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On the lattice we study the gauge boson propagator of three-dimensional compact QED in the Landau gauge
at zero and nonzero temperature. The nonperturbative effects are taken into account by the generation of a
mass, by an anomalous dimension, and by photon wave function renormalization. All these effects can be
attributed to the monopoles: they are absent in the propagator of the singularity-free part of the gauge field. We
assess carefully the Gribov copy problem for the propagator and the parameters emerging from the fits.
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[. INTRODUCTION dom from the quantum gauge field in order to show that all
nontrivial effects reside exclusively in the singular fields of
Three-dimensional compact electrodynamics (c@ED the monopoles.

has two essential features in common with QCD: confine- Note that a nontrivial anomalous dimension of the gauge
ment [1] and chiral symmetry breakinf2]. Although the boson propagator may also appear due to dynamical matter
physics behind it might be very different, monopole dynam-fields[8]. The sign(in our notation of the anomalous dimen-
ics in three and in four dimensions, it is amusing to studySion induced in this way is different, and this leads to the
certain nonperturbative aspects within a lower-dimensionainding of the monopoles into dipole pairs and, conse-
model such as cQED Apart from its role as a toy model for q_uently, to the disappearance Of the con.fme.ment at certain
QCD, the nonperturbative properties of cQEBeserve at- ?|starc1jc?s between the tegt Ip'artur:]Ies. This plctufrcz was _cor|1—
tention in themselves because this model was shown to déx e f_orl a compact model in the presence of dynamica
scribe some features of Josephson juncti@&jsand highT, matter fields9].

duct £ the first e | In the present paper we want to extend the analysis of
superconductor4]. cQED; was the first example, in space- Ref.[7] in various respects. Since the propagator is studied

time dimensions greater than two where it becomes a noNy, e | andau gauge, first of all we have investigated more
tr|V|§1I problem, in which conflnement of el_ectncally charged carefully the quality of the gauge fixing and the importance
particles was understood analytically]. It is the result of ot the Gribov copy problem, first on the propagator itself and
the dynamics of monopoles which emerge due to the coMthen on the parameters that finally describe the functional
pactness of the gauge field. Other common features dbrm of the propagator.
cQED; and QCD are the existence of a mass gap and of a |n a second direction, we investigate the potential influ-
confinement-deconfinement phase transition at some nonzeepce that different definitions of the gauge potentigl in
temperature. terms of the lattice link fields might have on the resulting
In two recent papers we demonstrated how the deconfinggropagator. One of the choices is strongly recommended by
ment phase transition, occurring under the influence of comthe explicit gauge invariandg¢ransversality of the emerging
pactification of one dimension, in21 dimensions, finds its propagator. However, in the case when the longitudinal part
explanation from the monopole point of viels] and why does not vanish by construction, proper selection of the
the deconfinement phase transition is independent of th#ansversal component also leads to almost the same fit
strength of the external field$]. parameters. The coincidence becomes obviously better at
In a recent Lettef7] we answered the question of what larger 3.
effect the confinement property has on the gauge boson Going over from zero to finite temperature, it is important
propagator in this theory and what part of the propagator i¢o realize that more structure functions are necessary to de-
changing at the deconfinement temperature. The effects ageribe the finite-temperature case. One of them, the
twofold: First, an anomalous dimension appears which modideconfinement-sensitiv®_, has been studied already in
fies the momentum dependence, and second, a mass is g&ef.[7], while the otherD, has been found to be extremely
erated which can be well understood in terms of Polyakov'sensitive to the Gribov problem. Only by exerting extreme
theory[1]. In Ref.[7] we also used the unique possibility in care can one expose the change going on at the deconfine-
lattice simulations to remove the monopole degrees of freement transition.
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The paper is organized as follows. In Sec. Il we define the
lattice model and the tensorial structure of the propagators, at R,;V =
T=0 and forT#0. Section Ill contains a discussion of the vLilols
minimal Landau gauge which points out the topological as- 1
pects related to the gauge fixing, in particular the condition 3 kln,+= 5 )
of having a minimal total length of Dirac strings. In Sec. IV
we report on the numerical algorithms for updating and XE exp 2m2 L,
gauge fixing that we have used in our investigation. The
following Sec. V is devoted to an outline of the results for )
T=0. Section VI describes the particular requirements ORNhiCh is a sum over a certain discrete set of poiiﬁasﬁ
gauge fixing in theél #0 case and contains our results for the

1” : R .
propagator®, andD. Some conclusions are formulated in 24 formmg the support oAL . on th.e Iatt|c.e.eThese are
Sec. VII. the midpoints of the links in thg direction whilen denotes

the lattice sitegnode$ with integer Cartesian coordinates.
The propagator is the gauge-fixed ensemble average of the

following bilinear inA:

Ans (12,0

Il. THE 3D COMPACT U (1) MODEL AND THE PHOTON

PROPAGATOR
For the compact (1) model we chose the Wilson single- D,..(P)=(Ai A i) (5)
plaquette action: . o ] )
Two identifications ofA; , have been adopted in the litera-
ture and will be compared in our paper: thegle definition
SL6]=B2 (1-cosby), (1) _
p P Ads (u2yiu= 05,1 (958) =10g(U5 ,)/(igsa)  (6)

and the sine definition
whered, is the U1) field strength tensor represented by the

plaquette curl of the compact link field,. The lattice is A e ek .
three dimensional, and the basic degrees of freedom are the A+ (1121, = SIN On,)/(933) = (Un .~ U )/(2i933). .
links U,=exp(§). The measure of the link angles is flat over (7)

the interval— 7< Q$ . Th_e lattice coupIin'g constag i; The corresponding propagators will be denotedD%%g and
related to the lattice spacingand the continuum coupling Dsm respectively.

constantg; of the 3D theory, > _
s 4 The lattice momenta on the left hand side of E@5) are
related to the integer valued Fourier momektas follows:

B=1lag3). 2)
2wk, L,
Note that in three-dimensional gauge theory the coupling pﬂ(kﬂ)_asmL k,=0,x1,... ,17. ®)

constani; has dimension (mas¥j. Zero physical tempera- a

ture is represented by symmetric latticks=Ls." The lat-  The lattice equivalent op?=p? is in 3D
tice corresponding to finite temperature is asymmetric,

XL;, L<Lg. In the limit L—o, the temporal extension 4 B
of the lattice is related to the physical temperatute, 2(k)—— E (
=1/(Ta). Using Eq.(2) the temperature is given in units of a? 4=
g% in terms of the lattice parameters as follows:

2
sin—) 9

At zero temperature, based on Euclidean rotational invari-
ance, the continuum propagator would be expressible by

T B functions ofp?. The most general tensor structure is then the
?2 C (3 following one including two scalar functions gf:
3
N L , pMpV F(p?)
Our simulations for zero temperature have been performed D,.(p)=P, (p)D( )+ 5 (10
mainly on a 32 lattice, those at finite temperature on & 32 p

X 8 lattice.

The final discussion of the photon propagator will bewr[h the d-dimensionalin our cased= 3) transverse projec-
given in lattice momentum space. Being always defined in gon operator
specified gauge, the propagator is written in terms of the

Fourier transformed gauge potential, PPy

Pu(P)=38,,~ o (11)

1L, is the extension in the thirtk) direction. The projector has the properties
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Pua(P)Pa(P) =P, (P), P,.p)=d—1. (12

The two structure function®(p?) and F(p?) can be ex-
tracted by projection on the lattice froB]W(f)) according to
Eq. (5), as

3

F<|oz)=M§1 p.D,.(P)P, (13)

and

1 - -
p?D(p?)= =7 PuuP)D.u(P). (14)

They are found to be, in the best case, only approximately

rotationally invariant, i.e., individual momenté might
slightly differ in the function value® or F they provide,
even if they have the sam#. Dense data points close to-

gether inp? might scatter rather than forming a smooth func-

tion of p2.

PHYSICAL REVIEW b7, 034502 (2003
and the “temporal” momentunpy,

D,.(p)=PL,(P)Dr(|p|.pa)+PL,(P)D.(Ip|.pg)

In practice, using these definitions, we extract first the@Pviously, these projectors have the properties

function F(p?) in thed=3 case through

F(p?)=p2D1y(P)+ P3D 2o p) + p3D3s(p)

+2p1p, ReDyy(p)+2p1ps ReDqs(p)

-

+2p,p3 ReDyy(p). (15

The imaginary parts of nondiagonBl,, cancel in the sum
and have been omitted. Then the functd(p?) is obtained
through

1 R R -
D(p%) = ﬁ{[Dn(p)"’ Doi(p)+Daa(p)]—F(p?)/p?.
(16)

If the Landau gauge were exactly fulfilled, one would
expect thafF (p?)=0. On the lattice, in the case of the sine
this is actually the case as soon as one of

definition forA; ,,

(18)
p> p?
The two projection operators are defined as followg (
=1,...,d-1): atransverse one,
> Pipb;
PL(p)=8;— —,
ij ij p?
Pad(P)=Pgi(p)=Pl4(p)=0, (19
and a longitudinal one
Lo 2y— = Tz
Pou(P)=P,.(P)—P,.(P). (20
T AT (/DT [~ T N\ —
Pua(P)Po(P)=P,(p), P, (p)=d=2, (21)
L 2vpl (Sy—pl (2 L (A=
P/.La(p)PaV(p)_P/,w(p)! PMM(p)_li (22)
PLa(PIPL,(P)=0. (23

The scalar functiond; and D, can be extracted from
D,.(p) via

P,(P)D,,.(p)=(d—2)D(|pl,pa), (24)
PL,(P)D,..(P)=D(Ipl,pq)
=(d—1)D(|p|,pqg) — (d—2)D+(|p|,pq)-
(25)

the Gribov copies is reached, with an accuracy that directlyror d=3 we can write down explicitly the definitions
reflects the stopping precision of the gauge-fixing procedure

(as will be discussed belgwin this case, a simplified defi-
nition in terms of the diagonal componem@m(ﬁ) would

p?D(|p|,py) = p2D11(P) + PD2AP) — 2P1P2 ReDlz((IS) )
26

be appropriate. In case of the angle definition the structure
function F(p?) does not vanish; therefore all components ofand

D,..(p) contribute toD(p?).
For the finite-temperature case, the propagator &)

p?(p?+ p3)DL(|pl,pa) = PAp?Dss(p) — 2p1ps Re D13(p)

rotational symmetry. Now we have to consider two scalar

functions D and D, instead of D, multiplying the
(d—1)-dimensional transverse projection operaldr and
the (d—1)-dimensional longitudinal projection operat®t,
respectively. The scalar functiori3;, D, , and F depend

now separately on the length of the spacelike parp ofith
i=1,...d-1,

p?=pi+..-+pi_;, |pl=p% (17)

—2p,ps Re Dyy(p)]
+p3[p2D14(p) + P3D oA P)
+2p;p, Re D12(5)]- (27

In the static limit,p3=0,

D.(|pl,p3=0)=D3y(|p|,p3=0). (29)
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This propagator for the case of the angle definition and its fit=6; ,, finding gauge transformations,; such that, for a
in terms of mass and anomalous dimension as well as thgauge functional
changes at the deconfinement transition were discussed in
Ref.[7].

In the case off=0, the data to be presented below will
be averaged over measurements of these quantities obtained _ _
for different I2=(k1,k2,k3) giving rise to the sam@? ac- the transformed gauge functional becomes maximal,

cording to Eq.(9). In the casel#0 we will show data av-

eraged over differentk( ,k,) giving rise to the same? ac-

cording to EqQ.(17). One should keep in mind that by this

“trick” one enfprces the rotational invariance “by hand,” pere 9|(w) denotes the gauge transformed gauge %ield

and the statistical errors are reduced as compared to mea-

surements for individudf—components of the propagator. 60— 0 =0+dw,,=0+dw+27k, keZ, (34)
In order to discuss the functional form of the propagator

from the viewpoint of confinement effects, with the confine-where the integer numb&=Kk( 6, w) for each link is chosen

ment being induced by the monopole plasma, we will de-such thatd(®) e (— r,].

F(O)= Z cog b)), (32)

maxg(6,»), G(0,0)=F(6). (33

w

compose the gauge fields into singularonopolé and regu- Instead of Eq.(33), following Ref.[10] we use for the
lar (photon contributions at the level of the link angles, purpose of this section the Villain form of the gauge condi-
tion,
. _ phhot mono
Oru=0n, +05, (29 min|| 6(<)]|2. (35)

by a procedure to be described below. After the decomposi- _ o
tion (29) of the link angles is done, one may define the cor- The Faddeev-Popo¥P) determinant is introduced by the

reSpondingAEZ(ztl/z)g,ﬂ and Anmf?ﬁz),;,ﬂ through the angle following decomposition of unity:

definition (6) and the sine definitioli7), respectively. Then, -

by fast Fourier transform, the correspondﬁ%&Ot andA7 " 1=AFP[0;)\]f Dewe M, (36)
are evaluated. For each configuration and a certain set of o

" ~ h : - .
momenta the bilinears for the photon DAEf’LOtAEE,t, andthe where\ is the gauge-fixing parameter. In order to achieve

monopole part AT°"A™®" and the mixed bilinear the gauge35) we have to send to infinity. In this case the
Zphotgmono forrﬁléd These are the observables that arIlmlts of integration in Eq(36) can be extended t& « since

ko "=k ; e saddle point approximation is exact in the limit> .
associated—by averagmgaover the Monte Carlo ensemble‘IVIoreover, the integer valued variatien Eq. (34) becomes
with the propagator®F°{(p) (the photon oregular propa-  effectively independent of and w since the values df for
gatoj, D'*"Yp) (the singular propagatoy, and D7}**{p) ~ which ¢“) ¢ (—, 7] are exponentially suppressed. There-
(the mixedpropagator. These propagators are considered to-fore, in the limit of infiniteX, the FP determinar{B6) can be
gether with thefull propagator, which uses the original link written as follows:

anglesdy , before the splitting29) has been performed.

In theT=0 case, all these functions ﬁfare then mapped Azl o:N]= f” Do E exp{—\|| 6+ dw+ 27K]| ).
by the projectiong15),(16) to the scalar structure functions "~ Cw ke

Dphot(p2), DmonO(p2)1 Dmixed(pZ) and (37)
FPho(p?), FMoNqp?), FM*edp?). In  the finite- _ _ B
temperature case we proceed analogously. UAslr}g kthe HOdgE_—dehRahth; tranSfOXTj?tIEFF SA™ dk
For the angle definition of the vector potential we stress™ 4 K, and making the shifto—w—A""5k, we get
that the structure functions obviously satisfy exact additivity:

A;é[e;)\]zconstf Dw
D(p)=DP"°{(p)+D™"Yp)+2D™*4p),  (30)

i i i o X > expl—\||6+dwo+2m5A" 1|3,
F(p)=FP"{(p)+Fm°"qp)+2F™*qp). oc ke
31
(31 39

III. MONOPOLES, DIRAC STRINGS, AND THE MINIMAL

LANDAU GAUGE 2Here and in the following we use the differential form notation

_ _ _ N on the lattice: &,b)==,a,b,, ||6]|2=(6,6). The operationsl§
In this section we patrtially follow Ref10]. Gauge fixing  and &6 are the lattice curl and divergence, respectively. The Laplac-
to the Landau gauge means, for a given configuratipn ian is denoted ad = 5d+dé.
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where we have changed the variabksdk. The integration
over w gives

A} 6;M]=const >,
seZ(cy)
ds=0

X (d6+2m5A~1s)}.

exp{—N(do+2m5A 1s,A L

(39

To proceed further we separate the gauge fielihto
regular (photor) and singular(monopole parts following
Ref. [11]:

0= aphot+ amono, amonozzﬂ_Aflﬁp[j], (40)
where the dual one-forrij represents the monopoles on the
dual lattice sites. The one-form on the dual lattipgj],

defines the Dirac lines that connect the monopoles and anti-

monopoless*p[j]= *j.

The photon part9®"°! is free of singularities while the
monopole partf™°"° contains the information about all
monopole singularities:

1 ho 1 mon P
Zd[dep t]271':01 Zd[de 0]271':]' (41)

Here the DeGrand-Toussaint definition of the monopa®
has been used. Substituting E40) into Eqg. (39), we get,
after a little algebra,

AP 0;\]=constx exp{4\(j,A"?))}

>
se’Z(cy)
ds=0

exp{—ASye( 0P p[j]1+5)},

(42
with

Syi( 6P p) = (d 6P+ 2rp, A~ H{d PO 2 (p[]+5)}).
(43

The meaning of the last equations is the following. The

gauge transformatiofi34) contains both regulardw) and

singular (k) parts. The former transforms the photon part of

PHYSICAL REVIEW b7, 034502 (2003

In the limit A — oo the only contribution to the FP deter-
minant is given by theylobal minimum of the gauge-fixing
functional (43) with respect to the variation§44) of the
Dirac line,

SIM(6POL ) = minSy(6P" p[ 1 +s).
ds=0

(49

If the photon field is absent, the minimu@b5) is given by
the Dirac line with minimal “Coulomb interactionfc.f. Eq.
(43)]. For a lattice monopole and antimonopole separated
along one axis this line is the shortest path connecting the
pair.

We substitute the FP unity36),(42) into the partition
function of compact electrodynamics,

Z= f Doe 9, (46)

then we transform the gauge fiel— 6" and get the
product of the gauge orbit volumgDw and the partition
function within the fixed gauge,

Zgr= f, Deefs(e)fx\lel\zAFp[9;)\]_ (47

Separating the gauge field into the monopole and photon
parts as indicated by E40) and using the Hodge—de Rahm
transformation, one can show that

||0||2: (50phot,A7150phot)

+(dOPO+27p[j1,A7H(d 6P 27p[ 1))

—4m?(j,A7%)). (48)
According to Eqs(42),(45),(47) the only nonvanishing con-
tribution to the partition function in the limik—o comes
from the global minimun{48) in the gauge orbit. Compari-
son of Eqs(45) and(48) shows that this minimum is defined
by the following conditions:

86P"°'=0 (49

the gauge field while the latter changes the monopole parfogether with

shifting the Dirac stringbut leaving the monopolgsintacy.

We have already integrated out the regular gauge transforma-

tions; therefore Eq(42) depends explicitly ol °"° which
is invariant under regular gauge transformation"°!
— 6P dw. The sum in Eq(42) over all possible shifts of
the Dirac lines,

*plil—="*plil+*s, (44)

Sgr(8P"4p[j1)=Sg (6P p[j 1), (50)

min

where Sy and Sy

tively.
In the continuum limit the condition49) leads to the
usual Landau gauge condition

are given in Eqs(43) and (45), respec-

&MAzhOtZO, (51)

corresponds to integration over all singular gauge transfor-

mations (remember that*s is the closed line on the dual
lattice, 5* s=0). Thus Eq.(42) is implicitly invariant under
the singular gauge transformations as well.

while the condition(50) can be formulated as a requirement
for the Dirac lines to form a configuration with as small a
length as possible:
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min  length(p[j]). (520 from 0.48 atp=1.0 to 0.0056 ap3=2.0. For higherg es-
5*plil =i sentially no global offers are successful.
. ) ) ) ) In our T#0 studies on 328 lattices, however, we
Indeed, the Dirac lines p[j]=*pi[j]+ *P,[j]+ ... cor-  found the acceptance changing smoothigarly exponen-

respond to singulas functions in the continuum limit. Here tjally, even across the deconfining transitidrom 0.58 at

*p; correspond to mutually unconnected pieces of thesgg=1.0 to 0.18 at3=3.0. A closer look reveals that the
lines. The self-interaction of the Dirac lines in Ep0),  higher acceptance rate is due to more frequent global
Zi(*pilil, A" *pi[j]), contains the terma=length@i[j])  changes of the flux penetrating the 12 pldhe., magnetic
(with a logarithmically divergent coefficient) plus finite  flux direction.

terms. The “Coulomb interaction” of different pieces of the  |n summary, one total Monte Carlo update cycle consists
Dirac lines, *pi[j1,A"**p[j1), i#k, as well as the con- of three cycles of local update, each consisting of a Metropo-
tribution of the regular fields to the conditidb0) are finite  |js sweep followed by a microcanonical sweep, interchang-
in the continuum limit. Thus the only essential contributioning with a global update as described above.

to the condition(50) in the continuum limit is given by the In the finite-temperature case, the measuremenb pf
term a3;length@i[j])=a length([j]), which gives the turns out to be highly sensitive with respect to insufficient
condition(52). removal (by the gauge-fixing procedure and its repetitions;

Thus we conclude that in the continu_um I|m|t the minimal see the next subsectipof Dirac strings wrapping around the
Landau gauge for the compact gauge fields is reduced to thfird direction. This is a case where the results with and
local gauge conditiort51) for the regular fields and a non- without global updates, mainly adding and subtracting fluxes

local condition(52)—the requirement for the total length of through the 12 plane, differ. We comment on this problem
the Dirac lines to be as small as possible—for the singulagnd how to deal with it in Sec. VI.
fields. This result can easily be generalized to the 4D case.

B. Landau gauge fixing

IV. NUMERICAL ALGORITHMS USED IN THE ANALYSIS . .
The Landau gauge has been chosen first of all because it

A. Monte Carlo updating is the most popular gauge to define a gauge field propagator.

The Monte Carlo algorithm in use for this investigation is N this gauge the gauge propaga(by is expected to satisfy
the transversality condition

a mixture of local and global updates. The local Monte Carlo
algorithm is based on a five-hit Metropolis update sweep in .

an even-odd fashion, alternating with a microcanonical F(9*)=0,D,,(a)q,=0. (54)
sweep, also in checkerboard mode. Both together are consid- )

ered asone local update. After three local updates the Me- !N the case of zero temperature, for example, th2|s allows one
tropolis step width is eventually tuned to keep an acceptancl® describe the propagator by a single functiao(g®) alone,

in the range between 40% and 60%. defined by
For better ergodicity, in particular in the presence of an
external field(considered in Ref[6]), global updates have - q.9, )
also been included, following the ideas of RE3]. In the Dun(@)=| 6.~ ? D(g%). (55)

equilibrium regime, after every three complete local updates,

a global refreshment step is attempted. We try to add one unife il see that for any practical implementation of the Lan-
of flux to the dynamical gauge field, with random sign in oney, gauge Eq54) is slightly violated. This degree of viola-
of the three directions randomly selected. The proposed fluygy, can, however, be easily controlled by sharpening the
addition is subject to a global Metropolis acceptance checkeonyergence criteria of the gauge-fixing algorithm. More im-

For example, one unit of flux in thgv plane is intro-  yortant is the remark that in the case of the angle definition
duced with the help of the following gauge field sHiff3] o the vector potential6) it is really necessary to select the
05 w105 ut 05 ) mod2n - transverse part by projection using E¢s5) and(16). Then
it is interesting to see wher@.g., in momentum spac¢he
violation of transversality, quantified by the longitudinal
propagatott, is coming from.

There is a second reason to choose the Landau gauge. We
intend to split the gauge field into a regulgrhoton and a
singular (monopole¢ part by reconstructing the field due to
the Dirac plaquettes which, on the other hand, are forming
the monopoles. This reconstruction becomes unique in the
Landau gauge.

In order to implement the gauge-fixing conditi@38) we

The acceptance rate of the global step changes giith  have chosen a mixture of overrelaxation and nonperiodic
a different way depending on the lattice geometry. In dur gauge transformatiojd4], both applied in alternating order.
=0 studieson 32 lattices we found that the acceptance of  Iterative overrelaxation has to be practiced in a checker-
global update steps drogmore rapidly than exponentia)ly board fashion. Starting, say, with the odd sublattice, we have

~ ar
b= (2x,~L,—1),
M

9;,=0 for x,#L,,

~ _277

0% 10 LM

L(1-X,), 0;,=0, p#u,v. (53
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first to find for each odd site a suitablew; which maxi- ~maxima, which are called Gribov copies of the true maxi-
mizes the following function ofv: mum. This is the so-called Gribov problem. It is partially
cured by repeating the same gauge-fixing procedure, apply-
oc ing it to random gauge copies of the original Monte Carlo
GRo(0,0) =2 [CO8 b, — wg) +COK b5, + wp)], configurationd™¢, assuming that one of these copies might
g (56) be situated in the basin of attraction of the true maximum.
The number of gauge equivalent configurations produced to

which represents the part ¢f actually depending oy,  restart the gauge fixing is denotedMg and iterative gauge
and second to perform immediately the updatings of theixing generically leads to really different maxima. We have
neighboring link angles then to be content with théest out of all Ny+1 local
maximaof the gauge functional. The convergence, with in-
Ori,u— O, ~ @i creasingNg, of a gauge dependent quantity evaluated on a
given gauge field ensemble with the help of the best Gribov
O i u— O jiu T Ohe (57)  copy gives an indication of the sensitivity of this quantity

with respect to the misidentification of the true maximum.
'We have applied this philosophy to two sets of data, the

to the even sublattice. One odd or even pair of gauge updaté) opagator data themselves at large or small momenta, and

constitutes one single iterative overrelaxation step. Eac e fit parameter emerging from a _ﬁt of the gauge boson
overrelaxation iteration is followed by a zero-mode subtracPropagator. One should not be surprised that the nuiNger
tion (to be explained in the next subsection that is necessary to achieve uniform convergence of the

The anglew can be easily found as propagator in momentum space and/or of the fit parameters
differs strongly between zero and finite temperature. At finite
temperature there are strong differences betwBgnand

This can be done simultaneously for half the sites
namely,e A,qq. Afterward the same procedure is applied

2 [SiN(85,,) = SiN(65z,,,)] D-.

tan wy) = " ) (58 In Sec. Il we stressed the importance of finding a local
> [cog 6y ,)+cos b5 5 ,)] maximum of Eq.(32) accompanied by a minimal length of
m e S Dirac strings. Within our implementation, the start from a

new random gauge copy is done in the hope of producing a
Gew Gribov copy reachable from the previous ones only by a
discrete gauge transformation. We have monitored the num-
ber of Dirac strings in each of the local maxima of the gauge
functional F [Eq. (32)]. Each time the recent best value of
the gauge functional was replaced by a befteghen one,

the numbemN of Dirac strings detected in the correspond-

The overrelaxation will usually be stopped if in the Iastingly best Gribov copy decreased compared to the previous

overrelaxation step the average increase of the gauge fun@®- _
tional  [Eq. (32)] per link is found to be less than 18 N Fig. 1 we show scatter plots relating the gauge func-
After this has been discovered, the gauge fixing procedurional 7 to the number of Dirac strings per directiot (i
ends with a final zero-mode subtractitsee below =1,...,3) for tworeduced ensembles of 100 out of 1000
At any local extremunof F [Eq. (32)] the following con-  equilibrium configurations on 3X 8 lattices, each of them
dition would be satisfied everywhere on the ewerd odd  starting with 101 Gribov copiegocal maxima ofF). Figure
sublattices: 1(a) refers toB=2.0 (confined phaseand shows all local
maxima(Gribov copie$. The isotropy of the Dirac strings is
clearly visible. Figure (b) shows how in the deconfined
(%AM)nEE (Ad+ (2),0— Ai-(12)i,0) phase the numbeM5 of temporal Dirac strings is correlated
. with the locally maximal value of-. Figure 1c) shows it for
1 ] . NlD and N? (number of spatial Dirac stringsin both cases a
~ga % [sin(05,,) —sin(65-5,,)1=0. (59  glight tendency to clustering near multiples of 8 or (82e
respective periodicities of the lattices visible, in particular
Having the vector potential localized on the midpoints offor the highest values aof. The selection of the best copies
links, its divergence is naturally defined on sités Exact  restricts the ensemble to biggérand smalleN; as shown
vanishing of the divergence &, can be expected in the in Fig. 1(d). In the confinement phase the Dirac strings are
result of Landau gauge fixing only for the sine definition of still approximately isotropic. In the deconfined phase, how-
the vector potentiah, . ever, the highest values of are correlated with low multi-
The algorithm outlined above will not in general lead to plicity of N? andN5, andNj corresponding to zero, with
the absolute(globa) maximum of the gauge functiona®  one or a few periodically winding Dirac strings more fre-
[Eqg. (32)]. Typically it will get stuck in one of the local quently in the temporal direction.

These gauge angles are multiplied by the overrelaxation fa
tor ws;— nw; and bounded byws| <7 before the iteration
(57) is performed on all links. A good overrelaxation param-
eter has been found to be=1.8. According to our experi-
ence from studies on $@attices this» leads to the fastest
convergence, almost independently gf This value was
then applied for all iterative gauge fixings.
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FIG. 1. Scatter plots of the average gauge functiof{@) per link and the related number of Dirac strings in thmporal(N?) and/or
the two spatial(N? andNY) directions for 100 configurations on a lattice?328: (a) N5, N®, andN5 vs F(6) in the confinement phase
(B=2.0), each configuration represented by 101 Gribov cofidy; vs F(6) in the deconfinement phasg€2.6); (c) same as irtb) for
N? and N?; (d) the two samples represented only by the best out of 101 Gribov copies.

We stress that the configurations of which the gauge fixbal increase ofF we did not find a systematic local variation,
ing has been investigated here in some detail were producefkpending on the distance from a monopole, of the violation
with the update algorithm including global updates. Windingof Eq. (59), expressed by the quantity
Dirac strings of some lifetime are also produced in en-
sembles that are generatedthout global updates, but less
frequently. Therefore, the inefficiency of the random gauge 2
transformation in exploring more of the gauge orbit is a (A =1 2 (Ars 2w Aoy | - (60)
handicap also if global updates are suppressed. We will see .
later that certain problems which show up in the finite-
temperature propagat@+ can be ameliorated, but not com- This suggests that the differential gauge conditi8) uni-
pletely cured, by abandoning global updates and increasinfprmly approaches zero.
the number of Gribov copies. In contrast to this, we found a systematic local variation

We had not the opportunity to reconstruct exactly the spaef the local gauge functional itself,
tial conformation of the Dirac strings in each gauge copy.

But for each gauge copy we can determine whether multiple

Dirac strings(running along a certain direction with the same loc

or different orientationcan be definitely excluded or not. At Fa (9):; [cod 65, ) + oS 05, )], (61)

low B this can never be excluded, but at higtthis could be

used as an additional criterion to reject Gribov copies that

contain double Dirac string6n the case of twmppositely  with the distance from a monopole. Near to a monopole, its
oriented strings value is suppressed compared to the bulk average. This is

Although the stopping criterion was formulated for a glo- illustrated in Fig. 2 for3=1.0 andg=2.0.

2
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with integerk chosen such thai%’#e (=, m]. This opera-
tion can be imagined as resulting from a gauge funcggn
3 +B=10 | =—6,n, (no summatioh which is in general nonperiodic.
) This special sort of gauge fixing is completed when zero

¥ . B=2.0 modes in alld directions have been subtracted.
] The zero-mode subtraction step is applied after each over-

Y A ———————_ relaxation step. Thus it is always performed before the mea-
1. surements are done on the gauge-fixed configuration.
In our runs we measured the photon propagator after each
07 ba ) tenth total Monte Carlo update cycle to avoid autocorrela-
, , tions as much as possible. Typically, we used 500 gauge-
0 10 20 4 fixed configurations per data point for the 33&ttice and
about 2000 configurations for the 828 lattice.

3 § BEBTH b
09

0.8

<I(OF™ (x)>/<Ijl>

FIG. 2. Suppression of the local gauge functioﬁ%ﬁC near a
monopole for3=1.0 andB=2.0. For better presentation some of
the data points are not plotted. Notice {Baependence of the bulk
average ofF >°.

V. THE ZERO-TEMPERATURE PROPAGATOR
IN THE LANDAU GAUGE

In coordinate space, the gauge boson propagator that is
C. Zero-mode subtraction studied reads

There are certain modes of the gauge field which are not
suppressed by the action. If they are not taken care of prop- D n } - = E» —(A- A )
erly, the gauge field propagator is known to be spojtd]. ur| MF 70— 50 [ =(Ams 2w (112)0,0)
For instance, adding some constant to all link anglgs in (64)
one particular direction does not change the actibn and
neither does adding a multiple ofr2to one particular link ~ with the angle or sine definition oA. For brevity, we will
angle. Nonperiodic gauge transformations can be considergefer to this propagator later in momentum spac@%%g or
to implement these changes. We have used them in our S|mﬂ}5'“. The two scalar functions occurring in momentum
lations to immediately eliminate zero modes related to the;pace[Eq (10)] we will denote a$2"9 andF2"9 or D" and
appearance of the volume average of the link angles in &S respectively. The last on&s'™", should vanish in the
given direction, Landau gauge. We have observed that this is indeed the case
with an accuracy determined by the stopping criterion of the
iterative overrelaxation. For the sine propagator the trans-
verse part can be calculated directly just by evaluating and
summing the diagonal components appearing in E&6).
When the longitudinal propagator vanishes only approxi-
mately, one can extract the transverse propagator following
Egs.(15),(16).

In Fig. 3 we show the different forms of the transverse

0,=2> 0;, /1A, (62)

n

where |A| is the lattice volume. We subtract this volume
average from each link anglg; , in the u direction,

05 .= 0n u— 0,1 27K, (63)  propagatoDs'" and its components as well as the vanishing
24 T T v v
w R %\\
1t
1.4 - % % L LT
. x;ﬂ;gc:c;:>~:>«:>ooco oomo&sq;gom . &noegomomoocoomoooggowﬁooﬂﬁ
5 ¥ ;
SE oo | RIS
504l F {1 8 [* e,
Q g 'aQ < LIPNIN °
N&‘ & qag? Se ol 2
vnw“wanmnwvnww ] S RPN,
0 Apotal & p’D total
-0.6 vp, ’D mixed ] v o'D mixed
B=1.0, sine o p'D photon —05 | B=1.8, sine o p'Dphoton ]
© p D monopole - § © p'D monapole
< F total < F total
-6 b ' : . . .
0 5 10 2 0 5 10 2
(a) p ()] p

FIG. 3. The Landau gauge sine propagator as a functiop’aheasured on a 32attice. For the transverse partDs™" [(a) at B
=1.0 and(b) at 8=1.8] we show the full propagator, the singulanonog, the regularphoy, and the mixed contribution for comparison.
In addition, we show thévanishing longitudinal propagatoFs". The data represent the evaluation\yf =20 gauge copies. For better
presentation some of the data points are not plotted.
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FIG. 4. The same as in Fig. 3 for the Landau gauge angle propagator. Notice the nonvanishing longitudinal priépdeareasing
with growing S.

longitudinal propagatoF*"". These data were obtained on a and
32 lattice for (a) 8=1.0 and(b) 3=1.8, withNg=20 Gri-

bov copies evaluated in addition to each original Monte Zphot
Carlo configuration. The data at oth@rwere produced un- DP{(p?) = —— — +CP"! (66)
der the same conditions. In Fig. 4 the same is presented for B p

D2"9, its components, and nonvanishiR§"9. _ . _

For the angle definition oA\, , the decomposition into The model function(65) is similar to some of the functions

/j, 1 - - .

components is strictly additiiEq. (31)]. We have observed discussed in Refd15,16 where the propagator in gluody-
that the longitudinal propagatér"® and its components are Namics was studied. In _the caselof 0 we expect these two
well described by the forr (p2) = Pp?, whereP is a con-  CUrves to differat all B in order to accommodate thper-
stant. We find thaF2"%P"°! essentially coincides with the Manent confinement property of the model. Figuréab
full Fa"9, The size ofF2"9 and its photon component is of shows the anomalous dimensioasfirst increasing in the
the same order of magnitude as the transverse pag at low-3 region. The anomalous dimgnsic_ms_ for the angle and
=1.0, while the monopole and mixed parts are one order of°" the sine propagator behave quite similarly to each other
magnitude smaller. AB=1.8, the size oF 2" and its pho- (the dimension for the angle propagator is a b|t-sm}1lks
ton component is an order of magnitude smaller tha at B gets larger tha~1.5 the .an.omalous dimensions start o
— 1.0, while the monopole and mixed parts are negligible descend toward zero. This indicates that the anomalous di-

For the sine definition oA ,, the monopole part of the MENSION IS hot only a fu_nct|on .Of the monopole density,
transverse propagatﬁsin,moné‘has a maximum in the low which decreases monotonically with growiggor all values
momentum regiorfwhich moves more and more towapd of the coupling. Thecluste) structure of the monopole con-

=0 with higher 8) before it drops towargd?=0. For the figlljralt:i_ons nk;la%/hplay a significantt role far. ted for th
angle definition, a maximum dp2"9™m°"° develops only for n F1g. 5(.) € mass parameters are presented for the
B>1.0. angle and sine propagators according to &&) as a func-

Summarizing, we have observed that the longitudinal par%Ion of '8.' Both Masses are aImQSt equivalent. For the mass
F is either zerdfor the sind definition of the gauge field in here exists a theoretical prediction due to Polyaktly

the correlator or it is nonzero, and then it coincides with its

photon parifor the # definition). Therefore, at zero tempera- Min(8) =272 exp{ m°By(B)A~1(0)}, (67)

ture the Landau gauge propagaff’? is not completely ) ) .

transverse. This is entirely due to the difference between th@/heréBy is the Villain coupling constant

definitions of the vector potential. This discrepancy, ex-

pressed by the nonvanishigf"%, becomes ameliorated at _ lo(B)| |+
For both definitions ofA,, we find that the regulagpho-
ton) part of the transverse propagator is singulapat-0,  1,(3) andl(B) are modified Bessel functions amlis the

like DP"°'~1/p2, while the full transverse propagator is not. Wilson action coupling constant appearing in Et). The
Following Ref.[7] we try to describe the two by functions of prediction(67) is valid for a dilute monopole gas. The agree-

the form ment between the two data sets and the theoretical curve is
very good. The small deviation at lowe8tcan be attributed
7 m2a to violation of the dilute gas approximation.
D(p?)== +C (65) Figure 5c) showsZ(B) andZP"°{(B) for the two defini-
B p?ta) 4 m2(ta) tions. We observe tha tends to unity at largg8, whereas
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FIG. 5. The best fit parameters for the zero-temperature sine and angle propagators as fungidias thle anomalous dimensiam;
(b) the mass parameten with the theoretical predictiofEq. (67)] as dashed line(c) the parameter& andZp; [using Eq.(65),(66)]; (d)
the total monopole density and the monopole density in charged clusters with the theoretical prEdirtiés)].

ZPh°{(B)~1 for all 8. The strong deviation o from unity ~ and the density of monopoles residing in chargehlysica)
at small can be interpreted as a field renormalization by theclusters. The charged fraction is well described by the theo-

monopoles. retical formula for the monopole density,
The simplest quantity characterizing the monopoles is the
monopole density=3.j./|A|, where the monopole charge p(B)=2exd—2m?By(B)A10)}, (69

j is defined in Eq(41). Note, however, that a general mono-
pole ensemble may contain lattice artifacts which at zeravhich is a lattice versiori5] of the Polyakov formuld1].
temperature are realized in the form of ultraviolet monopole-According to Fig. 5 the monopole density, Debye mass, and
antimonopole pairs. Following Rdf5] we remove these lat- deviation of the couplingZ from unity are all descending
tice artifacts using a cluster analysis. For our purposes, clugunctions vanishing in the limig—co.
ters are defined as connected groups of monopoles and The contact terms contained D*'" and D#"9 are not
antimonopoles, where each object is separated from at leashown here. The photon part of bdit¥'™ andD?2"9 vanishes
one neighbor belonging to the same cluster by a distance leg@rfectly. The full propagator in both cases contains contact
than or equal tdR.,. We useRZ,=3a? which means that termsC*" andC2"9, which deviate from zero for small,
neighboring monopole cubes should share at least one singighereas alway€®'"(B)<C?"9Y(B).
corner. The cluster is called charged if the total charge of its The discussion of Figs. 3 and 4 and of {Belependence
constituent monopoles is nonzero. This includes isolatedf the fit parameters in Fig. 5 was based on the zero-
monopoles and antimonopoles. temperature propagator@nd their componenksobtained

In Fig. 5(d) we plot the measured total monopole densitythroughout withNg=20 Gribov gauge copies. The depen-
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FIG. 6. The dependence of the zero-temperature angle propagatdg dar a 32 lattice (at 8=2.0 as an example(a) The full
transverse propagator fttg=0,10,20 in the full momentum regioib) its behavior as a function df; at five selected moment&;) the
same for the singulaimong part of the transverse propagat@) the same for the reguldpho? contribution to the transversal propagator.
Again for better presentation some of the data points are not plotted.

dence on the number of gauge copies has been investigatednimization of the Dirac strings that is achieved by better
carefully for the case of the angle propagator. As a result o&nd better Gribov copies. The mass presented in Rig. 7
this study, the default choice dfg=20 for the gauge-fixing does not change withlg, which confirms that it is mainly
procedure alf=0 was established. In Fig. 6 we show dif- determined by the monopole mags., density. Figure 7c)
ferent aspects of the approach to thg—oe limit, for B showsZ for the full transverse propagator aZd"°! for the
=2.0 as an example. Figuréa demonstrates that the trans- photon part. It is not surprising that the parameter associated
verse propagator evaluated with either 10 or 20 gauge copiasith the photon part does not change. The parameter describ-
is essentially the same, but the naive evaluatieith Ng  ing the full transverse propagator decreases, agais b§%
=0) would clearly overestimate the propagator over thewithin Ng<<20. One can also observe a slight dependence of
whole momentum range. Figurébd shows this in more de- Z on Ng for Ng>20. However, the dependence is indeed
tail for five selected momenta. It becomes clear that the devery small(about 1% and not essential for our qualitative
pendence is strongest in the region of small momenta, inliscussion.
particular the regionbelow the peak. The dependence is  From the comparison of the sine propagator and the angle
strong for the singular part presented in Figc)6 Again,  propagator at zero temperature we conclude that the fits of
there is almost no change betwedg=10 and 20. As can be the transverse parts give more or less the same parameters,
seen from Fig. &), there is almost ndlg dependence in the with a 8 dependencéf appropriate which is in accordance
photon part of the transverse propagator. with the monopole density. Strict transversality itself is guar-
We present the resulting dependence of the fit parameters
onNg in Fig. 7, again for8=2.0. The anomalous dimension —
a shown in Fig. Ta) drops by within 10%, which indicates  3Let us recall that the monopole positions in a given configuration
that the anomalous dimension is sensitive with respect to thare gauge independent.
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anteed only in the case of the sine propagator. In the case fifinctions of the number of Gribov copidég with global
the angle definition an appropriate transverse part has to hgdates included. A= 100 the plateau is not yet reached.

extracted by the projectiofi5),(16). Moreover, the results are sensitive to whether or not global
updates are included, in particular at high valuegBofThe

VI. THE FINITE-TEMPERATURE PROPAGATOR measurements with only local updates lead to significantly

IN THE LANDAU GAUGE lower fit results. In deconfinement we would expect vanish-

In this section we report our investigation of the proper-Ing my (anday), andZ;—1. . . .
ties of the gauge boson propagator at finite temperatures, '€ réason for that behavior might be explained as fol-
With respect to the distinguished directign=3, the propa- OWS- On one side, the “best” gauge functional is realized in
gator D can be separated into transverse and longitudina#@uge-fixedconfigurations without Dirac lines wrapping
componentgsee Sec. Il for the definitionslenoted aD a_lround the Iatt_meéprgdommantly |n_the short temporal direc-
and D, respectively. We are working on the lattice232 tion). Such Dirac lines are continuously created and de-
%8, in line with Ref.[7], where only theD, component of stroyed by the Monte Carlo process, even if global updates
the angle type propagatéwith p;=0, Ng=20, and a lim- are not attempted. The level of “noise” due to wrapping
ited statistics of 500 measurementgas studied. Dirac lines is higher if global updates are included in the
The transverse component of the propagafly, de- Monte Carlo process, which in general would improve the
scribes the spatial degrees of freedom, while the longitudinagrgodicity of the system, but it represents a problem also if
componentD, , contains gauge fields in the Landau gaugeonly local updates are used. The presence of wrapping Dirac
in both the temporal and spatial directions. The finite-strings mimics a finiteB-independent lattice mass;; at
temperature propagator data are analyzed agaipsfel0, as  larger 8, the value of which decreases only with increasing
a function ofp?. In that caseD, is constructed only from temporal extentt. So in the limit of vanishing lattice spac-
temporal degrees of freedom which, in particular, are responing the dimensionful mass will diverge.
sible for the confinement phenomenon. We have fitted the This “Dirac noise” represents a serious challenge for the
data for both components of the propagator using the fitjauge-fixing algorithm. The deterministic p&overrelaxing
function (65) invented first in Ref[7] to describeD 33. steepest descent methadescribed in Sec. IV B cannot re-
First we repeated the investigation of the Gribov copymove it. Unbiasedrandom gauge transformations applied to
dependence of the propagator componéitsand D+, this  get new start configurations for the deterministic search for
time for the sine definition of the propagator, similar to thatfurther Gribov copies are obviously not effective enough to
conducted for the zero-temperature case with the angle defieduce the Dirac noise. A simulated annealing Monte Carlo
nition. The results are summarized in Fig. 83atalues near series of random gauge transformations with the total length
(below and abovethe phase transition. After a few Gribov of Dirac strings as the “gauge actiofil7] seems to be more
copy attempts the longitudinal component is almost insensiappropriate for selecting new start configurations for the final
tive to the numbeNg . This can be seen from the left panel steepest descent search.
of Fig. 8. The fitting parameters, , m_, Z,, andC, (the Having these difficulties in mind, we decided to use in the
last is not shown hejeare rapidly converging and become final measurements at finite temperature, @+2.0 and
almost independent dilg for Ng=7. The results at large larger, only local updates before gauge fixing, and to perform
numbers of Gribov copies are not sensitive to whether or noNg=100 Gribov copy attempts. For both sine and angle
we have suppressed global updates made only local up- propagator measurements deep in the confinement ghese
dates; see the label “local)’ low B=2.0) we used\Ng=20 and global updates where the
The transverse component, however, is strongly deperresults of the zero-temperature analysis for the Gribov copy
dent on the number of Gribov copies as can be seen frordependence is applicable, and the fit parameters of both
Fig. 8. All the fit parametera;, my, andZ; are descending andD+ have to agree within accuracy and should be similar
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to those for théT=0 transverse propagatdr. Nevertheless, the renormalization factor for the angle propagator is bigger
we have to admit that the results for the transverse propagdban that for the sine propagator. The latter is expected be-
tor D1 should be understood only qualitatively. causefsin 6<|6|.

The results for the best fit parameters By andD+ are The corresponding quantities f@, behave differently
presented in Fig. 9. Let us begin wifh,_ . At the critical ~ for the angle and sine definitions Af,, with the remarkable
point both the anomalous dimensian and the massn,  exception of the mass parameter. For example, the anoma-
vanish while the renormalization paramet@r meets the lous dimensionxt for the angle propagator vanishes in the
corresponding parameter for the perturbative phoEfi°. vicinity of the critical point and beyond, while the same
This behavior is characteristic for both angle and sine typesguantity for the sine propagator does not vanish. We explain
of propagator and extends our results in R&]. Note that this behavior as due to insufficient gauge fixing, as can also
here also the mass parameters for sine and angle propagattes guessed from our previous analysis. The same reason ex-
coincide with each other. However, the anomalous dimenplains the fact that the masses for both definitions of the
sions for these cases differ slightly from each other while theophoton propagators—being remarkably similar—do not van-
renormalization parameters are significantly different, andsh at the critical point. Finally, for both definitions of the
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FIG. 9. The best fit parameters for the nonzero-temperature sine and angle propagators as fungtidthe ahomalous dimensiom
(a),(b), the mass parameten (c),(d), and the parameteBandZ,,,, (€),(f). The left column corresponds @ , the right toDy. The fits
of full propagators are done with the help of E§5); the photon contribution is fitted by E¢66).

propagators the renormalization consta@ts do not ap- VII. CONCLUSIONS

proach the correspondirﬂj’,}hOt at the critical point. In order

to get reliable behavior of thB part of the propagator one We studied the gauge boson propagator in cQBDboth
should drastically increase the number of Gribov copies usedero and nonzero temperatures. We found that the propaga-
in the gauge fixing. For the time being this is beyond ourtors in all cases under investigation can be fitted by (E8)
computing capabilities. The situation could be improved uswhich is the sum of the massive propagator with an anoma-
ing a variant of the mentioned simulated annealing Montdous dimension plus a contact term. Similarly to the case of
Carlo series of random gauge transformations in order t® _ at finite temperatur¢7], a nonvanishing anomalous di-
choose more appropriate initial gauge transformed configumensione« is also found aff=0. Moreover, the fact of the
rations before fixing the gauge. existence of the anomalous dimension is not associated with
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a particular type of gauge boson propagator. We have studiadeasured in this paper does not behave in a physical way
angle and sine types of propagator and the correspondindue to the severe Gribov copy problem.

anomalous dimensions are nonvanishing and have a similar Finally, let us comment on the continuum limit of the
behavior to the functions g8. measured quantities. The continuum limit of cQEEbrre-

The existence of the anomalous dimension depends on tigponds tog= 1/(g3a)—=, holding the dimensionful gauge
presence of the monopole plasma, but it is not directly procoupling g; fixed. According to Polyakov, nonperturbative
portional to the monopole density belgd=1.5. In the con-  quantities such as the Debye mass and string tension can be
finement phase the monopole plasma is present at any co@Xpressed in terms @f; and the monopole densify, which
pling of the system and the density of monopoles is adenerally might be independent quantities. However, this is
monotonically decreasing function of the lattice coupljsig ~ MOt true for compact U) where bothgs andp depend on a
A similar behavior is observed for the anomalous dimensiorfingle parameter, the lattice coupling Therefore, in the
in the case of th®, andD+ propagators. The dimensiey  lIMit of vanishing lattice spacing, the monopole density and

extracted from th®, component of the propagator vanishes ©ther nonperturbative quantities such as the Debye mass,
in the vicinity of the phase transition for both definitions Stfing tension, and anomalous dimension also vanish expo-

(angle and sineof the propagator. However, this does not Nentially as~exp{—consg} [cf. Egs.(67),(69)]. However,
happen for the sine definition of th2; propagator. We as- " more realistic modelslike the Georgi-Glashow model
sociate this result with an insufficient number of Gribov c0p-the monopole density and the lattice spacings are indeed in-
ies used in the gauge fixing. THR propagator requires dependent and the monopole density should survive in the

many more Gribov copies for the gauge fixing than does thgontinuu_m limit. _Ac_cording to our r_esults, this implies that in
D, propagator the continuum limit of such theories a nonzero anomalous

Concerning the other parameters of the fits, the mass elimension in the photon propagator can be expected.

tracted from the propagator at zero temperature and from the
D, propagator at nonzero temperature does not depend on
the definition of the propagator. The mass for e 0 case M.N.Ch. is supported by the JSPS through grant No.
is perfectly described by the Polyakov formula. Themass P01023. E.-M.l. gratefully appreciates the support by the
vanishes at the phase transition point, as was expected froministry of Education, Culture and Science of Japan
the disappearance of the monopole plasma at the critical teniMonbu-Kagaku-shpand the hospitality extended to him by
perature. Beyond the phase transition point, the mass H. Toki at the RCNP of Osaka University.
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