11!cN1mP2c12P1cN21#,

~2.1!

whereN is chosen to be a positive even integer, and

HW[g5S DW2
m0

a D ~2.2!

with the Wilson fermion operatorDW ~with the Wilson pa-
rameterr 51) and 0,m0,2; a5 is the lattice spacing in the
fifth ~or ‘‘flavor’’ ! direction. Note thatHW

† 5HW . We use the
conventional chiral projection operators
6-2
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P65
16g5

2
. ~2.3!

The parameterm is chosen to bem50 for the domain wall
variables andm51 for the Pauli-Villars variables to subtrac
heavy fermion degrees of freedom. After performing the p
integral over all the fermion variables one obtains@23,25#

det@g5~12a5HWP2!#Ndet@~P22mP1!

2T2N~P12mP2!#, ~2.4!

where the transfer operator is given by

T5
1

11a5HWP1
~12a5HWP2!5

11HW

12HW
~2.5!

with

HW5
21

21a5HWg5
a5HW5a5HW

21

21g5a5HW
. ~2.6!

Note that both ofHW andHW are Hermitian. If one subtract
the contributions of heavy fermions~by settingm51) from
the above determinant withm50, one obtains the ‘‘trun-
cated’’ overlap or Ginsparg-Wilson operatorDN

detaDN[det~P22T2NP1!/det@~P22P1!

2T2N~P12P2!#

5detF1

2 S 11g5

12TN

11TND G , ~2.7!

wherea is the lattice spacing in four-dimensional Euclide
space, and the effective Lagrangian for the physical ferm

L5c̄DNc. ~2.8!

Note that DN is well-defined forN5even anda5 /a!1,
sinceia5HWi<a5 /a andT is a well-defined Hermitian op
erator.

On the other hand, if one defines the light fermion degr
of freedom by@21#

q[
a

a5
~P2c11P1cN!, q̄[c̄1P11c̄NP2 ~2.9!

and integrates over all the remaining degrees of freedom
Eq. ~2.1!, one obtains after subtracting the heavy fermi
contributions by the Pauli-Villars bosonic spinorsQ and Q̄
@24#,

LDW5q̄
a5

a
DN

effq1Q̄~11a5DN
eff!Q

5q̄
DN

12aDN
q1Q̄

1

12aDN
Q. ~2.10!
03450
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If one performs the path integral over all the variables, o
obtains the same result detDN as above. We denote this La
grangian~and itsN5` limit ! by LDW hereafter.

If one takes the infinite flavor limitN→`, one obtains~in
the limit a5→0)

DN→D5
1

2a S 11g5

HW

AHW
2 D ~2.11!

which gives the Neuberger’s overlap operator@7# satisfying
the simplest Ginsparg-Wilson relation g5D1Dg5
52aDg5D. In this limit we can write the domain wall fer
mion as

LDW5q̄D
1

g5G5
q1Q̄

1

g5G5
Q ~2.12!

which is valid for a general class of Ginsparg-Wilson ope
tors. In our analysis ofCP and related problems, we utiliz
this N5` expression.

We here note that

12aDN5
1

2 S 11g5

TN21

TN11
D Þ0 ~2.13!

since

ITN21

TN11
I,1 ~2.14!

for finite evenN and sufficiently smalla5 /a. Consequently,
DN /(12aDN) is a well-defined and local operator~see Ref.
@39# for the locality ofDN), and

H g5 ,
DN

12aDN
J Þ0 ~2.15!

sinceDN with finite N does not satisfy the Ginsparg-Wilso
relation. On the other hand, theN5` expression satisfies

H g5 ,
D

12aDJ 50 ~2.16!

and thus the operator 1/(12aD) becomes singular. It is in-
teresting that good locality~analytic property! and good chi-
ral symmetry for the operatorDN /(12aDN) are traded in
the limit N5`.

The locality of DN /(12aDN) is understood intuitively,
since the defining Lagrangian of the domain wall fermion
finite N couplesN fields by the operatorHW , which causes
correlation over the finite distances;Na in four-
dimensional Euclidean space. In the limitN→`, the opera-
tor D/(12aD) could thus become non-local. By subtractin
the contributions from far apart fields with the parameterm
51 in the defining Lagrangian, the Pauli-Villars fieldsQ and
Q̄ could restore the locality: In fact, the singular fact
1/(12aD) is canceled by the Pauli-Villars fields.
6-3
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The explicit expression of the Lagrangian for chiral gau
theory is not specified by the domain wall prescriptio1

since precise chiral symmetry is not defined for finiteN. It is,
however, natural to analyze chiral theory based on the ab
correspondence to the Ginsparg-Wilson operator

E DcDc̄expS E c̄Dc D
5E DqDq̄DQDQ̄exp

3S E q̄D
1

g5G5
q1E Q̄

1

g5G5
QD . ~2.17!

We first note

D5P1DP̂21P2DP̂1 ~2.18!

with

P̂65
16ĝ5

2
~2.19!

and ~by using the relations such asP6P̂65P6g5G5 and
g5G5P̂65P6g5G5)

P̂25 P̂2P̂2

5 P̂2

1

g5G5
g5G5P̂2

5 P̂2

1

g5G5
P2g5G5P̂21 P̂2

1

g5G5
P1g5G5P̂2

5 P̂2

1

g5G5
P2P̂2P̂2

5 P̂2

1

g5G5
P2P2g5G5 . ~2.20!

We then have the chiral Lagrangian

LL5E c̄P1DP̂2c

5E q̄P1D
1

g5G5
P2q ~2.21!

with

q~x!5g5G5c~x!,

q̄~x!5c̄~x! ~2.22!

and

1See, however, Ref.@26#.
03450
e

ve

cL[ P̂2c5 P̂2

1

g5G5
P2~P2q!5 P̂2

1

g5G5
P2qL ,

c̄L[c̄P15q̄P15q̄L . ~2.23!

The path integral is then given by taking the Jacobian as
ciated with the above change of variables into account,

E DcLDc̄LexpS E c̄P1DP̂2c D
5E DqLDq̄LDQLDQ̄RexpS E q̄P1D

1

g5G5
P2q

1E Q̄P̂2

1

g5G5
P2QD , ~2.24!

where we defined the bosonic Pauli-Villars spinors

QL~x!5P2Q~x!,

Q̄R~x!5Q̄~x!P̂2 . ~2.25!

This is consistent if one recalls

D
1

g5G5
5P1D

1

g5G5
P21P2D

1

g5G5
P1 ,

1

g5G5
5 P̂2

1

g5G5
P21 P̂1

1

g5G5
P1 . ~2.26!

The chiral transformation laws of various fields are d
fined by

c→eiaĝ5c, c̄→c̄eiag5,

q→eiag5q, q̄→q̄eiag5,

Q→eiag5Q, Q̄→Q̄e2 iaĝ5 ~2.27!

and, similarly, the fermion number transformation by

c→e2 iac, c̄→c̄eia,

q→e2 iaq, q̄→q̄eia,

Q→e2 iaQ, Q̄→Q̄eia. ~2.28!

These transformation rules are fixed if one formally gaug
those degrees of freedom.

Based on this formulation of chiral gauge theory, w
make the following observations.~i! One may take the
Ginsparg-Wilson variablesc and c̄, which are defined by a
local Lagrangian, as the primary variables. One may thus
the source terms to both hand-sides of the path integral
6-4
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Lsource5h̄RcL1c̄LhR

5h̄RP̂2c1c̄P1hR

5h̄RP̂2

1

g5G5
P2~P2q!1q̄P1hR . ~2.29!

To avoid the singularities appearing in various expressi
for domain wall variables, one needs to work in the fun
tional spacewithout the modes

G5wn50 ~2.30!

in the domain wall representation. We here recall t
the index for the Ginsparg-Wilson operator is given
@8,9,31–33#

Tr G55n12n25N22N1 , ~2.31!

where n6 stand for the modesHwn5ag5Dwn50 with
g5wn56wn , respectively, andN6 stand for the modes
G5wn5@g52H f (H2)#wn50 with g5wn56wn , respec-
tively ~see the Appendix!. The constraintN15N250 thus
implies that we work in thetopologically trivial sectorwith
Tr G550. This constraint is consistent with the above f
mion number transformation: For the Ginsparg-Wilson va
ables, we obtain the Jacobian factor2

ln Jc5 iaTr P̂22 ia Tr P152 ia Tr G5 , ~2.32!

whereas for the domain wall variablesq and q̄, we obtain

ln Jq5 ia Tr P22 ia Tr P152 ia Tr g5 . ~2.33!

We thus have TrG55Tr g550.
~ii ! One may take the domain wall variables as the p

mary variables and add the source terms

Lsource5h̄RqL1q̄LhR

5h̄RP2q1q̄P1hR

5h̄RP2g5G5c1c̄P1hR

5h̄RP2cL1c̄LhR , ~2.34!

where we usedP2g5G55P2P̂2 . One might attempt to in-
terpret the chiral domain wall representation with the
source terms in the following way: In any fermion loop di
gram such as in the determinant factor, we combine the v
ables q, q̄ and Q, Q̄ together and obtain the determina
without the 1/(g5G5) factor. For the external fermion line
connected to the source terms, we use the variablesqL and
q̄L by replacing those variables later byP2cL and c̄L . By
this way, we do not encounter any singularity even in top

2The path integral for chiral non-Abelian gauge theory has
been completely understood yet. But the chiral U(1) anomaly
associated index are insensitive to the details of the path inte
measure.
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logically nontrivial sectors. This is perhaps the simplest vi
based on the domain wall fermion. This view, however, ha
fatal difficulty in topological properties, namely, one cann
generate the fermion number anomaly by a transformatio
variablesqL and q̄L alone

ln Jq5 ia Tr P22 ia Tr P152 ia Tr g550 ~2.35!

if one works in the complete functional space in topolo
cally nontrivial sectors. We thus have to exclude the mo
G5wn50 by hand, for example, but we may still work in a
the topological sectors on the basis of the domain wall v
ablesqL and q̄L . In this case, the topological properties a
maintained since one can confirm@33#

Tr8g55n12n2 , ~2.36!

where Tr8 is taken in the functional space with the mod
G5wn50 excluded. This index relation has the same form
in continuum theory@34#. This exclusion of the modes
G5wn50 is consistent with the replacementq→g5G5c since
the factorg5G5 projects out those modes@10,35#. This op-
eration is, however, apparently nonlocal.3

Based on these considerations we conclude that the
main wall fermion representation in the limitN5`, where
chiral symmetry is well defined, is valid as a local fie
theory~in the above interpretation! only in the topologically
trivial sector with TrG550. The primary variables, which
describe the full physical contents expressed by various
relation functions in topologically trivial as well as nontrivia
sectors, are thus given by the Ginsparg-Wilson fermionscL

andc̄L , and hereafter we analyze the domain wall repres
tation in the topologically trivial sector with the source term
~2.29! added. Note that source terms specify the correlat
functions, and the componentP1cL is missing in Eq.~2.34!;
to maintain the consistency of internal and external ferm
lines, which is related to unitarity, we need to use the sou
~2.29!.

In passing, another interesting representation, which
equivalent to the domain wall fermion, is given by

E DcLDc̄LexpS E c̄P1DP̂2c D
5E DqLDq̄LDSLDS̄RexpS E q̄P1D

1

g5G5
P2q

1E S̄P2g5G5P̂2SD , ~2.37!

where we defined thefermionicauxiliary fields

t
d

ral

3The exclusion of the modesG5wn(x)50 in all the topological
sectors is apparently a nonlocal operation in spacetime, though
a local operation in the ‘‘mode space,’’ since the functional value
wn(x) is fixed over the entire space once its value at one poin
fixed. The exclusion of the modesG5wn(x)50 by hand corresponds
to the exclusion of would-be species doublers by hand.
6-5



lly
is
tio

op
tio

-

on-
is

in
ri-

d

K. FUJIKAWA AND H. SUZUKI PHYSICAL REVIEW D 67, 034506 ~2003!
SL~x!5 P̂2S~x!,

S̄R~x!5S̄~x!P2 ~2.38!

by noting

P1DP̂25S P1D
1

g5G5
P2D ~P2g5G5P̂2! ~2.39!

and

g5G55P2g5G5P̂21P1g5G5P̂1 . ~2.40!

The vectorlike theory is then defined by

E DcDc̄ expS E c̄Dc D
5E DqDq̄DSDS̄exp

3S E q̄D
1

g5G5
q1E S̄g5G5SD . ~2.41!

This representation is applicable only to the topologica
trivial sector, but it turns out to be convenient when we d
cuss Majorana fermions in the domain wall representa
later.

B. CP symmetry in chiral gauge theory

We recall the charge conjugation properties of various
erators. We employ the convention of the charge conjuga
matrix C

CgmC2152~gm!T, ~2.42!

Cg5C215g5
T , ~2.43!

C†C51, CT52C. ~2.44!

We then have4

WD~UCP!W215D~U !T,

Wg5G5~UCP!W215@g5G5~U !#T,

WH~UCP!W2152@g5H~U !g5#T,

WH2~UCP!W215@H2~U !#T,

WG5~UCP!W2152@g5G5~U !g5#T,

W~G5 /G!~UCP!W2152@~g5G5g5 /G!~U !#T ~2.45!

where

4We define theCP operation byW5Cg05g2 with Hermitiang2

and the CP transformed gauge field byUCP, and then
WD(UCP)W215D(U)T. If the parity is realized in the standar
way, we haveCD(UC)C215D(U)T.
03450
-
n

-
n

G5AG5
25A~g5G5g5!25A12H2f 2~H2!. ~2.46!

Here we imposed the relationWD(UCP)W215D(U)T or
@CD(U)#T52CD(UC) which is consistent with the defin
ing Ginsparg-Wilson relation.

We also have the properties

Wĝ5~UCP!W2152@g5ĝ5~U !g5#T

W
1

g5G5~UCP!
W215F 1

g5G5~U !G
T

. ~2.47!

We now examine theCP symmetry in chiral gauge theory

LL5c̄LDcL , ~2.48!

where we defined the~general! projection operators

D5 P̄LDPL1 P̄RDPR ,

cL,R5PL,Rc, c̄L,R5c̄ P̄L,R . ~2.49!

Under the standardCP transformation5

c̄→cTW,

c→2W21c̄T ~2.50!

the chiral action is invariant only if

WPLW215 P̄L
T , WP̄LW215PL

T . ~2.51!

It was shown elsewhere that the unique solution for this c
dition in the framework of the Ginsparg-Wilson operators
given by @2#

PL,R5
1

2
~17G5 /G!,

P̄L,R5
1

2
~16g5G5g5 /G!, ~2.52!

but these projection operators suffer from singularities
1/G. Namely, it is impossible to maintain the manifest inva
ance of the local and chiral Lagrangian under theCP trans-
formation @1,2#.6

If one stays in the well-defined local Lagrangian

E LL5E c̄P1DP̂2c ~2.53!

it is not invariant under the standardCP transformation as

WP6W215P7
T Þ P̂7

T ~U !,

5The vectorlike theory is invariant under thisCP transformation.
6This, however, shows that one can maintain manifestCP invari-

ance, if one ignores the singularities associated withg5G550.
6-6
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WP̂6~UCP!W215
17@g5ĝ5~U !g5#T

2

5@g5P̂7~U !g5#TÞP7
T ,

@WP1D~UCP!P̂2~UCP!W21#T5g5P̂1~U !g5D~U !P2

5P1D~U !P̂2~U !2D~U !@g52G5~U !#ÞP1DP̂2 .

~2.54!

Since one can show that

~g5P̂6g5!~g5P̂6g5!5~g5P̂6g5!,

D5~g5P̂1g5!DP21~g5P̂2g5!DP1 , ~2.55!

the CP transformation actually maps one specific repres
tation of chiral gauge theory to another representation of
ral gauge theory

E L5E c̄P1D~U !P̂2~U !c

→E L5E c̄g5P̂1~U !g5D~U !P2c ~2.56!

based on thesamevectorlike theory defined by the lattic
operatorD.

It may be appropriate to recall here the essence of
previous analysis@3#. The functional space in our problem
naturally spanned by the eigenfunctions of the basic Herm
ian operatorH5ag5D

Hwn5lnwn . ~2.57!

However, this eigenvalue equation is gauge covariant as
all the quantities in the gauge invariant lattice regularizati
ur
io
h

de

o

ou

o

03450
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ur
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re
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To accommodate the gauge noncovariant quantities such
consistent form of anomaly, one defines the path integral
specific topological sector specified byM by

ZM~U !5exp@ iqM~^wnuvm&;^w̄nuv̄m&!#

3E )
n,l

dandālexpF E L~ c̄,c,U !G , ~2.58!

where we expanded fermionic variables as

P̂2c5(
n

anwn ,

c̄P15(
n

ānw̄n . ~2.59!

The basis vectors$wn% and$w̄n%, which satisfy

P̂2wn5wn , w̄nP15w̄n ~2.60!

are suitable linear combinations of$wn% and $wn
†%, respec-

tively. The ‘‘measure factor’’qM , which is the Jacobian for
the transformation fromideal bases$vn% and $v̄n% to the
bases specified byH and thus crucially depends on the ide
bases,7 is not specified at this stage and it is later determin
by imposing several physical conditions.

When one considers the change of fermionic variab
which formally corresponds to gauge transformationc

→c8 and c̄→c̄8, the expansion coefficients with the fixe
basis vectors are transformed as$an%→$an8% and $ān%
→$ān8%. Since the naming of path integral variables does
matter, one obtains the identity
exp@ iqM~^wnuvm&;^w̄nuv̄m&!#E )
n,l

dandālexpF E L~ c̄,c,U !G
5exp@ iqM~^wnuvm&;^w̄nuv̄m&!#E )

n,l
dan8dāl8expF E L~ c̄8,c8,U !G . ~2.61!
the

om

nce

ideal
In this form of identity, the Jacobian of path integral meas
gives a lattice version of covariant anomaly and the variat
of the action gives the divergence of covariant current. T
gauge covariant fermion number anomaly is naturally
rived in this way.

If one performs the simultaneous gauge transformation
the link variablesU in the above path integralZM(U), the
action becomes invariant but one needs to take into acc
the variation of the measure factordqM(^wnuvm&;^w̄nuv̄m&)
induced by the gauge transformation ofU. This variation
dqM converts the covariant anomaly to a lattice form
e
n
e
-

f

nt

f

consistent anomaly, which is one of the requirements on
measure factor. In the anomaly free theory,dqM should
completely cancel the non-vanishing Jacobian arising fr
lattice artifacts. The current associated todqM should be
local and satisfy several other requirements: The existe
proof of such a measure factorqM amounts to a definition of
lattice chiral gauge theory@11–16#.

7The measure factor is thus chosen to be a constant for the
bases.
6-7
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A characteristic property of the Ginsparg-Wilson algeb
is that among the eigenfunctions ofHwn5lnwn the eigen-
states corresponding to zero modes and also those e
states corresponding to the largest values ofulnu are chosen
to be the simultaneous eigenstates ofg5, and that those state
corresponding to the largest values ofulnu are annihilated by
G5wn50. By noting

P̂65
16ĝ5

2
5P76G5 , ~2.62!

P̂6 is replaced byP7 when acting on the modes annihilate
by G5. We also have the chirality sum rule arising fro
Tr g550, n11N15n21N2 , wheren6 andN6 stand for
the numbers of zero modes and largest eigenmodes
chirality 6, respectively~see the Appendix!.

In terms of the eigenfunctions of the basic operatorH, one
can describe the change of the action under the standardCP
transformation as follows. One starts with

E L5E c̄P1D~U !P̂2~U !c ~2.63!

which is characterized by

c̄5S n1

N1
D , c5S n2

N1
D , n12n25Tr G5~U !.

~2.64!

Here we write only the number of simultaneous chiral eig
states explicitly, since the same number of eigenstates
longing to other eigenvalues are included inc and c̄. The
CP conjugate theory is defined by

E L CP5E c̄CPP1D~UCP!P̂2~UCP!cCP ~2.65!

which is characterized by

c̄CP5S n1
CP

N1
CPD , cCP5S n2

CP

N1
CPD ,

n1
CP2n2

CP5Tr G5~UCP!52Tr G5~U !. ~2.66!

A regular renaming of fermionic variables inL CP

c̄CP5c8W, cCP52W21c̄8 ~2.67!

gives rise to

E L CP5E c̄8g5P̂1~U !g5D~U !P2c8 ~2.68!

which is characterized by

c̄85S n18 5n2
CP

N28 5N1
CPD , c85S n28 5n1

CP

N28 5N1
CPD ,

n18 2n28 5Tr G5~U !. ~2.69!
03450
en-

ith

-
e-

This analysis suggests that we may define theCP trans-
formed theory by means of the chiral theory defined by p
jection operatorsP2 andg5P̂1g5. It is shown that this is in
fact consistent including the measure factor@3#.

When one compares the original theory to theCP trans-
formed theory, the topological index is identical for the
two theories. Although the number of heaviest modes is
ferent N28 5N2ÞN1 in general, one may expect that the
two theories when summed over all the topological sect
give rise to an identical result. After all, it should not matt
how one chooses a specific chiral projection of the origi
vectorlike theory specified byD, as long as it is not singular
~The continuum limit is expected to be identical, if it is we
defined.! This expectation is in fact born out by a detaile
analysis, and the differenceN28 ÞN1 is taken care of by
suitably choosing the weight factors for different topologic
sectors when summing those sectors@3#. The different ac-
tions however give rise to different propagators~for finite a)

^cL~x!c̄L~y!&5 P̂2

1

D
P1→P2

1

D
g5P̂1g5Þ P̂2

1

D
P1

~2.70!

which manifestCP breaking in this formulation. From this
view point, if one chooses projection operators for which t
chiral theories before and afterCP transformation coincide,
one inevitably encounters a singularity in the topologica
nontrivial sector because ofN28 ÞN1 . The conflict withCP
symmetry could thus be regarded as a topological obst
tion.

The CP noninvariance in the action level persists in t
domain wall representation

E LL5E q̄P1D
1

g5G5
P2q1E Q̄P̂2

1

g5G5
P2Q.

~2.71!

A natural definition ofCP transformation is

q̄→qTW,

q→2W21q̄T,

Q̄→QTW,

Q→2W21Q̄T. ~2.72!

This transformation leaves the vectorlike theory invariant
to the overall signature of the second term in Eq.~2.17!,
which is immaterial.8 We note that one cannot keepQ andQ̄
invariant underCP since the gauge field is transformed u
der CP by

8One may define a transformation lawQ→W21Q̄T, for example,
to keep the action invariant. In this case, however, theCP transfor-

mation applied twice gives rise toQ→2Q andQ̄→2Q̄.
6-8
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W
1

g5G5~UCP!
W215F 1

g5G5~U !G
T

. ~2.73!

The part containing the fieldq and q̄ in the above chiral
Lagrangian is invariant under theCP transformation, but the
part containingQ andQ̄ is not invariant under the CP trans
formation

S WP̂2

1

g5G5
P2W21D T

5P1

1

g5G5
g5P̂1g5

5 P̂2

1

g5G5
P21g5Þ P̂2

1

g5G5
P2 .

~2.74!

The conflict withCP symmetry persists as far as the inva
ance of the action is concerned. We recall thatQ andQ̄ are
essential to maintain the full physical contents described
the variablesc andc̄. To analyze the effects ofCP violation
in the sector ofQ andQ̄ precisely, we discuss a modifiedCP

transformation forcL and c̄L in the next section, which in-
cludes the effects of both ofq,q̄ andQ,Q̄.

As we noted above, thisCP transformation is regarded a
a change of representation specified byP6 and P̂6 to an-
other representation specified byg5P̂6g5 and P6 . To be
specific, we have

g5P̂1g55~g5G5!P1P1S 1

g5G5
Dg5P̂1g5 ,

c̄g5P̂1g55c̄~g5G5!P1P1S 1

g5G5
Dg5P̂1g5

5q̄P1P1S 1

g5G5
Dg5P̂1g5 ,

L5c̄g5P̂1g5DP2c5q̄P1S 1

g5G5
DDP2q,

~2.75!

where we defined

q̄5c̄g5G5 , q5c. ~2.76!

We thus have

E DcLDc̄LexpS E c̄g5P̂1g5DP2c D
5E DqLDq̄LDQRDQ̄LexpF E q̄P1S 1

g5G5
DDP2q

1E Q̄P1

1

g5G5
g5P̂1g5QG , ~2.77!

where the action forq andq̄ formally retains the form before
the CP transformation, though the definitions ofq and q̄ in
03450
y

terms ofc and c̄ are not the same as before. To the exte
one can define the left-hand side consistently, one can de
the right-hand side consistently except for topological pro
erties. The source terms and the resulting propagator, w
need to be defined in terms of the local variablesc and c̄,
however, change under theCP transformation as in Eq
~2.70!. We reiterate that the variablesq andq̄ cannot describe
the essential properties such as the fermion number non
servation and chirality selection rules~in vectorlike theory!,
which are described by the local variablesc and c̄.

The same conclusion is obtained, namely,CP noninvari-
ance of the action, for the ‘‘fermionic’’ representation of th
domain wall fermion

LL5E q̄P1D
1

g5G5
P2q1E S̄P2g5G5P̂2S ~2.78!

if one assigns the naturalCP transformation law

S̄→STW,

S→2W21S̄T ~2.79!

which keeps the vectorlike theory invariant. We then hav

~WP2g5G5P̂2W21!T5g5P̂1g5g5G5P1

5P2g5G5P̂21g5G5
2ÞP2g5G5P̂2

~2.80!

which is again interpreted as a change of representatio
lattice chiral theory based on the same vectorlike theory.

III. MODIFIED LATTICE CP FOR GINSPARG-WILSON
OPERATORS

The part of the Lagrangian for chiral domain wall ferm
ons in Eq.~2.71!, which includes the light variablesq andq̄,
is invariant underCP transformation. This property togethe
with q5g5G5c and q̄5c̄ suggest a modified latticeCP
transformation~which is fixed by first going toq and then
coming back toc after CP operation!

cL5 P̂2c→cL
CP52W21F c̄L

1

g5G5~U !G
T

,

c̄L5c̄P1→c̄L
CP5@g5G5~U !cL#TW ~3.1!

for the chiral theory defined in terms of the Ginsparg-Wils
fermion

LL5c̄LDcL5c̄
11g5

2
D

12ĝ5

2
c. ~3.2!

One can confirm that the chiral Lagrangian is invariant un
the above modified latticeCP transformation. If one estab
lishes that the Jacobian for the above modifiedCP transfor-
mation gives unity, all the effects ofCP violation ~or abnor-
6-9
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mal C) effects appear in the propagator, which is derived
considering source terms~2.29! for cL and c̄L ,

E L source
CP 5E @h̄R

CPcL
CP1c̄L

CPhR
CP#

5E F h̄Rg5G5~U !cL1c̄L

1

g5G5~U !
hRG ,

~3.3!

and the propagator becomes afterCP transformation

~g5G5!P̂2

1

D
P1

1

~g5G5!
5P2

1

D
g5P̂1g5Þ P̂2

1

D
P1

~3.4!

in pure chiral gauge theory, to be consistent with our pre
ous result@3#. We here assumed the naturalCP transforma-
tion for the source functionsh̄R→hR

TW and hR→
2W21h̄R

T .
This analysis turned out to be rather limited in its sco

and it is applicable only to the topologically trivial sector,
it is directly related to the domain wall representation. It
however, nice to examine the modified latticeCP transfor-
mation, since, after all, the invention of a lattice version
chiral transformation was the starting point of the analysis
lattice chiral gauge theory. Also, this analysis illustrates
alternative picture about what is going on in the analysis
CP symmetry, together with general topological complic
tions associated with the transformation which keeps ac
invariant.

In passing, we note that the vectorlike theory defined
the Ginsparg-Wilson fermion is invariant under the modifi
CP transformation

c→2
1

g5G5
W21c̄T52W21S c̄

1

g5G5
D T

,

c̄→cT~g5G5!TW5~g5G5c!TW ~3.5!

and the Jacobian for this transformation is unity up to
possible singularity associated with 1/(g5G5).

We now present a precise analysis of the Jacobian fa
associated with the above modifiedCP transformation in
chiral gauge theory, and show that we arrive at precisely
same conclusion, at least in the topologically trivial sector
in our previous analysis based on the more conventionalCP
transformation@3#. The analysis in this section also provid
some of the mathematical details briefly sketched in the p
vious section.

We start with the definition of expectation values in t
fermion sector of the chiral gauge theory

^O&5E DcLDc̄LOexpS E c̄LDcL D ~3.6!

and
03450
y
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e

,

f
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DcLDc̄L5)
j

dcj)
k

dc̄k . ~3.7!

In this expression,cj andc̄k are the expansion coefficients o
fermion fields.

cL~x!5(
j

v j~x!cj , cj5~v j ,cL![a4(
x

v j
†~x!cL~x!

~3.8!

and

c̄L~x!5(
k

c̄kv̄k~x!, c̄k5~ c̄L
† ,v̄k

†![a4(
x

c̄L~x!v̄k
†~x!.

~3.9!

Basic requirements for the~ideal! basis vectors are

P̂2v j5v j , ~v j ,vk!5d jk ~3.10!

and

v̄kP15 v̄k , ~ v̄ j
† ,v̄k

†!5d jk ~3.11!

so that

P̂2cL5cL , c̄LP15c̄L . ~3.12!

Let us consider hoŵO& changes under theCP transfor-
mation of the gauge fieldU→UCP. The above framework
gives

^O&~UCP!5E DcL
CPDc̄L

CPO CP

3expF E c̄L
CPD~UCP!cL

CPG ~3.13!

and

DcL
CPDc̄L

CP5)
j

dcj
CP)

k
dc̄k

CP . ~3.14!

Here the expansion coefficients are defined by

cL
CP~x!5(

j
v j

CP~x!cj
CP , cj

CP5~v j
CP ,cL

CP!

~3.15!

and

c̄L
CP~x!5(

k
c̄k

CPv̄k
CP~x!, c̄k

CP5~ c̄L
CP† ,v̄k

CP†!.

~3.16!

The ~ideal! basis vectors satisfy

P̂2~UCP!v j
CP5v j

CP , ~v j
CP ,vk

CP!5d jk ~3.17!

and
6-10



le

n-

de
f t
-
rs
t w
om

DOMAIN WALL FERMION AND CP SYMMETRY BREAKING PHYSICAL REVIEW D 67, 034506 ~2003!
v̄k
CPP15 v̄k

CP , ~ v̄ j
CP† ,v̄k

CP†!5d jk . ~3.18!

In what follows, we take basis vectors as

v̄k
CP5 v̄k ~3.19!

because both satisfy thesamechirality constraint that is in-
dependent of gauge fields.

We thus examine the following modified substitution ru

cL
CP52W21F c̄L

1

g5G5~U !G
T

52(
k

W21F v̄k

1

g5G5~U !G
T

c̄k

~3.20!

and

c̄L
CP5@g5G5~U !cL#TW5(

j
@g5G5~U !v j #

TWcj .

~3.21!

This substitution is in fact consistent with the chirality co
straint P̂2(UCP)cL

CP5cL
CP and c̄L

CPP15c̄L
CP . Moreover,

the action takes the form identical to the original one un
this substitution, as we already noted. The appearance o
singular factor 1/(g5G5) is consistent with our ‘‘no-go theo
rem’’ @2#. The question related to the existence of the inve
1/(g5G5) is discussed later. These observations show tha
should consider a change of integration variables fr
(cj

CP ,c̄k
CP) to (cj ,c̄k). These two sets are connected by
03450
:

r
he

e
e

cj
CP52(

k
a4(

x
v j

CP†~x!W21F v̄k~x!
1

g5G5
GT

c̄k

~3.22!

and

c̄k
CP5(

j
a4(

x
@g5G5v j~x!#TWv̄k

†~x!cj . ~3.23!

This transformation is, however, regular only if TrG55n1

2n250, because

No. of cj
CP2No. of c̄k5Tr P̂2~UCP!2Tr P1

5Tr P̂1~U !2Tr P15Tr G5

~3.24!

and

No. of c̄k
CP2No. of cj5Tr P̂12Tr P̂25Tr G5 .

~3.25!

So we assume TrG55n12n250 in what follows; this is
also necessary~though not sufficient! for the existence of the
inverse ofg5G5.

By defining

)
j

dcj
CP)

k
dc̄k

CP5J21)
j

dcj)
k

dc̄k ~3.26!

we have
J5detH 2a4(
x

v j
CP†~x!W21F v̄k~x!

1

g5G5
GTJ detH a4(

x
@g5G5v j~x!#TWv̄k

†~x!J
5detH a4(

x
@g5G5v j~x!#TWv̄k

†~x!J detF2a4(
x

v̄k~x!
1

g5G5
~W21!Tv j

CP* ~x!G
5detH 2a4(

x
@g5G5v j~x!#TWP1

1

g5G5
~W21!Tvk

CP* ~x!J
5detH 2a4(

x
v j

CP†~x!W21F 1

g5G5~U !G
T

P1
T WTg5G5~U !vk~x!J

5detF2a4(
x

v j
CP†~x!

1

g5G5~UCP!
g5G5~U !vk~x!G , ~3.27!
-
where we have used(kv̄k
†(x) v̄k(y)5P1dx,y in deriving the

third line, andWT5W andP2g5G55g5G5P̂2 in the fourth
line.

Clearly, whether the JacobianJ is unity or not depends on
the relation betweenvk and v j

CP which may be quite arbi-
trary ~because these refer to different gauge fieldsU and
UCP, respectively!. To investigate a minimal condition onvk
andv j
CP such thatJ51, we consider an infinitesimal varia

tion of the gauge field specified by

dhU~x,m!5ahm~x!U~x,m!. ~3.28!

Under this variation, the JacobianJ5detM changes as
dhln J5tr dhMM 21, where
6-11
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dhM jk52a4(
x

dhv j
CP†~x!

1

g5G5~UCP!
g5G5~U !vk~x!

1a4(
x

v j
CP†~x!

1

g5G5~UCP!
g5dhG5~UCP!

3
1

g5G5~UCP!
g5G5~U !vk~x!

2a4(
x

v j
CP†~x!

1

g5G5~UCP!
g5dhG5~U !vk~x!

2a4(
x

v j
CP†~x!

1

g5G5~UCP!
g5G5~U !dhvk~x!

~3.29!

and

Mk j
215S vk ,

1

g5G5~U !
g5G5~UCP!v j

CPD . ~3.30!

Using ( jv j (x)v j
†(y)5 P̂2(U)(x,y), ( jv j

CP(x)v j
CP†(y)

5 P̂2(UCP)(x,y) and

1

g5G5~UCP!
g5G5~U !P̂2~U !

5 P̂2~UCP!
1

g5G5~UCP!
g5G5~U ! ~3.31!

together with Eq.~2.45!, we arrive at

dhln J52 iLh1 iL h
CP2dhTr G5~U !, ~3.32!

whereLh andL h
CP are so-called measure terms@11–16#.

Lh5 i(
j

~v j ,dhv j !, L h
CP5 i(

j
~v j

CP ,dhv j
CP!

~3.33!

which specify how the fermion path integral measu
changes according to a change of gauge fields.

Recalling that TrG5 is an integer which cannot chang
under an infinitesimal variation of the gauge field~or simply
that we have set TrG550), we see that the necessary co
dition for J51 isL h

CP5Lh . Namely, for theCP invariance,
the ~ideal! basis vectors have to be chosen such thatL h

CP

5Lh . Conversely, ifL h
CP5Lh , we see that the JacobianJ

is a constant which can depend only on the topological pr
erties of each sector. In the vacuum sector, in which
vacuumU051 is contained, we can determine this const
and obtainJ51 becauseU0

CP515U0. So, for the vacuum
sector,L h

CP5Lh implies J51.
In our previous work, we have shown that the conditio

on the ideal measure factor~which appear in the reconstruc
tion theorem of chiral gauge theory@11,13#! are consistent
03450
-

-
e
t

s

with the choiceL h
CP5Lh @3#. The unit Jacobian condition

~in the vacuum sector! is thus equivalent to the existence
the ideal measure factor in this sense.

In fact, theCP invariance in the sense that we can igno
the Jacobian associated with the above modifiedCP trans-
formation is shown more generally, when there is no mo
such thatg5G5C(x)50, namely,N15N250. In this case,
one can show that the Jacobian is a pure phase,J5eiu. With
the CP invariant choice of the fermion measure termsL h

CP

5Lh , the phaseu is a constant depending only on the top
logical sector, as we have shown above. Such a cons
breaking ofCP, however, may be reabsorbed into the ba
vectorsv j andv j

CP ~this operation does not change the me
sure terms!, or equivalently may be absorbed into the pha
factor qM for each topological sector. This apparentCP
breaking is thus harmless. This is completely consistent w
our result in the previous work@3# where theCP invariance
of path integral~in the topologically trivial sector! except for
propagators is shown. We present the proof of the ab
statement below.

Proof of uJu251: Our Jacobian factorJ is expressed as

J5detF2a4(
x

v j
CP†~x!

1

g5G5~UCP!
tk~x!G

3detFa4(
x

t j
†~x!g5G5~U !vk~x!G , ~3.34!

where $t j (x)% is any orthonormal complete set of vecto
such thatP2t j5t j . First, one can easily see thatuJu2 is
invariant under a unitary transformation of basesv j

CP and
v j . We may therefore choose any bases~as long as they are
consistent with the chirality constraints! in evaluatinguJu2. A
convenient choice is the ‘‘auxiliary basis’’ defined byH:

v j~x!5wj~x!5 P̂2uj~x!, ~wj ,wk!5d jk ~3.35!

or, more explicitly,

wj5w0
2 ~3.36!

which satisfiesH2wj50, and

wj5
1

A2@12l j f ~l j
2!#

$A12l j
2f 2~l j

2!w j2@12l j f ~l j
2!#w̃ j%

~3.37!

which satisfiesH2wj5l j
2wj . ~We use basically half of the

eigenstates ofH.! See the Appendix for notational conven
tions. Similarly we set

v j
CP~x!5wj

CP~x!5 P̂2~UCP!uj
CP~x!, ~wj

CP ,wk
CP!5d jk ,

~3.38!

where uj
CP(x) is the eigenfunction of H2(UCP),

H2(UCP)uj
CP(x)5l j

CP2uj
CP(x). We also use
6-12
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t j~x!5P2uj~x!, ~ t j ,tk!5d jk , ~3.39!

namely,

t j5w0
2 ~3.40!

and

t j5
1

A2@12l j f ~l j
2!#

$A12l j
2f 2~l j

2!w j2@11l j f ~l j
2!#w̃ j%.

~3.41!

When there are no modes such thatg5G5C(x)50, the
above vectors span complete sets in the space restricte
the chirality constraints. Then, using properties ofG5, it is
straightforward to see that

a4(
x

t j
†~x!g5G5~U !vk~x!5A12l j

2f 2~l j
2!d jk ~3.42!

and

a4(
x

v j
CP†~x!

1

g5G5~UCP!
tk~x!5

1

A12l j
CP2f 2~l j

CP2!
d jk .

~3.43!

Therefore, we have

uJu25

)
j

@12l j
2f 2~l j

2!#

)
k

@12lk
CP2f 2~lk

CP2!#

. ~3.44!

This combination is, however, unity because forl jÞ0 ~and
for l jÞL, which is our assumption!, the eigenvalues are
degenerate asl j

25l j
CP2, as one can confirm by using th

relations in the Appendix and Eq.~2.45!.

IV. CP „OR C… TRANSFORMATION AND YUKAWA
COUPLINGS

The CP symmetry is of course broken in the presence
the Higgs coupling in chiral gauge theory. For example,9

L5c̄LD~U1!cL1c̄RD~U2!cR12g~ c̄LfcR1c̄Rf†cL!

5c̄P1D~U1!P̂2~U1!c1c̄P2D~U2!P̂1~U2!c

12g@c̄P1f P̂1~U2!c1c̄P2f†P̂2~U1!c#, ~4.1!

9We assume that the left-handed fermioncL(x) belongs to the
representationRL of the gauge group and the right-handed fermi
cR(x) belongs toRR @the Higgs field f(x) transforms asRL

^ (RR)* ]. The gauge couplings in the Dirac operatorsD(U1) and

D(U2), and correspondingly inP̂2(U1) and P̂1(U2), are thus de-
fined with respect to the representationsRL andRR , respectively.
03450
by

f

whereCP is broken not only in the kinetic term but also i
the Higgs couplings. Under theCP transformation

U1→U1
CP, U2→U2

CP

c̄→cTW, c→2W21c̄T,

f→f* ~4.2!

this Lagrangian is transformed to

L CP5c̄g5P̂1~U1!g5D~U1!P2c

1c̄g5P̂2~U2!g5D~U2!P1c

12g@c̄g5P̂1~U1!g5fP1c

1c̄g5P̂2~U2!g5f†P2c#. ~4.3!

This is again interpreted as a change of representation
chiral projection operators, fromP6 andP̂6 to g5P̂6g5 and
P6 , constructed from a vectorlike Ginsparg-Wilson theory
one introduces two sets of fermion fieldsc (1) andc (2) in Eq.
~4.1!

cL5 P̂2~U1!c (1), c̄L5c̄ (1)P1 ,

cR5 P̂1~U2!c (2), c̄R5c̄ (2)P2 . ~4.4!

In a perturbative treatment of the Higgs coupling, the ana
sis of CP symmetry becomes identical to that of the pu
chiral gauge theory, as was shown elsewhere@3#. For a non-
perturbative treatment of the Higgs coupling but in the top
logically trivial sector, one can use the modifiedCP trans-
formation motivated by the domain wall fermion

cL→cL
CP52W21F c̄L

1

g5G5~U1!G
T

,

c̄L→c̄L
CP5@g5G5~U1!cL#TW,

cR→cR
CP52W21F c̄R

1

g5G5~U2!G
T

,

c̄R→c̄R
CP5@g5G5~U2!cR#TW ~4.5!

which keeps the action~4.1! invariant. The invariance of the
Higgs coupling is confirmed by noting, for example,

c̄L
CPP1fCPP̂1~U2

CP!cR
CP

52@g5G5~U1!cL#TWP1f*

3P1g5G5~U2
CP!W21F c̄R

1

g5G5~U2!G
T

52@g5G5~U1!cL#TWP1f* P1W21c̄R
T

5c̄RP2f†P2g5G5~U1!cL
6-13
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5c̄RP2f†P̂2~U1!cL , ~4.6!

where we used P1P̂1(U2
CP)5P1P1g5G5(U2

CP) and

P2P2g5G5(U1)5P2P̂2(U1). We can thus repeat th
analysis of the previous section and confirm that the p
integral is invariant under the modifiedCP transformation
except for the propagators which are determined by
source terms. The essence ofCP analysis in the domain wal
representation is included in this analysis.

It would be interesting if one can generally establish
CP invariance except for the propagators

^cL~x!c̄L~y!&5 P̂2~U1!
1

D~U1!22gf
1

D~U2!
2gf†

P1 ,

^cL~x!c̄R~y!&52 P̂2~U1!
1

D~U1!22gf
1

D~U2!
2gf†

2g

3f
1

D~U2!
P2 ,

^cR~x!c̄R~y!&5 P̂1~U2!
1

D~U2!22gf†
1

D~U1!
2gf

P2 ,

^cR~x!c̄L~y!&52 P̂1~U2!
1

D~U2!22gf†
1

D~U1!
2gf

32gf†
1

D~U1!
P1 , ~4.7!

which depend on the specific choice of chiral projection o
eratorsP6 and P̂6 as in Eq.~4.7! ~or g5P̂6g5 andP6 after
CP transformation!, after summing over the topological se
tors but without using the explicit diagonal representation
the action~which was used in our previous paper@3#!.

It is shown thatCP is broken even in the vectorlike
theory in the presence of chiral symmetric Yukawa co
plings. For example, one may consider a theory with Abel
flavor symmetry~by usingP6P̂65P6g5G5)

L5c̄RDcR1c̄LDcL2m~ c̄RcL1c̄LcR!

12g~ c̄LfcR1c̄Rf†cL!

5c̄Dc2mc̄g5G5c12gc̄~P1f P̂11P2f†P̂2!c

5c̄Dc2mc̄g5G5c12gc̄~P1fP11P2f†P2!g5G5c.

~4.8!
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The Yukawa coupling in this Lagrangian is not invariant u
der CP transformation10

c̄→cTW, c→2W21c̄T,

WD~UCP!W215D~U !T,

Wg5G5~UCP!W215@g5G5~U !#T,

WfW215f* . ~4.9!

This noninvariance arises from

@g5 ,g5G5#Þ0, @f~x!,g5G5#Þ0. ~4.10!

For a real constantf, these conditions are cleared, and t
Yukawa coupling is reduced to the mass term. The aboveCP
noninvariance is of course interpreted as a change from
representation of lattice chiral projectors to another, just
we discussed in the case of pure chiral gauge theory.

One can rewrite the above Lagrangian in terms of
domain wall fermion as

L5q̄D
1

g5G5
q2mq̄q12gq̄~P1fP11P2f†P2!q

1Q̄
1

g5G5
Q ~4.11!

which is invariant underCP transformation

q̄→qTW, q→2W21q̄T,

Q̄→QTW, Q→2W21Q̄T,

WD~UCP!W215D~U !T,

Wg5G5~UCP!W215@g5G5~U !#T,

WfW215f* ~4.12!

if one notes that the overall signature of the last term in E
~4.11! is immaterial.

To see the breaking ofCP symmetry in this context of the
domain wall representation, we introduce the source te
for the fermion fields which specifies general correlati
functions. For the local Ginsparg-Wilson variables, we ha

E Lsource5E ~ c̄h1h̄c! ~4.13!

which is invariant underCP transformation

c̄→cTW, c→2W21c̄T,

h̄→hw
TW, h→2W21h̄w

T . ~4.14!

10Under parity we havef→f* , and thus underCP we havef
→f* .
6-14
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The source terms are translated in the language of the
main wall fermion as

E Lsource5E S q̄h1h̄
1

g5G5
qD ~4.15!

which is transformed underCP symmetry

q̄→qTW, q→2W21q̄T ~4.16!

to

E S q̄
1

g5G5
hw1h̄wqD . ~4.17!

To recover the original source terms,11 we need to perform
the redefinition of field variables

q→ 1

g5G5
q, q̄→q̄g5G5 ~4.18!

but the Yukawa coupling is not invariant under this redefi
tion because of@g5 ,g5G5#Þ0 and @f(x),g5G5#Þ0. The
propagator is thus modified underCP as

1

D/~g5G5!2m12g~P1fP11P2f†P2!
3

1

g5G5

Þ
1

g5G5
3

1

D/~g5G5!2m12g~P1fP11P2f†P2!
.

~4.19!

We arrive at the same conclusion by using the fermio
representation of the domain wall fermion with a chiral sy
metric Yukawa coupling

L5q̄D
1

g5G5
q2mq̄q12gq̄~P1fP11P2f†P2!q

1S̄g5G5S ~4.20!

if one assignsCP transformation

S̄→STW, S→2W21S̄T. ~4.21!

The action is invariant underCP transformation, but to keep
the source terms invariant one needs to perform a field
definition which is not compatible with the Yukawa couplin

V. MAJORANA FERMION

The above complication ofCP symmetry~or equivalently
charge conjugation symmetry since the parity is norma
the above model! for the vectorlike theory with the chira
invariant Yukawa coupling gives rise to a difficulty in defin

11This complication does not appear to be resolved by an a
ment of the use of equations of motion for external field lines in
nonperturbative treatment of the Yukawa coupling. See Ref.@3#.
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ing Majorana fermions in a Euclidean sense@2,4#. Follow-
ing the standard procedure, we replace the field variab
@36–38#

c5~x1 ih!/A2,

c̄5~xTC2 ihTC!/A2 ~5.1!

in the Lagrangian written in the Ginsparg-Wilson fermion
We naively expect12

L5
1

2
xTCDx2

1

2
mxTCg5G5x1gxTC~P1f P̂1

1P2f†P̂2!x1
1

2
hTCDh2

1

2
mhTCg5G5h

1ghTC~P1f P̂11P2f†P̂2!h. ~5.2!

One would then define the Majorana fermionx ~or h) and
the resulting Pfaffian. But this actually fails since the cro
terms betweenx andh do not quite vanish due to the com
plications in the charge conjugation.

If one uses the domain wall fermion with ‘‘fermionic’
variables, one may make the replacement13

q5~x1 ih!/A2,q̄5~xTC2 ihTC!/A2,

S5~l1 ir!/A2,

S̄5~lTC2 irTC!/A2. ~5.3!

One can then define the Majorana fermionsx or h ~andl or
r) by

L5
1

2
xTCD

1

g5G5
x2

1

2
mxTCx1gxTC~P1fP1

1P2f†P2!x1
1

2
hTCD

1

g5G5
h2

1

2
mhTCh

1ghTC~P1fP11P2f†P2!h1
1

2
lTCg5G5l

1
1

2
rTCg5G5r, ~5.4!

namely, one may define a Majorana fermion by

u-
e

12If ( CO)T52CO or equivalentlyCOC215OT for a general
operatorO, the cross term vanisheshTCOx2xTCOh50 by using
the anticommuting property ofx and h. In the presence of back
ground gauge field, we assume that the representation of g
symmetry is real.

13The Majorana reduction of the bosonic fermionQ in the con-
ventional domain wall fermion is nontrivial, since*lTC(1/
g5G5)l50 for a bosonic spinor.
6-15
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LM5
1

2
xTCD

1

g5G5
x2

1

2
mxTCx1gxTC~P1fP1

1P2f†P2!x1
1

2
lTCg5G5l. ~5.5!

This theory is, however, nonlocal due to the singularities
1/(g5G5).

In the level of path integral, one may modify the abo
Lagrangian by writing

mpos; l E DxDl expS E LM D
5E Dx expH E F1

2
xTCDx2

1

2
mxTCg5G5x

1gxTCAg5G5~P1fP11P2f†P2!Ag5G5xG J ,

~5.6!

where we made a formal rescaling

x→Ag5G5x, Ag5G5l→l. ~5.7!

This rescaling formally removes the singular factor 1/(g5G5)
and makes the auxiliary fermionl decouple. This final path
integral is, however, not what we expect for the Ginspa
Wilson fermion because of @g5 ,g5G5#Þ0 and
@f(x),g5G5#Þ0, which caused the failure of the charg
conjugation symmetry. As for the Pfaffian and the determ
nant factor without the external fermion lines, one may ad
the above definition of the Majorana fermion, which is co
sistent up to a possible non-locality arising fromAg5G5.

A difficulty in defining the Majorana fermion is clearl
seen when one considers the source terms for the Ginsp
Wilson fermion, as we did in the analysis ofCP symmetry

E ~ J̄c1c̄J!5E ~xTCJ11hTCJ2! ~5.8!

where the Majorana sources are defined by

J5~J11 iJ2!/A2, J̄5~J1
TC2 iJ2

TC!/A2. ~5.9!

The derivatives with respect to the sourceJ1 give rise to
correlation functions of the would-be Majorana fermionx,
which we failed to define for the Ginsparg-Wilson fermio

The corresponding source terms for the domain wall f
mion are given by
03450
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E S J̄
1

g5G5
q1q̄JD

5E 1

2 H F S 11
1

g5G5
DxGT

C2 i F S 12
1

g5G5
DhGT

CJ J1

1E 1

2 H F S 11
1

g5G5
Dh GT

C1 i F S 12
1

g5G5
DxGT

CJ J2 ,

~5.10!

where we used the variables supposed to describe Majo
fermions in the domain wall representation~5.4!. This ex-
pression of source terms shows that neither of the Major
fermionsx andh, defined by the domain wall fermion cor
respond to the Majorana fermion generated by the sourceJ1,
for example. In addition, the correlation functions genera
by differentiating with respect toJ1 contain the species
doubler poles in 1/(g5G5). This shows that we cannot defin
the Majorana fermion consistently for physical processes
the presence of the chiral symmetric Yukawa coupling. T
conflict among chiral symmetry, strict locality and Majoran
condition persists. The condition for the presence of Ma
rana fermions is in a sense more demanding than theCP
invariance. The Majorana fermion requires a Lagrang
self-symmetric under charge conjugation, whileCP symme-
try requires the invariance of the path integral after summ
over all topological sectors.

In a supersymmetric Wess-Zumino model on the latti
one needs to define the constraint-free Majorana fermion.14 A
past attempt to define the Wess-Zumino model is given
@4,30#

LWZ5
1

2
xTC

1

g5G5
Dx2f†D†Df1F†

1

G5
2

F1
1

2
mxTCx

1m@Ff1~Ff!†#1gxTC~P1fP11P2f†P2!x

1g@Ff21~Ff2!†#, ~5.11!

wheref stands for the complex scalar field andF for the
auxiliary field. The operatorD is the~free! Ginsparg-Wilson
operator, and whenD†D appears in the bosonic sector w
adopt the convention to discard the~unit! Dirac matrix. The
Majorana fermionx and its Yukawa couplings are the sam
as those we find for the above domain wall representat
However, a crucial difference is that the Pauli-Villars fieldS
is now replaced by the ‘‘physical’’ fieldF. For this reason,
we regard the fieldx in LWZ as a primary definition of the
Majorana fermion, though it is defined by a nonlocal L
grangian. The singular factor 1/(g5G5) for the Majorana fer-
mion is canceled by the same factor coming from the au

14If one uses the Weyl fermion defined by the Ginsparg-Wils
operator, the constant spinor parameter appearing in supersymm
transformation is constrained by projection operators. This lead
complications, in particular, in the presence of the backgrou
gauge field.
6-16
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iary field F†@1/(G5
2)#F. In fact one can confirm that the fre

part ofLWZ is invariant under a lattice version of supersym
metry @30#

dx52G5

1

a
H~A2 ig5B!e2~F2 ig5G!e,

dA5eTCx5xTCe,

dB52 i eTCg5x52 ixTCg5e,

dF5eTCG5

1

a
Hx,

dG5 i eTCG5

1

a
Hg5x ~5.12!

with a constant Majorana-type Grassmann parametere. Here
we defined

f→ 1

A2
~A1 iB !, F→ 1

A2
~F2 iG !, ~5.13!

and H5ag5D. This construction ofLWZ is not completely
satisfactory, but it may be amusing to see that a certain
pect of the domain wall fermion may play an essential role
the construction of Majorana fermions.

VI. DISCUSSION

We have examined theCP properties of a domain wal
fermion where light field variablesq and q̄ and the Pauli-
Villars fields Q and Q̄ are used. It was first shown that th
variablesqL and q̄L cannot describe the topological prope
ties, and the full physical contents are only described by
local Ginsparg-Wilson variablescL and c̄L . The domain
wall variablesq and q̄ in the infinite flavor limit, which
themselves exhibit niceCP and charge conjugation prope
ties, cannot help to resolve the difficulty associated withCP
symmetry in chiral gauge theory@1# and the failure of the
Majorana condition in the presence of chiral symmet
Yukawa couplings@4#.

The conflict among the good chiral property, strict loc
ity, andCP ~or charge conjugation! symmetry thus persists
The CP transformation sends one representation of lat
chiral gauge theory into another representation of lattice
ral gauge theory, which are constructed from the same v
torlike theory defined by the Ginsparg-Wilson operatorD.
The violation of CP symmetry in the Lagrangian level i
partly resolved by summing over various topological sect
@3#, and theCP noninvariance is manifested by the chan
of propagators. In the presence of Higgs couplings, the c
plications withCP symmetry become more involved sinc
the chiral projection operators are determined by
Ginsparg-Wilson operator which depends only on the ga
field whereas the nonperturbative fermion propagator c
tains Higgs couplings as well. As for a definition of Majo
rana fermions in the presence of chiral symmetric Yuka
03450
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n

e
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e
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e
e
-

a

couplings, an action which is symmetric under the cha
conjugation is required. The Ginsparg-Wilson fermions ca
not be used in this context. As a tentative~and not complete!
resolution of this conflict, we mentioned a use of the dom
wall-like representation for the supersymmetric We
Zumino model where the auxiliary fieldF plays a role of the
Pauli-Villars fields.

We have analyzed only the infinite flavor limitN→` in
the domain wall fermion, where chiral symmetry is well d
fined. It will be interesting to examine if the above conflict
already seen for the finiteN domain wall fermion where the
operatorDN /(12aDN) is local ~see Ref.@39# for the local-
ity of DN), though precise chiral symmetry is not defined15

Our analysis of various complications is based on the s
gular behavior of

1

g5G5
5

1

12aD~g5aD!2k
~6.1!

in the context of general Ginsparg-Wilson operators. T
factor contains poles at the positions of the would-be spe
doublers which have a mass 1/a in the case of free fermions
and topological poles in the presence of instantons. T
mass value approaches̀ in the limit a→0, and those par-
ticles are naively expected to decouple from the Hilb
space in the same limit. The singularity at 1/a causes nonlo-
cality in a strict sense and thus cannot be consistent in
respects@40#, but one might hope that the singularity ma
not be so serious in a suitable limita→0 in some practical
applications. This issue may deserve further analyses an
any case, would lead to a better understanding of the dom
wall fermion.

Note added.We have emphasized that the free fermi
operator 1/@12aD(g5aD)2k# in Eq. ~6.1! contains poles at
the positions of would-be species doublers. The opera
1/@12aD(g5aD)2k# could contain poles even in the pre
ence of topologicallytrivial gauge fields. See, for example
Ref. @41#. If the functional measure of topologically trivia
gauge fields which give rise to the possible poles is subs
tial, the domain wall representation not only for chiral theo
but also for vectorlike theory would be significantly influ
enced.
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APPENDIX: REPRESENTATION OF THE
GINSPARG-WILSON ALGEBRA

We here summarize the representation of the gen
Ginsparg-Wilson relation@2,3# Hg51g5H52H2f (H2). Let
us consider the eigenvalue problem

Hwn~x!5lnwn~x!, ~wn ,wm!5dnm . ~A1!

We first noteHG5wn(x)52G5Hwn(x)52lnG5wn(x) and

~G5wn ,G5wm!5@12ln
2f 2~ln

2!#dnm . ~A2!

These relations show that eigenfunctions withlnÞ0 and
lnf (ln

2)Þ61 come in pairs asln and 2ln @when ln50,
w0(x) and G5w0(x) are not necessarily linearly indepe
dent#.

We can thus classify eigenfunctions as follows.
~i! ln50 @Hw0(x)50#. For this one may impose th

chirality on w0(x) as

g5w0
6~x!5G5w0

6~x!56w0
6~x!. ~A3!

We denote the number ofw0
1(x) (w0

2(x)) asn1 (n2).
~ii ! lnÞ0 andlnf (ln

2)Þ61. As shown above,

Hwn~x!5lnwn~x!, Hw̃n~x!52lnw̃n~x!, ~A4!

where

w̃n~x!5
1

A12ln
2f 2~ln

2!
G5wn~x!. ~A5!
y

.
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We have

G5wn~x!5A12ln
2f 2~ln

2!w̃n~x!,

G5w̃n~x!5A12ln
2f 2~ln

2!wn~x!, ~A6!

and

g5wn~x!5A12ln
2f 2~ln

2!w̃n~x!1lnf ~ln
2!wn~x!,

g5w̃n~x!5A12ln
2f 2~ln

2!wn~x!2lnf ~ln
2!w̃n~x!.

~A7!

~iii ! lnf (ln
2)561 or

HC6~x!56LC6~x!, L f ~L2!51. ~A8!

In this case we see

G5C6~x!50 ~A9!

and

g5C6~x!56L f ~L2!C6~x!56C6~x!. ~A10!

We denote the number ofC1(x) @C2(x)# as N1 (N2).
From the relation Trg550 valid on the lattice, one can de
rive the chirality sum rule@32,33#

n12n21N12N250. ~A11!

The explicit form of the operatorH is known for f (H2)
5H2k with non-negative integersk @18#.
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