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Confinement and the photon propagator in 3D compact QED: A lattice study in the Landau gauge
at zero and finite temperature

M. N. Chernodub
Institute of Theoretical and Experimental Physics, B. Cheremushkinskaja 25, Moscow, 117259, Russia

and Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan

E.-M. Ilgenfritz
Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

A. Schiller
Institut für Theoretische Physik and NTZ, Universita¨t Leipzig, D-04109 Leipzig, Germany

~Received 22 August 2002; published 13 February 2003!

On the lattice we study the gauge boson propagator of three-dimensional compact QED in the Landau gauge
at zero and nonzero temperature. The nonperturbative effects are taken into account by the generation of a
mass, by an anomalous dimension, and by photon wave function renormalization. All these effects can be
attributed to the monopoles: they are absent in the propagator of the singularity-free part of the gauge field. We
assess carefully the Gribov copy problem for the propagator and the parameters emerging from the fits.
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I. INTRODUCTION

Three-dimensional compact electrodynamics (cQED3)
has two essential features in common with QCD: confi
ment @1# and chiral symmetry breaking@2#. Although the
physics behind it might be very different, monopole dyna
ics in three and in four dimensions, it is amusing to stu
certain nonperturbative aspects within a lower-dimensio
model such as cQED3. Apart from its role as a toy model fo
QCD, the nonperturbative properties of cQED3 deserve at-
tention in themselves because this model was shown to
scribe some features of Josephson junctions@3# and high-Tc

superconductors@4#. cQED3 was the first example, in space
time dimensions greater than two where it becomes a n
trivial problem, in which confinement of electrically charge
particles was understood analytically@1#. It is the result of
the dynamics of monopoles which emerge due to the c
pactness of the gauge field. Other common features
cQED3 and QCD are the existence of a mass gap and
confinement-deconfinement phase transition at some non
temperature.

In two recent papers we demonstrated how the deconfi
ment phase transition, occurring under the influence of co
pactification of one dimension, in 211 dimensions, finds its
explanation from the monopole point of view@5# and why
the deconfinement phase transition is independent of
strength of the external fields@6#.

In a recent Letter@7# we answered the question of wh
effect the confinement property has on the gauge bo
propagator in this theory and what part of the propagato
changing at the deconfinement temperature. The effects
twofold: First, an anomalous dimension appears which mo
fies the momentum dependence, and second, a mass is
erated which can be well understood in terms of Polyako
theory@1#. In Ref. @7# we also used the unique possibility
lattice simulations to remove the monopole degrees of fr
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dom from the quantum gauge field in order to show that
nontrivial effects reside exclusively in the singular fields
the monopoles.

Note that a nontrivial anomalous dimension of the gau
boson propagator may also appear due to dynamical m
fields@8#. The sign~in our notation! of the anomalous dimen
sion induced in this way is different, and this leads to t
binding of the monopoles into dipole pairs and, cons
quently, to the disappearance of the confinement at cer
distances between the test particles. This picture was c
firmed for a compact model in the presence of dynami
matter fields@9#.

In the present paper we want to extend the analysis
Ref. @7# in various respects. Since the propagator is stud
in the Landau gauge, first of all we have investigated m
carefully the quality of the gauge fixing and the importan
of the Gribov copy problem, first on the propagator itself a
then on the parameters that finally describe the functio
form of the propagator.

In a second direction, we investigate the potential infl
ence that different definitions of the gauge potentialAm in
terms of the lattice link fields might have on the resulti
propagator. One of the choices is strongly recommended
the explicit gauge invariance~transversality! of the emerging
propagator. However, in the case when the longitudinal p
does not vanish by construction, proper selection of
transversal component also leads to almost the same
parameters. The coincidence becomes obviously bette
largerb.

Going over from zero to finite temperature, it is importa
to realize that more structure functions are necessary to
scribe the finite-temperature case. One of them,
deconfinement-sensitiveDL , has been studied already i
Ref. @7#, while the other,DT , has been found to be extreme
sensitive to the Gribov problem. Only by exerting extrem
care can one expose the change going on at the decon
ment transition.
©2003 The American Physical Society02-1
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The paper is organized as follows. In Sec. II we define
lattice model and the tensorial structure of the propagator
T50 and forT5” 0. Section III contains a discussion of th
minimal Landau gauge which points out the topological
pects related to the gauge fixing, in particular the condit
of having a minimal total length of Dirac strings. In Sec. I
we report on the numerical algorithms for updating a
gauge fixing that we have used in our investigation. T
following Sec. V is devoted to an outline of the results f
T50. Section VI describes the particular requirements
gauge fixing in theTÞ0 case and contains our results for t
propagatorsDL andDT . Some conclusions are formulated
Sec. VII.

II. THE 3D COMPACT U „1… MODEL AND THE PHOTON
PROPAGATOR

For the compact U~1! model we chose the Wilson single
plaquette action:

S@u l #5b(
p

~12cosup!, ~1!

whereup is the U~1! field strength tensor represented by t
plaquette curl of the compact link fieldu l . The lattice is
three dimensional, and the basic degrees of freedom are
links Ul5exp(iul). The measure of the link angles is flat ov
the interval2p,u<p. The lattice coupling constantb is
related to the lattice spacinga and the continuum coupling
constantg3 of the 3D theory,

b51/~ag3
2!. ~2!

Note that in three-dimensional gauge theory the coup
constantg3 has dimension (mass)1/2. Zero physical tempera
ture is represented by symmetric lattices,Lt5Ls .1 The lat-
tice corresponding to finite temperature is asymmetric,Ls

2

3Lt , Lt!Ls . In the limit Ls→`, the temporal extension
of the lattice is related to the physical temperature,Lt
51/(Ta). Using Eq.~2! the temperature is given in units o
g3

2 in terms of the lattice parameters as follows:

T

g3
2

5
b

Lt
. ~3!

Our simulations for zero temperature have been perform
mainly on a 323 lattice, those at finite temperature on a 32

38 lattice.
The final discussion of the photon propagator will

given in lattice momentum space. Being always defined
specified gauge, the propagator is written in terms of
Fourier transformed gauge potential,

1Lt is the extension in the third~z! direction.
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ÃkW ,m5
1

AL1L2L3

3(
nW

expS 2p i (
n51

3 knS nn1
1

2
dnmD

Ln

D AnW 1(1/2)mW ,m ,

~4!

which is a sum over a certain discrete set of pointsxW5nW

1 1
2 mW forming the support ofAxW ,m on the lattice. These are

the midpoints of the links in them direction whilenW denotes
the lattice sites~nodes! with integer Cartesian coordinate
The propagator is the gauge-fixed ensemble average o
following bilinear in Ã:

Dmn~pW !5^ÃkW ,mÃ2kW ,n&. ~5!

Two identifications ofAxW ,m have been adopted in the litera
ture and will be compared in our paper: theangledefinition

AnW 1(1/2)mW ,m5unW ,m /~g3a!5 log~UnW ,m!/~ ig3a! ~6!

and the sine definition

AnW 1~1/2!mW ,m5sin~unW ,m!/~g3a!5~UnW ,m2UnW ,m
* !/~2ig3a!.

~7!

The corresponding propagators will be denoted asDmn
ang and

Dmn
sin , respectively.

The lattice momentapW on the left hand side of Eq.~5! are
related to the integer valued Fourier momentakW as follows:

pm~km!5
2

a
sin

pkm

Lm
, km50,61, . . . ,6

Lm

2
. ~8!

The lattice equivalent ofp25pW 2 is in 3D

p2~kW !5
4

a2 (
m51

3 S sin
pkm

Lm
D 2

. ~9!

At zero temperature, based on Euclidean rotational inv
ance, the continuum propagator would be expressible
functions ofp2. The most general tensor structure is then
following one including two scalar functions ofp2:

Dmn~pW !5Pmn~pW !D~p2!1
pmpn

p2

F~p2!

p2
~10!

with thed-dimensional~in our cased53) transverse projec
tion operator

Pmn~pW !5dmn2
pmpn

p2
. ~11!

The projector has the properties
2-2
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Pma~pW !Pan~pW !5Pmn~pW !, Pmm~pW !5d21. ~12!

The two structure functionsD(p2) and F(p2) can be ex-
tracted by projection on the lattice fromDmn(pW ) according to
Eq. ~5!, as

F~p2!5 (
m,n51

3

pmDmn~pW !pn ~13!

and

p2D~p2!5
1

d21
Pmn~pW !Dmn~pW !. ~14!

They are found to be, in the best case, only approxima
rotationally invariant, i.e., individual momentapW might
slightly differ in the function valuesD or F they provide,
even if they have the samep2. Dense data points close to
gether inp2 might scatter rather than forming a smooth fun
tion of p2.

In practice, using these definitions, we extract first
function F(p2) in the d53 case through

F~p2!5p1
2D11~pW !1p2

2D22~pW !1p3
2D33~pW !

12p1p2 Re D12~pW !12p1p3 Re D13~pW !

12p2p3 Re D23~pW !. ~15!

The imaginary parts of nondiagonalDmn cancel in the sum
and have been omitted. Then the functionD(p2) is obtained
through

D~p2!5
1

d21
$@D11~pW !1D22~pW !1D33~pW !#2F~p2!/p2%.

~16!

If the Landau gauge were exactly fulfilled, one wou
expect thatF(p2)[0. On the lattice, in the case of the sin
definition forAxW ,m , this is actually the case as soon as one
the Gribov copies is reached, with an accuracy that dire
reflects the stopping precision of the gauge-fixing proced
~as will be discussed below!. In this case, a simplified defi
nition in terms of the diagonal componentsDmm(pW ) would
be appropriate. In case of the angle definition the struc
function F(p2) does not vanish; therefore all components
Dmn(pW ) contribute toD(p2).

For the finite-temperature case, the propagator lacksO(3)
rotational symmetry. Now we have to consider two sca
functions DT and DL instead of D, multiplying the
(d21)-dimensional transverse projection operatorPT and
the (d21)-dimensional longitudinal projection operatorPL,
respectively. The scalar functionsDT , DL , and F depend
now separately on the length of the spacelike part ofpW with
i 51, . . . ,d21,

p25p1
21•••1pd21

2 , upu5Ap2, ~17!
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and the ‘‘temporal’’ momentumpd ,

Dmn~pW !5Pmn
T ~pW !DT~ upu,pd!1Pmn

L ~pW !DL~ upu,pd!

1
pmpn

p2

F~ upu,pd!

p2
. ~18!

The two projection operators are defined as follows (i , j
51, . . . ,d21): a transverse one,

Pi j
T ~pW !5d i j 2

pipj

p2
,

Pdd
T ~pW !5Pdi

T ~pW !5Pid
T ~pW !50, ~19!

and a longitudinal one

Pmn
L ~pW !5Pmn~pW !2Pmn

T ~pW !. ~20!

Obviously, these projectors have the properties

Pma
T ~pW !Pan

T ~pW !5Pmn
T ~pW !, Pmm

T ~pW !5d22, ~21!

Pma
L ~pW !Pan

L ~pW !5Pmn
L ~pW !, Pmm

L ~pW !51, ~22!

Pma
L ~pW !Pan

T ~pW !50. ~23!

The scalar functionsDT and DL can be extracted from
Dmn(pW ) via

Pmn
T ~pW !Dmn~pW !5~d22!DT~ upu,pd!, ~24!

Pmn
L ~pW !Dmn~pW !5DL~ upu,pd!

5~d21!D~ upu,pd!2~d22!DT~ upu,pd!.

~25!

For d53 we can write down explicitly the definitions

p2DT~ upu,pd!5p2
2D11~pW !1p1

2D22~pW !22p1p2 Re D12~pW !
~26!

and

p2~p21p3
2!DL~ upu,pd!5p2@p2D33~pW !22p1p3 Re D13~pW !

22p2p3 Re D23~pW !#

1p3
2@p1

2D11~pW !1p2
2D22~pW !

12p1p2 Re D12~pW !#. ~27!

In the static limit,p350,

DL~ upu,p350![D33~ upu,p350!. ~28!
2-3
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This propagator for the case of the angle definition and its
in terms of mass and anomalous dimension as well as
changes at the deconfinement transition were discusse
Ref. @7#.

In the case ofT50, the data to be presented below w
be averaged over measurements of these quantities obt
for different kW5(k1 ,k2 ,k3) giving rise to the samep2 ac-
cording to Eq.~9!. In the caseT5” 0 we will show data av-
eraged over different (k1 ,k2) giving rise to the samep2 ac-
cording to Eq.~17!. One should keep in mind that by th
‘‘trick’’ one enforces the rotational invariance ‘‘by hand,
and the statistical errors are reduced as compared to m
surements for individualkW -components of the propagator.

In order to discuss the functional form of the propaga
from the viewpoint of confinement effects, with the confin
ment being induced by the monopole plasma, we will d
compose the gauge fields into singular~monopole! and regu-
lar ~photon! contributions at the level of the link angles,

unW ,m5unW ,m
phot

1unW ,m
mono, ~29!

by a procedure to be described below. After the decomp
tion ~29! of the link angles is done, one may define the c
respondingAnW 1(1/2)mW ,m

phot and AnW 1(1/2)mW ,m
mono through the angle

definition ~6! and the sine definition~7!, respectively. Then,
by fast Fourier transform, the correspondingÃkW ,m

phot andÃkW ,m
mono

are evaluated. For each configuration and a certain se
momenta the bilinears for the photon partÃkW ,m

phot
Ã

2kW ,n
phot and the

monopole part ÃkW ,m
mono

Ã
2kW ,n
mono and the mixed bilinear

ÃkW ,m
phot

Ã
2kW ,n
mono are formed. These are the observables that

associated—by averaging over the Monte Carlo ensemb
with the propagatorsDmn

phot(pW ) ~the photon orregular propa-

gator!, Dmn
mono(pW ) ~the singular propagator!, and Dmn

mixed(pW )
~themixedpropagator!. These propagators are considered
gether with thefull propagator, which uses the original lin
anglesunW ,m before the splitting~29! has been performed.

In theT50 case, all these functions ofpW are then mapped
by the projections~15!,~16! to the scalar structure function
Dphot(p2), Dmono(p2), Dmixed(p2) and
Fphot(p2), Fmono(p2), Fmixed(p2). In the finite-
temperature case we proceed analogously.

For the angle definition of the vector potential we stre
that the structure functions obviously satisfy exact additiv

D~pW !5Dphot~pW !1Dmono~pW !12Dmixed~pW !, ~30!

F~pW !5Fphot~pW !1Fmono~pW !12Fmixed~pW !.
~31!

III. MONOPOLES, DIRAC STRINGS, AND THE MINIMAL
LANDAU GAUGE

In this section we partially follow Ref.@10#. Gauge fixing
to the Landau gauge means, for a given configurationu l
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5unW,m , finding gauge transformationsvnW such that, for a
gauge functional

F~u!5(
l

cos~u l !, ~32!

the transformed gauge functional becomes maximal,

max
v

G~u,v!, G~u,v!5F~u (v)!. ~33!

Hereu l
(v) denotes the gauge transformed gauge field2

u→u (v)5u1dv2p[u1dv12pk, kPZ, ~34!

where the integer numberk5k(u,v) for each link is chosen
such thatu (v)P(2p,p#.

Instead of Eq.~33!, following Ref. @10# we use for the
purpose of this section the Villain form of the gauge con
tion,

min
v

uuu (v)uu2. ~35!

The Faddeev-Popov~FP! determinant is introduced by th
following decomposition of unity:

15DFP@u;l#E
2p

p

Dve2luuu(v)uu2, ~36!

wherel is the gauge-fixing parameter. In order to achie
the gauge~35! we have to sendl to infinity. In this case the
limits of integration in Eq.~36! can be extended to6` since
the saddle point approximation is exact in the limitl→`.
Moreover, the integer valued variablek in Eq. ~34! becomes
effectively independent ofu andv since the values ofk for
which u (v)¹(2p,p# are exponentially suppressed. Ther
fore, in the limit of infinitel, the FP determinant~36! can be
written as follows:

DFP
21@u;l#5E

2`

`

Dv (
kPZ(c1)

exp$2luuu1dv12pkuu2%.

~37!

Using the Hodge–de Rahm transformationk5dD21dk
1dD21dk, and making the shiftv→v2D21dk, we get

DFP
21@u;l#5constE

2`

`

Dv

3 (
sPZ(c2)

ds50

exp$2luuu1dv12pdD21suu2%,

~38!

2Here and in the following we use the differential form notatio
on the lattice: (a,b)5( lalbl , uuuuu25(u,u). The operationsdu
anddu are the lattice curl and divergence, respectively. The Lap
ian is denoted asD5dd1dd.
2-4
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where we have changed the variables,s5dk. The integration
over v gives

DFP
21@u;l#5const (

sPZ(c2)
ds50

exp$2l~du12pdD21s,D21

3~du12pdD21s!%. ~39!

To proceed further we separate the gauge fieldu into
regular ~photon! and singular~monopole! parts following
Ref. @11#:

u5uphot1umono, umono52pD21dp@ j #, ~40!

where the dual one-form* j represents the monopoles on t
dual lattice sites. The one-form on the dual lattice,p@ j #,
defines the Dirac lines that connect the monopoles and a
monopoles,d * p@ j #5 * j .

The photon partuphot is free of singularities while the
monopole partumono contains the information about a
monopole singularities:

1

2p
d@duphot#2p50,

1

2p
d@dumono#2p5 j . ~41!

Here the DeGrand-Toussaint definition of the monopole@12#
has been used. Substituting Eq.~40! into Eq. ~39!, we get,
after a little algebra,

DFP
21@u;l#5const3exp$4l~ j ,D22 j !%

3 (
sPZ(c2)

ds50

exp$2lSg f~uphot,p@ j #1s!%,

~42!

with

Sg f~uphot,p!5~duphot12pp,D21$duphot12p~p@ j #1s!%!.
~43!

The meaning of the last equations is the following. T
gauge transformation~34! contains both regular (dv) and
singular~k! parts. The former transforms the photon part
the gauge field while the latter changes the monopole p
shifting the Dirac string~but leaving the monopolesj intact!.
We have already integrated out the regular gauge transfo
tions; therefore Eq.~42! depends explicitly onduphot which
is invariant under regular gauge transformationsuphot

→uphot1dv. The sum in Eq.~42! over all possible shifts of
the Dirac lines,

* p@ j #→ * p@ j #1 * s, ~44!

corresponds to integration over all singular gauge trans
mations ~remember that* s is the closed line on the dua
lattice,d * s50). Thus Eq.~42! is implicitly invariant under
the singular gauge transformations as well.
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In the limit l→` the only contribution to the FP deter
minant is given by theglobal minimum of the gauge-fixing
functional ~43! with respect to the variations~44! of the
Dirac line,

Sg f
min~uphot, j !5 min

ds50
Sg f~uphot,p@ j #1s!. ~45!

If the photon field is absent, the minimum~45! is given by
the Dirac line with minimal ‘‘Coulomb interaction’’@c.f. Eq.
~43!#. For a lattice monopole and antimonopole separa
along one axis this line is the shortest path connecting
pair.

We substitute the FP unity~36!,~42! into the partition
function of compact electrodynamics,

Z5E
2p

p

Due2S(u); ~46!

then we transform the gauge fieldu→u (2v) and get the
product of the gauge orbit volume*Dv and the partition
function within the fixed gauge,

Zg f5E
2p

p

Due2S(u)2luuuuu2DFP@u;l#. ~47!

Separating the gauge field into the monopole and pho
parts as indicated by Eq.~40! and using the Hodge–de Rah
transformation, one can show that

uuuuu25~duphot,D21duphot!

1~duphot12pp@ j #,D21~duphot12pp@ j # !!

24p2~ j ,D22 j !. ~48!

According to Eqs.~42!,~45!,~47! the only nonvanishing con
tribution to the partition function in the limitl→` comes
from the global minimum~48! in the gauge orbit. Compari
son of Eqs.~45! and~48! shows that this minimum is define
by the following conditions:

duphot50 ~49!

together with

Sg f~uphot,p@ j # !5Sg f
min~uphot,p@ j # !, ~50!

whereSg f andSg f
min are given in Eqs.~43! and ~45!, respec-

tively.
In the continuum limit the condition~49! leads to the

usual Landau gauge condition

]mAm
phot50, ~51!

while the condition~50! can be formulated as a requireme
for the Dirac lines to form a configuration with as small
length as possible:
2-5
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CHERNODUB, ILGENFRITZ, AND SCHILLER PHYSICAL REVIEW D67, 034502 ~2003!
min
d* p[ j ] 5d j

length~p@ j # !. ~52!

Indeed, the Dirac lines* p@ j #5 * p1@ j #1 * p2@ j #1 . . . cor-
respond to singulard functions in the continuum limit. Here
* pi correspond to mutually unconnected pieces of th
lines. The self-interaction of the Dirac lines in Eq.~50!,
( i( * pi@ j #,D21 * pi@ j #), contains the terma( i length(pi@ j #)
~with a logarithmically divergent coefficienta) plus finite
terms. The ‘‘Coulomb interaction’’ of different pieces of th
Dirac lines, (* pi@ j #,D21 * pk@ j #), i 5” k, as well as the con-
tribution of the regular fields to the condition~50! are finite
in the continuum limit. Thus the only essential contributi
to the condition~50! in the continuum limit is given by the
term a( i length(pi@ j #)[a length(p@ j #), which gives the
condition ~52!.

Thus we conclude that in the continuum limit the minim
Landau gauge for the compact gauge fields is reduced to
local gauge condition~51! for the regular fields and a non
local condition~52!—the requirement for the total length o
the Dirac lines to be as small as possible—for the singu
fields. This result can easily be generalized to the 4D ca

IV. NUMERICAL ALGORITHMS USED IN THE ANALYSIS

A. Monte Carlo updating

The Monte Carlo algorithm in use for this investigation
a mixture of local and global updates. The local Monte Ca
algorithm is based on a five-hit Metropolis update sweep
an even-odd fashion, alternating with a microcanoni
sweep, also in checkerboard mode. Both together are con
ered asone local update. After three local updates the M
tropolis step width is eventually tuned to keep an accepta
in the range between 40% and 60%.

For better ergodicity, in particular in the presence of
external field~considered in Ref.@6#!, global updates have
also been included, following the ideas of Ref.@13#. In the
equilibrium regime, after every three complete local upda
a global refreshment step is attempted. We try to add one
of flux to the dynamical gauge field, with random sign in o
of the three directions randomly selected. The proposed
addition is subject to a global Metropolis acceptance che

For example, one unit of flux in themn plane is intro-
duced with the help of the following gauge field shift@13#

uxW ,m→@uxW ,m1 ũxW ,m#mod2p :

ũxW ,n5
p

Lm
~2xm2Lm21!,

ũxW ,n50 for xn5” Ln ,

ũxW ,m5
2p

Lm
Ln~12xn!, ũxW ,r50, r5” m,n. ~53!

The acceptance rate of the global step changes withb in
a different way depending on the lattice geometry. In ouT
50 studies~on 323 lattices! we found that the acceptance
global update steps drops~more rapidly than exponentially!
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from 0.48 atb51.0 to 0.0056 atb52.0. For higherb es-
sentially no global offers are successful.

In our T5” 0 studies on 32238 lattices, however, we
found the acceptance changing smoothly~nearly exponen-
tially, even across the deconfining transition! from 0.58 at
b51.0 to 0.18 atb53.0. A closer look reveals that th
higher acceptance rate is due to more frequent glo
changes of the flux penetrating the 12 plane~i.e., magnetic
flux direction!.

In summary, one total Monte Carlo update cycle cons
of three cycles of local update, each consisting of a Metro
lis sweep followed by a microcanonical sweep, intercha
ing with a global update as described above.

In the finite-temperature case, the measurement ofDT
turns out to be highly sensitive with respect to insufficie
removal ~by the gauge-fixing procedure and its repetition
see the next subsection! of Dirac strings wrapping around th
third direction. This is a case where the results with a
without global updates, mainly adding and subtracting flux
through the 12 plane, differ. We comment on this proble
and how to deal with it in Sec. VI.

B. Landau gauge fixing

The Landau gauge has been chosen first of all becau
is the most popular gauge to define a gauge field propag
In this gauge the gauge propagator~5! is expected to satisfy
the transversality condition

F~q2!5qmDmn~qW !qn[0. ~54!

In the case of zero temperature, for example, this allows
to describe the propagator by a single functionD(q2) alone,
defined by

Dmn~qW !5S dmn2
qmqn

q2 D D~q2!. ~55!

We will see that for any practical implementation of the La
dau gauge Eq.~54! is slightly violated. This degree of viola
tion can, however, be easily controlled by sharpening
convergence criteria of the gauge-fixing algorithm. More i
portant is the remark that in the case of the angle definit
of the vector potential~6! it is really necessary to select th
transverse part by projection using Eqs.~15! and ~16!. Then
it is interesting to see where~e.g., in momentum space! the
violation of transversality, quantified by the longitudin
propagatorF, is coming from.

There is a second reason to choose the Landau gauge
intend to split the gauge field into a regular~photon! and a
singular ~monopole! part by reconstructing the field due t
the Dirac plaquettes which, on the other hand, are form
the monopoles. This reconstruction becomes unique in
Landau gauge.

In order to implement the gauge-fixing condition~33! we
have chosen a mixture of overrelaxation and nonperio
gauge transformations@14#, both applied in alternating orde

Iterative overrelaxation has to be practiced in a check
board fashion. Starting, say, with the odd sublattice, we h
2-6
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first to find for each odd sitenW a suitablevnW which maxi-
mizes the following function ofv:

G nW
loc~u,v!5(

m
@cos~unW ,m2vnW !1cos~unW 2mW ,m1vnW !#,

~56!

which represents the part ofG actually depending onvnW ,
and second to perform immediately the updatings of
neighboring link angles

unW ,m→unW ,m2vnW ,

unW 2mW ,m→unW 2mW ,m1vnW . ~57!

This can be done simultaneously for half the sit
namely,nW PLodd . Afterward the same procedure is applie
to the even sublattice. One odd or even pair of gauge upd
constitutes one single iterative overrelaxation step. E
overrelaxation iteration is followed by a zero-mode subtr
tion ~to be explained in the next subsection!.

The anglevnW can be easily found as

tan~vnW !5

(
m

@sin~unW ,m!2sin~unW 2mW ,m!#

(
m

@cos~unW ,m!1cos~unW 2mW ,m!#

. ~58!

These gauge angles are multiplied by the overrelaxation
tor vnW→hvnW and bounded byuvnW u,p before the iteration
~57! is performed on all links. A good overrelaxation param
eter has been found to beh51.8. According to our experi-
ence from studies on 163 lattices thish leads to the fastes
convergence, almost independently ofb. This value was
then applied for all iterative gauge fixings.

The overrelaxation will usually be stopped if in the la
overrelaxation step the average increase of the gauge f
tional F @Eq. ~32!# per link is found to be less than 1026.
After this has been discovered, the gauge fixing proced
ends with a final zero-mode subtraction~see below!.

At any local extremumof F @Eq. ~32!# the following con-
dition would be satisfied everywhere on the evenand odd
sublattices:

~]mAm!nW[(
m

~AnW 1(1/2)mW ,m2AnW 2(1/2)mW ,m!

[
1

ga (
m

@sin~unW ,m!2sin~unW 2m̂,m!#50. ~59!

Having the vector potential localized on the midpoints
links, its divergence is naturally defined on sitesnW . Exact
vanishing of the divergence ofAm can be expected in th
result of Landau gauge fixing only for the sine definition
the vector potentialAm .

The algorithm outlined above will not in general lead
the absolute~global! maximum of the gauge functionalF
@Eq. ~32!#. Typically it will get stuck in one of the loca
03450
e

,

tes
h
-

c-

-

c-

re

f

maxima, which are called Gribov copies of the true ma
mum. This is the so-called Gribov problem. It is partial
cured by repeating the same gauge-fixing procedure, ap
ing it to random gauge copies of the original Monte Ca
configurationuMC, assuming that one of these copies mig
be situated in the basin of attraction of the true maximu
The number of gauge equivalent configurations produce
restart the gauge fixing is denoted asNG and iterative gauge
fixing generically leads to really different maxima. We ha
then to be content with thebest out of all NG11 local
maximaof the gauge functional. The convergence, with
creasingNG , of a gauge dependent quantity evaluated o
given gauge field ensemble with the help of the best Grib
copy gives an indication of the sensitivity of this quanti
with respect to the misidentification of the true maximu
We have applied this philosophy to two sets of data,
propagator data themselves at large or small momenta,
the fit parameter emerging from a fit of the gauge bos
propagator. One should not be surprised that the numberNG

that is necessary to achieve uniform convergence of
propagator in momentum space and/or of the fit parame
differs strongly between zero and finite temperature. At fin
temperature there are strong differences betweenDL and
DT .

In Sec. III we stressed the importance of finding a loc
maximum of Eq.~32! accompanied by a minimal length o
Dirac strings. Within our implementation, the start from
new random gauge copy is done in the hope of producin
new Gribov copy reachable from the previous ones only b
discrete gauge transformation. We have monitored the n
ber of Dirac strings in each of the local maxima of the gau
functional F @Eq. ~32!#. Each time the recent best value
the gauge functional was replaced by a better~higher! one,
the numberND of Dirac strings detected in the correspon
ingly best Gribov copy decreased compared to the previ
one.

In Fig. 1 we show scatter plots relating the gauge fun
tional F to the number of Dirac strings per directionNi

D ( i
51, . . . ,3) for tworeduced ensembles of 100 out of 100
equilibrium configurations on 32238 lattices, each of them
starting with 101 Gribov copies~local maxima ofF). Figure
1~a! refers tob52.0 ~confined phase! and shows all local
maxima~Gribov copies!. The isotropy of the Dirac strings is
clearly visible. Figure 1~b! shows how in the deconfine
phase the numberN3

D of temporal Dirac strings is correlate
with the locally maximal value ofF. Figure 1~c! shows it for
N1

D andN2
D ~number of spatial Dirac strings!. In both cases a

slight tendency to clustering near multiples of 8 or 32~the
respective periodicities of the lattice! is visible, in particular
for the highest values ofF. The selection of the best copie
restricts the ensemble to biggerF and smallerNi

D as shown
in Fig. 1~d!. In the confinement phase the Dirac strings a
still approximately isotropic. In the deconfined phase, ho
ever, the highest values ofF are correlated with low multi-
plicity of N1

D and N2
D , andN3

D corresponding to zero, with
one or a few periodically winding Dirac strings more fr
quently in the temporal direction.
2-7
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FIG. 1. Scatter plots of the average gauge functionalF(u) per link and the related number of Dirac strings in thetemporal(N3
D) and/or

the two spatial(N1
D andN2

D) directions for 100 configurations on a lattice 32238: ~a! N3
D , N1

D , andN2
D vs F(u) in the confinement phase

(b52.0), each configuration represented by 101 Gribov copies;~b! N3
D vs F(u) in the deconfinement phase (b52.6); ~c! same as in~b! for

N1
D andN2

D ; ~d! the two samples represented only by the best out of 101 Gribov copies.
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We stress that the configurations of which the gauge
ing has been investigated here in some detail were produ
with the update algorithm including global updates. Windi
Dirac strings of some lifetime are also produced in e
sembles that are generatedwithout global updates, but les
frequently. Therefore, the inefficiency of the random gau
transformation in exploring more of the gauge orbit is
handicap also if global updates are suppressed. We will
later that certain problems which show up in the fini
temperature propagatorDT can be ameliorated, but not com
pletely cured, by abandoning global updates and increa
the number of Gribov copies.

We had not the opportunity to reconstruct exactly the s
tial conformation of the Dirac strings in each gauge co
But for each gauge copy we can determine whether mult
Dirac strings~running along a certain direction with the sam
or different orientation! can be definitely excluded or not. A
low b this can never be excluded, but at highb this could be
used as an additional criterion to reject Gribov copies t
contain double Dirac strings~in the case of twooppositely
oriented strings!.

Although the stopping criterion was formulated for a gl
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bal increase ofF we did not find a systematic local variation
depending on the distance from a monopole, of the violat
of Eq. ~59!, expressed by the quantity

~]mAm!nW
2
[H(

m
~AnW 1(1/2)mW ,m2AnW 2(1/2)mW ,m!J 2

. ~60!

This suggests that the differential gauge condition~59! uni-
formly approaches zero.

In contrast to this, we found a systematic local variati
of the local gauge functional itself,

F nW
loc

~u!5(
m

@cos~unW ,m!1cos~unW 2mW ,m!#, ~61!

with the distance from a monopole. Near to a monopole,
value is suppressed compared to the bulk average. Th
illustrated in Fig. 2 forb51.0 andb52.0.
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C. Zero-mode subtraction

There are certain modes of the gauge field which are
suppressed by the action. If they are not taken care of p
erly, the gauge field propagator is known to be spoiled@14#.
For instance, adding some constant to all link anglesunW ,m in
one particular direction does not change the action~1!, and
neither does adding a multiple of 2p to one particular link
angle. Nonperiodic gauge transformations can be consid
to implement these changes. We have used them in our s
lations to immediately eliminate zero modes related to
appearance of the volume average of the link angles
given direction,

um5(
nW

unW ,m /uLu, ~62!

where uLu is the lattice volume. We subtract this volum
average from each link angleunW ,m in the m direction,

unW ,m→unW ,m2um12pk, ~63!

FIG. 2. Suppression of the local gauge functionalF nW
loc near a

monopole forb51.0 andb52.0. For better presentation some
the data points are not plotted. Notice theb dependence of the bulk
average ofF nW

loc .
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with integerk chosen such thatunW ,m
g

P(2p,p#. This opera-
tion can be imagined as resulting from a gauge functiongnW

52umnm ~no summation! which is in general nonperiodic
This special sort of gauge fixing is completed when ze
modes in alld directions have been subtracted.

The zero-mode subtraction step is applied after each o
relaxation step. Thus it is always performed before the m
surements are done on the gauge-fixed configuration.

In our runs we measured the photon propagator after e
tenth total Monte Carlo update cycle to avoid autocorre
tions as much as possible. Typically, we used 500 gau
fixed configurations per data point for the 323 lattice and
about 2000 configurations for the 32238 lattice.

V. THE ZERO-TEMPERATURE PROPAGATOR
IN THE LANDAU GAUGE

In coordinate space, the gauge boson propagator th
studied reads

DmnS mW 1
1

2
mW 2nW 2

1

2
nW D5^AmW 1(1/2)mW ,mAnW 1(1/2)nW ,n&

~64!

with the angle or sine definition ofA. For brevity, we will
refer to this propagator later in momentum space asDmn

ang or
Dmn

sin . The two scalar functions occurring in momentu
space@Eq. ~10!# we will denote asDang andFang or Dsin and
Fsin, respectively. The last one,Fsin, should vanish in the
Landau gauge. We have observed that this is indeed the
with an accuracy determined by the stopping criterion of
iterative overrelaxation. For the sine propagator the tra
verse part can be calculated directly just by evaluating
summing the diagonal components appearing in Eq.~16!.
When the longitudinal propagator vanishes only appro
mately, one can extract the transverse propagator follow
Eqs.~15!,~16!.

In Fig. 3 we show the different forms of the transver
propagatorDsin and its components as well as the vanishi
.
r

FIG. 3. The Landau gauge sine propagator as a function ofp2 measured on a 323 lattice. For the transverse partp2Dsin @~a! at b
51.0 and~b! at b51.8] we show the full propagator, the singular~mono!, the regular~phot!, and the mixed contribution for comparison
In addition, we show the~vanishing! longitudinal propagatorFsin. The data represent the evaluation ofNG520 gauge copies. For bette
presentation some of the data points are not plotted.
2-9
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FIG. 4. The same as in Fig. 3 for the Landau gauge angle propagator. Notice the nonvanishing longitudinal propagatorFang decreasing
with growing b.
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longitudinal propagatorFsin. These data were obtained on
323 lattice for ~a! b51.0 and~b! b51.8, with NG520 Gri-
bov copies evaluated in addition to each original Mon
Carlo configuration. The data at otherb were produced un-
der the same conditions. In Fig. 4 the same is presented
Dang, its components, and nonvanishingFang.

For the angle definition ofAm , the decomposition into
components is strictly additive@Eq. ~31!#. We have observed
that the longitudinal propagatorFang and its components ar
well described by the formF(p2)5Pp2, whereP is a con-
stant. We find thatFang,phot essentially coincides with the
full Fang. The size ofFang and its photon component is o
the same order of magnitude as the transverse part ab
51.0, while the monopole and mixed parts are one orde
magnitude smaller. Atb51.8, the size ofFang and its pho-
ton component is an order of magnitude smaller than ab
51.0, while the monopole and mixed parts are negligible

For the sine definition ofAm , the monopole part of the
transverse propagatorDsin,mono has a maximum in the low
momentum region~which moves more and more towardp2

50 with higherb) before it drops towardp250. For the
angle definition, a maximum ofDang,mono develops only for
b.1.0.

Summarizing, we have observed that the longitudinal p
F is either zero~for the sinu definition of the gauge field in
the correlator! or it is nonzero, and then it coincides with i
photon part~for theu definition!. Therefore, at zero tempera
ture the Landau gauge propagatorDmn

ang is not completely
transverse. This is entirely due to the difference between
definitions of the vector potential. This discrepancy, e
pressed by the nonvanishingFang, becomes ameliorated a
higherb.

For both definitions ofAm we find that the regular~pho-
ton! part of the transverse propagator is singular atp2→0,
like Dphot;1/p2, while the full transverse propagator is no
Following Ref.@7# we try to describe the two by functions o
the form

D~p2!5
Z

b

m2a

p2(11a)1m2(11a)
1C ~65!
03450
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Dphot~p2!5
Zphot

b

1

p2
1Cphot. ~66!

The model function~65! is similar to some of the functions
discussed in Refs.@15,16# where the propagator in gluody
namics was studied. In the case ofT50 we expect these two
curves to differat all b in order to accommodate the~per-
manent! confinement property of the model. Figure 5~a!
shows the anomalous dimensionsa first increasing in the
low-b region. The anomalous dimensions for the angle a
for the sine propagator behave quite similarly to each ot
~the dimension for the angle propagator is a bit smaller!. As
b gets larger thanb;1.5 the anomalous dimensions start
descend toward zero. This indicates that the anomalous
mension is not only a function of the monopole densi
which decreases monotonically with growingb for all values
of the coupling. The~cluster! structure of the monopole con
figurations may play a significant role fora.

In Fig. 5~b! the mass parametersm are presented for the
angle and sine propagators according to Eq.~65! as a func-
tion of b. Both masses are almost equivalent. For the m
there exists a theoretical prediction due to Polyakov@1#,

mth~b!52pA2b exp$p2bV~b!D21~0!%, ~67!

wherebV is the Villain coupling constant

bV~b!5F2 logS I 0~b!

I 1~b! D G
21

. ~68!

I 0(b) and I 1(b) are modified Bessel functions andb is the
Wilson action coupling constant appearing in Eq.~1!. The
prediction~67! is valid for a dilute monopole gas. The agre
ment between the two data sets and the theoretical curv
very good. The small deviation at lowestb can be attributed
to violation of the dilute gas approximation.

Figure 5~c! showsZ(b) andZphot(b) for the two defini-
tions. We observe thatZ tends to unity at largeb, whereas
2-10
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FIG. 5. The best fit parameters for the zero-temperature sine and angle propagators as functions ofb: ~a! the anomalous dimensiona;
~b! the mass parameterm with the theoretical prediction@Eq. ~67!# as dashed line;~c! the parametersZ andZphot @using Eq.~65!,~66!#; ~d!
the total monopole density and the monopole density in charged clusters with the theoretical prediction@Eq. ~69!#.
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Zphot(b)'1 for all b. The strong deviation ofZ from unity
at smallb can be interpreted as a field renormalization by
monopoles.

The simplest quantity characterizing the monopoles is
monopole densityr5(cj c /uLu, where the monopole charg
j is defined in Eq.~41!. Note, however, that a general mon
pole ensemble may contain lattice artifacts which at z
temperature are realized in the form of ultraviolet monopo
antimonopole pairs. Following Ref.@5# we remove these lat
tice artifacts using a cluster analysis. For our purposes, c
ters are defined as connected groups of monopoles
antimonopoles, where each object is separated from at
one neighbor belonging to the same cluster by a distance
than or equal toRmax. We useRmax

2 53a2 which means that
neighboring monopole cubes should share at least one s
corner. The cluster is called charged if the total charge o
constituent monopoles is nonzero. This includes isola
monopoles and antimonopoles.

In Fig. 5~d! we plot the measured total monopole dens
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and the density of monopoles residing in charged~physical!
clusters. The charged fraction is well described by the th
retical formula for the monopole density,

r~b!52 exp$22p2bV~b!D21~0!%, ~69!

which is a lattice version@5# of the Polyakov formula@1#.
According to Fig. 5 the monopole density, Debye mass, a
deviation of the couplingZ from unity are all descending
functions vanishing in the limitb→`.

The contact terms contained inDsin and Dang are not
shown here. The photon part of bothDsin andDang vanishes
perfectly. The full propagator in both cases contains con
termsCsin andCang, which deviate from zero for smallerb,
whereas alwaysCsin(b)!Cang(b).

The discussion of Figs. 3 and 4 and of theb dependence
of the fit parameters in Fig. 5 was based on the ze
temperature propagators~and their components! obtained
throughout withNG520 Gribov gauge copies. The depe
2-11
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FIG. 6. The dependence of the zero-temperature angle propagator onNG for a 323 lattice ~at b52.0 as an example! ~a! The full
transverse propagator forNG50,10,20 in the full momentum region;~b! its behavior as a function ofNG at five selected momenta;~c! the
same for the singular~mono! part of the transverse propagator;~d! the same for the regular~phot! contribution to the transversal propagato
Again for better presentation some of the data points are not plotted.
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dence on the number of gauge copies has been investig
carefully for the case of the angle propagator. As a resul
this study, the default choice ofNG520 for the gauge-fixing
procedure atT50 was established. In Fig. 6 we show d
ferent aspects of the approach to theNG→` limit, for b
52.0 as an example. Figure 6~a! demonstrates that the tran
verse propagator evaluated with either 10 or 20 gauge co
is essentially the same, but the naive evaluation~with NG
50) would clearly overestimate the propagator over
whole momentum range. Figure 6~b! shows this in more de
tail for five selected momenta. It becomes clear that the
pendence is strongest in the region of small momenta
particular the regionbelow the peak. The dependence
strong for the singular part presented in Fig. 6~c!. Again,
there is almost no change betweenNG510 and 20. As can be
seen from Fig. 6~d!, there is almost noNG dependence in the
photon part of the transverse propagator.

We present the resulting dependence of the fit parame
on NG in Fig. 7, again forb52.0. The anomalous dimensio
a shown in Fig. 7~a! drops by within 10%, which indicate
that the anomalous dimension is sensitive with respect to
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minimization of the Dirac strings that is achieved by bet
and better Gribov copies. The mass presented in Fig.~b!
does not change withNG , which confirms that it is mainly
determined by the monopole mass~i.e., density!.3 Figure 7~c!
showsZ for the full transverse propagator andZphot for the
photon part. It is not surprising that the parameter associa
with the photon part does not change. The parameter des
ing the full transverse propagator decreases, again by'10%
within NG,20. One can also observe a slight dependenc
Z on NG for NG.20. However, the dependence is inde
very small ~about 1%! and not essential for our qualitativ
discussion.

From the comparison of the sine propagator and the an
propagator at zero temperature we conclude that the fit
the transverse parts give more or less the same parame
with a b dependence~if appropriate! which is in accordance
with the monopole density. Strict transversality itself is gu

3Let us recall that the monopole positions in a given configurat
are gauge independent.
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FIG. 7. The best fit parameters forDang at zero temperature as a function ofNG ~for b52.0 as an example!: ~a! Anomalous dimension
a, ~b! mass parameterm, and~c! renormalization constantsZ for Dang andDang,phot.
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anteed only in the case of the sine propagator. In the cas
the angle definition an appropriate transverse part has t
extracted by the projection~15!,~16!.

VI. THE FINITE-TEMPERATURE PROPAGATOR
IN THE LANDAU GAUGE

In this section we report our investigation of the prop
ties of the gauge boson propagator at finite temperatu
With respect to the distinguished directionm53, the propa-
gator D can be separated into transverse and longitud
components~see Sec. II for the definitions! denoted asDT
and DL , respectively. We are working on the lattice 32

38, in line with Ref.@7#, where only theDL component of
the angle type propagator~with p350, NG520, and a lim-
ited statistics of 500 measurements! was studied.

The transverse component of the propagator,DT , de-
scribes the spatial degrees of freedom, while the longitud
component,DL , contains gauge fields in the Landau gau
in both the temporal and spatial directions. The fini
temperature propagator data are analyzed again forp350, as
a function ofp2. In that caseDL is constructed only from
temporal degrees of freedom which, in particular, are resp
sible for the confinement phenomenon. We have fitted
data for both components of the propagator using the
function ~65! invented first in Ref.@7# to describeD33.

First we repeated the investigation of the Gribov co
dependence of the propagator componentsDL andDT , this
time for the sine definition of the propagator, similar to th
conducted for the zero-temperature case with the angle
nition. The results are summarized in Fig. 8 atb values near
~below and above! the phase transition. After a few Gribo
copy attempts the longitudinal component is almost inse
tive to the numberNG . This can be seen from the left pan
of Fig. 8. The fitting parametersaL , mL , ZL , andCL ~the
last is not shown here! are rapidly converging and becom
almost independent ofNG for NG*7. The results at large
numbers of Gribov copies are not sensitive to whether or
we have suppressed global updates~we made only local up-
dates; see the label ‘‘local ’’!.

The transverse component, however, is strongly dep
dent on the number of Gribov copies as can be seen f
Fig. 8. All the fit parametersaT , mT , andZT are descending
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functions of the number of Gribov copiesNG with global
updates included. AtNG5100 the plateau is not yet reache
Moreover, the results are sensitive to whether or not glo
updates are included, in particular at high values ofb. The
measurements with only local updates lead to significan
lower fit results. In deconfinement we would expect vanis
ing mT ~andaT), andZT→1.

The reason for that behavior might be explained as
lows. On one side, the ‘‘best’’ gauge functional is realized
gauge-fixedconfigurations without Dirac lines wrappin
around the lattice~predominantly in the short temporal direc
tion!. Such Dirac lines are continuously created and
stroyed by the Monte Carlo process, even if global upda
are not attempted. The level of ‘‘noise’’ due to wrappin
Dirac lines is higher if global updates are included in t
Monte Carlo process, which in general would improve t
ergodicity of the system, but it represents a problem als
only local updates are used. The presence of wrapping D
strings mimics a finiteb-independent lattice massmT at
largerb, the value of which decreases only with increasi
temporal extentLT . So in the limit of vanishing lattice spac
ing the dimensionful mass will diverge.

This ‘‘Dirac noise’’ represents a serious challenge for t
gauge-fixing algorithm. The deterministic part~overrelaxing
steepest descent method! described in Sec. IV B cannot re
move it.Unbiasedrandom gauge transformations applied
get new start configurations for the deterministic search
further Gribov copies are obviously not effective enough
reduce the Dirac noise. A simulated annealing Monte Ca
series of random gauge transformations with the total len
of Dirac strings as the ‘‘gauge action’’@17# seems to be more
appropriate for selecting new start configurations for the fi
steepest descent search.

Having these difficulties in mind, we decided to use in t
final measurements at finite temperature, forb52.0 and
larger, only local updates before gauge fixing, and to perfo
NG5100 Gribov copy attempts. For both sine and an
propagator measurements deep in the confinement phase~be-
low b52.0) we usedNG520 and global updates where th
results of the zero-temperature analysis for the Gribov c
dependence is applicable, and the fit parameters of bothDL
andDT have to agree within accuracy and should be sim
2-13
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FIG. 8. The Gribov copy de-
pendence of the best fit param
eters for theDL andDT propaga-
tors: the anomalous dimensiona
~a!,~b!, the mass parameterm
~c!,~d! and the parametersZ
~e!,~f!. The label ‘‘local’’ corre-
sponds to measurements in Mon
Carlo cycles without global up-
dates and withNG5100 extra
Gribov copies.
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to those for theT50 transverse propagatorD. Nevertheless,
we have to admit that the results for the transverse prop
tor DT should be understood only qualitatively.

The results for the best fit parameters forDL andDT are
presented in Fig. 9. Let us begin withDL . At the critical
point both the anomalous dimensionaL and the massmL
vanish while the renormalization parameterZL meets the
corresponding parameter for the perturbative photon,ZL

phot .
This behavior is characteristic for both angle and sine ty
of propagator and extends our results in Ref.@7#. Note that
here also the mass parameters for sine and angle propag
coincide with each other. However, the anomalous dim
sions for these cases differ slightly from each other while
renormalization parameters are significantly different, a
03450
a-

s

tors
-

e
d

the renormalization factor for the angle propagator is big
than that for the sine propagator. The latter is expected
causeusinuu<uuu.

The corresponding quantities forDT behave differently
for the angle and sine definitions ofAm , with the remarkable
exception of the mass parameter. For example, the ano
lous dimensionaT for the angle propagator vanishes in th
vicinity of the critical point and beyond, while the sam
quantity for the sine propagator does not vanish. We exp
this behavior as due to insufficient gauge fixing, as can a
be guessed from our previous analysis. The same reaso
plains the fact that the massesmT for both definitions of the
photon propagators—being remarkably similar—do not v
ish at the critical point. Finally, for both definitions of th
2-14
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FIG. 9. The best fit parameters for the nonzero-temperature sine and angle propagators as functions ofb: the anomalous dimensiona
~a!,~b!, the mass parameterm ~c!,~d!, and the parametersZ andZphot ~e!,~f!. The left column corresponds toDL , the right toDT . The fits
of full propagators are done with the help of Eq.~65!; the photon contribution is fitted by Eq.~66!.
e
se
u

us
nt
r
g

aga-

a-
of

i-

with
propagators the renormalization constantsZT do not ap-
proach the correspondingZT

phot at the critical point. In order
to get reliable behavior of theDT part of the propagator on
should drastically increase the number of Gribov copies u
in the gauge fixing. For the time being this is beyond o
computing capabilities. The situation could be improved
ing a variant of the mentioned simulated annealing Mo
Carlo series of random gauge transformations in orde
choose more appropriate initial gauge transformed confi
rations before fixing the gauge.
03450
d
r
-
e
to
u-

VII. CONCLUSIONS

We studied the gauge boson propagator in cQED3 at both
zero and nonzero temperatures. We found that the prop
tors in all cases under investigation can be fitted by Eq.~65!
which is the sum of the massive propagator with an anom
lous dimension plus a contact term. Similarly to the case
DL at finite temperature@7#, a nonvanishing anomalous d
mensiona is also found atT50. Moreover, the fact of the
existence of the anomalous dimension is not associated
2-15
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a particular type of gauge boson propagator. We have stu
angle and sine types of propagator and the correspon
anomalous dimensions are nonvanishing and have a sim
behavior to the functions ofb.

The existence of the anomalous dimension depends on
presence of the monopole plasma, but it is not directly p
portional to the monopole density belowb51.5. In the con-
finement phase the monopole plasma is present at any
pling of the system and the density of monopoles is
monotonically decreasing function of the lattice couplingb.
A similar behavior is observed for the anomalous dimens
in the case of theDL andDT propagators. The dimensionaL
extracted from theDL component of the propagator vanish
in the vicinity of the phase transition for both definition
~angle and sine! of the propagator. However, this does n
happen for the sine definition of theDT propagator. We as
sociate this result with an insufficient number of Gribov co
ies used in the gauge fixing. TheDT propagator requires
many more Gribov copies for the gauge fixing than does
DL propagator.

Concerning the other parameters of the fits, the mass
tracted from the propagator at zero temperature and from
DL propagator at nonzero temperature does not depen
the definition of the propagator. The mass for theT50 case
is perfectly described by the Polyakov formula. ThemL mass
vanishes at the phase transition point, as was expected
the disappearance of the monopole plasma at the critical
perature. Beyond the phase transition point, themT mass
v.

v.

v.

tt.

D
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e
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m
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measured in this paper does not behave in a physical
due to the severe Gribov copy problem.

Finally, let us comment on the continuum limit of th
measured quantities. The continuum limit of cQED3 corre-
sponds tob51/(g3

2a)→`, holding the dimensionful gauge
coupling g3 fixed. According to Polyakov, nonperturbativ
quantities such as the Debye mass and string tension ca
expressed in terms ofg3 and the monopole densityr, which
generally might be independent quantities. However, this
not true for compact U~1! where bothg3 andr depend on a
single parameter, the lattice couplingb. Therefore, in the
limit of vanishing lattice spacing, the monopole density a
other nonperturbative quantities such as the Debye m
string tension, and anomalous dimension also vanish ex
nentially as;exp$2constb% @cf. Eqs. ~67!,~69!#. However,
in more realistic models~like the Georgi-Glashow model!
the monopole density and the lattice spacings are indeed
dependent and the monopole density should survive in
continuum limit. According to our results, this implies that
the continuum limit of such theories a nonzero anomalo
dimension in the photon propagator can be expected.
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