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Valence quarks in the QCD plasma: Quark number susceptibilities and screening

Rajiv V. Gavai* and Sourendu Gupta†

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
~Received 12 November 2002; published 7 February 2003!

We investigate the quark sector of quenched QCD for 1.5<T/Tc<3 in the continuum limit, using two
different lattice discretizations of quarks and extrapolating from lattice spacings between 1/4T and 1/14T. At
these temperatures, the flavor off-diagonal susceptibilityxud /T2 is compatible with zero at each lattice spac-
ing, and hence also in the continuum limit. In the continuum limit, the light quark susceptibilities are about
10% less than the ideal gas results even at the highestT, in agreement with hard thermal loop predictions but
marginally below a resummed perturbative computation. For the mass range appropriate to the strange quark,
the flavor diagonal susceptibility is significantly smaller. Our estimate of the Wroblewski parameter is com-
patible with observations at BNL RHIC and CERN SPS. The continuum limit of screening masses in all~local!
quark bilinears is very close to the ideal gas results.
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I. INTRODUCTION

Heavy-ion experiments at the BNL Relativistic Heavy Io
Collider ~RHIC! are now analyzing large quantities of da
and hope to identify and characterize the plasma phas
QCD. As a result it has become imperative to put togethe
accurate and detailed picture of this phase from theore
analyses of QCD at finite temperature. Present day lat
computations are able to do a large part of this job. The re
of theory would certainly be enhanced if perturbation the
is tested accurately against these computations and, if fo
to work well, subsequently used in contexts where the lat
is too ponderous to use.

The gluon sector of the QCD plasma has been extensi
analyzed. In the quenched theory the scaling ofTc has been
established to high accuracy@1,2#. The continuum limit of
the equation of state has also been determined to reason
high accuracy@1,3#. This shows strong departures from th
ideal gas. It turns out that hard thermal loop~HTL! resum-
mation is not sufficient for a description of the lattice resu
@4#, nor is a Borel resummation of the perturbative series@5#.
Other techniques such as an approximately self-consis
resummation@6# and dimensional reduction@7# have been
applied, and the former has been successful in describing
lattice results forT.2Tc . In addition, the spectrum o
screening masses in the QCD plasma has been determin
good accuracy@8# and, for T.2Tc , found to be in agree-
ment with that determined nonperturbatively from a dime
sionally reduced model whose couplings are matched pe
batively to the four-dimensional theory@9#. There is also
direct evidence for the existence of the gluon as a quasi
ticle in the plasma forT.1.5Tc @10#.

The quark sector of the theory has not yet been explo
in as much detail. Part of the reason is that lattice comp
tions with light sea quarks are very expensive. While s
quarks are needed in the neighborhood of the phase tra
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tion, where they influence even the order of the transiti
sufficiently far away their effects are seen to be sm
@11,12#. In this paper we report on the physics of valen
quarks in the continuum limit of QCD forT51.5Tc–3Tc ,
where sea quark effects are marginal. The two aspects
concentrate on are quark number susceptibilities@13# and
screening correlators and masses.

Quark number susceptibilities@11–16# now occupy a po-
sition of high interest. Due to their connection with fluctu
tion phenomena@17# and strangeness production@15# they
are useful inputs to relativistic heavy-ion collisions. They a
coefficients of the Taylor expansion of the free energy d
sity of QCD in terms of the chemical potential, and hence
useful checks on recent attempts at numerical studies
finite-density QCD@18#. For exactly the same reason the
are a testbed for suggested resummations of the h
temperature perturbation series for QCD, which aim to
produce the free energy density, and hence the equatio
state, at high temperatures@19#. In this paper we report ou
study of these susceptibilities at a large variety of latt
spacings and an extraction of their continuum limit.

Screening correlators and masses are closely relate
linear response functions such as susceptibilities. They h
been explored earlier at finite lattice spacings 1/4T–1/8T.
Staggered quarks were used in 4 flavor@20#, 2 flavor,
@21,12#, and quenched@22–24# simulations. For reasons o
symmetry a large degeneracy of screening masses, of
zero temperature scalar~S!, pseudoscalar~PS!, and certain
components of the vector~V! and axial-vector~AV ! quark
bilinears, is expected in the QCD plasma@27#. This was not
observed; instead lesser degeneracies were—between p
partners S and PS or V and AV. Similar results were a
obtained with overlap@25# and Wilson @26# quarks in
quenched QCD, though the splitting between the S/PS
V/AV sectors was seen to be substantially smaller. Here
study these correlators on a wide range of lattice spac
and extrapolate the results to the continuum.

In this paper we carefully address the question of the c
tinuum limit of these quantities in the quenched QC
plasma, where the valence quarks are used as probes o
dynamics of gluons. To this end we perform quenched co
©2003 The American Physical Society01-1
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putations over a range of temperatures and a large rang
lattice spacings, in order to perform a continuum extrapo
tion. We test the extrapolation by working with two differe
formulations of quarks on the lattice, with different syste
atics at finite lattice spacing. One is the normal stagge
formulation of quarks, the other a Symanzik improved v
sion of staggered quarks, called Naik quarks@28#. By this
means we identify a unique and verifiable continuum lim

We would like to distinguish our approach from Syma
zik ~or loop level! improvement of the action@29#. Such
programs aim to approach the continuum limit of the act
on coarse lattices by adding terms to the action which s
tematically, order by order in the lattice spacinga, remove
lattice artifacts up to some sufficiently high order ina. When
such a scheme is used in conjunction with improved ope
tors, it ~ideally! obviates any need to go to very fine lattic
spacings. In this work we only use an improved operator
the valence quarks; the action is not improved. We reach
continuum limit by simulations on a variety of lattice spa
ings and a smooth extrapolation.

A further question is about the magnitude of quench
artifacts. It is known@1,2# thatTc changes by almost a facto
of 2 due to unquenching. However, previous computati
@12# have shown that this is largely subsumed into an ove
scale: scaled quantities such asx in units of its free field
theory value, when expressed in terms ofT/Tc , change by
only 5% when going from quenched to full QCD. The equ
tion of state@1,3# also shows similiar small effects in scale
quantities. While we expect that the quenched continu
results presented here forT>1.5Tc should be close to that in
the full theory, a direct computation of the latter is certain
required in future.

In the next section we present definitions of all the qu
tities that we measure, and results for these quantities
ideal quark gases on a lattice. In Sec. III we present detail
the simulations and measurement schemes. The follow
section contains detailed results on the lattice with discus
of the extrapolation to the continuum. The continuum e
trapolations are collected and discussed in the final sect

II. DEFINITIONS

The partition function of QCD with three quark flavors

Z~T,mu ,md ,ms!5E DU exp@2S~T!#

3 )
f 5u,d,s

detM ~T,mf ,m f !, ~1!

where the temperatureT determines the size of the Euclidea
time direction,S(T) is the gluon part of the action, and th
determinant of the Dirac operatorM contains as parameter
the quark massesmf and the chemical potentialsm f for fla-
vors f. We also define the chemical potentialsm05mu1md
1ms , m35mu2md and m85mu1md22ms , which corre-
spond to the diagonal flavorSU(3) generators. Note thatm0
is the usual baryon chemical potential andm3 is an isovector
chemical potential.
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The quark number density for flavorf, nf , is defined as
the derivative ofF5 logZ/V (Z is the partition function and
V the spatial volume! with respect tom f . The quark number
susceptibilities are the second derivatives

x f f 8~T,mu ,md ,ms!5T
]2F

]m f]m f 8

. ~2!

We will always drop the repeated subscript for the diago
susceptibilities. There are similar susceptibilities,x0 , x3,
and x8 obtained by taking derivatives with respect tom0 ,
m3, and m8, respectively. Here we determine the suscep
bilities at m f50. In this limit, all nf(T)50 but the suscep-
tibilities can be nonvanishing.

The flavor off-diagonal susceptibilities such as

x f f 85
T

V
^trM f

21M f8trM f 8
21M f 8

8 & ~3!

are given solely in terms of the expectation values of qua
line disconnected loops. HereM f denotes the Dirac operato
for a quark of flavorf, andM f8 andM f9 the first and second
derivatives with respect tom f , taken term by term. The fla
vor diagonal susceptibilities have contributions from bo
quark-line connected and disconnected pieces

x f5
T

V
@^~ trM f

21M f8!2&1^tr~M f
21M f92M f

21M f8M f
21M f8!&#.

~4!

We draw attention to the fact that the last two terms individ
ally grow rapidly with lattice volume, diverging in the infi
nite volume limit, such that the difference is a finite quanti
This cancellation of divergences is the result of a pro
treatment of quark chemical potentials on the lattice@30#.
Numerically, the simplest quantity to evaluate is the diago
isovector susceptibility

x35
T

2V
^tr~Mu

21Mu92Mu
21Mu8Mu

21Mu8!&, ~5!

where the factor half takes care of the isospin carried by e
flavor. In addition to this, we shall need the baryon numb
and electric charge susceptibilities

x05
1

9
~4x31xs14xud14xus!

and

xQ5
1

9
~10x31xs1xud22xus!. ~6!

Equations~3!–~5! have been written per flavor of quark
i.e., the normalization for the continuum ideal gas isx f /T2

51.
The screening correlators of local quark-bilinear~‘‘me-

son’’! operators are defined as

CG~z!5 (
x,y,t

^Mab
21~x,y,z,t !GM†

ba
21~x,y,z,t !G&, ~7!
1-2
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VALENCE QUARKS IN THE QCD PLASMA: QUARK . . . PHYSICAL REVIEW D67, 034501 ~2003!
whereG denotes some Dirac-flavor structure,a and b are
color indices andM 21(r ) is the inverse of the Dirac operato
for a point source in the fundamental of colorSU(3) at the
origin. Since the partition function of Eq.~2! can be ex-
pressed as the trace of a spatial transfer matrix, the scree
correlators decay exponentially, with characteristic len
scales called screening lengths~inverse of screening masse
mG).

The finite temperature symmetries of such a spatial tra
fer matrix are quite different from that of the Hamiltonia
and have been worked out in detail@27#. In particular, it turns
out that there are only two independent local correlators.
combination of vector operators Vx2Vy and axial vectors
AV x2AV y are in theB1

11 representation of the finite tem
perature symmetry groupD4

h . @35#. All others, i.e., the scala
S, the pseudoscalar PS, and all the components of the V
AV orthogonal to theB1

11 , lie in the scalar representation
A1

11 . This clearly implies that the angular momentumJ is
not a good quantum number for screening correlators,
hence states of differentJ can mix with each other.

The meson susceptibilities are the zero momentum pa
the screening correlator@23# and can be written as

xG[^trM 21GM 21G&5(
i

Zi~G!~mG
i !22,

where

Zi5u^ i uc̄Gcu0&u2, ~8!

u i & denotes the eigenstate of the transfer matrix with eig
value l i , and the screening masses aremG

i 5 log(li /l0). In
the continuum limit, sinceM 85g0, clearlyx35xV0

; in fact,
this identification underlies the computation of Ref.@19#. The
PS susceptibility is also involved in the chiral Ward ident

^c̄c&5mxPS. ~9!

The renormalization of the various quantities involved in t
identity are therefore related. AtT50, chiral symmetry is
broken and the sum over states in Eq.~8! is dominated by the
lowest term, due to the vanishing Goldstone pion mass. T
this Ward identity shows thatmp

2 }m. However, forT.Tc ,

chiral symmetry is restored and̂c̄c& should vanish in the
chiral limit. At the same time,xPS need not be dominated b
one state andmPS

i could depend weakly onm, going to a
finite nonzero limit asm→0. It is interesting to note tha
since the screening masses are equal for all theA1

11 chan-
nels, the differences between the susceptibilities can o
come from theZi ’s in Eq. ~8!. For an ideal gas of quarks o
the lattice, the Dirac operator at zero chemical potentia
most simply written in momentum space where it is diag
nal:

M pq5dpq@ma1 ig• p̂#,

where

p̂m5C10sinpm1C30sin 3pm , ~10!
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the momentum spectrum isp05(2p/Nt)(n11/2) with 1
<n<Nt and pi52np/Ni with 1<n<Ni in all other direc-
tions. For staggered quarks, where only a nearest neig
difference appears in the Dirac operator,C1051/2 and
C3050. For Naik quarks, on the other hand,C1059/16 and
C30521/48. The construction of the number densities a
conserved currents, and hence the chemical potential on
lattice, is complicated for Symanzik improved quarks, b
goes through in the usual way@32#.

All the quantities of interest are exactly computable for
ideal quark gas~i.e., in free field theory!, not only in the
continuum, but also on the lattice. In terms of 1/D(p)
5(ma)21 p̂• p̂, pm8 52(C10cosp013C30cos 3p0)d0m , and
pm9 5(C10sinp019C30sin 3p0)d0m we have

a3^c̄c&FFT5Nc(
p

D~p!,

a2x3
FFT5

Nc

NtNs
3 (

p
$D~p!@ p̂•p82p9•p9#

12D2~p!~ p̂•p9!2%,

amFFT
stag52 sinh21A~ma!21sin2~p/Nt!. ~11!

Here FFT stands for a quantity computed in free field theo
Also, xud

FFT5xus
FFT50 and xs

FFT is obtained by setting the
strange quark mass inD(p) above, and therebyx0

FFT and
xQ

FFT can be obtained. Figure 1 shows the susceptibilities
the staggered and Naik quarks on a sequence of lattices
fixed aspect ratioNs /Nt53. Note that the approach to th
continuum limit is quite different in the two cases. In fre
field theory xud50. The computation of the correlator
CG(z) in the ideal gas is also straightforward. Perturbat
expansions in the gauge coupling,g, have been performed in
the continuum.x3 has been computed in the hard therm
loop ~HTL! approximation to orderg3 as well as in a skel-
eton graph resummation@19#. To the best of our knowledge

FIG. 1. The ideal gas on a lattice withTV1/353 for staggered
quarks ~pluses! and Naik quarks~crosses!, as a function ofNt

51/aT.
1-3
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TABLE I. The lattice sizesNt3Ns
3 , Wilson couplingb, and statistics used in this study. The statistics

reported asNsep3Nstat whereNsep is the number of sweeps between measurements andNstat is the number of
measurements. 1000 initial sweeps were discarded for thermalization in all cases except theNt514 run,
where 7000 sweeps were discarded. For asymmetric spatial sizes the long direction is called thez direction.

Nt 1.5Tc 2Tc 3Tc

b V Stats b V Stats b V Stats

4 5.8941 123 50351 6.0625 123 50350 6.3384 163 50328
6 6.0625 203 1000354 6.3384 203 1000355 6.7 203 1000359
8 6.3384 183 1000357 6.55 183 100354 6.95 263 500330

323182 100347 323182 100320 323262 100320
10 6.525 223 503105 6.75 223 503219 7.05 323 50323

403222 100320 403222 100320 403322 100320
12 6.65 263 50375 6.90 263 503173 7.20 383 50350

483262 100324 483262 100361 483382 100320
14 7.00 303 1000348
to

m
ce
o

fe

to
in
te

us
rtl
io
d
if
-
th
-
n
b

,

n

d
ro
n

co
by
a

re
st
es

Naik
e

rr-
astic

a
otes
tors

ical
ura-
there has been no such computation of screening correla
screening masses or the remaining susceptibilities.

III. METHODS

As already mentioned, we have investigated quark nu
ber susceptibilities using two different realizations of latti
quarks. For staggered quarks, the derivative in the Dirac
erator is discretized using a one-link separated finite dif
ence operator. This has a discretization error of ordera2. The
improvement suggested by Naik@28# is to take a specific
three-link term@see Eq.~10!# which cancels the leading term
of the discretization error for staggered fermions up
O(a3). This possible improvement comes at a fourfold
crease in computational cost, due to the more complica
structure of the Dirac operator.

Since the discretization error in the evaluation of the s
ceptibilities comes partly from the gauge action and pa
from the Dirac operator, and we use the Wilson gauge act
the part of theO(a2) error coming from this source woul
remain the same in the two determinations. However,
large part of theO(a2) error in the determination of suscep
tibilities using staggered quarks comes from the traces of
Dirac operator in Eqs.~3!–~5!, then the slope in the extrapo
lation to the continuum limit should be substantially differe
between the two quark formulations. That this is so can
seen already in the computation for the ideal quark gas
lustrated in Fig. 1.

In this paper we report results on susceptibilities a
screening measured on lattices with 4<Nt<14 for T
51.5Tc , 2Tc , and 3Tc . The lattices sizes, couplings, an
statistics used are reported in Table I. Due to statistical er
in the determination of critical couplings various other qua
tities that go into a scale determination, the temperature
responding to a given lattice coupling may be in error
about 5%@27#. The simulations have been performed with
Cabbibo-Marinari pseudoheatbath technique with th
SU(2) subgroups updated on each hit, each sweep consi
actually of five sweeps of this algorithm. For susceptibiliti
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we have made measurements using both staggered and
quarks atm/Tc50.1, 0.5, and 1. For staggered quarks w
have also usedm/Tc50.03. For screening masses and co
elators we have used only staggered quarks. The stoch
evaluation of traces depends on the identity

Iab5
1

2Nv
(
i 51

Nv

Ri
a~Ri* !b, ~12!

whereI is the identity matrix,Ri
a is the componenta of the

vectorRi , which is one of a set ofNv uncorrelated vectors
with complex components drawn independently from
Gaussian ensemble with unit variance, and the star den
complex conjugation. This leads to the stochastic estima

TrA5TrAI5
1

2Nv
(
i 5 i

Nv

Ri
†ARi , ~TrA!25TrAIAJ,

~13!

FIG. 2. The variation of the estimate ofx3 /T2 on a single con-
figuration withNCG, which varies as ln(1/eCG). The values ofeCG

are marked at appropriate points on the curve. The size of typ
errors on the estimates, after averaging over 50 gauge config
tions with Nv510, is shown as the bar. This is insensitive toeCG.
1-4
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FIG. 3. The temperature dependence ofx3 /T2 with staggered~left panel! and Naik~right panel! quarks of masses 0.03Tc and 0.1Tc ,
respectively, withNt54 ~circles!, 6 ~boxes!, 8 ~pentagons!, 10 ~down triangles!, and 12~up triangles!. Note the differences in the y-axes i
the two cases. The bold lines join the centers of the data points. The thin lines show the value ofx3 /T2 for an ideal gas on the same lattice
at 3Tc .
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where the vectors used in the stochastic estimators of the
identity matricesI andJ are different. This is done by di
viding the set ofRi into disjoint blocks.

It turns out that the divergence cancellation in Eq.~5! is
numerically the hardest part of the computation. In previo
works we had taken a half-lattice version of the stagge
Dirac operator, which performed extremely well on sm
lattice volumes but was inefficient at divergence cancellat
on large volumes@15#, leading to enormous statistical fluc
tuations. We found that the full lattice version of the sta
gered Dirac operator performs much better in this resp
and has no trouble handling our largest lattices. The stat
cal fluctuations are under good control already withNv
510, and one has no need to look for reduced varia
versions of Eq.~12!. We found that it is important to work in
that sector of the quenched theory in which the Wilso
Polyakov lineL is purely real. This can always be achiev
by a Z3 rotation in the quenched theory.

The slowest part of the computation is the inversion of
Dirac operatorM, which is done by a conjugate gradie
iteration. The time taken is linear in the number of iteratio
NCG. This in turn depends on the precision required in
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solution, which is specified by a single numbereCG through
the requirement thatuMx2r u2<NtVeCG ~herer is one of the
random vectors andx is the estimate ofM 21r ). In Fig. 2 we
show how the estimate ofx3 /T2 changes with NCG

} log(1/eCG). It is clear that witheCG51023 the result is
statistically indistinguishable from that witheCG51025, but
the solution is achieved at half the CPU cost. We have u
eCG51023 in all our computations ofx. It turns out that the
estimation of screening correlators is more sensitive to
stopping criterion, requiringeCG51025.

The fits and fit errors involved in the continuum extrap
lations are done by a bootstrap method. In this, boots
samples of the data are extracted and fits are performe
statistics obtained from each such sample. The statistic
the fitted parameters are then used to obtain nonparam
estimators of the mean and variance. We have varied
number of bootstrap samples by two orders of magnitu
between 10 and 1000, to check that the estimators are st

We have used staggered quarks to determine scree
correlators and masses. Recall the well-known fact that
these, the one link transfer matrix contains complex eig
TABLE II. Lattice results forx3 /T2, with m/Tc50.03 and 0.1 for staggered quarks and 0.1 for Naik quarks. ForNt56 the three
temperatures are 1.33Tc , 2Tc , and 3.13Tc .

Nt 1.5Tc 2Tc 3Tc

Staggered Naik Staggered Naik Staggered Naik

0.03 0.1 0.1 0.03 0.1 0.1 0.03 0.1 0.1

4 1.816~16! 1.112~22! 1.846~6! 1.137~14! 1.911~5! 1.114~15!

6* 1.312~59! 0.957~36! 1.428~5! 1.425~5! 1.033~14! 1.492~4! 0.993~10!

8 1.110~11! 1.105~11! 0.936~9! 1.144~11! 1.142~11! 0.952~8! 1.191~19! 1.190~19! 0.979~5!

10 1.014~6! 1.009~6! 0.921~7! 1.060~8! 1.058~8! 0.948~4! 1.066~7! 1.066~7! 0.956~7!

12 0.973~14! 0.969~14! 0.915~7! 0.994~7! 0.992~7! 0.941~9! 1.027~6! 1.026~6! 0.950~5!

14 0.985~10! 0.949~2!
1-5
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GAVAI AND GUPTA PHYSICAL REVIEW D 67, 034501 ~2003!
values and leads to oscillations in the screening correlat
However, the two link transfer matrices have real eigenv
ues, and the corresponding states can be projected
simple parity projection. Due to the three-link terms in t
Naik Dirac operator, real eigenvalues are obtained only
the four-link transfer matrix. The one link transfer matr
contains oscillatory mixtures of various states from wh
pure states need to be projected out. We show in the
section that we can reach the continuum limit with stagge
quarks. Since they lead to simpler correlators, we have a
lyzed screening phenomena only with these. We have c
centrated on degeneracies of the screening correlators as
as the screening masses. The latter were extracted from
masses as well as by making two-mass fits to the parity
jected correlators. Details of these techniques remain

FIG. 4. The continuum extrapolation of staggered and N
quark data forx3 at 2Tc . The circles are the extrapolation ofx3 /T2

for staggered quarks, the boxes forx3 /xFFT for staggered quarks
and the pentagons forx3 /T2 for Naik quarks. The bands are 1-s
error bands for an extrapolation ina2}1/Nt

2 .

FIG. 5. The parity projected screening correlators evalua
with staggered quarks of mass 0.03Tc at T52Tc . The degeneracy
of PS~circles! and S~boxes! correlators is evident, as is the equali
of the screening masses for these and the V~pentagons! correlator.
The S and PS correlators are divided by 3 to bring them into c
cidence with the V. The otherA1

11 correlators, which are no
shown, are also in equally good agreement with these.
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same as in Ref.@12#. For bias-free extraction of screenin
masses, large separations in the spatial directions are ne
sary. Consequently, we have only used data from latti
with Nz54Nt for this analysis~see Table I!.

IV. LATTICE RESULTS

As shown in Fig. 1 an ideal gas of staggered quarks
strong lattice artifacts and one needs lattices withNt
.8 –12 in order to get continuum results. Computations
quenched QCD, shown in Fig. 3 also indicate this. Note s
cially that for Nt54 and 6,x3 /xFFT decreases withNt at
fixed T, unlike at largerNt where it increases. This mean
that with staggered quarks one needs fairly fine lattices fo
smooth extrapolation to the continuum.

Unfortunately, Naik quarks also have their own quirks. A
ideal gas of Naik quarks on a lattice approaches the c

k

d

-

FIG. 6. Local masses for the PS correlator~circles! compared
with the result of a two-mass fit. The data are for a 123483262

lattice at 2Tc with m50.03Tc for staggered quarks. Also shown a
local masses for the V correlator~boxes! in theA1

11 representation.

FIG. 7. Extrapolating the ratio of the measuredA1
11 screening

massmPS/T and its value in an ideal quark gas to the continuu
limit. The data are forT52Tc andm50.03Tc for staggered quarks
Already at lattice spacingsa51/10T and greater the result is com
patible with unity.
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tinuum smoothly only forNt.6 as shown in Fig. 1. The
interacting theory also exhibits departures from smoothn
as shown in Fig. 3. At 1.5Tc it might seem that theNt56 and
8 lattices scale, but at 2Tc this scaling is seen to be accide
tal. In turn, at 2Tc one seesNt58, 10 and 12 as scaling, bu
at 3Tc this turns out to be accidental.

Our results forx3 /T2 obtained with staggered and Na
quarks for the lightest quark masses are collected in Tabl
In Fig. 4 we show the extrapolation of staggered and N
quark results onx3 at T52Tc to the continuum limit. For
staggered quarks only the data forNt>8 fits a simple qua-
dratic extrapolation of the formx3(a)/T25x3 /T21s/Nt

2

@36#. In fact, for smallerNt the extrapolations ofx3 /xFFT
even gives the wrong sign fors @37#. However, forNt>8 the
extrapolations ofx3 /T2 and x3 /xFFT give identical results.
Since the two ratios reach this limit from different direction
their agreement is already a good indicator of having
right continuum limit. For Naik quarks at 2Tc , the quadratic
extrapolation looks reasonable forNt>4. This is accidental;
at 3Tc or at 1.5Tc a good fit is obtained only forNt>6.
Furthermore, as already mentioned, the extrapolation
x3 /xFFT for Naik quarks does not coincide with that o
x3 /T2 even at the 3-s level. The extrapolation ofx3 /T2

does, however, agree within errors with the continuum
trapolation from staggered quarks.

We reiterate the following point. In this quenched wo
with the Wilson action we have taken staggered and N
quarks to provide two different operators to measure
same physical quantity, namely,x3. The agreement betwee
the two provides a check that we have control over the c
tinuum limit. In this approach we find that equally sma
lattice spacings are needed for the two kinds of quarks,
therefore Naik quarks are fourfold more time consumin
The use of improved actions to get continuum results w
coarse lattices is a different problem. Our observations
not rule out the possibility that improved gauge actions w
fat link dynamical Naik quarks approach the continuum
tion more rapidly and that with such actions fat link Na
quark operators have smoother approach to the contin
already at coarser lattice spacings.

The off-diagonal susceptibilityxud /T2 is consistent with
zero at 95% confidence level on all the lattice sizes, c
plings and masses investigated, and at the 67% leve
most. The extrapolation to the continuum ofxud /T2 can be
performed by the same functional form as forx3 /T2, and,
unsurprisingly, gives a result consistent with zero for bo
staggered and Naik quarks. For the strange quark mas

TABLE III. A1
11 local masses,m/T, for staggered quarks with

m50.03Tc .

Nt 1.5Tc 2Tc 3Tc

4 4.12~12! 4.576~16!

6 5.34~6!

8 5.536~24! 5.744~32! 5.928~64!

10 5.67~2! 6.07 ~4! 6.04 ~10!

12 5.904~96! 6.156~48! 6.156~180!
03450
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gion also, similar results are obtained. In view of these,
neglect the quark-line disconnected amplitudes in all the s
ceptibilities in Eq. ~6!. The continuum results forxs /T2,
x0 /T2, andxQ /T2 are discussed in the next section.

We have seen clear degeneracies of the S and PS cor
tors and the V and AV correlators—in agreement with
previous observations. The new result is that with su
ciently fine lattices spacings, i.e.,a51/8T–1/12T, we find a
degeneracy of theA1

11 masses from the S/PS correlators a
the V/AV correlators. In Fig. 5 we demonstrate this by sho
ing that the S/PS correlators are coincident with the V/A

FIG. 8. TheA1
11 screening correlators in the PS~circle! and

unprojected V~pluses! channels compared to their ideal gas cou
terparts~heavy lines! for staggered quarks. These were determin
on 123262348 lattices atT52Tc with staggered quarks ofm
50.03Tc . The best fit to the PS data is shown~broken line! as is
the same fit multiplied by an overall constant to superpose it on
data for V, in order to show that these two correlators give the sa
screening mass. Note that the short distance part of the V corre
agrees rather well with the ideal gas expectation, unlike the
correlator which differs by a factor of 2.

FIG. 9. The ratiox3 /xFFT
3 in quenched QCD, shown as a func

tion of T. Circles denote results for staggered quarks and boxes
Naik quarks. Also shown are the hard thermal loop~HTL! and
resummed~NL! results from Ref.@19#. The bands for the last two
are due to uncertainties inTc /LMS .
1-7



eter

ble
rks are

GAVAI AND GUPTA PHYSICAL REVIEW D 67, 034501 ~2003!
TABLE IV. Results for the continuum limit of quark number susceptibilities, the Wroblewski param
ls(T) expected for a system at thermal equilibrium at temperatureT, and theA1

11 screening mass in
quenched QCD. We have takenms /Tc51, as appropriate to full QCD. All the values reported in this ta
have been obtained by continuum extrapolation of our staggered quark results. Those from Naik qua
compatible within 1-s limits, except forx3 at T51.5Tc which agrees within 2-s limits.

T/Tc x3 /T2 xud /T2 xs /T2 x0 /T2 xQ /T2 ls(T) m(A1
11)/2pT

1.5 0.84~2! (2263)31025 0.53 ~1! 0.43 ~1! 0.99 ~2! 0.63 ~3! 0.96 ~1!

2.0 0.89~2! (2464)31026 0.71 ~2! 0.47 ~1! 1.07 ~2! 0.80 ~3! 1.01 ~1!

3.0 0.90~3! (262)31026 0.84 ~3! 0.49 ~1! 1.09 ~3! 0.93 ~4! 1.00 ~1!
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correlators up to a constant multiplicative factor.
The local masses plateau for distancesz.1/T and agree

with the results of the fit. An example is shown in Fig. 6. T
result of a two mass fit to the PS correlator coincides wit
errors with the plateau in the local masses. Also, the lo
masses from the parity projectedA1

11 components of the
V/AV correlators coincide with those from the S/PS corre
tors. Our estimates of the common mass are collected
Table III.

For a51/4T our extraction ofmPS/T is completely con-
sistent with previous estimates; for example,amPS51.144
~4! at T52Tc , in perfect agreement with the results of Re
@23#. However, with decreasing lattice spacing we find th
mPS increases rapidly toward the values expected for an id
quark gas, Eq.~11!. In Fig. 7 we showmPS/mFFT as a func-
tion of 1/Nt

2}a2. Already fora51/10T the screening mass i
completely consistent with that in an ideal gas. It can be s
that a quadratic extrapolation to the continuum limit at 2Tc is
consistent with an ideal quark gas. At all three temperatu
we see clear degeneracy of all theA1

11 screening masses o
the larger lattices. TheB1

11 correlators vanish within error
even on the coarsest lattice@31#. This behavior is also com
patible with expectations from an ideal quark gas.

Interestingly, the measured values of^c̄c& differ from the
ideal gas value by a factor of about 2 on all the lattic
studied. Within statistical errorŝc̄c& is independent of vol-
ume, and its ratio to the ideal gas value has small lat
spacing dependence, extrapolating smoothly to 1.9060.04 at
2Tc in the continuum. In view of the chiral Ward identity o
Eq. ~9! which relates the pion correlator to the chiral conde
sate, and the agreement of the screening masses with
ideal gas values, we examine the screening correlators fo
origin of this major departure from ideal gas behavior.
Fig. 8 are shown the PS and V screening correlators aT
52Tc obtained with lattice spacinga51/12T. It is clear that
the correlators are significantly different from their ideal g
counterparts, not just in an overall factor~which would be
sufficient to explain the chiral condensate! but also in shape

V. CONTINUUM PHYSICS

Our results for the dependence of the continuum extra
lated values ofx3 /T2 on T/Tc are shown in Fig. 9. We find
that the results obtained with staggered and Naik quarks
compatible with each other and with the HTL results of R
@19# at the 2-s level. While they are not compatible with th
03450
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resummed results of Ref.@19# at the 1-s level, compatibility
cannot be ruled out at the 3-s level for T>2Tc . There is a
suggestion of a drop inx3 /T2 as one approachesTc . In
Table IV we have listed the continuum extrapolated values
x3 /T2 and xud /T2 along with the susceptibilitiesxs /T2,
x0 /T2, andxQ /T2 which are of relevance to heavy-ion ex
periments.

Previous lattice investigations at cutoff of 1/4T have
shown that the effect of unquenching is to increasex3 /T2 by
less than 5%@11,12#. The computations of Ref.@19# indicate
that the effect of unquenching is to decreasex3 /T2 by less
than 5%. Thus the effect of including light sea quarks co
change the results in Table IV either way within a band
3–5 %.

The Wroblewski parameter@33# ls measures the ratio o
primary produced strange to light quark pairs. It has be
argued@15# that, for a system undergoing freeze out fro
thermal and chemical equilibrium at temperatureT, ls is just
the ratio 2xs /(xu1xd) computed atT. We have listed the
continuum values ofls(T) obtained from our lattice simula
tions in Table IV. Note especially thatls(T) for the stag-
gered and Naik quarks are within 1-s of each other. Various
extrapolations ofxu5xd and xs yield ls(Tc)'0.4–0.5. It
seems plausible that atT'Tc , ls dips toward the value ob
tained from analysis of RHIC data, i.e., 0.4760.04 @34#.

Table IV also contains our determination of the comm
screening mass in theA1

11 sector for light quarks. At tem-
peratures of 2Tc and higher this is completely compatib
with a computation in an ideal gas. Similarly,xud /T2 is also
compatible with expectations from an ideal gas. It has b
pointed out before thatxud /T2 is significantly smaller than
might be expected in the leading perturbative treatmen
the interactions. In the future it would be interesting to i
vestigate perturbative corrections to the screening ma
and check whether a similar puzzle exists also for them
whether interaction effects indeed are smaller than the e
bars on these quantities. Departures from ideal gas beha
by a factor of almost 2, have been observed in the ch
condensate, and hence in the PS susceptibility. It would
useful to have perturbative predictions for these quantitie
the future.
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