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Phase diagram of compact QED coupled to a four-Fermi interaction
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Compact lattice quantum electrodynamics with four species of fermions is simulated with massless quarks
by adding a four-Fermi interaction to the action. Simulations in the chiral limit are done' datt&es for
exploratory purposes, and “LGttices for quantitative purposes, and the phase diagram, parametrized by the
gauge and the four-Fermi couplings, is mapped out. The line of monopole condensation transitions is separate
from the line of chiral symmetry restoration as long as the four-Fermi coupling is not too small. The simulation
results indicate that the monopole condensation transition is first order while the chiral transition is second
order. The challenges in determining the universality class of the chiral transition are discussed. If the scaling
region for the chiral transition is sufficiently wide, the*1§mulations predict critical indices far from mean
field values. We briefly discuss a speculative scenario in which antiscreening provided by strands of bound
monopole and antimonopole loops is the agent that balances the screening of fermion-antifermion pairs to
produce ultraviolet stable fixed points.
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[. INTRODUCTION needed to ensure convergence of the algorifdfnand we
are guaranteed that the fermions remain light even on the

The coupled system of four-Fermi interactions and Abe-strongly cutoff lattice.
lian gauge fields has been of interest to model builders, phe- Our lattice model has two couplings: the conventional
nomenologists, and theorists for some time. In the context ofauge coupling of compact QED and the four-Fermi cou-
noncompact lattice QED, this approach has been used faling of the Nambu—Jona-Lasinio term. The uncoupled ver-
show the logarithmic triviality of noncompact QED with dy- sions of compact QED and the Nambu—Jona-Lasinio models
namical fermiong1]. have been studied by lattice gauge theory methods and con-

In this paper we study the compact version of the modelsiderable quantitative information is available to guide this
We are particularly interested in the chiral transition and itsstudy. We shall find two lines of transitions in the two-
scaling properties as well as the model's magnetic monodimensional coupling constant parameter space of the com-
poles and their possible effect on the continuum limit of thepact QED-gauged Nambu—Jona-Lasinio model. One line is
chiral transition. The compact version of QED with dynami- associated with monopole condensation and the other with
cal fermions has not been studied as well as the noncompachiral symmetry breaking. Long runs on fairly large lattices,
version of the model. The model will be simulated using thel6®, indicate that the monopole condensation transition is
hybrid molecular dynamicéHMD) algorithm[2]. first order. A finite size scaling analysis of this transition is

The compact version of four-flavor QED has interactionsnecessary to state this result with “absolute” certainty and
coming from photons and magnetic monopoles coded intsuch a study must await more computer resources. Simula-
the compact gauge fields. By adding a four-Fermi interactioriions on 24 and 32 are in the planning stages. However,
which preserves a piece of the chiral symmetry of the massmuch more intensive recent studies which determined the
less model, we can study light fermions directly on the latticescaling behavior of the latent heldi] have produced quite
and see how fermion charge screening affects the dynamicdecisive evidence for the first order character of this transi-
The four-Fermi interaction also gives us the opportunity totion in the theory without fermions. Although our major con-
separate the chiral transition of the model from its confine-cern here focuses on the chiral transition, which has not been
ment or deconfinement transition which is controlled bystudied quantitatively before, it is a good test of our methods
monopole condensation. and statistics that our data on the confinement-deconfinement

It is crucial in all of this that fermion screening be ac- transition are very abrupt and favor first order.
counted for accurately and realistically. It is inappropriate to  The line of chiral transitions is distinct from the line of
make any simplifications here because the character of femonopole transitions as long as the four-Fermi term is not
mion screening is not understood outside perturbation theoryoo small. One point along the line of chiral transitions is
Some unbiased simulation studies are called for to see if, fostudied in detail to determine the character of the chiral tran-
example, the antiscreening due to magnetic monopoles cagition. This work parallels recent studies of the noncompact
balance the screening due to fermion loops and lead to ultrarersion of the model which concluded that the chiral transi-
violet stable fixed point§3]. This need further motivates us tion was logarithmically trivia[1]. Conventional “wisdom”
to consider the version of the model with an explicit four- would suggest the same result here, since the monopole con-
Fermi interaction because then no bare fermion mass isentration vanishes on the line of chiral transitions. However,
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this result is far from clear in our numerical work. The best  The lattice action reads, in the case where the gauge sym-
fits to the chiral condensate and its associated susceptibilitmetry is interpreted as a compact locallysymmetry, fol-
are compatible with power laws of a second order transitionlowing Wilson’s original proposa]l7],
but the critical indices are far from the expected mean field
values. Unfortunately, the immediate vicinity of the critical N T 2~
point cannot be well studied on this size lattice?, Iecause S= Xzy YOO (Mt D) YY)+ %; %)
of finite size effects, so the simulations reported here might L
not be registering the real continuum scaling laws of the
theory. Simulations on larger lattices closer to the critical + Z_eZX,EM,V {1-cogF,, ()1} )
point are required and studies on“24nd 32 lattices are
planned. where

This paper is organized as follows. In the next section we
present the formulation of the lattice action and discuss itsF .,(X) = 0,(X) + 6,(X+ @)+ 6_ ,(X+pn+v)+6_ (X+D),
symmetries and general features. In the third section we 3
sketch the phase diagram and in the fourth section, the heart
of the paper, we examine several points in the phase diagram \; _ | 4+ i 2 o(%) |6 ()
in detail and come to preliminary quantitative conclusions i 16 5% o
about the first order character of the monopole condensation
transition and the second order character of the chiral transi- 1 o i
tion. In the fifth section we comment on the puzzling nature ~ Dxy= 52 N, (X)X, . —e s o), (5)
of the results, briefly present a physical picture of a non- .

trivial chiral transition in which antiscreening due to en- whereq is an auxiliary scalar field defined on the sites of the
twined loops of magnetic monopoles and antimonopoles balyya| latticeX [8], and the symbofx,X) denotes the set of the
ances screening due to fermion-antifermion pairs, andg |attice sites surrounding the direct site The factors

suggest further research. e*'’x are the gauge connections angl(x) are the staggered
phases, the lattice analogues of the Dirac matriges a
Il. FEORMULATION staggered fermion field anth is the bare fermion mass,

which will be set to 0. Note that the lattice expression for
To begin, consider the Abelian-gauged Nambu-Jonag s the circulation of the lattice field, around a closed
Lasinio model with four species of fermions. The Lagrangianp|aquette, the gauge field couples to the fermion field
for the continuum gauged Nambu—Jona-Lasinio model is  through compact phase factors to guarantee local gauge in-
variance, and cds,,, enters the action to make it compact.
— 1 — ., 1, It will often prove convenient to parametrize results with
L=y(iyi—eyA—m)y— EG(‘ﬂ‘ﬁ) - ZF : (D) the inverse of the four-Fermi coupling=1/G, and the in-
verse of the square of the gauge couplipgs 1/e?.

The Lagrangian has an electromagnetic interaction with The global discrete chiral symmetry of the action reads

continuous chiral invariancey(—e'“™sy, where 7 is the P(X)— (= 1)LHX2EXBEx ) (6)
appropriate flavor matrjxand a four-Fermi interaction with
discrete ¢,) chiral invariance ¢— ysi¢). The mass term

My breaks the chiral symmetries and will be set to zero in
much of the work that folows. The pure Nambu-Jona-
Lasinio model has been solved at lafyeby gap equation
methodg 6], and an accurate simulation study of it has beenyhere (1)y+x2+x3+x4 g the |attice representation of.
presented4]. The discrete Z,) chiral invariant action pro- As we mentioned, interesting limiting cases of the above
duces a particularly efficient algorithm. Full chiral symmetry action are(1) the Z, Nambu—Jona-Lasinio model with no
should be restored naturally in the continuum limit in thosegauge fields, which has a chiral phase transitionGat
regions of the parameter space where the four-Fermi term-2.0(1) [4]; (2) the compact QED model with no four-
proves to be irrelevant. The action wity chiral symmetry  Fermi interactions, whose first order chiral phase transition is
is preferable for simulation studies over models with con-coincident with its first order monopole condensation transi-
tinuous chiral symmetry because the latter are not as effiion nearg=1/e2~0.89(1) for four flavord9]; and(3) the
ciently simulated due to massless modes in the strongly cus—« case in which the fermions obtain a dynamical mass
off theory. comparable to the reciprocal of the lattice spacing and there-
It is useful to introduce an auxiliary random fieldby  fore decouple, leaving quenched compact QED which has a
adding — (G/2)[(44) — o/G]?> to the Lagrangian. This first order transition aB=1.011124(1)[5].
makes the Lagrangian a quadratic form in the fermion field The lattice simulation code is very similar to others in this
so it can be analyzed and simulated by conventionaprogram. The systematic step size errors, those varying as
methods. The model is then discretized by using staggeredit?, the discretization of the molecular dynamics evolution
fermions. equations in HMD *“time” t, have been studied in the past

E(X)_)_E(X)(_1)xl+x2+x3+x4, (7)

o— — 0, (8)
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and are understoof#,1]. Taking dt<0.01 produced chiral tion, and the two transitions, whatever their orders, are sepa-
condensates whose systematic errors were considerabigte and distinct.

smaller than their statistical errors. Other algorithmic prob- The line of chiral symmetry breaking transitions contin-
lems, such as finite size effects, tunnelling, and long correlades to largeiG and higherg from the pointA =1/G=1.40

tion times were monitored carefully in the runs and will be and 8=1.393 studied carefully here. We know from previ-

discussed below when appropriate. ous work[4] that the four-Fermi coupling alone breaks chiral
symmetry at strong coupling;~2.0. Those studies of the
IIl. PHASE DIAGRAM four-Fermi model were done with care and the logarithmic

triviality of the Nambu—Jona-Lasinio model was confirmed.

Our first task was to map out the two-dimensional param-Thijs established that the four-Fermi interaction is indeed ir-
eter spacef,G) using the hybrid molecular dynamics algo- relevant if gauge fields are absent.
rithm tuned for four continuum fermion specied. We mea- The first order line of monopole condensation transitions
sured the chiral condensate and its susceptibility and thextends to highelG from the pointA=1/G=1.40 andg
monopole concentration and its susceptibility as a function=0.956 emphasized here. In fact it moves to only slightly
of B andG on an & lattice. These observables have beenyeaker couplinge as G grows large. We will study it care-
discussed extensively in the literature and we refer the readeijly by simulating the two-coupling model at fixefl=1.0
to[9,10] for background. The expectation value of the field and variableG and find evidence for a first order monopole
is proportional tos in these models and serves as its chiralcondensation point g8=1.0 andG~1.8 whereM jumps
order parameter. discontinuously from zero to a large value. We will see that

The 8 simulations were done simply to explore the phasds large and stable in the vicinity of this monopole conden-
diagram and prepare for the more quantitativé $8nula-  sation point, on both sides of it. Therefore, the fermions have
tions that will be analyzed below. We know from past relatedan effective mass comparable to the cutoff energy and should
studieg 4] that & lattices are not large enough for finite size decouple from continuum physics, if there is any, in the
scaling analyses or other quantitative purposes, so these runwdel. In any case, the model should not be significantly
will not be presented in detail. different from compact QED without fermions and its mono-

For very smallG the chiral transition and the monopole pole condensation should be essentially the same as in the
condensation transition were coincident to the accuracy anohodel with only gauge fields. We support the view that the
resolution of our survey. Abrupt jumps in the order param-monopole condensation transition, which also signals the
eters were measured and were interpreted as signalling firspnfinement-deconfinement transition in the gauge theory
order transitions. Earlier studies of compact QED with nowithout fermions, is first order. Recent simulations of com-
four-Fermi interaction$9] presented evidence for first order pact QED without fermions, which do careful finite size scal-
coincident chiral and monopole condensation transitions ifng studies, have provided quantitative, convincing evidence
good agreement with this study. for this result[5].

As G was increased from zero, we found that the line of
chiral transitions and the line of monopole condensation
transitions become clearly distinct. We will show measure-
ments at fixech = 1/G=1.40 and variablgs on a 16 lattice Consider the observables, the chiral condensate and its
which will make this point very clear. In particular, setting susceptibility and the monopole concentration and its suscep-
A=1/G=1.40 and then increasingin small steps from the tibility, as recorded in Table I. In this case the strength of the
strong coupling region 0f3<1.0, we shall see good evi- four-Fermi interaction is set to a constant=1.4 and the
dence for an abrupt transition in the monopole concentratiogauge coupling varies. At strong gauge coupling, chiral sym-
M at B~0.95. M is large, approximately 0.87, aB metry is spontaneously broken and the monopole condensate
=0.953125 and\=1.40, while it is small, approximately is large and near its saturation value of unity. Both the chiral
0.018, at3=0.9625 and\ = 1.40. Throughout this region of condensate and the monopole concentrations are hardly fluc-
the phase diagram, the chiral condensais distinctly non-  tuating atg in the vicinity of 0.90 since their respective
zero, so the system resides in the chirally broken phase evesusceptibilities are relatively tiny there. However, there is a
thoughM vanishes. The chiral order parametedoes, how- clear jump in the monopole concentration to “zero” At
ever, experience a jump from~0.55 at3=0.953125 and ~0.956 and the chiral condensate experiences a discontinu-
A=1.40 to 0~0.44 at3=0.9625 and\ =1.40, indicating ity here also, but it does not vanish. The chiral condensate
that free monopoles do contribute to chiral symmetry breakwill be discussed below. Here we concentrate on the mono-
ing, as expected, but the gauge coupling is sufficiently larggole physics first although the chiral transition is the real
in this case that chiral symmetry breaking occurs even withfocus and the original contribution of this work.
out the active participation of free monopoles. In fact,Aas Conventional wisdom states that the transition\at1.4
increases further at fixed=1.40, o falls slowly and itis not and 8~0.956 corresponds to confinement-deconfinement.
until 8~1.393 that it vanishes. The vanishing appears to b&n the strong coupling side of this point there is a monopole
continuous. The chiral transition will be discussed in morecondensate which causes confinemddi in the sense that
detail below. However, it was easy to determine that theall the physical states are neutral and the electric charge is a
chiral transition occurs at a smaller gauge couplafgat  good quantum number. In such a phase one expects and finds
fixed A=1.40 than the confinement-deconfinement transichiral symmetry breaking. In Fig. 1 we show the monopole

IV. 16* SIMULATIONS AT FIXED A=1.4
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TABLE I. Observables measured on a*léttice with four-Fermi coupling=1/G=1.4.

B T Xo M XM Trajectories
0.800 0.6556L0) 1.4320) 0.990672) 0.4512) 1500
0.900 0.615810) 1.61(23 0.968095) 0.17874) 2550
0.950 0.561410) 2.0540) 0.889@2) 0.8092) 2500

0.953125 0.551@98) 6.11(50 0.87082) 0.991(3) 3350
0.95625 0.4674.0) 3.21(52) 0.2631) 27.603) 4350
0.9625 0.4416l5) 6.2355) 0.01791) 16.524) 5100
0.975 0.418218) 2.4947) 0.04236) 16.01) 1000
0.9875 0.403@21) 3.3550) 0.06615) 18.62) 1100
1.000 0.382210) 4.3253) 0.02141) 9.0011) 8200
1.050 0.324415) 4.5237) 0.00011) 6.0826) 2700
1.100 0.279810) 7.8056) 0.00011) 5.3543) 14150
1.150 0.234615) 11.21.0 0.00011) 6.172) 6600
1.200 0.185615) 18.371.6 0.00011) 4.7512) 10900
1.225 0.163@1) 25.582.4) 0.00011) 4.6784) 7100
1.250 0.139418) 23.412.1) 0.00011) 4.6013) 8400
1.2625 0.128@7) 28.512.9 0.00011) 4.5684) 6000
1.275 0.11587) 41.674.6) 0.00011) 4.5394) 5200
1.2875 0.09924) 37.033.7) 0.00011) 4.5114) 4600
1.29375 0.08925) 40.04.3 0.00011) 4.5015) 5400
1.300 0.0915) 50.06.5 0.00011) 4.4874) 5300
1.350 0.0415) 35.714.1) 0.00011) 4.4136) 4000
1.400 —0.0215) 35.63.7) 0.00011) 4.3566) 5000
1.500 —0.0247) 29.55.1) 0.00011) 4.261) 2200
1.600 —0.0055) 33.64.2 0.00011) 4.1949) 5850
1.700 —0.0055) 31.53.7) 0.00011) 4.172) 2400

concentration as a function @ and suggest that there is a a step function discontinuity is preferred as shown in the
discontinuity in the graph.
Attempts to fit the concentration data with a power law  Additional qualitative evidence for the first order charac-
that would be indicative of a steep but continuous transitiorter of the transition comes from the monopole susceptibility.
failed badly. For example, a power law fit of the standardwe see in Table | thag,, is highly spiked at the transition,
variety, A(B.— B8)#mene, to the points betweep=0.90 and  jumping from 0.9913) at 8=0.953125 to 27.@®) at j3
B=0.95625 had & per degree of freedom in excess of 300 — g 95625 and then falling to 16.68 on the weak coupling
and an exponeniimene<0.025. The fit strongly suggests that gige of the transition ag=0.9625. This suggests that the

figure.

real susceptibility is a delta function in the large volume

1 ¥

06

0.4

Monopole Condensate

3

0004 $

thermodynamic limit. To really establish this claim, one
would need a finite size study to monitor the size of the

i transition region and the height of the susceptibility curves as

a function of volume.
Now consider the major focus of this paper, the chiral

. transition at fixed\ = 1.4. The raw data are shown in Table |

and are plotted in Fig. 2

At strong coupling chiral symmetry is strongly broken
and the chiral condensate is large and does not fluctuate se-
verely. As in past studies, it proves convenient to monitor

4 chiral symmetry breaking through the vacuum expectation

value of the auxiliary fields [4,12,1. The quark-antiquark
bilinear was also calculated in the simulation and is propor-

1 1.1
Gauge Coupling

tional to o, in accordance with the theory’s equations of mo-
tion [12].
The first interesting feature of this figure is the jump of

FIG. 1. Monopole concentration vs gauge coupligat fixed the chiral condensate #=0.956, at the same point where
four-Fermi couplingh=1.4. 16 lattice.

the monopole concentration fell to zero. The fact that Fig. 2
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' ' ' ' aZ, chiral symmetry which is spontaneously broken wlen

07 i develops a vacuum expectation value. This symmetry was

° chosen for the four-Fermi term because it is particularly easy
] to simulate and extract observables. In particular, as long as

. the theory resides in a particular chiral vacuuwnand ¢

% can be measured directly, without the need for inserting a
04 RO 1 small bare fermion mass into the theory to pick out a unique
vacuum state. This is a great advantage because a bare fer-
031 o 1 mion mass breaks chiral symmetry explicitly and leads to
o “rounding” of the transition which makes quantitative stud-
02r « 1 ies of the transition and its universality class very difficult.
%, The tunnelling between the twd, vacua,oc— — o, limits
. our approach to the critical point and appears to be the most
0 ! I | RN S R damaging finite size effect we must deal with. Simulations
08 1 12 14 16 18 are planned on larger lattices to lessen it. Of course, the

Gange Coupling simulations of this study on a 4@attice with high statistics

FIG. 2. Chiral condensate vs gauge coupling at fixed four- represen_t _a serious first step in this program. .
Fermi couplingh=1.4. 16 lattice. The dashed line is the power ~ EXamining Table I, we note that the error bars in the
law fit discussed in the text. andy data are particularly large fg@ between 1.30 and 1.40,

reflecting the occasional, every thousand or so time intervals,

has a jump a=0.956 is further support for the first order tunnelling betweerZ, vacua. The data for these points will
character of the deconfinement transition there. It is also innot be used in the fits quoted here. Unfortunately, omitting
teresting that the chiral condensate does not vanish on thbese data means that this simulation may not be sensitive to
weak coupling side of the deconfinement transition. Apparthe real critical behavior of the model. For example, the span
ently, the strong interactions in the theory are sufficient toof couplings fromB=1.1to 1.275 used in the fits here might
cause chiral symmetry breaking without confinement. We exbe outside the real critical region of the theory, which might
pect that the theory has a rich spectrum of bound states oextend only between 1.30 and 1.40. It might be that we need
the weak coupling side of the transition @&t 0.956 and\ data in this region to confirm that this model has the “ex-
=1.4, in accord with the physical picture of chiral symmetry pected” logarithmically trivial scaling laws, like the noncom-
breaking in Ref[13]. It might be informative to do spectrum pact model with four-Fermi termgl]. This possibility and
calculations in light of this result. It is very significant and other issues of “conventional wisdom” will be reviewed in
nontrivial that the chiral condensate does not vanish on th¢he section on conclusions below. At this point we will just
weak coupling side of the deconfinement transitiongat do what we can do and plot and fit the order parameter and
=0.956 and\=1.40. Chiral symmetry breaking observed susceptibility data where the finite size effects appear to be
here is not due to the four-Fermi interaction alone. We knowunder control.
from Ref.[4] that a much stronger four-Fermi interaction, In Fig. 2 we show the data on the chiral condensate fitted
G~2, is needed to break chiral symmetry in the absence ofvith a simple power lawg=A(8.— 8)#mas. The fit takes
gauge interactions. In addition, simulations of compact QEDthe data atB ranging from 1.1 through 1.275 and finds
with four species of staggered fermions but no four-FermiBmag=0.96(9) andB.=1.3931). Theconfidence level of
interaction[9] produced chiral condensates on the weak couthe fit is excellent, 89%, corresponding toyaper degree of
pling side of the transition which were consistent with zero.freedom of 1.12/4. The central value for the magnetic critical
Physical mechanisms that could be causing substantial chirakponents,,4 is unchanged by taking wider ranges of cou-
symmetry breaking in this region of the phase diagram willplings and even approaching the apparent critical point at
be discussed in the last section of this paper. B:.=1.393(1) more closely, but the confidence levels dete-

Returning to Fig. 2, we see that the chiral condensate fallsiorate. We had expected a logarithmically improved mean
essentially linearly in the gauge coupling=1/e? until a field fit here with the magnetic critical exponent near 1/2, as
chiral symmetry restoration transition is found in the vicinity was found in the noncompact QED casd 14, but there is
of B.=1.393(1) and\=1.4. As recorded in Table I, the no sign of that behavior. A value ¢@,,4=0.96(9) suggests
Monte Carlo statistics in this region of the phase diagrana nontrivial interacting theory, and is very perplexing, as will
were quite considerable on this “Bittice. Nonetheless, as be discussed in the concluding section below.
the critical point was approached, there were the usual We also accumulated the fluctuations in the order param-
troubles with with critical slowing down and tunnelling that eter, the susceptibility, as shown in Fig. 3. The values gf
hamper the predictive power of these results. Critical slowdin the immediate vicinity of3.=1.393(1) are certainly not
ing down causes the rising statistical error bars recorded ireliable because of finite size effects and tunnelling. How-
Table | asB approaches the transition. Tunnelling betweenever, the trend for the susceptibility to grow rapidly frggn
Z, vacua also became significant f6&1.29 and limited our =1.00 to 1.275 is clear and finite size effects appear to be
ability to simulate too close to the critical point. Notice that under control on the T6lattice over this limited range of
the four-Fermi term in the extended action is chosen to haveouplings. Therefore, we attempted power law fits to the data

05

Chiral Condensate
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50 T T T T T V. 16* SIMULATIONS AT FIXED B=1.00
sr 1 We also investigated the character of the monopole con-
dr . densation transition at a different point in the model’s two-
sk % % ] parameter coupling space by setting the gauge coupling to a
z } { weaker value=1.00, and varying\.. We started the simu-
g £l { lations at strong four-Fermi couplings, larg or small A
8 st % . =1/G, as given in Table Il. For example, at=0.20, the
Z ok % monopole concentratioM is large,M =0.848(3), and its
g { associated susceptibility is smally,=1.241). In addition,
O 15 1 the chiral order parameteris large, 2.90@1), at this param-
0| { . eter set and its susceptibility is modest, 335 indicating
sk = ¢ ] that the fermions are irrelevant to the long distance dynamics
s o g@? . . . in the model. Throughout the entire range, from 0.20
0 08 | 12 14 16 18 through 0.90 presented in Table II, the fermions remain very
Gauge Coupling massive. However, the monopole concentration experiences

a deconfinement transition nea# 0.5625. As shown in Fig.
FIG. 3. Chiral susceptibilityy vs gauge couplings at fixed 5, the transition appears to be a discontinuity, indicating a
four-Fermi coupling\ =1.4. 16' lattice. first order transition. In fact, power law fits to the monopole
concentration data neak=0.5625 of the form.C(A,
and in the next figure, Fig. 4, we show the reciprocal of the—A)#mene produced very small indices3mnone<0.10, and
susceptibility, y I, fitted to the data over the rangg  Very poor confidence levelsy”/DOF>1000. This result
=1.05 through 1.30y 1=B(8,— B)”. st_rongly suggests _tha_t thls transition |s_actually first order,
The fit is quite good, having a confidence level of 48%,Wlth a step discontinuity, in agreement with the results found

2 per degree of freedom (DOF)7.5/8. The critical index &t Weaker four-Fermi coupling,=1.4 and~0.956, dis-

o : _ cussed in the previous section.
::c;irtif:l;(le sgj;ﬁﬁgbi';'tﬁ;isr?:ﬁtgiotob;g_ :13;(9?{)1? n?t tiI;e Note from Table Il that huge statistics, more than 10 000
C_ . .

interesting thaty is far from its means field value of unit Monte Carlo time units, were accumulated near the transition
9 Y . . Y, to deal with the slow relaxation of the gauge fields using our
although our reservations about this data are the same as

reservations for the order parameter data and their fit. Weal, small change algorithm.

The possible physical significance of this result will be
discussed in the section on conclusions below. Since suscep- VI. CONCLUSIONS
tibilities typically are more sensitive to finite size effects than

the order parameter, it would be particularly informative to " .
repeat this simulation on a larger lattice and attempt to tractransmpns WOUIO.' _be very abrupt, perhaps first order, and_that
the chiral transitions would be described by mean field

the height of the susceptlblllt)_/ peak as a fant'On of Iatt'cetheory, decorated by the logarithms of triviality, as found in
size to determiney/v, wherev is the correlation length ex-

by finite i i hod the noncompact theoyl]. Our expectations for the mono-
ponent, by finite size scaling methods. pole transition held true, although it took orders of magni-

When we began this study we believed that the monopole

TABLE Il. Observables measured on a*léttice with gauge couplingg=1.0.

B o Xo M XM Trajectories
0.200 2.90®) 5.3575) 0.848@3) 1.241) 650
0.300 2.245Q8) 3.61(50 0.83414) 1.391) 550
0.400 1.827110) 3.7551) 0.79674) 1.8577) 2200
0.500 1.537(6) 3.3535) 0.73784) 2.7649) 12200
0.525 1.476(07) 2.7635) 0.68243) 3.7591) 9650
0.550 1.418(0b) 2.64(34) 0.61623) 5.191) 10200

0.5625 1.3839@) 3.1550) 0.035@3) 31.62) 6650
0.575 1.359%) 3.1745) 0.05325) 32.91) 11200
0.5875 1.332(6) 2.7545) 0.03513) 30.31) 8700

0.59375 1.318(®) 2.8336) 0.03726) 27.52) 10600
0.600 1.30865) 3.5835) 0.0851) 22.22) 6100
0.700 1.1238) 2.34(55) 0.01982) 18.547) 1700
0.800 0.9786@) 3.8545) 0.015G2) 15.337) 3800
0.900 0.84867) 3.05498) 0.01492) 13.3716) 2600
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FIG. 5. Monopole concentration vs four-Fermi coupling
FIG. 4. Reciprocal of the chiral susceptibilifyvs gauge cou- =1/G at fixed gauge coupling=1.00. 16 lattice.
pling 3 at fixed four-Fermi coupling = 1.4. 16 lattice. The dashed . ) )
line is the power law fit discussed in the text. screen the gauge couplings to zero leaving behind a Nambu—

Jona-Lasinio model that has no interactions in a relativistic

tude more computer time to come to a decisive conclusioncontinuum limit.
We believed that the chiral transition would be described by What could the explanation of the simulation results of
logarithmically improved mean field theory, as found for thethis study be? The obvious one is just that these results are
noncompact theory, because the monopole concentrationrong, in the sense that they are not indicative of the true
would be vanishingly small in the vicinity of the chiral tran- continuum limit of the theory. Perhaps if we could simulate
sition, the compact form of the action would become irrel-on larger lattices, closer to the critical point, we would find
evant, and the gauge field dynamics would reduce to photothat the true critical behavior is, indeed, logarithmically im-
exchanges, just as in the noncompact model. Only if wegroved mean field theory as was found by exactly the same
could somehow tune the two couplings to that region of thenethods for the noncompact gauged Nambu—-Jona-Lasinio
phase diagram where the first order confinementtheory[1]. Perhaps the region frofdi~1.00 to 1.3 at fixed
deconfinement transition met the continuous chiral transitior = 1.4 is outside the real scaling region and is strongly af-
did we believe there was any possibility of interesting physfected by irrelevant but large nonlinearities in the Wilson
ics. action for the compact gauge fields. It may be that much

So we are left with a puzzling result: The chiral transition larger lattices and much larger correlation lengths are needed
appears to have critical indices far from mean field theoryto find the true continuum behavior in this model due to
Just to illustrate and emphasize this point, assume hyperscalnusually large corrections to scaling for this particular ac-
ing and replace our numerical measurements of the criticaion.
indices with the integer prediction8,,,=1 andy=3 they We believe that these issues should be decided and our
are consistent with. Then the remaining critical indicesonly tool that avoids uncontrollable approximations is nu-
would bev=5/4, n=—2/5, §=11/4, anda= — 3. Are such  merical simulations. This is a pity. Even numerical methods
large deviations from mean field behavior possible? Wherare sorely taxed by this problem. Nonetheless, simulations
this model was studied in the limit of vanishing gauge cou-on larger lattices, closer to the continuum limit, are planned.
plings, the chiral transition was shown, both analytically Now that we know the interesting regions of the phase dia-
[14], and numericallyf4], to be described by logarithmically gram, we can focus in and, hopefully, get to the heart of the
improved mean field theory. The algorithm used here but fomatter more efficiently than in this exploratory, but time con-
vanishing gauge coupling gave results in fine agreement witesuming study.
1/N analyses. Even the exponents of the logarithms of trivi- Early analytic studies of the gauged Nambu—Jona-Lasinio
ality were compatible with theoretical expectations, evenmodel within a framework which included only ladder Feyn-
though logarithms that decorate power law scaling laws arenan diagramg15] and which explicitly excluded fermion
notoriously difficult to pin down. The extreme stability and vacuum polarization predicted a line of nontrivial chiral tran-
accuracy of the algorithm that uses the fermion dynamicasitions in the two-coupling phase diagram. It cannot be
mass to regulate it and guide it was cited as a reason for thigtressed too strongly, however, that this calculation was
numerical success. If the “results” of this paper are correctmeant as a model of technicolor interactions and was not a
then we must conclude that the critical indices of the chiralsolution of a field theory. It did not even include those ef-
transition vary as functions of and 8 and the four-Fermi fects, fermion loops and vacuum polarization, that are ex-
interaction is not irrelevant along the line of chiral transi- pected to render the theory trivial. However, other approxi-
tions. Conventional wisdom, based on perturbation theorymate approaches to this model which may account for
would say that fermion vacuum polarization would alwaysscreening to some degree have found a nontrivial line of
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chiral transitiong 16]. The reliability of this newer approxi- tivity of the vacuum. For a dilute background of monopole-
mate approach is doubtful, however, because it predicts, comntimonopole dipoles, each having a mean magnetic dipole
trary to the simulation results ¢fL], that even the noncom- moment ofu, one finds that=1+cpu?, wherec is a posi-
pact gauged Nambu—Jona-Lasinio model is nontrivial. Théive constant ang is the density of the magnetic dipoles.
work reported here and in RéfL] indicates that the noncom- The bound monopole-antimonopole strands could be a can-
pact model is logarithmically trivial while the compact didate mechanism for cancelling the screening provided by
model may not be, contrary {d6]. the light fermion-antifermion pairs.

Let us end this discussion with some speculations which Other ideas concerning screening and antiscreening in
could guide the next generation of simulations planned focompact gauge theories, such as “collapse of the wave func-
this model. Suppose that the preliminary results presentetion” and “catalysis of symmetry breaking[18], ideas in-
here are basically correct. What sort of physical excitation$pired by monopole-induced proton dedd], should be
and interactions could support these results and how coulgonsidered in this framework again and might be ingredients
they be discovered in the course of a numerical study? Thi a successful quantitative implementation of the monopole-
middle region of Fig. 2 extending from the confinement-antimonopole scenario suggested here.
deconfinement transition #=0.956 to the chiral transiton ~ Apparently there is still much to learn in this difficult
at B=1.393 needs clarification. In this regidgy) is non-  Subiect of strongly coupled gauge theories. Luckily, ad-
zero while the monopole concentratibhvanishes. Conven- Yances in computer simulation power make many of these

tional wisdom suggests that the confinement-deconfinemergSUes testable in the next round of investigations. In particu-
transition is a four-dimensional generalization of the lar, we plan measurements of the vacuum permittijtyhe

Kosterlitz-Thouless transitiofi. 7] which describes the two- fe"‘or_ma"zefj electric charge an_d the renorma}llzeq f_our-
dimensional planar spin model. In the two-dimensional”€'™Mi coupling, the monopole-antimonopole spatial distribu-
Kosterlitz-Thouless transition a state of vortex-antivortex o7 I the vicinity of an external charge, etc. Measurements

“molecules” ionizes and forms a plasma of vortices and an-Of the chiral condensate will be supplemented with measure-
tivortices. In four-dimensional pure compact QED, the Mments of the eigenvalue spectrum of the Dirac operator and

confinement-deconfinement transition should be driven byhe refiability of the algorithm with the four-Fermi term will

the ionization of strands of bound monopole-antimonopol estu?ed in greater clie'gan.l o b de. Th
loops into a plasma of unbound individual loops of mono- . P€rhaps some analytical progress can also be made. The

poles and loops of antimonopoles that causes confinemeftirac quantization condition, electric-magnetic duality trans-
through the formation of electric flux tub§s1] formations, and other ingredients of quantum electromagne-

If the region of the phase diagram shown in Fig. 2 rea”ytodynamics[zo] might be considered in this framework of

consists of bound monopole-antimonopole strands, then wahiral symmetry breaking.
have a hint how the short distance properties of this theory
can be qualitatively different from noncompact QED. In par-

ticular, the monopole-antimonopole pairs, which can existin  J.B.K. was partially supported by NSF under grant NSF-

the compact model but not in the noncompact one, provide 8HY01-02409 and C.G.S. was supported by a Leverhulme
medium that antiscreens electric charge. In classical electrofrust grant. The simulations were done at NPACI and

dynamics, such an environment raises the fundamental eleR¥ERSC. Special thanks go to NERSC for their long-term

tric charge of an impurite? to ee?, wheree is the permit-  support.
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