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Phase diagram of compact QED coupled to a four-Fermi interaction
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Compact lattice quantum electrodynamics with four species of fermions is simulated with massless quarks
by adding a four-Fermi interaction to the action. Simulations in the chiral limit are done on 84 lattices for
exploratory purposes, and 164 lattices for quantitative purposes, and the phase diagram, parametrized by the
gauge and the four-Fermi couplings, is mapped out. The line of monopole condensation transitions is separate
from the line of chiral symmetry restoration as long as the four-Fermi coupling is not too small. The simulation
results indicate that the monopole condensation transition is first order while the chiral transition is second
order. The challenges in determining the universality class of the chiral transition are discussed. If the scaling
region for the chiral transition is sufficiently wide, the 164 simulations predict critical indices far from mean
field values. We briefly discuss a speculative scenario in which antiscreening provided by strands of bound
monopole and antimonopole loops is the agent that balances the screening of fermion-antifermion pairs to
produce ultraviolet stable fixed points.
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I. INTRODUCTION

The coupled system of four-Fermi interactions and Ab
lian gauge fields has been of interest to model builders, p
nomenologists, and theorists for some time. In the contex
noncompact lattice QED, this approach has been use
show the logarithmic triviality of noncompact QED with dy
namical fermions@1#.

In this paper we study the compact version of the mod
We are particularly interested in the chiral transition and
scaling properties as well as the model’s magnetic mo
poles and their possible effect on the continuum limit of t
chiral transition. The compact version of QED with dynam
cal fermions has not been studied as well as the noncom
version of the model. The model will be simulated using t
hybrid molecular dynamics~HMD! algorithm @2#.

The compact version of four-flavor QED has interactio
coming from photons and magnetic monopoles coded
the compact gauge fields. By adding a four-Fermi interact
which preserves a piece of the chiral symmetry of the ma
less model, we can study light fermions directly on the latt
and see how fermion charge screening affects the dynam
The four-Fermi interaction also gives us the opportunity
separate the chiral transition of the model from its confi
ment or deconfinement transition which is controlled
monopole condensation.

It is crucial in all of this that fermion screening be a
counted for accurately and realistically. It is inappropriate
make any simplifications here because the character of
mion screening is not understood outside perturbation the
Some unbiased simulation studies are called for to see if
example, the antiscreening due to magnetic monopoles
balance the screening due to fermion loops and lead to u
violet stable fixed points@3#. This need further motivates u
to consider the version of the model with an explicit fou
Fermi interaction because then no bare fermion mas
0556-2821/2003/67~3!/034504~8!/$20.00 67 0345
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needed to ensure convergence of the algorithm@4# and we
are guaranteed that the fermions remain light even on
strongly cutoff lattice.

Our lattice model has two couplings: the convention
gauge coupling of compact QED and the four-Fermi co
pling of the Nambu–Jona-Lasinio term. The uncoupled v
sions of compact QED and the Nambu–Jona-Lasinio mod
have been studied by lattice gauge theory methods and
siderable quantitative information is available to guide t
study. We shall find two lines of transitions in the two
dimensional coupling constant parameter space of the c
pact QED-gauged Nambu–Jona-Lasinio model. One line
associated with monopole condensation and the other
chiral symmetry breaking. Long runs on fairly large lattice
164, indicate that the monopole condensation transition
first order. A finite size scaling analysis of this transition
necessary to state this result with ‘‘absolute’’ certainty a
such a study must await more computer resources. Sim
tions on 244 and 324 are in the planning stages. Howeve
much more intensive recent studies which determined
scaling behavior of the latent heat@5# have produced quite
decisive evidence for the first order character of this tran
tion in the theory without fermions. Although our major co
cern here focuses on the chiral transition, which has not b
studied quantitatively before, it is a good test of our metho
and statistics that our data on the confinement-deconfinem
transition are very abrupt and favor first order.

The line of chiral transitions is distinct from the line o
monopole transitions as long as the four-Fermi term is
too small. One point along the line of chiral transitions
studied in detail to determine the character of the chiral tr
sition. This work parallels recent studies of the noncomp
version of the model which concluded that the chiral tran
tion was logarithmically trivial@1#. Conventional ‘‘wisdom’’
would suggest the same result here, since the monopole
centration vanishes on the line of chiral transitions. Howev
©2003 The American Physical Society04-1
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this result is far from clear in our numerical work. The be
fits to the chiral condensate and its associated susceptib
are compatible with power laws of a second order transiti
but the critical indices are far from the expected mean fi
values. Unfortunately, the immediate vicinity of the critic
point cannot be well studied on this size lattice, 164, because
of finite size effects, so the simulations reported here mi
not be registering the real continuum scaling laws of
theory. Simulations on larger lattices closer to the criti
point are required and studies on 244 and 324 lattices are
planned.

This paper is organized as follows. In the next section
present the formulation of the lattice action and discuss
symmetries and general features. In the third section
sketch the phase diagram and in the fourth section, the h
of the paper, we examine several points in the phase diag
in detail and come to preliminary quantitative conclusio
about the first order character of the monopole condensa
transition and the second order character of the chiral tra
tion. In the fifth section we comment on the puzzling natu
of the results, briefly present a physical picture of a no
trivial chiral transition in which antiscreening due to e
twined loops of magnetic monopoles and antimonopoles
ances screening due to fermion-antifermion pairs, a
suggest further research.

II. FORMULATION

To begin, consider the Abelian-gauged Nambu–Jo
Lasinio model with four species of fermions. The Lagrang
for the continuum gauged Nambu–Jona-Lasinio model is

L5c̄~ ig]2egA2m!c2
1

2
G~ c̄c!22

1

4
F2. ~1!

The Lagrangian has an electromagnetic interaction w
continuous chiral invariance (c→eiatg5c, where t is the
appropriate flavor matrix! and a four-Fermi interaction with
discrete (Z2) chiral invariance (c→g5c). The mass term
mc̄c breaks the chiral symmetries and will be set to zero
much of the work that folows. The pure Nambu–Jon
Lasinio model has been solved at largeN by gap equation
methods@6#, and an accurate simulation study of it has be
presented@4#. The discrete (Z2) chiral invariant action pro-
duces a particularly efficient algorithm. Full chiral symmet
should be restored naturally in the continuum limit in tho
regions of the parameter space where the four-Fermi t
proves to be irrelevant. The action withZ2 chiral symmetry
is preferable for simulation studies over models with co
tinuous chiral symmetry because the latter are not as
ciently simulated due to massless modes in the strongly
off theory.

It is useful to introduce an auxiliary random fields by
adding 2(G/2)@(c̄c)2s/G#2 to the Lagrangian. This
makes the Lagrangian a quadratic form in the fermion fi
so it can be analyzed and simulated by conventio
methods. The model is then discretized by using stagge
fermions.
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The lattice action reads, in the case where the gauge s
metry is interpreted as a compact local U~1! symmetry, fol-
lowing Wilson’s original proposal@7#,

S5(
x,y

c̄~x!~Mxy1Dxy!c~y!1
1

2G (
x̃

s2~ x̃!

1
1

2e2 (
x,m,n

$12cos@Fmn~x!#% ~2!

where

Fmn~x!5um~x!1un~x1m̂ !1u2m~x1m̂1 n̂ !1u2n~x1 n̂ !,

~3!

Mxy5S m1
1

16 (
^x,x̃&

s~ x̃! D dxy , ~4!

Dxy5
1

2 (
m

hm~x!~eium~x!dx1m̂,y2e2 ium~y!dx2m̂,y!, ~5!

wheres is an auxiliary scalar field defined on the sites of t
dual latticex̃ @8#, and the symbol̂x,x̃& denotes the set of the
16 lattice sites surrounding the direct sitex. The factors
e6 ium are the gauge connections andhm(x) are the staggered
phases, the lattice analogues of the Dirac matrices.c is a
staggered fermion field andm is the bare fermion mass
which will be set to 0. Note that the lattice expression f
Fmn is the circulation of the lattice fieldum around a closed
plaquette, the gauge field couples to the fermion fi
through compact phase factors to guarantee local gauge
variance, and cosFmn enters the action to make it compact

It will often prove convenient to parametrize results wi
the inverse of the four-Fermi coupling,l[1/G, and the in-
verse of the square of the gauge coupling,b[1/e2.

The global discrete chiral symmetry of the action read

c~x!→~21!x11x21x31x4c~x!, ~6!

c̄~x!→2c̄~x!~21!x11x21x31x4, ~7!

s→2s, ~8!

where (21)x11x21x31x4 is the lattice representation ofg5 .
As we mentioned, interesting limiting cases of the abo

action are~1! the Z2 Nambu–Jona-Lasinio model with n
gauge fields, which has a chiral phase transition atG
.2.0(1) @4#; ~2! the compact QED model with no four
Fermi interactions, whose first order chiral phase transitio
coincident with its first order monopole condensation tran
tion nearb[1/e2'0.89(1) for four flavors@9#; and ~3! the
G→` case in which the fermions obtain a dynamical ma
comparable to the reciprocal of the lattice spacing and th
fore decouple, leaving quenched compact QED which ha
first order transition atb51.011124(1)@5#.

The lattice simulation code is very similar to others in th
program. The systematic step size errors, those varying
dt2, the discretization of the molecular dynamics evoluti
equations in HMD ‘‘time’’ t, have been studied in the pa
4-2
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and are understood@4,1#. Taking dt<0.01 produced chira
condensates whose systematic errors were conside
smaller than their statistical errors. Other algorithmic pro
lems, such as finite size effects, tunnelling, and long corr
tion times were monitored carefully in the runs and will
discussed below when appropriate.

III. PHASE DIAGRAM

Our first task was to map out the two-dimensional para
eter space (b,G) using the hybrid molecular dynamics alg
rithm tuned for four continuum fermion species@2#. We mea-
sured the chiral condensate and its susceptibility and
monopole concentration and its susceptibility as a funct
of b and G on an 84 lattice. These observables have be
discussed extensively in the literature and we refer the re
to @9,10# for background. The expectation value of the fields

is proportional toc̄c in these models and serves as its chi
order parameter.

The 84 simulations were done simply to explore the pha
diagram and prepare for the more quantitative 164 simula-
tions that will be analyzed below. We know from past relat
studies@4# that 84 lattices are not large enough for finite siz
scaling analyses or other quantitative purposes, so these
will not be presented in detail.

For very smallG the chiral transition and the monopo
condensation transition were coincident to the accuracy
resolution of our survey. Abrupt jumps in the order para
eters were measured and were interpreted as signalling
order transitions. Earlier studies of compact QED with
four-Fermi interactions@9# presented evidence for first orde
coincident chiral and monopole condensation transitions
good agreement with this study.

As G was increased from zero, we found that the line
chiral transitions and the line of monopole condensat
transitions become clearly distinct. We will show measu
ments at fixedl51/G51.40 and variableb on a 164 lattice
which will make this point very clear. In particular, settin
l51/G51.40 and then increasingb in small steps from the
strong coupling region ofb!1.0, we shall see good ev
dence for an abrupt transition in the monopole concentra
M at b'0.95. M is large, approximately 0.87, atb
50.953125 andl51.40, while it is small, approximately
0.018, atb50.9625 andl51.40. Throughout this region o
the phase diagram, the chiral condensates is distinctly non-
zero, so the system resides in the chirally broken phase e
thoughM vanishes. The chiral order parameters does, how-
ever, experience a jump froms'0.55 atb50.953125 and
l51.40 to s'0.44 atb50.9625 andl51.40, indicating
that free monopoles do contribute to chiral symmetry bre
ing, as expected, but the gauge coupling is sufficiently la
in this case that chiral symmetry breaking occurs even w
out the active participation of free monopoles. In fact, asb
increases further at fixedl51.40,s falls slowly and it is not
until b'1.393 that it vanishes. The vanishing appears to
continuous. The chiral transition will be discussed in mo
detail below. However, it was easy to determine that
chiral transition occurs at a smaller gauge couplinge2 at
fixed l51.40 than the confinement-deconfinement tran
03450
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tion, and the two transitions, whatever their orders, are se
rate and distinct.

The line of chiral symmetry breaking transitions conti
ues to largerG and higherb from the pointl51/G51.40
and b51.393 studied carefully here. We know from prev
ous work@4# that the four-Fermi coupling alone breaks chir
symmetry at strong coupling,G'2.0. Those studies of the
four-Fermi model were done with care and the logarithm
triviality of the Nambu–Jona-Lasinio model was confirme
This established that the four-Fermi interaction is indeed
relevant if gauge fields are absent.

The first order line of monopole condensation transitio
extends to higherG from the point l51/G51.40 andb
50.956 emphasized here. In fact it moves to only sligh
weaker couplinge asG grows large. We will study it care-
fully by simulating the two-coupling model at fixedb51.0
and variableG and find evidence for a first order monopo
condensation point atb51.0 andG'1.8 whereM jumps
discontinuously from zero to a large value. We will see thas
is large and stable in the vicinity of this monopole conde
sation point, on both sides of it. Therefore, the fermions ha
an effective mass comparable to the cutoff energy and sh
decouple from continuum physics, if there is any, in t
model. In any case, the model should not be significan
different from compact QED without fermions and its mon
pole condensation should be essentially the same as in
model with only gauge fields. We support the view that t
monopole condensation transition, which also signals
confinement-deconfinement transition in the gauge the
without fermions, is first order. Recent simulations of co
pact QED without fermions, which do careful finite size sc
ing studies, have provided quantitative, convincing evide
for this result@5#.

IV. 164 SIMULATIONS AT FIXED lÄ1.4

Consider the observables, the chiral condensate and
susceptibility and the monopole concentration and its susc
tibility, as recorded in Table I. In this case the strength of
four-Fermi interaction is set to a constantl51.4 and the
gauge coupling varies. At strong gauge coupling, chiral sy
metry is spontaneously broken and the monopole conden
is large and near its saturation value of unity. Both the ch
condensate and the monopole concentrations are hardly
tuating at b in the vicinity of 0.90 since their respectiv
susceptibilities are relatively tiny there. However, there is
clear jump in the monopole concentration to ‘‘zero’’ atb
'0.956 and the chiral condensate experiences a discon
ity here also, but it does not vanish. The chiral condens
will be discussed below. Here we concentrate on the mo
pole physics first although the chiral transition is the re
focus and the original contribution of this work.

Conventional wisdom states that the transition atl51.4
and b'0.956 corresponds to confinement-deconfineme
On the strong coupling side of this point there is a monop
condensate which causes confinement@11# in the sense tha
all the physical states are neutral and the electric charge
good quantum number. In such a phase one expects and
chiral symmetry breaking. In Fig. 1 we show the monopo
4-3
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TABLE I. Observables measured on a 164 lattice with four-Fermi couplingl51/G51.4.

b s xs M xM Trajectories

0.800 0.6556~10! 1.43~20! 0.99067~2! 0.451~2! 1500
0.900 0.6153~10! 1.61~23! 0.96809~5! 0.1787~4! 2550
0.950 0.5614~10! 2.05~40! 0.8890~2! 0.809~2! 2500

0.953125 0.5519~18! 6.11~50! 0.8708~2! 0.991~3! 3350
0.95625 0.4674~10! 3.21~52! 0.263~1! 27.6~3! 4350
0.9625 0.4416~15! 6.23~55! 0.0179~1! 16.52~4! 5100
0.975 0.4182~18! 2.49~47! 0.0423~6! 16.0~1! 1000
0.9875 0.4039~21! 3.35~50! 0.0661~5! 18.6~2! 1100
1.000 0.3822~10! 4.32~53! 0.0214~1! 9.00~1! 8200
1.050 0.3244~15! 4.52~37! 0.0001~1! 6.082~6! 2700
1.100 0.2798~10! 7.80~56! 0.0001~1! 5.352~3! 14150
1.150 0.2346~15! 11.2~1.0! 0.0001~1! 6.17~2! 6600
1.200 0.1856~15! 18.37~1.6! 0.0001~1! 4.751~2! 10900
1.225 0.1630~21! 25.58~2.4! 0.0001~1! 4.678~4! 7100
1.250 0.1394~18! 23.41~2.1! 0.0001~1! 4.601~3! 8400
1.2625 0.1281~27! 28.51~2.9! 0.0001~1! 4.568~4! 6000
1.275 0.1153~27! 41.67~4.6! 0.0001~1! 4.539~4! 5200
1.2875 0.0997~24! 37.03~3.7! 0.0001~1! 4.511~4! 4600
1.29375 0.0897~25! 40.0~4.3! 0.0001~1! 4.501~5! 5400
1.300 0.092~5! 50.0~6.5! 0.0001~1! 4.487~4! 5300
1.350 0.042~5! 35.7~4.1! 0.0001~1! 4.413~6! 4000
1.400 20.021~5! 35.6~3.7! 0.0001~1! 4.356~6! 5000
1.500 20.024~7! 29.5~5.1! 0.0001~1! 4.26~1! 2200
1.600 20.005~5! 33.6~4.2! 0.0001~1! 4.194~9! 5850
1.700 20.005~5! 31.5~3.7! 0.0001~1! 4.17~2! 2400
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concentration as a function ofb and suggest that there is
discontinuity in the graph.

Attempts to fit the concentration data with a power la
that would be indicative of a steep but continuous transit
failed badly. For example, a power law fit of the standa
variety, A(bc2b)bmono, to the points betweenb50.90 and
b50.95625 had ax2 per degree of freedom in excess of 3
and an exponentbmono,0.025. The fit strongly suggests th

FIG. 1. Monopole concentration vs gauge couplingb at fixed
four-Fermi couplingl51.4. 164 lattice.
03450
n

a step function discontinuity is preferred as shown in
figure.

Additional qualitative evidence for the first order chara
ter of the transition comes from the monopole susceptibil
We see in Table I thatxM is highly spiked at the transition
jumping from 0.991~3! at b50.953125 to 27.6~3! at b
50.95625 and then falling to 16.52~4! on the weak coupling
side of the transition atb50.9625. This suggests that th
real susceptibility is a delta function in the large volum
thermodynamic limit. To really establish this claim, on
would need a finite size study to monitor the size of t
transition region and the height of the susceptibility curves
a function of volume.

Now consider the major focus of this paper, the chi
transition at fixedl51.4. The raw data are shown in Table
and are plotted in Fig. 2

At strong coupling chiral symmetry is strongly broke
and the chiral condensate is large and does not fluctuate
verely. As in past studies, it proves convenient to moni
chiral symmetry breaking through the vacuum expectat
value of the auxiliary fields @4,12,1#. The quark-antiquark
bilinear was also calculated in the simulation and is prop
tional tos, in accordance with the theory’s equations of m
tion @12#.

The first interesting feature of this figure is the jump
the chiral condensate atb50.956, at the same point wher
the monopole concentration fell to zero. The fact that Fig
4-4
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has a jump atb50.956 is further support for the first orde
character of the deconfinement transition there. It is also
teresting that the chiral condensate does not vanish on
weak coupling side of the deconfinement transition. App
ently, the strong interactions in the theory are sufficient
cause chiral symmetry breaking without confinement. We
pect that the theory has a rich spectrum of bound state
the weak coupling side of the transition atb50.956 andl
51.4, in accord with the physical picture of chiral symme
breaking in Ref.@13#. It might be informative to do spectrum
calculations in light of this result. It is very significant an
nontrivial that the chiral condensate does not vanish on
weak coupling side of the deconfinement transition atb
50.956 andl51.40. Chiral symmetry breaking observe
here is not due to the four-Fermi interaction alone. We kn
from Ref. @4# that a much stronger four-Fermi interactio
G'2, is needed to break chiral symmetry in the absence
gauge interactions. In addition, simulations of compact Q
with four species of staggered fermions but no four-Fe
interaction@9# produced chiral condensates on the weak c
pling side of the transition which were consistent with ze
Physical mechanisms that could be causing substantial c
symmetry breaking in this region of the phase diagram w
be discussed in the last section of this paper.

Returning to Fig. 2, we see that the chiral condensate f
essentially linearly in the gauge couplingb51/e2 until a
chiral symmetry restoration transition is found in the vicin
of bc51.393(1) andl51.4. As recorded in Table I, the
Monte Carlo statistics in this region of the phase diagr
were quite considerable on this 164 lattice. Nonetheless, a
the critical point was approached, there were the us
troubles with with critical slowing down and tunnelling th
hamper the predictive power of these results. Critical slo
ing down causes the rising statistical error bars recorde
Table I asb approaches the transition. Tunnelling betwe
Z2 vacua also became significant forb>1.29 and limited our
ability to simulate too close to the critical point. Notice th
the four-Fermi term in the extended action is chosen to h

FIG. 2. Chiral condensates vs gauge couplingb at fixed four-
Fermi couplingl51.4. 164 lattice. The dashed line is the powe
law fit discussed in the text.
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a Z2 chiral symmetry which is spontaneously broken whens
develops a vacuum expectation value. This symmetry w
chosen for the four-Fermi term because it is particularly e
to simulate and extract observables. In particular, as long

the theory resides in a particular chiral vacuum,s and c̄c
can be measured directly, without the need for insertin
small bare fermion mass into the theory to pick out a uniq
vacuum state. This is a great advantage because a bare
mion mass breaks chiral symmetry explicitly and leads
‘‘rounding’’ of the transition which makes quantitative stud
ies of the transition and its universality class very difficul

The tunnelling between the twoZ2 vacua,s→2s, limits
our approach to the critical point and appears to be the m
damaging finite size effect we must deal with. Simulatio
are planned on larger lattices to lessen it. Of course,
simulations of this study on a 164 lattice with high statistics
represent a serious first step in this program.

Examining Table I, we note that the error bars in thes
andx data are particularly large forb between 1.30 and 1.40
reflecting the occasional, every thousand or so time interv
tunnelling betweenZ2 vacua. The data for these points w
not be used in the fits quoted here. Unfortunately, omitt
these data means that this simulation may not be sensitiv
the real critical behavior of the model. For example, the sp
of couplings fromb51.1 to 1.275 used in the fits here mig
be outside the real critical region of the theory, which mig
extend only between 1.30 and 1.40. It might be that we n
data in this region to confirm that this model has the ‘‘e
pected’’ logarithmically trivial scaling laws, like the noncom
pact model with four-Fermi terms@1#. This possibility and
other issues of ‘‘conventional wisdom’’ will be reviewed i
the section on conclusions below. At this point we will ju
do what we can do and plot and fit the order parameter
susceptibility data where the finite size effects appear to
under control.

In Fig. 2 we show the data on the chiral condensate fit
with a simple power law,s5A(bc2b)bmag. The fit takes
the data atb ranging from 1.1 through 1.275 and find
bmag50.96(9) andbc51.393(1). The confidence level of
the fit is excellent, 89%, corresponding to ax2 per degree of
freedom of 1.12/4. The central value for the magnetic criti
exponentbmag is unchanged by taking wider ranges of co
plings and even approaching the apparent critical poin
bc51.393(1) more closely, but the confidence levels de
riorate. We had expected a logarithmically improved me
field fit here with the magnetic critical exponent near 1/2,
was found in the noncompact QED case in@1#, but there is
no sign of that behavior. A value ofbmag50.96(9) suggests
a nontrivial interacting theory, and is very perplexing, as w
be discussed in the concluding section below.

We also accumulated the fluctuations in the order para
eter, the susceptibilityx, as shown in Fig. 3. The values ofx
in the immediate vicinity ofbc51.393(1) are certainly no
reliable because of finite size effects and tunnelling. Ho
ever, the trend for the susceptibility to grow rapidly fromb
51.00 to 1.275 is clear and finite size effects appear to
under control on the 164 lattice over this limited range o
couplings. Therefore, we attempted power law fits to the d
4-5
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and in the next figure, Fig. 4, we show the reciprocal of
susceptibility, x21, fitted to the data over the rangeb
51.05 through 1.30,x215B(bc2b)g.

The fit is quite good, having a confidence level of 48
x2 per degree of freedom (DOF)57.5/8. The critical index
for the susceptibility is predicted to beg53.1(3) and the
critical coupling is again found to bebc51.393(1). It is
interesting thatg is far from its means field value of unity
although our reservations about this data are the same a
reservations for the order parameter data and their fit.

The possible physical significance of this result will
discussed in the section on conclusions below. Since sus
tibilities typically are more sensitive to finite size effects th
the order parameter, it would be particularly informative
repeat this simulation on a larger lattice and attempt to tr
the height of the susceptibility peak as a function of latt
size to determineg/n, wheren is the correlation length ex
ponent, by finite size scaling methods.

FIG. 3. Chiral susceptibilityx vs gauge couplingb at fixed
four-Fermi couplingl51.4. 164 lattice.
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V. 164 SIMULATIONS AT FIXED bÄ1.00

We also investigated the character of the monopole c
densation transition at a different point in the model’s tw
parameter coupling space by setting the gauge coupling
weaker value,b51.00, and varyingl. We started the simu-
lations at strong four-Fermi couplings, largeG or small l
51/G, as given in Table II. For example, atl50.20, the
monopole concentrationM is large,M50.8480(3), and its
associated susceptibility is small,xM51.24(1). In addition,
the chiral order parameters is large, 2.909~1!, at this param-
eter set and its susceptibility is modest, 5.35~5!, indicating
that the fermions are irrelevant to the long distance dynam
in the model. Throughout the entirel range, from 0.20
through 0.90 presented in Table II, the fermions remain v
massive. However, the monopole concentration experien
a deconfinement transition nearl50.5625. As shown in Fig.
5, the transition appears to be a discontinuity, indicating
first order transition. In fact, power law fits to the monopo
concentration data nearl50.5625 of the form. C(lc
2l)bmono produced very small indices,bmono,0.10, and
very poor confidence levels,x2/DOF.1000. This result
strongly suggests that this transition is actually first ord
with a step discontinuity, in agreement with the results fou
at weaker four-Fermi coupling,l51.4 andb'0.956, dis-
cussed in the previous section.

Note from Table II that huge statistics, more than 10 0
Monte Carlo time units, were accumulated near the transi
to deal with the slow relaxation of the gauge fields using o
local, small change algorithm.

VI. CONCLUSIONS

When we began this study we believed that the monop
transitions would be very abrupt, perhaps first order, and
the chiral transitions would be described by mean fi
theory, decorated by the logarithms of triviality, as found
the noncompact theory@1#. Our expectations for the mono
pole transition held true, although it took orders of mag
TABLE II. Observables measured on a 164 lattice with gauge couplingb51.0.

b s xs M xM Trajectories

0.200 2.909~2! 5.35~75! 0.8480~3! 1.24~1! 650
0.300 2.2450~18! 3.61~50! 0.8341~4! 1.39~1! 550
0.400 1.8271~10! 3.75~51! 0.7967~4! 1.857~7! 2200
0.500 1.5370~6! 3.35~35! 0.7378~4! 2.762~8! 12200
0.525 1.4760~7! 2.76~35! 0.6824~3! 3.75~1! 9650
0.550 1.4180~5! 2.64~34! 0.6162~3! 5.19~1! 10200
0.5625 1.3839~7! 3.15~50! 0.0350~3! 31.6~2! 6650
0.575 1.3592~6! 3.17~45! 0.0532~5! 32.8~1! 11200
0.5875 1.3327~6! 2.75~45! 0.0351~3! 30.3~1! 8700
0.59375 1.3180~5! 2.83~36! 0.0372~6! 27.5~2! 10600
0.600 1.3086~6! 3.58~35! 0.085~1! 22.2~2! 6100
0.700 1.1233~8! 2.34~55! 0.0198~2! 18.54~7! 1700
0.800 0.9784~8! 3.85~45! 0.0150~2! 15.33~7! 3800
0.900 0.8485~7! 3.05~48! 0.0149~2! 13.37~6! 2600
4-6
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tude more computer time to come to a decisive conclus
We believed that the chiral transition would be described
logarithmically improved mean field theory, as found for t
noncompact theory, because the monopole concentra
would be vanishingly small in the vicinity of the chiral tran
sition, the compact form of the action would become irr
evant, and the gauge field dynamics would reduce to pho
exchanges, just as in the noncompact model. Only if
could somehow tune the two couplings to that region of
phase diagram where the first order confineme
deconfinement transition met the continuous chiral transi
did we believe there was any possibility of interesting ph
ics.

So we are left with a puzzling result: The chiral transiti
appears to have critical indices far from mean field theo
Just to illustrate and emphasize this point, assume hyper
ing and replace our numerical measurements of the crit
indices with the integer predictionsbmag51 andg53 they
are consistent with. Then the remaining critical indic
would ben55/4, h522/5, d511/4, anda523. Are such
large deviations from mean field behavior possible? Wh
this model was studied in the limit of vanishing gauge co
plings, the chiral transition was shown, both analytica
@14#, and numerically@4#, to be described by logarithmicall
improved mean field theory. The algorithm used here but
vanishing gauge coupling gave results in fine agreement
1/N analyses. Even the exponents of the logarithms of tr
ality were compatible with theoretical expectations, ev
though logarithms that decorate power law scaling laws
notoriously difficult to pin down. The extreme stability an
accuracy of the algorithm that uses the fermion dynam
mass to regulate it and guide it was cited as a reason for
numerical success. If the ‘‘results’’ of this paper are corre
then we must conclude that the critical indices of the ch
transition vary as functions ofl and b and the four-Fermi
interaction is not irrelevant along the line of chiral tran
tions. Conventional wisdom, based on perturbation the
would say that fermion vacuum polarization would alwa

FIG. 4. Reciprocal of the chiral susceptibilityx vs gauge cou-
pling b at fixed four-Fermi couplingl51.4. 164 lattice. The dashed
line is the power law fit discussed in the text.
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screen the gauge couplings to zero leaving behind a Nam
Jona-Lasinio model that has no interactions in a relativis
continuum limit.

What could the explanation of the simulation results
this study be? The obvious one is just that these results
wrong, in the sense that they are not indicative of the t
continuum limit of the theory. Perhaps if we could simula
on larger lattices, closer to the critical point, we would fin
that the true critical behavior is, indeed, logarithmically im
proved mean field theory as was found by exactly the sa
methods for the noncompact gauged Nambu–Jona-Las
theory @1#. Perhaps the region fromb'1.00 to 1.3 at fixed
l51.4 is outside the real scaling region and is strongly
fected by irrelevant but large nonlinearities in the Wils
action for the compact gauge fields. It may be that mu
larger lattices and much larger correlation lengths are nee
to find the true continuum behavior in this model due
unusually large corrections to scaling for this particular a
tion.

We believe that these issues should be decided and
only tool that avoids uncontrollable approximations is n
merical simulations. This is a pity. Even numerical metho
are sorely taxed by this problem. Nonetheless, simulati
on larger lattices, closer to the continuum limit, are plann
Now that we know the interesting regions of the phase d
gram, we can focus in and, hopefully, get to the heart of
matter more efficiently than in this exploratory, but time co
suming study.

Early analytic studies of the gauged Nambu–Jona-Las
model within a framework which included only ladder Fey
man diagrams@15# and which explicitly excluded fermion
vacuum polarization predicted a line of nontrivial chiral tra
sitions in the two-coupling phase diagram. It cannot
stressed too strongly, however, that this calculation w
meant as a model of technicolor interactions and was n
solution of a field theory. It did not even include those e
fects, fermion loops and vacuum polarization, that are
pected to render the theory trivial. However, other appro
mate approaches to this model which may account
screening to some degree have found a nontrivial line

FIG. 5. Monopole concentration vs four-Fermi couplingl
51/G at fixed gauge couplingb51.00. 164 lattice.
4-7
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chiral transitions@16#. The reliability of this newer approxi-
mate approach is doubtful, however, because it predicts,
trary to the simulation results of@1#, that even the noncom
pact gauged Nambu–Jona-Lasinio model is nontrivial. T
work reported here and in Ref.@1# indicates that the noncom
pact model is logarithmically trivial while the compa
model may not be, contrary to@16#.

Let us end this discussion with some speculations wh
could guide the next generation of simulations planned
this model. Suppose that the preliminary results presen
here are basically correct. What sort of physical excitatio
and interactions could support these results and how c
they be discovered in the course of a numerical study?
middle region of Fig. 2 extending from the confinemen
deconfinement transition atb50.956 to the chiral transition
at b51.393 needs clarification. In this region^c̄c& is non-
zero while the monopole concentrationM vanishes. Conven
tional wisdom suggests that the confinement-deconfinem
transition is a four-dimensional generalization of t
Kosterlitz-Thouless transition@17# which describes the two
dimensional planar spin model. In the two-dimension
Kosterlitz-Thouless transition a state of vortex-antivort
‘‘molecules’’ ionizes and forms a plasma of vortices and a
tivortices. In four-dimensional pure compact QED, t
confinement-deconfinement transition should be driven
the ionization of strands of bound monopole-antimonop
loops into a plasma of unbound individual loops of mon
poles and loops of antimonopoles that causes confinem
through the formation of electric flux tubes@11#.

If the region of the phase diagram shown in Fig. 2 rea
consists of bound monopole-antimonopole strands, then
have a hint how the short distance properties of this the
can be qualitatively different from noncompact QED. In p
ticular, the monopole-antimonopole pairs, which can exis
the compact model but not in the noncompact one, provid
medium that antiscreens electric charge. In classical elec
dynamics, such an environment raises the fundamental e
tric charge of an impuritye2 to ee2, wheree is the permit-
ar

,
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tivity of the vacuum. For a dilute background of monopol
antimonopole dipoles, each having a mean magnetic dip
moment ofm, one finds thate511crm2, wherec is a posi-
tive constant andr is the density of the magnetic dipole
The bound monopole-antimonopole strands could be a c
didate mechanism for cancelling the screening provided
the light fermion-antifermion pairs.

Other ideas concerning screening and antiscreening
compact gauge theories, such as ‘‘collapse of the wave fu
tion’’ and ‘‘catalysis of symmetry breaking’’@18#, ideas in-
spired by monopole-induced proton decay@19#, should be
considered in this framework again and might be ingredie
in a successful quantitative implementation of the monopo
antimonopole scenario suggested here.

Apparently there is still much to learn in this difficu
subject of strongly coupled gauge theories. Luckily, a
vances in computer simulation power make many of th
issues testable in the next round of investigations. In part
lar, we plan measurements of the vacuum permittivitye, the
renormalized electric charge and the renormalized fo
Fermi coupling, the monopole-antimonopole spatial distrib
tion in the vicinity of an external charge, etc. Measureme
of the chiral condensate will be supplemented with measu
ments of the eigenvalue spectrum of the Dirac operator
the reliability of the algorithm with the four-Fermi term wil
be studied in greater detail.

Perhaps some analytical progress can also be made.
Dirac quantization condition, electric-magnetic duality tran
formations, and other ingredients of quantum electromag
todynamics@20# might be considered in this framework o
chiral symmetry breaking.
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