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We examine th&C P properties of chiral gauge theory defined by a formulation of the domain wall fermion,
where the light field variableg andq together with Pauli-Villars field§ andQ are utilized. It is shown that
this domain wall representation in the infinite flavor limit= e is valid only in the topologically trivial sector,
and that the conflict among lattice chiral symmetry, strict locality & symmetry still persists for finite
lattice spacinga. The CP transformation generally sends one representation of lattice chiral gauge theory into
another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A
modified form of latticeCP transformation motivated by the domain wall fermion, which keeps the chiral
action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way
to understand the breaking 6f° symmetry at least in the topologically trivial sector. We note that the conflict
with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the
definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.
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[. INTRODUCTION still violated. In the analysis 0€P symmetry, it turns out
that topological considerations play an essential role and, in

It has been recently shown th&P symmetry in chiral fact, the conflict withCP symmetry could be regarded as a
gauge theory1-3] and also the Majorana reduction in the topological obstruction.
presence of chiral symmetric Yukawa couplifigg have a In connection with the definition of Majorana fermions
certain conflict with lattice chiral symmetry, doubler-free, @nd its application to supersymmetry, we note a possibility of
and locality conditions in the framework of Ginsparg-Wilson réplacing the Pauli-Villars fields in the domain wall formu-
operatord5—19. There exists a closely related formulation lation by the auxiliary field in the Wess-Zumino model. In
of lattice fermions which is called the domain wall fermion fact this formulation agrees with a past suggesfi)30] of
[20—26. In one representation of the domain wall fermion in (e Wess-Zumino action in terms of the Ginsparg-Wilson

the infinite flavor limit, the domain wall fermion becomes operators. . . .
identical to the overlap fermiofi27—-29 and thus to the . In th_|s paper we tak_e as a basis of our analysis a Hermit-
Ginsparg-Wilson fermion. In such a case, the conflict with'@" lattice operator defined by

CP symmetry in chiral theory naturally persists if one uses H=aysD=H'=aD'ys, (1.0

the conventional representation of Ginsparg-Wilson fermi-

ons. There are, however, other representations of the domawhere D stands for the lattice Dirac operator aads the
wall fermion when discussing chiral symmetf21,22,24, lattice spacing. The Ginsparg-Wilson operator is then defined
and in those representatioiand also in the conventional by the algebraic relation

overlap fermion27-29), the conflict withCP symmetry is

less obvious. It is therefore desirable to examine in detail ysH +Hys=2H? (1.2
how the conflict observed in the framework of Ginsparg- ) ] ) )
Wilson fermions persists in the domain wall fermion. and its solution agrees with the overlap operg@r(and its

We analyze this issue in a formulation of the domain Wallvatiajlg[s' Hthe ab molest f tthe Gi Wil
. . ' . — . ough the above simplest form of the Ginsparg-Wilson
fermion where the light field variablepandq together with relation is relevant to our analysis of the domain wall fer-

Pauli-Villars fieldsQ and Q are utilized[22—24. To make mion, the generality of the conflict witB P (or C) symme-

this analysis as definite as possible, we concentrate on thg, js hest understood if one considers a more general alge-
infinite flavorN = limit of the domain wall fermion, where  praic relation[2]

chiral symmetry is well defined. It is shown that this repre-

sentation of the domain wall fermion is valid only in the 75H+Hy5=2H2f(H2), 1.3
topologically trivial sector and that the conflict witGP

symmetry persists. We also analyze in detail a modified fornwheref(H?) is assumed to be a regular functiontéf and

of lattice CP transformation motivated by the domain wall f(H?)"=f(H?): f(x) is assumed to be monotonous and non-
fermion, which keeps the chiral action in the Ginsparg-decreasing fox=0. The explicit construction of the opera-
Wilson fermion invariant, and show th&P symmetry is  tor D is known forf(H?)=H?* with nonnegative integers
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[18,19, andk=0 gives rise to the conventional Ginsparg-
Wilson relation[17]. In our analysis ofCP symmetry, the
operator defined by

6q=ysl'50¢= ysl's f’A}’slﬂ: ieysq,

59=dieys. (1.15
I's=ys—Hf(H? 1.4
5775 () 49 This chiral symmetry implies the relation
or ysI's plays a central role. This operator satisfies the rela-
i 1
tion { 5,0 - } =0. (1.16
F5H+HF5:O (15) 75 5

On the basis of the standard argument of the no-go theorem,
%/(751"5) and thus 1/{sI's) have singularities inside the
Brillouin zone for local and species doubler-fred
=aysD. In fact it is shown thaf18]

and ysI'5 vanishes for some momentum variables inside th
basic Brillouin zone.

This vanishing ofysI"5 is shown on the general ground of
locality and species doubler-free conditionstbf We here
briefly illustrate the basic reasoning, since it is closely re-

o ) X I'e=0
lated to the basic issue of the domain wall fermion: One can 5

(1.17

confirm the relation
ysH?=(ysH+Hys)H—H(ysH+Hys) +H2ys=H?ys
(1.6

which implies H?=ysH?ys and thus DH?=H?D. The
above defining relatiofl.3) is also written as

ysH+Hys=0, ysD+Dys=0, 1.7
andy2=1, where
y5=y5— 2Hf(H?). (1.9
We note that
Dysl's—ysI'sD=0 (1.9

and also the relation

75F53’5: 752F§— YsI'sys=vs(vsl's+'sys) = ¥sl'sys

=vs5(ysl's). (1.10
We now examine the action defined by
S= J ¥DY=2 a%y0Duy)Hy) (11D

which is invariant under the lattice chiral transformation

Sy=ieysp, SY=dieys. (1.12
If one considers the field redefinition
9=yslsh, Q=4 (1.13
the above action is written as
S= J EDL (1.14
ysl's

which is invariant under the naive chiral transformation

just on top of the would-be species doublers fiH?)
=H?2* with non-negative integetsin the case of free fermi-
ons and also for the topological modes in the presence of
instantongsee also the AppendixThe fieldg, which plays a
central role in the domain-wall fermiof21-24, is thus ill
defined for these configurations.

It is shown that the domain wall variablgsandq in the
infinite flavor limit satisfy the normal charge conjugation
properties as well as the continuum chiral symmetry, though
they are defined in terms of the nonlocal action. Moreover,

one can rewrite all the correlation functions fprand q in

terms of the local variables by usirg= ysI's¢y and q= ¢
[24]. One might thus naively expect that we do not encounter
any difficulty associated wittCP and charge conjugation
properties. The purpose of this paper is to clarify this and
related issues.

II. DOMAIN WALL FERMIONS
AND CP TRANSFORMATION

A. Chiral properties

The domain wall fermion is defined by a set of coupled
fermion fields[20,2]]

asLow= Y1l (vsasHw+ 1) ¢ — P+ uP yny]
N-1
+ 2, dl(vsasHw+ D= P i1 =P ]

+ oyl (vsasHw+ 1) g+ uP_h— P by 1],
(2.1

whereN is chosen to be a positive even integer, and

My
Hw= 75( Dw— a (2.2

with the Wilson fermion operatob,y (with the Wilson pa-

rameterr =1) and 0<my<2; a; is the lattice spacing in the
fifth (or “flavor” ) direction. Note thaH$V= Hy . We use the

conventional chiral projection operators
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1+ s If one performs the path integral over all the variables, one
Po=—7%—. (2.3 obtains the same result d2f, as above. We denote this La-
grangian(and itsN=ce limit) by Ly hereafter.
The parameter is chosen to bg.=0 for the domain wall If one takes the infinite flavor limiN— o, one obtaingin
variables ang.=1 for the Pauli-Villars variables to subtract th€ limitas—0)
heavy fermion degrees of freedom. After performing the path

i i i 1 H
integral over all the fermion variables one obtai@8,25 Dy—D= Z( 14y, HV\; ) 2.12)
def ys(1—asHwP-)]"de{ (P_— uP,) s
—T NP, —uP )] 2.4 which gives the Neuberger’s overlap operdté} satisfying
+ =/ .

the simplest Ginsparg-Wilson relation ysD +Dyg

where the transfer operator is given by =2aDysD. In this limit we can write the domain wall fer-

mion as
1+Hw
- - (1- = — 1 — 1
T 1+a§ﬂﬁu(l asHwP-) 1—Hy 29 Low=09D —=—q+Q—— (2.12
¥sl's ¥sl's
with which is valid for a general class of Ginsparg-Wilson opera-
. . tors. In our analysis o€ P and related problems, we utilize
Hy==————asHy=asHy=————. (2.6) thisN=co expression.
Vo 24asHwys Y TP Y2+ ysagHy We here note that
Note that both oH\y andH,y are Hermitian. If one subtracts 1 TN_1
the contributions of heavy fermior{py settingu=1) from 1—aDN=§ 1+ys— | #0 (2.13
the above determinant witk=0, one obtains the “trun- T+1
cated” overlap or Ginsparg-Wilson operatoxg i
since
deaDy=de(P_—T NP, )/def(P_—P,) -
—_T-N _ < 2.1
TNP, —P)] =T (219
1 1-T" - .
=de > 1+ ys Sl (2.7  for finite evenN and sufficiently smalhg/a. Consequently,
1+7 Dy/(1—aDy) is a well-defined and local operat@ee Ref.
. _ N _ _ _ [39] for the locality ofDy), and
wherea is the lattice spacing in four-dimensional Euclidean
space, and the effective Lagrangian for the physical fermion Dy
V5, ———=—1#0 (2.15
_ 1_aDN
L= YDy (2.9

sinceDy with finite N does not satisfy the Ginsparg-Wilson

Note thatDy is well-defined forN=even andas/a<l,  (gation. On the other hand, tié=o expression satisfies
since|asHy||<as/a andT is a well-defined Hermitian op-

erator. D
On the other hand, if one defines the light fermion degrees [ V5, m] =0 (2.19
of freedom by[21]

a and thus the operator 1/(1aD) becomes singular. It is in-
q=—(P_yy+ P y), EE%FMJFENFC (2.9 teresting that good localitanalytic property and good chi-
as ral symmetry for the operatddy/(1—aD,) are traded in
) o the limit N=co.
and integrates over all the remaining degrees of freedom iN" The locality of Dy /(1—aDy) is understood intuitively,
Eqg. (2.1, one obtains after subtracting the heavy fermiongjnce the defining Lagrangian of the domain wall fermion for
contributions by the Pauli-Villars bosonic spind@sandQ  finite N couplesN fields by the operatoH,y, which causes
[24], correlation over the finite distances-Na in four-
dimensional Euclidean space. In the limit-, the opera-
tor D/(1—aD) could thus become non-local. By subtracting
the contributions from far apart fields with the parameier
=1 in the defining Lagrangian, the Pauli-Villars fiel@sand

+0 ! Q. (2.10 Q could restore the locality: In fact, the singular factor
1-aDy 1/(1—aD) is canceled by the Pauli-Villars fields.

—ag —
Low=0- Di'q+Q(1+2asDF)Q

A DN
~97=ap, ¢
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The explicit expression of the Lagrangian for chiral gauge
theory is not specified by the domain wall prescriptton,

since precise chiral symmetry is not defined for fimitdt is,

however, natural to analyze chiral theory based on the above _
correspondence to the Ginsparg-Wilson operator

f Dz,mﬂexp( f YDy

= J DqDaDQDaexp

X

f d——a+ [ o Q).
¥sl's vsl's
We first note
D=P,DP_+P_DP,
with

1+ s
2

p.—

and (by using the relations such a@2.P.

75F5|5: =P.ysl's)

We then have the chiral Lagrangian
£~ [ wP.oP g

— 1
= P.D——P_
fq " ¥sl's g
with
q(x)=ysl's¢p(x),

q(x)=(x)

and

ISee, however, Ref26].

(2.17

(2.18

(2.19

= Pi '}/5F5 and

(2.20

(2.21

(2.22
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~ - « 1
=P_y=P_ P (P_.q)=P_.——P_q,,
b U (P-q) el aL

ysl's

Yy =yP,.=qP,=q. (2.23

The path integral is then given by taking the Jacobian asso-
ciated with the above change of variables into account,

j DI/ILDELeprEmDﬁw

_ _ _ 1
:f DQLDQLDQLDQRGXV{JQP+D_F P_q
Ysls

_. 1 )
+ P.——P_Q|, 2.2
f Q vele Q (2.249
where we defined the bosonic Pauli-Villars spinors

QL(x)=P_Q(x),

Qr(X)=Q(X)P_. (2.25

This is consistent if one recalls

1
D =P.D P_+P_D P.,
ysl's N ¥sl's ysl's N
L b 1pip,top (2.26
¥sl's “ysls ’ ¥sl's o ’

The chiral transformation laws of various fields are de-
fined by

e sy, e,

q—e'%5g,  q—qel”,

Q—eQ, Q—Qe e (227
and, similarly, the fermion number transformation by

b—e v, g e,

g—e '“q, g—ge',

Q—e “Q, Q—Qe“. (2.28

These transformation rules are fixed if one formally gauges
those degrees of freedom.

Based on this formulation of chiral gauge theory, we
make the following observationdi) One may take the
Ginsparg-Wilson variableg and ¢, which are defined by a
local Lagrangian, as the primary variables. One may thus add
the source terms to both hand-sides of the path integral
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_ m logically nontrivial sectors. This is perhaps the simplest view
L = + ) ; e
source™ 7IRYL T L 7R based on the domain wall fermion. This view, however, has a
:;Rﬁ7¢+$p+ 7R fatal difficulty in topological properties, namely, one cannot
generate the fermion number anomaly by a transformation of

:;RIS—LFP—(P—Q)'FEP-FWR- (2.29 variablesq, andg, alone
Vsl s

] ) N o ) ) INJy=iaTrP_—iaTrP,=—iaTrys=0 (2.39
To avoid the singularities appearing in various expressions
for domain wall Variables, one needs to work in the fUnC'if one works in the Comp|ete functional space in t0p0|ogi-
tional spacewithoutthe modes cally nontrivial sectors. We thus have to exclude the modes
Feo.=0 (2.30 I'se,=0 by hand, for example, bu.t we may still v_vork in all .
5¢n ' the topological sectors on the basis of the domain wall vari-

in the domain wall representation. We here recall tha@blesq, andgq, . In this case, the topological properties are
the index for the Ginsparg-Wilson operator is given bymaintained since one can confifi$3]
[8,9,31-33
Tr' ys=n,—n_, (2.36
Trl's=n,—n_=N_—N,, (2.32

. where Tt is taken in the functional space with the modes
where n. stand for the modeste,=aysDe,=0 with  _, —0 excluded. This index relation has the same form as
YsPn= = ¢n, respzectlvely, andN.. stand for the modes n" continuum theory[34]. This exclusion of the modes
Fsen=[ys—Hf(H")]e,=0 with yso,=*¢,, respec- _, —0is consistent with the replacement: ysI'sy since
tively (see the Appendix The constrainN, =N_=0 thus  he factorysI's projects out those modda0,35. This op-
implies that we work in théopologically trivial sectorwith eration is, however, apparently nonloéal.

TrI's=0. This constraint is consistent with the above fer-  gageq on these considerations we conclude that the do-
mion number transformatm_n: For the Ginsparg-Wilson vari-main wall fermion representation in the limit=c, where
ables, we obtain the Jacobian factor chiral symmetry is well defined, is valid as a local field
theory (in the above interpretatigronly in the topologically
trivial sector with Tl's=0. The primary variables, which
describe the full physical contents expressed by various cor-
relation functions in topologically trivial as well as nontrivial
INJg=iaTrP_—iaTrP,=—iaTrys. (233 sectors, are thus given by the Ginsparg-Wilson fermigns
andy_, and hereafter we analyze the domain wall represen-

INJ,=iaTrP_—iaTrP,=—iaTrls, (2.32

whereas for the domain wall variablgsandq, we obtain

We thus have TFs5=Tr y5=0. tation in the topologically trivial sector with the source terms
(i) One may take the domain wall variables as the pri-(2.29 added. Note that source terms specify the correlation
mary variables and add the source terms functions, and the componeRt, ¢, is missing in Eq(2.34);
— _ to maintain the consistency of internal and external fermion
Lsource™ MRAL T AL 7R lines, which is related to unitarity, we need to use the source
— — (2.29.
=7rP-q+aP. 7r In passing, another interesting representation, which is

— — equivalent to the domain wall fermion, is given b
=nrP_ysl's¢p+ P, ng . g y

= 7RP_ i+ YR, (2.39 f D(ﬂLDJ,_eXp{ f ZP+DI5_¢)
where we used®_ysI's=P_P_. One might attempt to in- B B B 1
terpret the chiral domain wall representation with these =f DqLDqLDSLDSRex;{fqPJrD—FP_q
Vsls

source terms in the following way: In any fermion loop dia-
gram such as in the determinant factor, we combine the vari- . R
ablesg, q and Q, Q together and obtain the determinant +f SP—75F5P—S), (2.37
without the 1/(ysI's) factor. For the external fermion lines
connected to the source terms, we use the varialeand  \yhere we defined theermionicauxiliary fields
g, by replacing those variables later By ¢, and ¢, . By
this way, we do not encounter any singularity even in topo-
3The exclusion of the modeE5¢,(x)=0 in all the topological
sectors is apparently a nonlocal operation in spacetime, though it is

2The path integral for chiral non-Abelian gauge theory has nota local operation in the “mode space,” since the functional value of
been completely understood yet. But the chiral U(1) anomaly andp,(x) is fixed over the entire space once its value at one point is
associated index are insensitive to the details of the path integrdixed. The exclusion of the modés¢,(x) =0 by hand corresponds
measure. to the exclusion of would-be species doublers by hand.
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SL()=P_S(x), [=\T3=\(yslsy5)?=V1-H*Z(H?). (2.4
Sa()=S(x)P_ (2.39  Here we imposed the relatiow D(UP)W~1=D(U)T or
[CD(U)]"™=—CD(U®) which is consistent with the defin-
by noting ing Ginsparg-Wilson relation.
We also have the properties
. 1 R
P.DP_=|P.D—=P_|(P_ysI'sP_ 2.3 ~ - -
i ( " ysls )( vslsP-) (239 Wys(USP)W ™= [ y5y5(U) ys]"
and W 1 W { 1 T 47
’)/51—‘5:P_’)/5F5|5_+P+ ’}’5F5[5+ . (24@ YSFS(UCP) ’)/5F5(U) . ‘
The vectorlike theory is then defined by We now examine th€ P symmetry in chiral gauge theory
f Dwgexp( f D w) Lo=4 Dy, (2.48
where we defined thegeneral projection operators
=f DqDgDSDSexp D=P,DP, +PzDPg,
_ 1 _ -
X f qD—Fq+f Sy5F5S). (2.4 PLrR=PLRY, YL rR=YPLR. (249
Vsl s

) S ) _ Under the standar@ P transformation
This representation is applicable only to the topologically

trivial sector, but it turns out to be convenient when we dis- y— W,

cuss Majorana fermions in the domain wall representation

later. w_)_WflET (25@
B. CP symmetry in chiral gauge theory the chiral action is invariant only if

We recall the charge conjugation properties of various op-

-1_pT D -1_pT
erators. We employ the convention of the charge conjugation WPW™ =P, WPRW "=P_. (2.51

matrix C It was shown elsewhere that the unique solution for this con-
CyCl=—(y")T, (2.42) dition in the framework of the Ginsparg-Wilson operators is
given by[2]
CysC t=7L, (243 L
P Lr=z(15FT5/T),
ctc=1, c'=-cC. (2.44 Lr=5(1%Ts/T)
We then havé

— 1

PL,RZE(li ysl'sys/T), (2.52
WD(UCP)W~t=D(U)T,

but these projection operators suffer from singularities in
1/T". Namely, it is impossible to maintain the manifest invari-
ance of the local and chiral Lagrangian under @ trans-
formation[1,2].%

WH2(UCP)W—L=[H2(U)]", If one stays in the well-defined local Lagrangian

Wysls(UCP )W = [ysI's(U)]",

WH(UCP)W 1= —[ysH(U) ys]",

WI5(USPYW 2= — [ y5T's(U) ys]T, f £— j P.DP_y (2.53
CP -1_ T
W(Ts/T)(U)W == =[(ysl'sys/T)(U)] (249 it is not invariant under the standa@P transformation as

where ~
WP. W l=PIl+pT(U),

“We define theC P operation byW= Cy,= vy, with Hermitian y,

and the CP transformed gauge field byU®P, and then 5The vectorlike theory is invariant under tHP transformation.
WD(UCPYW~1=D(U)T. If the parity is realized in the standard  ®This, however, shows that one can maintain mani@Btinvari-
way, we haveCD(U®)C*=D(U)". ance, if one ignores the singularities associated wighs=0.
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11[),53,5(U)75]T To accommodate the gauge noncovariant quantities such as a
> consistent form of anomaly, one defines the path integral in a

specific topological sector specified by by
=[ysP=(U)ys] #PL,

WP, (UCP)W 1=

Zy(U)=exli O ((Wn v m) i (Wo v m))]
[WP,D(UP)P_(UCP)W~1]T= 5P, (U)ysD(U)P_

. A xf 11 dandaex;“ E(E,w,U)}, (2.58
=P,D(U)P_(U)-D(U)[ys—I's(U)]#P,.DP_. nl

(2.54 where we expanded fermionic variables as
Since one can show that
(’)’Sﬁi’)’5)(‘)’5'5175):(75ﬁ)i75)a P‘lﬂ:zn‘ anWn .,
D=(ysP. ys)DP_+(¥sP_ys)DP,, (2.59 B L

the CP transformation actually maps one specific represen- ¢P+=§ AnWn - (259
tation of chiral gauge theory to another representation of chi-
ral gauge theory The basis vectoréw,} and{w,}, which satisfy

| e=[wpowip Wy B o=t WP, 2560

_>f E=j$y5l5+(U)y5D(U)P,¢ (2.56  are suitable linear combinations 6.} and{c,o,‘:}, respec-
tively. The “measure factor”,, which is the Jacobian for

based on thesamevectorlike theory defined by the lattice the transformation fromideal bases{v,} and{v,} to the
operatorD. bases specified by and thus crucially depends on the ideal

It may be appropriate to recall here the essence of oubases, is not specified at this stage and it is later determined
previous analysig3]. The functional space in our problem is by imposing several physical conditions.

naturally spanned by the eigenfunctions of the basic Hermit- When one considers the change of fermionic variables
ian operatoH =aysD which formally corresponds to gauge transformatign

Ho - - — ' andaﬂﬁ’, the expansion coefficients with the fixed
$n=An¢n- (257 basis vectors are transformed 4&a,}—{a/} and {a,}

However, this eigenvalue equation is gauge covariant as are;{a}. Since the naming of path integral variables does not
all the quantities in the gauge invariant lattice regularizationmatter, one obtains the identity

exXpLi O ((Wn| v )i (Walv )] f H dandE.exp[ f c(W,Uﬂ

:eXF[iﬂM(<Wn|vm>;<V_Vn|U_m>)]f ln_[I daédanF{f E(E’,df’,U)} (2.61)

In this form of identity, the Jacobian of path integral measureconsistent anomaly, which is one of the requirements on the

gives a lattice version of covariant anomaly and the variatioormeasure factor. In the anomaly free theod,, should

of the action gives the divergence of covariant current. Theompletely cancel the non-vanishing Jacobian arising from

gauge covariant fermion number anomaly is naturally deiattice artifacts. The current associated 48, should be

rived in this way. local and satisfy several other requirements: The existence
If one performs the simultaneous gauge transformation ofroof of such a measure factds, amounts to a definition of

the link variablesU in the above path integraly,(U), the |attice chiral gauge theorj11-16.

action becomes invariant but one needs to take into account

the variation of the measure factéty, ((Wn|v m);(Wn|vm))
induced by the gauge transformation Of This variation "The measure factor is thus chosen to be a constant for the ideal
89y converts the covariant anomaly to a lattice form of bases.
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A characteristic property of the Ginsparg-Wilson algebraThis analysis suggests that we may define @ trans-
is that among the eigenfunctions Hfe,,=\,¢, the eigen- formed theory by means of the chiral theory defined by pro-
states corresponding to zero modes and also those eigejction operator$®_ andysP, ys. It is shown that this is in
states corresponding to the largest valuef\qf are chosen fact consistent including the measure fad®y.
to be the simultaneous eigenstates/gf and that those states  \when one compares the original theory to @ trans-
corresponding to the largest valueg kf| are annihilated by  formed theory, the topological index is identical for these

I'spn,=0. By noting two theories. Although the number of heaviest modes is dif-
- ferentN_ =N_#N, in general, one may expect that these

P — 1*ys —p_ 4T (2.62 two theories when summed over all the topological sectors

* 2 TS ' give rise to an identical result. After all, it should not matter

R how one chooses a specific chiral projection of the original
P.. is replaced byP + when acting on the modes annihilated vectorlike theory specified b, as long as it is not singular.
by I's. We also have the chirality sum rule arising from (The continuum limit is expected to be identical, if it is well
Trys=0,n,.+N,=n_+N_, wheren. andN.. stand for defined) This expectation is in fact born out by a detailed
the numbers of zero modes and largest eigenmodes withnalysis, and the differencd’ # N, is taken care of by
chirality =, respectively(see the Appendijx suitably choosing the weight factors for different topological

In terms of the eigenfunctions of the basic oper&tpone  sectors when summing those sectf8s The different ac-
can describe the change of the action under the star@Brd tions however give rise to different propagatéia finite a)
transformation as follows. One starts with

— . 1 1 . . 1
(P () (y))= P,5P+—>P, 575P+ vs# P_ 5P+

f £=J P DU)P_(U)y (2.63 270
which is characterized by which manifestCP breaking in this formulation. From this
n n view point, if one chooses projection operators for which the
EZ( * ) ,/,:( N ) n,—n_=TrTs(U). chiral theories before and aft€P transformation coincide,
N N one inevitably encounters a singularity in the topologically

(2.64  nontrivial sector because df %N, . The conflict withCP

Here we write only the number of simultaneous chiral eigen-s.yrr?metry could thus be regarded as a topological obstruc-

states explicitly, since the same number of eigenstates pdl© : . : . .
pHCTy 9 The CP noninvariance in the action level persists in the

longing to other eigenvalues are incIudedg&nandE. The  4omain wall representation
CP conjugate theory is defined by

— 1 — 1
J .cCF’:JZCPmo(uC")ﬁn(uC")wC" (269 f ‘L:fq“DEP“fQP%rSPQ('Z .

which is characterized b
y A natural definition ofCP transformation is

TICP_ nEP CcP_ < -
¥ NEP) Y= NEP) , q—q'w,
NCP—NnCP=TrI'5(UCP) = —TrT5(U). (2.66 q—-W1qT,
A regular renaming of fermionic variables °P Q—Q™W,
YP=y'W, YP=-Wty’ (2.67 0— W 1QT. 2.72
gives rise to

This transformation leaves the vectorlike theory invariant up
to the overall signature of the second term in E2.17),
which is immateriaf We note that one cannot ke€pandQ
invariant underC P since the gauge field is transformed un-

f ECP:fE'%R(uwsDw)w (2.68

which is characterized by derCP by
_ [n,=n°P n”=nSP
L ENTIRINT-LY EE Sl INTRRIN o _ _ =T
-— Ny -~ Ny One may define a transformation layv—W™"Q", for example,

to keep the action invariant. In this case, however,Gliretransfor-
ny—n_=Trl's(U). (2.69 mation applied twice gives rise ©— —Q andQ— —Q.
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1 T

W- —-1__
75F5(UCP)

LysI's(U) @73

The part containing the field anda in the above chiral
Lagrangian is invariant under tt@P transformation, but the

part containingQ andQ is not invariant under the CP trans-
formation

.
n 1 R
71 —
wP- 75F5P_W ) P 7’5115)/5'%?’5
Y S
Cysls s Tysls
(2.79

The conflict withCP symmetry persists as far as the invari-

ance of the action is concerned. We recall t@aandQ are

essential to maintain the full physical contents described b

the variables) andE. To analyze the effects @ P violation
in the sector of) andQ precisely, we discuss a modifi€xP
transformation fory, and i, in the next section, which in-

cludes the effects of both af,q q andQ,Q.
As we noted above, thi§ P transformation is regarded as

a change of representation specified By and I5>i to an-

other representation specified bgP. ys and P.. To be
specific, we have

« 1 .
75P+75:(7’5F5)P+P+(_F)7’5P+3’5:
Vsl s
1
$ysP . vs=¢(ysI's)P P, Yol ¥sP 1 vs
=qP,P ( ! ) P
qr P4 vels Ys5F + Vs,

. — 1
c=w5P+75DP_w=qP+(—F)DP_q,
Vsl s
(2.75

where we defined

q=y¢ysl's, q=4¢. (2.79

We thus have
f D¢LDEL3XF<JE75ﬁ’+75DP¢)
1
fDQLDQLDQRDQLEXF{J’ qP+( Ny )DP q
— 1 ~
+f QP+E')’5P+75Q ) (2.77

where the action fog andaformally retains the form before
the CP transformation, though the definitions gfandq in

PHYSICAL REVIEW D 67, 034506 (2003

terms of s and ¢ are not the same as before. To the extent
one can define the left-hand side consistently, one can define
the right-hand side consistently except for topological prop-
erties. The source terms and the resulting propagator, which
need to be defined in terms of the local variabjeand ¢,
however, change under th@P transformation as in Eq.
(2.70. We reiterate that the variablgsandq cannot describe
the essential properties such as the fermion number noncon-
servation and chirality selection ruléis vectorlike theory,
which are described by the local variabkgsand .

The same conclusion is obtained, namé&\y noninvari-
ance of the action, for the “fermionic” representation of the
domain wall fermion

fqPD

if one assigns the natur@ P transformation law

P_ q+f§P_75F5|5_S (2.79

Yy

S STw,

S—»—w1isf (2.79

which keeps the vectorlike theory invariant. We then have
(WP_ysI'sP_ W™ T=ysP , y5y5'sP.
=P_ ’)’5F5|5_ + ’)/51—‘57& P_ ’}/5F5IS_
(2.80

which is again interpreted as a change of representation of
lattice chiral theory based on the same vectorlike theory.

Ill. MODIFIED LATTICE CP FOR GINSPARG-WILSON
OPERATORS

The part of the Lagrangian for chiral domain wall fermi-
ons in Eq.(2.71), which includes the light variablesandq,
is invariant undeC P transformation. This property together
with q=vysI's¢y and q= ¢ suggest a modified latticEP
transformation(which is fixed by first going tay and then
coming back toy after CP operation

=Py yP=—-w" [w : r
Lo L LysTs(U)

YL=yP =y =[ysI's(U)y I'W 3.0

for the chiral theory defined in terms of the Ginsparg-Wilson
fermion

—1+ys 1—ys
2 2

L= Dy = (3.2

.

One can confirm that the chiral Lagrangian is invariant under
the above modified lattic€ P transformation. If one estab-
lishes that the Jacobian for the above modif@ transfor-
mation gives unity, all the effects @ P violation (or abnor-
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mal C) effects appear in the propagator, which is derived by

considering source term®.29 for ¢, and i , D‘ﬂLD‘pL:H dCJll_([ dc. (3.7)
rcpP zf TCPyCP L CP cp In this expressiorng; and?k are the expansion coefficients of
f soureé~ | LRI fermion fields.
_ — — 1
= f mRYsUs(UW Y+ i gy | W0=2 vi(e. G=(0).9)=a"2 v (0hL(x)
(3.3 (3.9
and the propagator becomes af@® transformation and
P S PP | WO0=2 c@),  a= op=a2 dL0vi(0).
(Vsrs)P—5P+m—P—5)’5P+Vs¢P—5P+ K X s
(3.4) 3.9

_ ) ) ) _Basic requirements for th@deal) basis vectors are
in pure chiral gauge theory, to be consistent with our previ-

ous resul{3]. We here assumed the natu@P transforma- P ouj=v,, (v],00=05x (3.10
tion for the source functionsyg— 7EW and 7g—
W 1;; and
This analysis turned out to be rather limited in its scope — — — =
and it is applicable only to the topologically trivial sector, as vPs=vi, (0] ,v) =8k (3.1

it is directly related to the domain wall representation. It is,
however, nice to examine the modified lattiCé® transfor-
mation, since, after all, the invention of a lattice version of A
chiral transformation was the starting point of the analysis of Pyi=vi. WwP.=y. (3.1
lattice chiral gauge theory. Also, this analysis illustrates an
alternative picture about what is going on in the analysis of
CP symmetry, together with general topological compllca-
tions associated with the transformation which keeps actio
invariant. o

In passing, we note that the vectorlike theory defined by (O)(Ucp)zf DyPDYCPOCP
the Ginsparg-Wilson fermion is invariant under the modified
CP transformation

o that

Let us consider how®) changes under thé P transfor-
mation of the gauge fielt) —~UCP. The above framework
gi ives

xex;“ZEPD(UCP)lpEP (3.13

I W wl(E - )T
¥sl's ysl's) and

YT (ysls) W= (ysTsih) TW (3.5) D¢E"DW=H dcjcpl'kl dcgP. (3.14

and the Jacobian for this transformation is unity up to th
possible singularity associated with 34("s).
We now present a precise analysis of the Jacobian factor
associated with the above modifi€@lP transformation in PCP(x) = E v Pt e P= (7", uch)
chiral gauge theory, and show that we arrive at precisely the
same conclusion, at least in the topologically trivial sector, as (3.19
in our previous analysis based on the more conventiGial 4
transformatior] 3]. The analysis in this section also provides
some of the mathematical details briefly sketched in the pre- _
vious section. ’ i EP(X)ZE cPuRP, eP=(ur T g,
We start with the definition of expectation values in the (3.16
fermion sector of the chiral gauge theory ’

®Here the expansion coefficients are defined by

The (ideal) basis vectors satisfy

<0>ZJD¢LDZL0eXF<f$LD¢L> (3.6 I5,(UCP)vJ-CP=v-CP (UjCP

oF D=8 (3.17)

and and
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T

;EPP+:;EP1 (;jCPT ,;EPT):ajk' (318) C]-CPZ—Z a42 U].CPT(X)W_]' v—k(x) 1 ?k
r
In what follows, we take basis vectors as “ ) Y55 (3.22
vEP=0y (3.19 and
because both satisfy tteamechirality constraint that is in- —p_ 4 Tt
dependent of gauge fields. Ck —; a ; [ysl'sv ()] Wo(x)cj . (3.23

We thus examine the following modified substitution rule:
This transformation is, however, regular only if IT§=n

! ! _1 g n_=0, because
CP__ —1| 7, _ Y —_ —n_=0,
= _W - — W v P
) | = % “ysIs(U)| cp — .
No. of ¢;’"—No. of ¢, =TrP_(U°P)~TrP,
(3.20 A
=TrP (U)=TrP,=TrI's
and -
EEP:[YSFS(U)‘//L]TWZEI_: [ysI's(U)v;1™Wg; . and
(3.21) No. of cP—No. of ¢;=TrP, —TrP_=Trls.
(3.29

This substitution is in fact consistent with the chirality con- _ o
straint P_(USP)yCP=yCP and yCPP. = yCP. Moreover, So we assume Trs=n_,.—n_=0 in what follows; this is

'also necessarfthough not sufficientfor the existence of the

the action takes the form identical to the original one unde
gverse ofygl's.

this substitution, as we already noted. The appearance of tH

singular factor 1/¢sI's) is consistent with our “no-go theo- By defining

rem” [2]. The question related to the existence of the inverse . — _

1/(ysl's) is discussed later. These observations show that we [T defPIT degP=a7*[] dg ]l de (326
should consider a change of integration variables from J K J K

(cFP,cgP) to (cj,cy). These two sets are connected by we have

:
J=det —a'> v,»CF’*<x>w—1v_k<x>yiF ]de-{a“E [ysrsvj<x>]TwFI<x>]
X 545 X

=det a*>, [ysl st<X>]TWﬁ<X)}de{‘a“2 v_k<x>yir<w—1fvfp*(x>
X X 515

¥sl's
-

e PW%F“”“’“”]

=dex{ —aty, [75r5v,-<x>]TWP+i(W-lﬂvEPWx)]
{ , 3.2

1
=det — 8.4; U]-CPT(X)W v5I'5(U) v (X)

where we have usel o] (X)vy(y)=P. 8y, in deriving the andv{ " such thatJ=1, we consider an infinitesimal varia-
third line, andW™=W andP_ ys['s= ysI'sP_ in the fourth  tion of the gauge field specified by
line.

Clearly, whether the Jacobiaris unity or not depends on oU(X,m)=amn,(X)U(X,u). (3.28
the relation between, andv{"" which may be quite arbi-
trary (because these refer to different gauge fidldsand  Under this variation, the Jacobiah=detM changes as
UCP, respectively. To investigate a minimal condition an, ~ 8,InJ=tr §, MM ~*, where
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5,M jk=—a4§ 8, 7 (%) ysT's(U)v(X)

75F5(UCP)

+a4; v (%) 56, T's(UCP)

75F5(UCP)

XWWH(U)W(X)
5L 5

—at ofT) ¥58,Ts(U)vi(X)

ysI's(UCP)

—a42 v P () —————5 ¥sI'5(U) 8,0k(x)
ys's(UCP) !
(3.29
and
M t=1v o [s(UCP)pCP (3.30
ki K yels(U) 7 ® ) '

Using  Zjv;(x)v](y)=P_(U)(xy),
=P_(U°P)(x,y) and

DF UCP(X)UCPT(y)

ys's(U)P_(U)

ys's(UCP)
=P _(UP)————¥ls(U) (33D
?’5F5(UCP)
together with Eq(2.45, we arrive at
8,nJ=—iL,+iLSP—5,TrTs(U), (332

CP
where£, and £ " are so-called measure terfisl-16.

—IE(UJ,EU ECP—IE

cP cP
j '57101 )

(3.33

which specify how the fermion path integral measure

changes according to a change of gauge fields.

Recalling that Ti'5 is an integer which cannot change y. =
under an infinitesimal variation of the gauge fiétat simply
0), we see that the necessary con-

that we have set Tr5=

PHYSICAL REVIEW D 67, 034506 (2003

with the choice£ $”= £, [3]. The unit Jacobian condition
(in the vacuum sectoiis thus equivalent to the existence of
the ideal measure factor in this sense.

In fact, theCP invariance in the sense that we can ignore
the Jacobian associated with the above modi@d? trans-
formation is shown more generally, when there is no modes
such thatysI'sW(x) =0, namelyN, =N_=0. In this case,
one can show that the Jacobian is a pure phhse'?. With
the CP invariant choice of the fermion measure term%P
=L, the phasé is a constant depending only on the topo-
logical sector, as we have shown above. Such a constant
breaking ofCP, however, may be reabsorbed into the basis
vectorsv; andv " (this operation does not change the mea-
sure termy or equivalently may be absorbed into the phase
factor ¥ for each topological sector. This apparedf
breaking is thus harmless. This is completely consistent with
our result in the previous worl3] where theCP invariance
of path integralin the topologically trivial sectgrexcept for
propagators is shown. We present the proof of the above
statement below.

Proof of |J|2=1: Our Jacobian factal is expressed as

ty(X)

J=de{ —a*> vFP(x)

1
75F5(UCP)

X det (3.39

a“g tf (%) ysI's(U)vk(x) |,

where {t;(x)} is any orthonormal complete set of vectors
such thatP_ t;=t;. First, one can easily see thh|? is
invariant under a unitary transformation of basu;“sD and
. We may therefore choose any bases long as they are
onS|stent with the chirality constraints evaluating J|?. A
convenient choice is the “auxiliary basis” defined by

v () =w;(x)=P_uj(x), (w;,w)=35) (3.39
or, more explicitly,
Wj=¢@qg (3.39
which satisfiesH?w;=0, and
—Nl NP @ —[1-NF(D) e}
V21N O] J ( JD
33

dition for J=1 is L= £, . Namely, for theCP invariance,
the (idea) basis vectors have to be chosen such th%? which satisfied—|2wj=)\j2wj . (We use basically half of the
=L, . Conversely, ncg%" L, , we see that the Jacobidn eigenstates oH.) See the Appendix for notational conven-
is a constant which can depend only on the topological proptions. Similarly we set

erties of each sector. In the vacuum sector, in which the
vacuumU,=1 is contained, we can determine this constantv

P0=wiP)=P_(UPIUFP(0),  (wfP W)= 5,
and obtaind=1 becauseJCP 1=U,. So, for the vacuum

sector,£ $P= L, implies J=1. (3.38
In our prewous work, we have shown that the conditions
on the ideal measure factéwhich appear in the reconstruc- where uf"(x) is the eigenfunction of H?(USP),

tion theorem of chiral gauge theof1,13) are consistent HZ(U<P)uf"(x)=A{"2uf""(x). We also use
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tj(X):P_Uj(X), (tj ,tk)zéjk, (339

namely,

ti=¢o (3.40

and
(V1I-N2P2(\D) g~ [1+ 0 f (A D) ]y}

(3.41
When there are no modes such thal sV (x)=0, the

1
b= 2[1-Nf(ND)]

above vectors span complete sets in the space restricted by

the chirality constraints. Then, using propertiesI@f it is
straightforward to see that

a@ t () ysTs(Uvi(x)=VI-ATF2(N\) 5 (3.42
and
42 CP?t 1
a U; (X) tk(X): 5Jk
X yls(UCP) VI-ACP2E2NP)
(3.43
Therefore, we have
2 2
H [1-\7F2(\D)]
|3]%= (3.44

[T [ AP2H200)]

This combination is, however, unity because Xg# 0 (and

for N\j# A, which is our assumption the eigenvalues are
, as one can confirm by using the

degenerate ak?=\{"2

relations in the Appendix and E¢R.45.

IV. CP (OR C) TRANSFORMATION AND YUKAWA
COUPLINGS

The CP symmetry is of course broken in the presence of

the Higgs coupling in chiral gauge theory. For exantple,
L=y D(Up) g+ YD (Uo) et 29( dihrt i)

=P, D(Uy)P_(Up) g+ yP_D(Up)P, (U

+20[yP, P (U g+ yP_¢'P_(Upyl, (4.1

We assume that the left-handed fermigp(x) belongs to the
representatiofR, of the gauge group and the right-handed fermion

Jr(x) belongs toRg [the Higgs field ¢(x) transforms asR_
®(Rgr)*]. The gauge couplings in the Dirac operat®é6U,) and

D(U,), and correspondingly if_(U;) andP. (U,), are thus de-

fined with respect to the representatidtsandRg, respectively.

PHYSICAL REVIEW D 67, 034506 (2003

whereCP is broken not only in the kinetic term but also in
the Higgs couplings. Under th@P transformation

U1~>U§P, U2~>ng
Y—yP"W, g —W T,
d—P*

this Lagrangian is transformed to

4.2

LP=yysP, (Uy)ysD(UP_y
+ysP_(Up) ysD(U)P. o
+29[¢ysP . (U1) vs6P i
+ysP_(U2) ys'P_y].

This is again interpreted as a change of representation of
chiral projection operators, frof. andP. to ysP- ys and

P_., constructed from a vectorlike Ginsparg-Wilson theory if
one introduces two sets of fermion field§" and(?) in Eq.

4.2

4.3

Py =P_(UpyD, g =yP,,

Yr=P. (U y®,  yg=yPP_.

In a perturbative treatment of the Higgs coupling, the analy-
sis of CP symmetry becomes identical to that of the pure
chiral gauge theory, as was shown elsewt8teFor a non-
perturbative treatment of the Higgs coupling but in the topo-
logically trivial sector, one can use the modifi€P trans-
formation motivated by the domain wall fermion

(4.9

e 1[E#T
oL LysTs(Uy)]
Y=o =[ysls(UD) g 1TW,

Yro RS =W E;}T
ROTR Rysl's(Uy) |

Yr— R =[ysT5(Uy) Y] ™W (4.9

which keeps the actio.1) invariant. The invariance of the
Higgs coupling is confirmed by noting, for example,

YEPPL PP L (USP)YRP
=—[¥sls(Up) ¢ ITWP, ¢*

VR ysI's5(U2)
=—[ysI's(Up) ¢ I"WP, ¢* P, W~ 1_;

:JRPJNP* ysl's(U) i

XP, ysls(USPHW 2
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— TE The Yukawa coupling in this Lagrangian is not invariant un-
VP& P- (Ui, 49 der CP transformatiof’
where we used P,P,(US?)=P_ P, ysI's(US?) and YW, g —W LT
P_P_ysl's(U;)=P_P_(U;). We can thus repeat the
analysis of the previous section and confirm that the path WD(UP )W t=D(U)T,
integral is invariant under the modifigdP transformation CPun1 T
except for the propagators which are determined by the WysI's(U=T )W =[ysI's(U) ],
source terms. The essence@®P analysis in the domain wall I
representation is included in this analysis. WoW™ "= ¢™. (4.9

It would be interesting if one can generally establish the_l_hiS noninvariance arises from
CP invariance except for the propagators

[v5,¥sI'5]#0, [¢(X),ysl'5]#0. (4.10
1

(g () (y))=P_(Uy) I P., For a real constang, these conditions are cleared, and the
D(U,)—2g¢ 29" Yukgwa c;ouplmg is reduced_ to the mass term. The altdie
D(Uy) noninvariance is of course interpreted as a change from one
representation of lattice chiral projectors to another, just as
we discussed in the case of pure chiral gauge theory.
<¢L(X)$R(Y)>=—|57(U1) 1 29 One can rewrite the above Lagrangian in terms of the

1 s domain wall fermion as
D(Ul)—29¢ruz)29¢

— 1 — —
£=9D ~—-q-mqq+29q(P., ¢P. +P_¢'P_)q
Vsl s

NP
*BUy B
4.1
1 +Q75F5Q (4.19
(Pr(X)Yr(Y)) =P (Uy) 1 P_, which isinvariant underCP transformation
D(Uz)—29¢TD(U )29¢ _ _
! g—q'W, gq—--Wq',
_ 3 1 Q—Q'W, Q—-w'QT,
(Yr(X)(y))=—P(Uyp)
D(U2)~20¢" 555204 WD(USHW=D(U)T,
1
+ 1 W?’SFS(UCP)Wﬂ:[75F5(U)]T,
X2 P., 4.,
T 7 WoW~ 1= g (4.12

which depend on the specific choice of chiral projection op-f One notes that the overall signature of the last term in Eq.

2 . 2 4.11) is immaterial.
eratorsP.. andP.. as in Eq.(4.7) (or ysP.ys andP .. after ( . S
CP transformatiol, after summing over the topological sec- To see the breaking &P symmetry in this context of the

tors but without using the explicit diagonal representation ot]fjoormt‘:]“é1 g?&igip;?;zzt%sgg’hvf g::ti:‘ioeiuceer:g?alsc::l:)rr?gl;‘;:)rgs
the action(which was used in our previous pagéi). : , Pecilies gene
) . . . functions. For the local Ginsparg-Wilson variables, we have
It is shown thatCP is broken even in the vectorlike

theory in the presence of chiral symmetric Yukawa cou- L
plings. For example, one may consider a theory with Abelian J Esource=f (gm+ny) (4.13

flavor symmetry(by usingP. P, =P. ysI's)
which is invariant unde€ P transformation

L= gD g+ D — M(PYrib + Y hR)
+29(y pPrt Yrd Y1)
=yDy—myys s+ 2gh(P, pP . +P_¢'P_ )y

T wr T
YDY—mipysl'sihp+29Y(P L pP L +P_¢p'P_)ysI'si. ynder parity we havep— ¢*, and thus unde€P we haved

Y PTW, g — WLy,

W,  p——W Iyl (4.14)
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The source terms are translated in the language of the ding Majorana fermions in a Euclidean serige4]. Follow-

main wall fermion as ing the standard procedure, we replace the field variables
L [36-38
= |gn+t n— . ;
f Lsourcé f <q77 75F5Q) (4.19 lﬂ=()(+l7])/\/§,
hich is transformed undeZ P symmetr —
which i u y y y=(x"C—in'C)/\2 (5.2
q—q'W, gq—-w'q’ (419 . . . . .
in the Lagrangian written in the Ginsparg-Wilson fermions.
to We naively expect
Tt 7, (4.17 L LT T :
q'y5F5 TwT 7wl |- . L= 72X CDX_EmX Cysl'sy+gx C(P,. P,
To recover the original source terrlisywe need to perform . 1. 1 .
the redefinition of field variables +P_¢'P_)x+ 57 CDy—5my Cysl'sy
1 - — ~ ~
4—~7-4, q—qysl's (4.18 +97'C(P, P, +P_¢'P_)7. (5.2
Ysls

. One would then define the Majorana fermign(or ») and

EUt trge Yukawa couplmrg ir&ot |n(\j/ar|ant un?er i“os riief'n"the resulting Pfaffian. But this actually fails since the cross
lon because of ys,ysl's]#0 and[¢(x),ysl's]#0. The oo hatween and 7 do not quite vanish due to the com-

propagator is thus modified undeiP as plications in the charge conjugation.

If one uses the domain wall fermion with “fermionic”

L ! variables, one may make the replaceniént

X
D/(ys's)—m+2g(P,¢pP,.+P_¢™P_) ¥sl's

1 . q=(x+in/\N2,a=(x"C-in"C)/\2,

* X :
¥sI's D/(ysl's)—m+2g(P. P, +P_¢'P_) S=(\+ip)/\/2,
(4.19

S \T : T
= — 2. .
We arrive at the same conclusion by using the fermionic S=(AC—ip C)iv2 ©3

representation of the domain wall fermion with a chiral sym-

metric Yukawa coupling One can then define the Majorana fermigner z (andX\ or

p) by
L£=qD ! 109+ 29q(P. P, +P_¢'P_) 1 1 1
=gD——=-q—m _ _
a 75F5q AT 2gaT PP a L==x"CD——x—=my'Cx+gx'C(P, ¢P.
J— 2 y5F5 2
+P_¢"P_)x+=97'CD—=—7—smy'C
if one assigh<CP transformation ¢ )X 27 751“577 2m7; n
= —-1Q] 1
S—S'W, S—-wish (4.2 +97'C(P, $P, +P_¢'P )yt SATCysToh

The action is invariant undet P transformation, but to keep

the source terms invariant one needs to perform a field re- 15
o s . ) . +zp ' Cysl'sp, 5.4
definition which is not compatible with the Yukawa coupling. 2P -5 5P &4
V. MAJORANA FERMION namely, one may define a Majorana fermion by

The above complication & P symmetry(or equivalently

charge conjugation symmetry since the parity is normal in 12t (co)"=—co or equivalentyCOC *=0T for a general

the above modelfor the vectorlike theory with the chiral gperatoro, the cross term vanisheg COy— y"CO#%=0 by using

Invarlal’lt YukaWa COUp|II’lg g|VeS r|Se tO a dlffICU|ty |n def'n' the anticommuting property q/ and 7. In the presence of back-
ground gauge field, we assume that the representation of gauge
symmetry is real.

1This complication does not appear to be resolved by an argu- **The Majorana reduction of the bosonic fermignin the con-
ment of the use of equations of motion for external field lines in theventional domain wall fermion is nontrivial, sincg\TC(1/
nonperturbative treatment of the Yukawa coupling. See F3f. vsI's)A =0 for a bosonic spinor.

034506-15



K. FUJIKAWA AND H. SUZUKI PHYSICAL REVIEW D 67, 034506 (2003

Lu=3X"CD— x— 2my"Cx+gx"C(P, 4P J(_l +qJ
—=m
M 2X Vs 1" X 2 X XT9x + + ,}/5 5q q
FP_ TP )t SATCyslan 5 —fl T Tc T TCJ
~¢ P_)x+ 5N Cysl'sh. (5.9 =3 Jae) X i vele) 7 1
T 1 T
This theory is, however, nonlocal due to the singularities in * j 2 1+ y51“5) 7 CHiis y5F5)X} C]‘]z’
U(ysl's). (5.10
In the level of path integral, one may modify the above '

Lagrangian by writing where we used the variables supposed to describe Majorana
fermions in the domain wall representati@®.4). This ex-
pression of source terms shows that neither of the Majorana

mposlf DxD\ exp( j Ly fermionsy and , defined by the domain wall fermion cor-
respond to the Majorana fermion generated by the salirce
1. 1 for example. In addition, the correlation functions generated
:f Dy ex f >Xx CDx—5my Crsl'sx by differentiating with respect td; contain the species-
doubler poles in 14sI's). This shows that we cannot define
the Majorana fermion consistently for physical processes in
TOX'C\ysl's(PL P, +P_'P) 75F5XH’ the presence of the chiral symmetric Yukawa coupling. The
conflict among chiral symmetry, strict locality and Majorana
(5.6 condition persists. The condition for the presence of Majo-
rana fermions is in a sense more demanding thanCtRe
invariance. The Majorana fermion requires a Lagrangian
self-symmetric under charge conjugation, whil® symme-
try requires the invariance of the path integral after summing
I over all topological sectors.
X=Nyslsx, - Vysl'sh=A. ®9 In a supersymmetric Wess-Zumino model on the lattice,
one needs to define the constraint-free Majorana ferdfian.

This rescaling formally removes the singular factoni(s) ~ Past attempt to define the Wess-Zumino model is given by

and makes the auxiliary fermiaxa decouple. This final path (4,30

integral is, however, not what we expect for the Ginsparg-

Wilson fermion because of [y5,ys'5]#0 and 1 it N 1

[¢(x),¥sI's1#0, which caused the failure of the charge £fwz=7X C—FDX ¢'D'Dop+F F—F+ >Mx Cx

conjugation symmetry. As for the Pfaffian and the determi-

where we made a formal rescaling

nant factor without the external fermion lines, one may adopt +mFo+(Fp)1+gx"C(P. P, +P_o'P_)y
the above definition of the Majorana fermion, which is con- ) )
sistent up to a possible non-locality arising froftysI's. +g[F¢?+(F¢?)], (5.1

A difficulty in defining the Majorana fermion is clearly
seen when one considers the source terms for the Ginsparghere ¢ stands for the complex scalar field afdfor the
Wilson fermion, as we did in the analysis Gf° symmetry  auxiliary field. The operatoD is the (free) Ginsparg-Wilson
operator, and whe® D appears in the bosonic sector we
adopt the convention to discard thnit) Dirac matrix. The
=TT T T Majorana fermiony and its Yukawa couplings are the same
f (Jy+ l/j‘])_f (X' Cit 7' Cy) (5.8 as those we find for the above domain wall representation.
However, a crucial difference is that the Pauli-Villars fi€d
is now replaced by the “physical” field. For this reason,
where the Majorana sources are defined by we regard the fielgy in £y, as a primary definition of the
Majorana fermion, though it is defined by a nonlocal La-
_ grangian. The singular factor 1/{I"s) for the Majorana fer-
J=(3;+i3x)/2, I=(I1C—-iJ]C)/\2. (5.9  mion is canceled by the same factor coming from the auxil-

The derivatives with respect to the sourdg give rise to 1 one uses the Weyl fermion defined by the Ginsparg-Wilson
correlation functions of the would-be Majorana fermign  operator, the constant spinor parameter appearing in supersymmetry
which we failed to define for the Ginsparg-Wilson fermion. transformation is constrained by projection operators. This leads to

The corresponding source terms for the domain wall fercomplications, in particular, in the presence of the background
mion are given by gauge field.
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iary field FT[ll(Fé)]F. In fact one can confirm that the free couplings, an action which is symmetric under the charge
part of £,y is invariant under a lattice version of supersym- conjugation is required. The Ginsparg-Wilson fermions can-
metry [30] not be used in this context. As a tentatiamd not complete
resolution of this conflict, we mentioned a use of the domain
wall-like representation for the supersymmetric Wess-
Zumino model where the auxiliary field plays a role of the
Pauli-Villars fields.

1
ox= —F55H(A—i758)6—(F—i‘ysG)6,

SA=€e"Cxy=x"Ce, We have analyzed only the infinite flavor limit—oe in
the domain wall fermion, where chiral symmetry is well de-
8B=—i€e"Cysy=—ix"Cryse, fined. It will be interesting to examine if the above conflict is

already seen for the finitd domain wall fermion where the

operatorDy /(1—aD,) is local (see Ref[39] for the local-

ity of D), though precise chiral symmetry is not defirtéd.
Our analysis of various complications is based on the sin-

1
oF= eTCF5aH)(,

. 1 gular behavior of
6G=|6TCF55H'y5X (5.12
. . 1 1
with a constant Majorana-type Grassmann parametetere .= o (6.0
we defined Ysls 1—aD(ysaD)

1 . 1 , in the context of general Ginsparg-Wilson operators. This

¢— E(A“B)' F— E(F_ IG), (513 factor contains poles at the positions of the would-be species
doublers which have a massalih the case of free fermions,

andH=aysD. This construction ofly, is not completely and topological poles in the presence of instantons. This
satisfactory, but it may be amusing to see that a certain agnass value approachesin the limit a—0, and those par-

pect of the domain wall fermion may play an essential role inficles are naively expected to decouple from the Hilbert
the construction of Majorana fermions. space in the same limit. The singularity ak Yauses nonlo-

cality in a strict sense and thus cannot be consistent in all
respectd40], but one might hope that the singularity may
not be so serious in a suitable lindt-0 in some practical

We have examined th€P properties of a domain wall applications. This issue may deserve further analyses and, in
fermion where light field variableg and q and the Pauli- any case, would lead to a better understanding of the domain

Villars fields Q and Q are used. It was first shown that the Wall fermion.

iabl da. d ibe th logical Note addedWe have emphasized that the free fermion
variablesq, and g, cannot describe the topological proper- operator 1/1—aD(ysaD)?] in Eq. (6.1) contains poles at

ties, and the full physical contents are o_nIy described by th‘f’he positions of would-be species doublers. The operator
local Ginsparg-Wilson variableg, and ¢ . The domain  171—aD(ysaD)?] could contain poles even in the pres-
wall variablesq and q in the infinite flavor limit, which  ence of topologicallytrivial gauge fields. See, for example,
themselves exhibit nic€P and charge conjugation proper- Ref. [41]. If the functional measure of topologically trivial
ties, cannot help to resolve the difficulty associated \@ifa ~ gauge fields which give rise to the possible poles is substan-
symmetry in chiral gauge theoijl] and the failure of the tial, the domain wall representation not only for chiral theory
Majorana condition in the presence of chiral symmetricbut also for vectorlike theory would be significantly influ-
Yukawa couplingg4]. enced.
The conflict among the good chiral property, strict local-
ity, and CP (or charge conjugationsymmetry thus persists.
The CP transformation sends one representation of lattice
chiral gauge theory into another representation of lattice chi- One of us(K.F.) thanks H. Neuberger for a useful conver-
ral gauge theory, which are constructed from the same veation on the domain wall fermion. He also thanks S. Aoki,
torlike theory defined by the Ginsparg-Wilson operaar Y. Kikukawa, and J. Kubo for discussions at the Summer
The violation of CP symmetry in the Lagrangian level is Institute in Fuji-Yoshida, and all the members of C.N. Yang
partly resolved by summing over various topological sectorsnstitute for Theoretical Physics, Stony Brook, for their hos-
[3], and theCP noninvariance is manifested by the change
of propagators. In the presence of Higgs couplings, the com=————
plications withCP symmetry become more involved since 0ne may, for example, argue that the domain wall variagles
the chiral projection operators are determined by theandq, , which become nonlocal and cannot describe topological
Ginsparg-Wilson operator which depends only on the gauggroperties in the limitN=c, are not the suitable variables to de-
field whereas the nonperturbative fermion propagator conscribe physical correlation functions even for finMeto the extent
tains Higgs couplings as well. As for a definition of Majo- that the finiteN theory is intended to be an approximation to the
rana fermions in the presence of chiral symmetric Yukawaheory withN=oo,

VI. DISCUSSION
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APPENDIX: REPRESENTATION OF THE
GINSPARG-WILSON ALGEBRA

PHYSICAL REVIEW D 67, 034506 (2003

We have

Tsen(X) = 1=A2F2(A2) @n(X),

We here summarize the representation of the general

Ginsparg-Wilson relatiofi2,3] Hys+ ysH =2H?f(H?). Let
us consider the eigenvalue problem

Hen(X)=Nnen(X), (@n,¢m) = Onm- (A1)

We first noteHT'5¢,(X) = —T'sHe,(X) = — N I's0,(x) and
(Fsen Lsem) =[1= NG5 1 8nm.

These relations show that eigenfunctions with+=0 and
)\nf()\ﬁ);t +1 come in pairs ag,, and —\,, [when\,=0,
eo(x) and I'sep(x) are not necessarily linearly indepen-
dent.

We can thus classify eigenfunctions as follows.

(i) A\y=0 [Hoeo(x)=0]. For this one may impose the
chirality on ¢o(X) as

(A2)

Y500 (X) =505 (X)=* @5 (X). (A3)
We denote the number afy (x) (¢q (X)) asn, (n_).
(i) \y#0 andr,f(A2)# +1. As shown above,
Hon(X) =Npen(X), H;n(x):_)\n;’n(x)- (A4)
where
@n(X) = Ts@n(X) (A5)
X)= —————— X).
D

Ts@n(X)= V1NN en(X), (A6)
and
¥5@n() = V1= NAZ(ND) @n(X) + Aaf (D) @n(X),
¥5@n(¥) = V1=NZP(ND) @n(x) = Naf (D) en(X).
(A7)
(i) \ff(N2)==*1 or
HV.(x)=*AV.(x), Af(A?)=1. (A8)
In this case we see
I's¥.(x)=0 (A9)
and
sV (X)=+=AF(AHP (X)==¥_.(x). (AL0)

We denote the number o¥ , (x) [W_(x)] asN, (N_).

From the relation Tys=0 valid on the lattice, one can de-

rive the chirality sum rul¢32,33
n,—n_+N,—N_=0. (Al11)

The explicit form of the operatoH is known for f(H?)
=H?2* with non-negative integers [18].
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