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Valence quarks in the QCD plasma: Quark number susceptibilities and screening
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We investigate the quark sector of quenched QCD fo<IbT <3 in the continuum limit, using two
different lattice discretizations of quarks and extrapolating from lattice spacings betwdearid41/14 . At
these temperatures, the flavor off-diagonal susceptibility/ T? is compatible with zero at each lattice spac-
ing, and hence also in the continuum limit. In the continuum limit, the light quark susceptibilities are about
10% less than the ideal gas results even at the highéstagreement with hard thermal loop predictions but
marginally below a resummed perturbative computation. For the mass range appropriate to the strange quark,
the flavor diagonal susceptibility is significantly smaller. Our estimate of the Wroblewski parameter is com-
patible with observations at BNL RHIC and CERN SPS. The continuum limit of screening massedaoadl!
quark bilinears is very close to the ideal gas results.
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[. INTRODUCTION tion, where they influence even the order of the transition,
sufficiently far away their effects are seen to be small
Heavy-ion experiments at the BNL Relativistic Heavy lon[11,12. In this paper we report on the physics of valence
Collider (RHIC) are now analyzing large quantities of data quarks in the continuum limit of QCD foF =1.5T.—3T,,
and hope to identify and characterize the plasma phase eofhere sea quark effects are marginal. The two aspects we
QCD. As a result it has become imperative to put together agoncentrate on are quark number susceptibilifi3] and
accurate and detailed picture of this phase from theoreticacreening correlators and masses.
analyses of QCD at finite temperature. Present day lattice Quark number susceptibilitigd1-16 now occupy a po-
computations are able to do a large part of this job. The reachition of high interest. Due to their connection with fluctua-
of theory would certainly be enhanced if perturbation theorytion phenomend17] and strangeness productiph5] they
is tested accurately against these computations and, if four@f€ useful inputs to relativistic heavy-ion collisions. They are

to work well, subsequently used in contexts where the lattic€0efficients of the Taylor expansion of the free energy den-
is too ponderous to use. sity of QCD in terms of the chemical potential, and hence are

seful checks on recent attempts at numerical studies of
Inite-density QCD[18]. For exactly the same reason they
are a testbed for suggested resummations of the high-
tFmperature perturbation series for QCD, which aim to re-

Yoduce the free energy density, and hence the equation of
state, at high temperaturg€s9]. In this paper we report our

The gluon sector of the QCD plasma has been extensivel
analyzed. In the quenched theory the scaling ghas been
established to high accura¢g,2]. The continuum limit of
the equation of state has also been determined to reasona
high accuracy{1,3]. This shows strong departures from the

|deql gas. It turn; put that hard ther_mal log#TL) reSUM-  study of these susceptibilities at a large variety of lattice
mation is not sufficient for a description of the lattice reSUItSSpaCingS and an extraction of their continuum limit.

[4], nor is a Borel resummation of the perturbative seftgs Screening correlators and masses are closely related to
Other techniques such as an approximately self-consistefhear response functions such as susceptibilities. They have
resummation(6] and dimensional reductiof7] have been peen explored earlier at finite lattice spacingsTH4/8T.
applied, and the former has been successful in describing t@taggered quarks were used in 4 flaj@0], 2 flavor,
lattice results forT>2T.. In addition, the spectrum of [21,17, and quenchefl22—24 simulations. For reasons of
screening masses in the QCD plasma has been determinedsgmmetry a large degeneracy of screening masses, of the
good accuracy8] and, forT>2T., found to be in agree- zero temperature scal&®), pseudoscala(PS, and certain
ment with that determined nonperturbatively from a dimen-components of the vectdiv) and axial-vector(AV) quark
sionally reduced model whose couplings are matched pertubilinears, is expected in the QCD plasfi2¥]. This was not
batively to the four-dimensional theof@]. There is also observed; instead lesser degeneracies were—between parity
direct evidence for the existence of the gluon as a quasipapartners S and PS or V and AV. Similar results were also
ticle in the plasma foif >1.5T; [10]. obtained with overlap[25] and Wilson [26] quarks in
The quark sector of the theory has not yet been exploreduenched QCD, though the splitting between the S/PS and
in as much detail. Part of the reason is that lattice computaVv/AV sectors was seen to be substantially smaller. Here we
tions with light sea quarks are very expensive. While seatudy these correlators on a wide range of lattice spacings
quarks are needed in the neighborhood of the phase transind extrapolate the results to the continuum.
In this paper we carefully address the question of the con-
tinuum limit of these quantities in the quenched QCD
*Electronic address: gavai@tifr.res.in plasma, where the valence quarks are used as probes of the
"Electronic address: sgupta@tifr.res.in dynamics of gluons. To this end we perform quenched com-
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putations over a range of temperatures and a large range of The quark number density for flavéy n;, is defined as
lattice spacings, in order to perform a continuum extrapolathe derivative ofF =logZ/V (Z is the partition function and
tion. We test the extrapolation by working with two different V the spatial volumewith respect tou;. The quark number
formulations of quarks on the lattice, with different system-susceptibilities are the second derivatives
atics at finite lattice spacing. One is the normal staggered 5
formulation of quarks, the other a Symanzik improved ver- _ J°F

: . : Xt/ (Topby g prs) =T - )
sion of staggered quarks, called Naik quafR8]. By this Apsd s
means we identify a unique and verifiable continuum limit.

We would like to distinguish our approach from Syman-We will always drop the repeated subscript for the diagonal
zik (or loop leve) improvement of the actioh29]. Such  susceptibilities. There are similar susceptibilitiag,, xs,
programs aim to approach the continuum limit of the actionand yg obtained by taking derivatives with respect g,
on coarse lattices by adding terms to the action which sysp,, and ug, respectively. Here we determine the suscepti-
tematically, order by order in the lattice spaciagremove bilities at u;=0. In this limit, alln;(T)=0 but the suscep-
lattice artifacts up to some sufficiently high orderanwhen tibilities can be nonvanishing.
such a scheme is used in conjunction with improved opera- The flavor off-diagonal susceptibilities such as
tors, it (ideally) obviates any need to go to very fine lattice T
spacings. In this work we only use an improved operator for Xt = (M7 IMtrM flef’,) (3)
the valence quarks; the action is not improved. We reach the \

continuum limit by simulations on a variety of lattice spac- ) . )
ings and a smooth extrapolation. are given solely in terms of the expectation values of quark-

A further question is about the magnitude of quenching””e disconnected loops. HeM; denotes the Dirac operator
artifacts. It is knowr{1,2] that T, changes by almost a factor for a quark of flavorf, andM¢ and My the first and second
of 2 due to unquenching. However, previous computationglerivatives with respect tp¢, taken term by term. The fla-
[12] have shown that this is largely subsumed into an overalvor diagonal susceptibilities have contributions from both
scale: scaled quantities such gsin units of its free field quark-line connected and disconnected pieces
theory value, when expressed in termsTdfl ., change by T
only 5% when going from quenched to full QCD. The equa- XfZV[((trM{lMf’)2>+<tr(M{1M'f'— M{TM{M{ M),
tion of state[1,3] also shows similiar small effects in scaled (4)
guantities. While we expect that the quenched continuum

results presented here foF1.5T. should be close to thatin - \yg graw attention to the fact that the last two terms individu-
the fgll th_eory, a direct computation of the latter is certalnlya”y grow rapidly with lattice volume, diverging in the infi-
required in future. - nite volume limit, such that the difference is a finite quantity.
__In the next section we present definitions of all the quan-ris cancellation of divergences is the result of a proper
tities that we measure, and results for these quantities fQfeatment of quark chemical potentials on the lat{id].

ideal quark gases on a lattice. In Sec. Ill we present details Q{ymerically, the simplest quantity to evaluate is the diagonal
the simulations and measurement schemes. The fOIIOW'n%ovector susceptibility

section contains detailed results on the lattice with discussion T
of the extrapolation to the continuum. The continuum ex- _ T P R
trapolations are collected and discussed in the final section. X3= 5y (M "My=M, "M{M"My)), ®)

where the factor half takes care of the isospin carried by each
flavor. In addition to this, we shall need the baryon number
The partition function of QCD with three quark flavors is and electric charge susceptibilities

II. DEFINITIONS

1
Z(T,,(,Lu,,u.d,,us)zf DU exfd —S(T)] Xo=g (4xa+ Xst 4Xuat 4Xus)

< I dem(Tm w), @ ™
f=u,d,s 1

XQ=g (10xa+ x5t Xua™ 2Xus)- (6)
where the temperatufedetermines the size of the Euclidean

determinant of the Dirac operatd4 contains as parameters e the normalization for the continuum ideal gasyjgT2
the quark masses; and the chemical potentia}s; for fla- =1.

vors f. We also define the chemical potentialg= s, + uq The screening correlators of local quark-biling&me-

t s, m3=py— pg and pwg=py+pg—2us, which corre-  son”) operators are defined as

spond to the diagonal flav@&U(3) generators. Note thai,

is the usual baryon chemical potential guglis an isovector Cr(2)=> (M Axy,z)T M (x,y,z ory, (7
chemical potential. e B Ba Yo '
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whereI" denotes some Dirac-flavor structure,and 8 are
color indices andvl ~1(r) is the inverse of the Dirac operator
for a point source in the fundamental of col®tJ(3) at the 2|
origin. Since the partition function of Eq2) can be ex-
pressed as the trace of a spatial transfer matrix, the screenin
correlators decay exponentially, with characteristic length
scales called screening lengtfisverse of screening masses &
Mr). 1
The finite temperature symmetries of such a spatial trans:
fer matrix are quite different from that of the Hamiltonian Naik
and have been worked out in def&l7]. In particular, it turns
out that there are only two independent local correlators. The
combination of vector operators, ¥V, and axial vectors ol—s N é é 3 i T
AV,—AV, are in theB; " representation of the finite tem- N,
perature symmetry group; . [35]. All others, i.e., the scalar
S, the pseudoscalar PS, and all the components of the V and FIG. 1. The ideal gas on a lattice withv'*=3 for staggered
AV orthogonal to theB; ©, lie in the scalar representation, quarks (pluses and Naik quarks(crosses as a function ofN;
Al " . This clearly implies that the angular momentunis =1/aT.
not a good quantum number for screening correlators, an . .
hencegstatesqof differedtcan mix with eachgother. the momentum spectrum i8o=(27/Ny)(n+1/2) with 1

The meson susceptibilities are the zero momentum part o =Nt and pi:zmdﬂNi Wli:h 1ShnSNi iln all ather direc- ho
the screening correlat¢R3] and can be written as “9”5- For staggere quarks, wnhere only a nearest neighbor
difference appears in the Dirac operat@;,=1/2 and

C30=0. For Naik quarks, on the other hard;,=9/16 and
Cs0=—1/48. The construction of the number densities and
conserved currents, and hence the chemical potential on the

Staggered

Xr=(tMITM )= Z(T)(up) 2,

where lattice, is com_plicated for Symanzik improved quarks, but
o goes through in the usual wag?2].
Zi=|(i|y4T ¥|0)|?, 8 All the quantities of interest are exactly computable for an

ideal quark gadi.e., in free field theory not only in the
li) denotes the eigenstate of the transfer matrix with eigencontinuum, but also on the lattice. In terms ofD{p)
value \;, and the screening masses arg=I0g(\i/\o). In =(ma)?+p-p, p,=—(Cy,COSPo+3C30C0S Pp)&,, and
the continuum limit, sincé’ = v, cIearIyX3=XVO; in fact, p;: (C108inpo+9C3esin 3pg) &y, We have
this identification underlies the computation of Réf9]. The
PS susceptibility is also involved in the chiral Ward identity

(Y per= chp D(p),

(y)=mxps. 9
The renormalization of the various quantities involved in this N
identity are therefore related. At=0, chiral symmetry is a?yiFT= _°3 > {D(p)[p-p —p"p"]
broken and the sum over states in E).is dominated by the (N5 P
lowest term, due to the vanishing Goldstone pion mass. Then 5 o
this Ward identity shows than?em. However, forT>T,, +2D(p)(p-p")},
chiral symmetry is restored andsy) should vanish in the aus89=2 sinh t\(ma)2+ sifk(7/N,). (11)

chiral limit. At the same timeyps need not be dominated by

i .
?n$ state and‘l,PS ,(t:OUId d%pelr:q V\{e?kly ?m, tgomgt tothat Here FFT stands for a quantity computed in free field theory.

. FFT_  FFT FFT ; ; :

inite r:r(])nzero imit-asm-— ISn erlefs 'ng";ﬁgoﬁ _a Also, xiq = xis =0 and 5™ is obtained by setting the
since the screening masses are equal for a chan-  gyrange quark mass iB(p) above, and thereby " and
nels, the differences between the susceptibilities can only Frr
come from theZ;’s in Eq. (8). For an ideal gas of quarks on ;%

can be obtained. Figure 1 shows the susceptibilities for
. . . . th r nd Naik rks on n f latti with
the lattice, the Dirac operator at zero chemical potential i e staggered and Naik quarks on a sequence of lattices wit
most simply written in momentum space where it is diago-

Sixed aspect ratiocNg/N,=3. Note that the approach to the
nal continuum limit is quite different in the two cases. In free-
' field theory y,q=0. The computation of the correlators

M ,q= Sy ma+iy-p] Cr(2) in the ideal gas is also straightforward. Perturbative
pa— “pqg ' . . . )
expansions in the gauge couplirgy,have been performed in
where the continuum.y; has been computed in the hard thermal
A loop (HTL) approximation to ordeg® as well as in a skel-
p,=Cyesinp,+Csesin3p,,, (100  eton graph resummatidi9]. To the best of our knowledge,
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TABLE I. The lattice sizedN; X Ng’, Wilson couplingB, and statistics used in this study. The statistics is
reported adNgepX Ny WhereNgg, is the number of sweeps between measurementiNagds the number of
measurements. 1000 initial sweeps were discarded for thermalization in all cases exddpt fi#erun,
where 7000 sweeps were discarded. For asymmetric spatial sizes the long direction is calléuletison.

N, 1.5T, 2T, 3T,
B \% Stats B \% Stats B \% Stats
4 5.8941 1% 50x51  6.0625 13 50x50  6.3384 18 50% 28
6 6.0625 20 1000x54 6.3384 26 100055 6.7 26 1000x 59
8 6.3384 18 100057  6.55 18 100x54  6.95 26 500x 30
32x18° 100X 47 32x18° 10020 32x26° 10020
10 6.525 23 50105  6.75 23 50x219  7.05 32 50 23
40x 222 100%x 20 40x22%  100%x 20 4032 100X 20
12 6.65 26 50X 75 6.90 26 50x173  7.20 38 50% 50
48X 26> 100X 24 48x 26> 100X 61 48x38 100X 20
14 7.00 36 1000x 48

there has been no such computation of screening correlatonse have made measurements using both staggered and Naik

screening masses or the remaining susceptibilities. quarks atm/T.=0.1, 0.5, and 1. For staggered quarks we
have also usec/T.=0.03. For screening masses and corr-
elators we have used only staggered quarks. The stochastic

Iil. METHODS evaluation of traces depends on the identity
As already mentioned, we have investigated quark num- 1 N
ber susceptibilities using two different realizations of lattice Tap=5N" ,21 RY(RF)”, (12)
v 1=

guarks. For staggered quarks, the derivative in the Dirac op-
erator is d|scret|z¢d using a ong—lmk separated finite d'ﬁerWhereI is the identity matrixR® is the component of the
ence operator. This has a discretization error of oadehe vectorR. . which is one of a set ok uncorrelated vectors
improvement suggested by NajR8] is to take a specific - v

three-link termisee Eq(10)] which cancels the leading term ¢ (BRSSPI A0 IR Y enotes
of the discretization error for staggered fermions up to '

O(a%). This possible improvement comes at a fourfold in- complex conjugation. This leads to the stochastic estimators

crease in computational cost, due to the more complicated 1 N + )
structure of the Dirac operator. TIA=TIAZ= 55 2 RIAR, (TrA)’=TrATAZ,

Since the discretization error in the evaluation of the sus- v (13)
ceptibilities comes partly from the gauge action and partly
from the Dirac operator, and we use the Wilson gauge action
the part of the®O(a?) error coming from this source would
remain the same in the two determinations. However, if a
large part of thed(a?) error in the determination of suscep-
tibilities using staggered quarks comes from the traces of the
Dirac operator in Eq9.3)—(5), then the slope in the extrapo- 1.4,
lation to the continuum limit should be substantially different <!
between the two quark formulations. That this is so can be = |~
seen already in the computation for the ideal quark gas, il- R=3
lustrated in Fig. 1.

In this paper we report results on susceptibilities and
screening measured on lattices with<M;<14 for T
=1.5T., 2T., and 3T.. The lattices sizes, couplings, and
statistics used are reported in Table I. Due to statistical error¢ 1.35 U R—y 50
in the determination of critical couplings various other quan- Ny
tities that go into a scale determination, the temperature cor- G
responding to a given lattice coupling may be in error by G, 2. The variation of the estimate g§/T2 on a single con-
about 5%[27]. The simulations have been performed with afiguration withNeg, which varies as In(keg). The values ofcg
Cabbibo-Marinari pseudoheatbath technique with threere marked at appropriate points on the curve. The size of typical
SU(2) subgroups updated on each hit, each sweep consistirgrors on the estimates, after averaging over 50 gauge configura-
actually of five sweeps of this algorithm. For susceptibilitiestions with N,= 10, is shown as the bar. This is insensitiveetg; .

v

1072
1073
104

-
10

80 100
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FIG. 3. The temperature dependenceygf T? with staggered|left pane) and Naik(right pane) quarks of masses 0.03and 0.1,
respectively, withN;=4 (circles, 6 (boxes, 8 (pentagonk 10 (down triangley and 12(up triangle$. Note the differences in the y-axes in
the two cases. The bold lines join the centers of the data points. The thin lines show the vglu&ofor an ideal gas on the same lattices
at 3T;.

where the vectors used in the stochastic estimators of the twgplution, which is specified by a single numhey through
identity matricesZ and 7 are different. This is done by di- the requirement thdMx—r|><N,Vecg (herer is one of the
viding the set ofR; into disjoint blocks. random vectors andis the estimate ok ~r). In Fig. 2 we

It turns out that the divergence cancellation in E8).is  show how the estimate ofy3/T2 changes with Neg
numerically the hardest part of _the computation. In previous, log(Lleca). It is clear that withecg=10"° the result is
works we had taken a half-lattice version of the Staggere%tatistically indistinguishable from that with.g=10"5, but

Dwgc operator, which perfqrmed extr'emely well on Sm‘T"”the solution is achieved at half the CPU cost. We have used
lattice volumes but was inefficient at divergence cancellation

. s €cc=10"2 in all our computations of. It turns out that the
'?unatlgr?s W(Lu?;iigslhla?iﬂlg %utl(l) E{]{?Crén \?grssii[r?tgft Ifﬁ é ﬂsl,sg__estimation of screening correlators is more sensitive to the
y Lo 9 stopping criterion, requiringeg=10"5.

gered Dirac operator performs much better in this respects, ppINg n, requinngcg= 1t _
and has no trouble handling our largest lattices. The statisti- | "€ fits and fit errors involved in the continuum extrapo-
cal fluctuations are under good control already wit lations are done by a bootstrap methoq. In this, bootstrap
=10, and one has no need to look for reduced varianc&@mples of the data are extracted and fits are performed on
versions of Eq(12). We found that it is important to work in statistics obtained from each such sample. The statistics of
that sector of the quenched theory in which the Wilson-the fitted parameters are then used to obtain nonparametric
Polyakov lineL is purely real. This can always be achieved estimators of the mean and variance. We have varied the
by aZ; rotation in the quenched theory. number of bootstrap samples by two orders of magnitude,

The slowest part of the computation is the inversion of thebetween 10 and 1000, to check that the estimators are stable.
Dirac operatorM, which is done by a conjugate gradient ~We have used staggered quarks to determine screening
iteration. The time taken is linear in the number of iterationscorrelators and masses. Recall the well-known fact that for
Ncg- This in turn depends on the precision required in thethese, the one link transfer matrix contains complex eigen-

TABLE 1. Lattice results fory /T2, with m/T,=0.03 and 0.1 for staggered quarks and 0.1 for Naik quarks.Nfer6 the three
temperatures are 1.83, 2T, and 3.13..

N, 1.5T, 2T, 3T,
Staggered Naik Staggered Naik Staggered Naik

0.03 0.1 0.1 0.03 0.1 0.1 0.03 0.1 0.1
4 1.816(16) 1.112(22) 1.846(6) 1.137(14) 1.911(5) 1.114(15
6* 1.312(59) 0.957(36) 1.428(5) 1.425(5) 1.033(14) 1.492(4) 0.993(10)
8 1.110(11) 1.105(11) 0.936(9) 1.144(11)  1.142(11) 0.952(8) 1.191(190  1.190(19) 0.979(5)
10 1.014(6) 1.009(6) 0.921(7) 1.060(8) 1.058(8) 0.948(4) 1.066(7) 1.066(7) 0.956(7)
12 0.973(14)  0.969(14) 0.915(7) 0.994(7) 0.992(7) 0.941(9) 1.027(6) 1.026(6) 0.950(5)
14 0.985(10) 0.949(2)
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FIG. 4. The continuum extrapolation of staggered and Naik
quark data foryg at 2T, . The circles are the extrapolation pf/T?
for staggered quarks, the boxes fps/ xge7 for staggered quarks,
and the pentagons foy;/T? for Naik quarks. The bands aredl -
error bands for an extrapolation &fo 1/N? .

FIG. 6. Local masses for the PS correlatoircles compared
with the result of a two-mass fit. The data are for ax4Bx 267
lattice at 2T, with m=0.03T, for staggered quarks. Also shown are
local masses for the V correlat@soxes in theAfJr representation.

values and leads to oscillations in the screening correlator§2Me as In Refl12]. For bias-free extraction of screening

However, the two link transfer matrices have real eigenVal_masses, large separations in the spatial directions are neces-

ues, and the corresponding states can be projected bysgry. Consequently, we haye only used data from lattices
. : L . ; with N,=4N; for this analysigsee Table)l

simple parity projection. Due to the three-link terms in the t

Naik Dirac operator, real eigenvalues are obtained only for

the four-link transfer matrix. The one link transfer matrix
contains oscillatory mixtures of various states from which As sh in Fia. 1 ideal f st d ks h
pure states need to be projected out. We show in the nex S SNown In 9. L an Ideal gas of staggered quarks has

section that we can reach the continuum limit with staggere& rong lattice artifacts and one needs lattices wih

quarks. Since they lead to simpler correlators, we have an - 8-12 in order to get continuum results. Computations in

lyzed screening phenomena only with these. We have Corg_uenched QCD, shown in Fig. 3 also indicate th's.' Note spe-
centrated on degeneracies of the screening correlators as wj)\?”y that f_or Ne=4 and 6’X3/XFFT _decreases W'.tmt at

as the screening masses. The latter were extracted from lo %fed T unlike at largerN, where it INCreases. Th|s.means
masses as well as by making two-mass fits to the parity prot- at with staggered quarks one needs fairly fine lattices for a

jected correlators. Details of these techniques remain th§mOOth extrapolation to the continuum. . .
: q Unfortunately, Naik quarks also have their own quirks. An

ideal gas of Naik quarks on a lattice approaches the con-

IV. LATTICE RESULTS

Ho @
1@ ©] 1.1
B o8
] )
21 J L ]
S} =
g 8
z 3 % . .
o 5]
o 8 @@ T
ks) -4 EJ@ = E e
5] g =1 ]
& @
51 5] a E
® @
&3] = E
6 % =® ]
=g
7 05 10 15 2.0 25 3.0 35 40
zT 0.8 \ \ \ \ , ,
’ 001 002 003 004 005 006 007
FIG. 5. The parity projected screening correlators evaluated 1/N2

with staggered quarks of mass 0Q3at T=2T,.. The degeneracy

of PS(circles and S(boxes correlators is evident, as is the equality FIG. 7. Extrapolating the ratio of the measurggl* screening

of the screening masses for these and thigéhtagonscorrelator.  massups/T and its value in an ideal quark gas to the continuum
The S and PS correlators are divided by 3 to bring them into coindimit. The data are fof =2T, andm= 0.03T . for staggered quarks.
cidence with the V. The otheA] ™ correlators, which are not Already at lattice spacings=1/10T and greater the result is com-
shown, are also in equally good agreement with these. patible with unity.
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tinuum smoothly only forN,>6 as shown in Fig. 1. The
interacting theory also exhibits departures from smoothness
as shown in Fig. 3. At 1B, it might seem that th&l;=6 and

8 lattices scale, but atT2 this scaling is seen to be acciden-
tal. In turn, at Z. one seeN;=8, 10 and 12 as scaling, but
at 3T, this turns out to be accidental.

Our results fory;/T? obtained with staggered and Naik
quarks for the lightest quark masses are collected in Table 11 8
In Fig. 4 we show the extrapolation of staggered and Naik
quark results ony; at T=2T_ to the continuum limit. For
staggered quarks only the data fdy=8 fits a simple qua-
dratic extrapolation of the formys(a)/T?= y3/T?+s/N?

[36]. In fact, for smallerN, the extrapolations of3/xret . . ‘ . . . ‘
even gives the wrong sign fe{37]. However, forN,;=8 the 05 10 15 20 25 30 35 40
extrapolations ofy3/T? and x5/ xrrr give identical results. 2T

Since the two ratios reach this limit from different direCtionS, FIG. 8. TheAirJr Screening correlators in the Rsirde) and
their agreement is already a good indicator of having th&inprojected V(pluse$ channels compared to their ideal gas coun-
right continuum limit. For Naik quarks atT2,, the quadratic terparts(heavy lines for staggered quarks. These were determined
extrapolation looks reasonable ff=4. This is accidental; on 12x26°x48 lattices atT=2T, with staggered quarks ah

at 3T, or at 1.9, a good fit is obtained only foN;=6. =0.03T.. The best fit to the PS data is shoiroken ling as is
Furthermore, as already mentioned, the extrapolation othe same fit multiplied by an overall constant to superpose it on the
x3!xrer for Naik quarks does not coincide with that of data for V, in order to show that these two correlators give the same
x3!/T? even at the 3r level. The extrapolation ofy3/T? screening mass. Note that the short distance part of the V correlator
does' however' agree within errors with the continuum ex2drees rather well with the ideal gas expectation, unlike the PS
trapolation from staggered quarks. correlator which differs by a factor of 2.

We reiterate the following point. In this quenched work
with the Wilson action we have taken staggered and Nailgion also, similar results are obtained. In view of these, we
quarks to provide two different Operators to measure th@eglect the quark'”ne disconnected amplitudes in all the sus-
same physical quantity, namely,. The agreement between ceptibilities in Eq.(6). The continuum results fog/T?,
the two provides a check that we have control over the conxo/T?, andxq/T? are discussed in the next section.
tinuum limit. In this approach we find that equally small \We have seen clear degeneracies of the S and PS correla-
lattice spacings are needed for the two kinds of quarks, antprs and the V and AV correlators—in agreement with all
therefore Naik quarks are fourfold more time Consuming_preViOUS observations. The new result is that with suffi-
The use of improved actions to get continuum results withciently fine lattices spacings, i.e.=1/8T-1/12T, we find a
coarse lattices is a different problem. Our observations délegeneracy of th&; "~ masses from the S/PS correlators and
not rule out the possibility that improved gauge actions withthe V/AV correlators. In Fig. 5 we demonstrate this by show-
fat link dynamical Naik quarks approach the continuum ac-ng that the S/PS correlators are coincident with the V/AV
tion more rapidly and that with such actions fat link Naik
quark operators have smoother approach to the continuun 1.0

—
N

o

&)

© o U b d kb Lo

already at coarser lattice spacings.

The off-diagonal susceptibility,4/T? is consistent with I NL g
zero at 95% confidence level on all the lattice sizes, cou- gl W
plings and masses investigated, and at the 67% level oi
most. The extrapolation to the continuum yf,/T? can be - CI>
performed by the same functional form as fy/T2, and, & 08
unsurprisingly, gives a result consistent with zero for both 2 ™
staggered and Naik quarks. For the strange quark mass re L

TABLE Ill. A] ™ local massesu/T, for staggered quarks with o7
m=0.03T,. L
N, 1.5T, 2T, 3T, 06— ' 2 ) 3

T

4 4.12(12) 4.576(16) ¢
6 5.34(6) FIG. 9. The ratioys/x2¢r in quenched QCD, shown as a func-
8 5.536(24) 5.744(32) 5.928(64) tion of T. Circles denote results for staggered quarks and boxes for
10 5.67(2) 6.07 (4) 6.04(10) Naik quarks. Also shown are the hard thermal logprL) and
12 5.904(96) 6.156(48) 6.156(180 resummedNL) results from Ref[19]. The bands for the last two

are due to uncertainties if, /Ays.
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TABLE IV. Results for the continuum limit of quark number susceptibilities, the Wroblewski parameter
Ns(T) expected for a system at thermal equilibrium at temperalfyrand theAl++ screening mass in
quenched QCD. We have takem /T.=1, as appropriate to full QCD. All the values reported in this table
have been obtained by continuum extrapolation of our staggered quark results. Those from Naik quarks are
compatible within 1e limits, except fory; at T=1.5T, which agrees within 2r limits.

TIT, X3/ T? Xua! T? Xs/T? Xo!T? xo/T? N(T) w(AT Y 2aT
1.5 0.84(2) (—2x3)X 10°° 0.53(1) 0.43(1) 0.99(2 0.63(3) 0.96(1)
2.0 0.89(2) (—4+4)x10° 071(2 047(1) 1.07(2 0.80(3) 1.01(1)
3.0 0.90(3) (2+2)x10°®  0.84(3 0.49(1) 1.09(3) 0.93(4) 1.00(1)
correlators up to a constant multiplicative factor. resummed results of RfL9] at the 1 ¢ level, compatibility

The local masses plateau for distaneesl/T and agree cannot be ruled out at the @4evel for T=2T,. There is a
with the results of the fit. An example is shown in Fig. 6. Thesuggestion of a drop irnvs /T? as one approacheg,. In
result of a two mass fit to the PS correlator coincides withinTable IV we have listed the continuum extrapolated values of
errors with the plateau in the local masses. Also, the loca},/T? and y,4/T? along with the susceptibilitiegs/T?,
masses from the parity projecteﬂ+ components of the XO/T21 andXQ/T2 which are of relevance to heavy-ion ex-
VIAV correlators coincide with those from the S/PS correla-periments.
tors. Our estimates of the common mass are collected in Previous lattice investigations at cutoff of T/4have
Table Il shown that the effect of unquenching is to incregséT? by

For a=1/4T our extraction ofups/T is completely con- |ess than 5%11,12. The computations of Ref19] indicate
sistent with previous estimates; for exampégups=1.144  that the effect of unquenching is to decrease¢T? by less
(4) at T=2T,, in perfect agreement with the results of Ref. than 5%. Thus the effect of including light sea quarks could
[23]. However, with decreasing lattice spacing we find thatchange the results in Table IV either way within a band of
upsincreases rapidly toward the values expected for an ide@—5 %.
quark gas, Eq(11). In Fig. 7 we showups/ urer @s a func- The Wroblewski parametdB3] A measures the ratio of
tion of 1NZxa?. Already fora=1/10T the screening mass is primary produced strange to light quark pairs. It has been
completely consistent with that in an ideal gas. It can be seeargued[15] that, for a system undergoing freeze out from
that a quadratic extrapolation to the continuum limit@at2  thermal and chemical equilibrium at temperatlire ¢ is just
consistent with an ideal quark gas. At all three temperaturethe ratio 2y/(x,+ xq) computed afl. We have listed the
we see clear degeneracy of all th¢ © screening masses on continuum values ok ¢(T) obtained from our lattice simula-
the larger lattices. ThB; © correlators vanish within errors tions in Table IV. Note especially thaty(T) for the stag-
even on the coarsest latti€81]. This behavior is also com- gered and Naik quarks are withind of each other. Various
patible with expectations from an ideal quark gas. extrapolations ofy,= xq and xs yield A\o(T;)~0.4-0.5. It

Interestingly, the measured values(gfy) differ from the ~ S€emS plausible that at=Te, A dips toward the value ob-
ideal gas value by a factor of about 2 on all the latticestained from analysis of RHIC data, i.e., 0:40.04[34].

studied. Within statistical errorsy) is independent of vol- Tabl_e IV also .Cor,:rtgff our td et(:rml[n?]ttmn ofktheAicimmon
ume, and its ratio to the ideal gas value has small lattic€CreENING Mass in tha, — sectorfor ight quarks. em-
spacing dependence, extrapolating smoothly tot @04 at peratures of chanq h|gher this is cpmpletely czo_mpatlble
2T, in the continuum. In view of the chiral Ward identity of with a qz:npu;agtmn inan ]dealfgas. S'mc'jlar}i"“d” Ilshalsob
Eq. (9) which relates the pion correlator to the chiral conden-compatible with expectations from an ideal gas. It has been

sate, and the agreement of the screening masses with th&?imed out before t.haf(ud/TZ is_ significantly_smaller than
ideal gas values, we examine the screening correlators for t ight be expected in the leading perturbative treatment of

origin of this major departure from ideal gas behavior. Inthe interactions. In.the future .it would be interest_ing to in-
Fig. 8 are shown the PS and V screening correlators at vestigate perturbative corrections to the screening masses

—2T. obtained with lattice spacing=1/12T. It is clear that and check whether a similar puzzle exists also for them, or
c . . . .
the correlators are significantly different from their ideal gaswhether interaction _e_ffects indeed are Smf%‘"ef than the error
counterparts, not just in an overall factawhich would be bars on these quantities. Departures from ideal gas behaylor,
sufficient to explain the chiral condensplrit also in shape. by a factor of almost 2’. have been obser.V(_aq in the chiral
condensate, and hence in the PS susceptibility. It would be

useful to have perturbative predictions for these quantities in
V. CONTINUUM PHYSICS the future.

Our results for the dependence of the continuum extrapo-
2 . . .
lated values ofy3/T on T/'I?c are shown in Fig. 9. We find ACKNOWLEDGMENTS
that the results obtained with staggered and Naik quarks are
compatible with each other and with the HTL results of Ref.  This work was done on Compaqg ES-45 workstations of
[19] at the 2¢ level. While they are not compatible with the the Department of Theoretical Physics of TIFR.
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