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We present a general procedure for incorporating higher-order information into the scale-setting prescription
of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading
coefficient or coefficients in a series in the strong couplingare anomalously small and the original pre-
scription can give an unphysical scale. We give a general method for computing an optimum scale numerically,
within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the
heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the
latter, we find significant corrections to the scales for the ratie'& to hadrons over muons, the ratio of the
quark pole toMS mass, the semileptonB-meson decay width, and the top decay width. Scales for the latter
two decay widths, expressed in termsMEB masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.
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[. INTRODUCTION breakdown is not a flaw in the general prescription, but
rather the result of employing only a single vacuum-
QCD processes computed to a finite order in perturbatiofpolarization insertion to estimate the typical momentum.
theory depend on both the choice of renormalization schem@hile we focus on setting the scale for one-loop diagrams,
and the scale for the running coupling constan(q). In we use information from two-loop and higher insertions
particular, changes in the scale induce variations at the firgtithin these diagrams to provide a simple generalization
neglected order. While these variations diminish as highewhich accurately estimates the scale over the full range of
orders are included, for low-order calculations they can béarameters. It is straightforward to implement for both ana-
significant, particularly for processes sensitive to relativelylytic and numerical computations, requiring only a modest
low scales. Finding an optimum, physically motivated €xtension beyond the leading order determination. For both
method for choosing this scale in such cases is important n@omputations, one obtains the additional information re-
only to produce accurate results, but also to reasonably estuired from one higher moment in lagfj within the same
mate convergence based on the size of the series terms. Sudlagram as was used in the lowest order application. For
a method allows a meaningful prediction or comparison withprocesses where the series coefficients are known, it requires
data even at leading order. only identifying the coefficient from vacuum polarization at
A variety of procedures have been proposed to select thithe next order.
scale[1-17). In this paper, we investigate the prescription of ~We note that other authors have developed a variety of
Brodsky, Lepage and MackenziBLM) [4]. In this method, extensions to Refl4], which explore conformal symmetry
one chooses the scaj® for a<(q*) which approximates the and the relation between various perturbative schemes
use of the fully dressed gluon propagator within that procesd9—11], or which estimate nonperturbative contributions and
The choice is equivalent to determining the dominant mofeésum classes of diagrams to all ordgtd,16. Our goal is
mentum flowing through the propagator within a diagrammore modest: to provide a simple but robust scale determi-
[13,16. It has been applied successfully in a large variety ofnation for a process calculated to finite order. Specifically,
perturbative calculations. Among these, it was essential itve choose a single optimized scale for the leading, one-loop
demonstrating the viability of lattice perturbation theory diagram, to be used for all orders. We show, however, that
[13], and in extracting a precise value of from lattice ~ our prescription should effectively absorb into the leading
simulations of theY and ¢ systemg18,19. term or terms the bulk of contributions from all higher order
In this paper, we generalize the prescription to remedy afliagrams which dress the leading gluon.
anomaly observed in a variety of applications, particularly
apparent when determining the scale over a range of param-
eters in the action. The nonrelativisiNRQCD) QCD mass
and energy renormalizations presented in Sec. IX B are typi- Following Refs[4,13], we choose th& scheme based on
cal examples. In most of these cases, for some value of ththe static-quark potential because of the direct connection
bare quark mass, the BLM scale diverges. We show that thisetween the scale of its coupling, and the momentum

II. GENERAL PRESCRIPTION
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FIG. 1. The BLM prescription for fixing the optimum scajé FIG. 2. The BLM prescription applied to a process for which a
to leading order inxg(q*). gluon contributes first at ordex?(q*). The insertion on the left

side represents vacuum polarization from both quarks and gluons.
flowing through its associated gluon. For a one-loop diagram

with an integrandf(q) which contributes predominantly at measure of the typical momentum carried by this gluon in
large gluon momenturg, a natural choice for the scalg of  the dominant integration region, in accord with intuition.
ay is a mean value which reproduces the result of a fullyHowever, in certain casegd) vanishes, rendering* from

dressed gluon within the diagram,13], Eqg. (3) meaningless. This is a consequence of using an ex-
pression first order i, (q*) for a process which is properly

) | d4af :f d4 f(q), 1 second order, rather than a flaw in the general prescription.

a(d )f afta dav(@)T(a) @ When(f) vanishes, the diagram on the left in Fig. 1 does not

i din Fig. 1. H | contribute. The leading contribution from this gluon is sec-
7\3 [ ustratejf in flg- : ”owgveav(q) possessfes a pobe al 4nd order, and the requirement thatt be chosen to best
v, an artitact ot an all-orders summation of perturbative, ., imate the all-order result leads to the equation illus-

logarithms. We avoid this singularity by truncating the Seriestrated in Fig. 2. For an integrand dominated by large momen-
for a(q) at a finite order, as is appropriate for an asymptotic, ., the left side of Eq(1) is replaced by
series. '

Expandingay(q) in terms ofay(q*),
—a%(q*)ﬂof d*af(q)log(a®/q*?), (5
()= ay(q*)
VAR % 2/ %2 as is known from the running af,/(q). Expandinge(q) as
1+ay(9*)Bolog(q*/a* <) in Eq. (2) yields
~av(q*)—a\z,(q*)ﬂolog(qzlq*z)—i- e (2 (f log?(q?))
* 2\ —
and solving to first nontrivial order givg43] log(q™*) = 2(flog(q?)) )
4 2 This, rather than Eq.3), is the appropriate statement of the
o f d"af(a)log(a )_(f(q)log(q2)> prescription for this case.
log(q**) = = (f(q)) As a simple illustration, consider a one-dimensional
f d*qf(q) model for f(q) in Eq. (1) for which the Feynman diagram
, produces an integrand with cancelling contributions
=((log(q?))), (3)
f(a)=46(q—0a) — 6(d—0p); (7
a statement of this prescription suited for numerical calcula- - )
tions. Here hereq, andq, are positive. Such cancellations are not un-
common in QCD for some choice of parameters, as for ex-
1 /11 4 ample in the calculations of Sec. IX B. A reasonable expec-
Bo=7_|3Ca=3Tent|=7-{11-3n¢], (4  tation would be thatq* should be some average of the

contributing scaleg, andqy, particularly if they are nearby.
and (()) indicates an average weighted bfg). For sim- Becausg(f) vanishes identically, Eq3) produces a diver-
plicity, we restrict the8 function here to one loop, but show gentq*, whereas Eq(6), which begins with the next order
in Sec. VII that our result is not limited by this approxima- contribution, gives forg* the more reasonable geometric

tion. mean
By the definition ofey, Eq. (3) guarantees thaky(q*) .
absorbs the effect of second-order vacuum polarization inser- 4" = Vdadp- 8

tions in the gluon’s propagator. An alternate method to de-_, . . . .
termineq® is then to require thaBy, or equivalentlyn; This is the same scale obtained by E8) applied to the

disappears to that ordg4]. This version is useful when the positive integrand

Bo or ns dependence of coefficients in a perturbative expan- f(q)=8(q—qa)+ 8(q—0y), (9)
sion are known explicitly. We discuss this in more detail in
Sec. V. as might be expected.

Equation(3) produces an optimum scale by means of an In other cases, while not strictly vanishingf,) may be
average of logf®) weighted byf(q). As such, it provides a anomalously small, and the dominant contribution from this
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FIG. 3. The BLM prescription applied to second order in T
ag(g*). The insertion on the left side represents vacuum polariza- 1.9 -\/"' -
tion from both quarks and gluons. sk ]

17} ]

gluon is still as in Fig. 2. It is useful to generalize the lowest

order prescription of E¢(3) to incorporate both these cases 16

naturally, and also to anticipate the situation whgileg(q?))

is anomalously small.

The discrepancy between the left and right sides of Eq. FIG. 4. The BLM scaleq* for the model of Eq.(14) as a

(1) relative to the lowest order termv(q*)fd4qf(q) is function of ¢, with q,=2.0 andqg,=1.8. The first order solution of
Eq. (3) determinexy* for c<—1, the second order solution of Eq.

— ay(q*) Bo({log(9?/q* ?))) + a(q* ) B5((log?(g%/q*?))). (13 for c>—1. The dark dotted lines show the first-order solution

(10) in regions in which it does not apply; light dotted lines display

inapplicable second-order solutions.

Applying Eq. (3) leaves a leading difference of
When the logarithmic moments are available over a range of
ay(a*) B5(([log(a*) —((log(4?))) 1?))=ai(q*) B parameters, requiring thaf* be continuous and physically
(12) sensible makes the proper choice apparent, as will be ob-
served below. In particular, wheff) is nearly zero, this
requires choosing the sign opposite to that @g(g?))). In
every case we have considered, the choice has been obvious.
However, if the need arises, one may resolve the sign unam-
biguously by using information from higher moments, as dis-
cussed in Sec. VII.
Weref(q) a probability distributiong would be its stan-
dard deviation. A negative value foo? indicates that

fully dressed gluon, as in Fig. 3, adds the term in E.to f(q)/{f) has substantial changes of sign and is behaving
the left side of Eq.(1). Expanding both sides in terms of significantly unlike a probability distribution. In this case,

ay(q*) as before leads to a leading relative difference of (f) Will be anomalously small, the order,(q™) contribu-
tion becomes important, and E@.3) provides the appropri-

a?(q*) B5((1og?(q?/q*?))) ate choice of scale. As a result, E3) determinesy* when
5 P 5 5 o? is negative, Eq(3) when positive. This prescription is the
=~ ay(q*) Bollog™(* %) —2((log(q)))log(d*“)  main result of this paper.
2 Although Eq.(13) uses information from part of the next
+((log(a%)))]. 12 order, it is the appropriate scale to use whenis negative,

Whenf(q)/(f) is positive for allg, this discrepancy is also €Ven if only computing to first order iny(q*). In that case,
strictly positive, and the best that can be done is to choosi® addition to settlng_the scale for the Ie_adlng term, it allows
g* to minimize it. The result of minimization is again just for a reasonable estimate of the magnitude of the neglected

Eq. (3). This will also clearly be the case whéfg) changes hext-order terms, based @t@(q*)_. When(f) is very small,

sign in some small region without significant cancellations these neglected terms should give a sizable correction to the

The leading error is then the same as in Bd). first-order term. And when one computes to ordé(q*) or
However, Whenf(q) possesses signiﬁcant sign Changes,higher using this scale, higher-order terms which dress the

the error in Eq(12) can become negative for certain values!eading gluon should be small, having been largely absorbed

of log(q*?), and minimization is not appropriate. In this case, into the first two, as in Fig. 3.

it is possible to eliminate the difference altogether by choos- As an illustration, we consider a slightly more general

ing one of the two solutions version of the model of Eq7),

o (flog(g®) =[(flog(g?))*—(f)(flog’(q*))]*? f(q)=(1+c)8(q—q,)— 8(q—ap), (14)

with o the standard deviation of logd) with respect to the
weight f(q)/{f). Whenf(q) does not change sigh(q)/{f)
ando? are both positive. Whef(q) changes sign and) is
anomalously small due to cancellations, this error can be
come arbitrarily large, indicating that treating this as a first
order process is invalid and it is useful to incorporate infor-
mation from the next order.

Matching the gluon’s contribution to next order to the

where(f) vanishes exactly foc=0, and has partial cancel-
=((log(g?))) =[((log(g*)))*—((log?(g?)))]"? lation for c>—1. Figure 4 presents the scaj& determined
1 by Eq.(3) wheno?>0 and by Eq(13) wheno?<0; that is,
whenc>—1. Forc<-—1, with no cancellations, EqQ.3)
=((log(g?))) [ — a?]¥2 produces reasonable values fpr. It falls betweenq, and
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ap, approachingy, for |c| large, andq, for c=—1. Asc subleading constant will appear multiplied by. Replacing
approaches zero ad) vanishesg* from this prescription N Wi_th Bo using Eq.(4) leaves the fermion loop contribution
diverges. However, foc>—1, o2 is negative, and Eq13) ~ modified by a constant, to

rovides the optimum scale. It evidently behaves accordin
Fo expectationsp. Even for the case th;r/s; large and posi- ’ —as(q*) Bollog(a?/q*?) +a).
tive and Eq.(3) produces a fairly sensible result, it overesti-
matesq* and Eq.(13) is preferable. to

To summarize, we restate the prescription in a more com-

pact form. We have chosen inclusion of the running coupling log(q*?)=((log(a?) +a)) (17)
within the integrand for a first-order diagram,
Jd*qay(q)f(qg), as a natural means to account for the run-absorbs both the leading log and subleading constant into
ning of the coupling with the gluon’s momentum. It has the o (q*). For the modified minimal subtraction scheme

advantage that it incorporates higher-order diagrams which\s), a= —5/3[20-23, resulting in the shift in scalp4]
dress the gluon, has no arbitrary scale dependence, and ap-

propriately accounts for the strength of the coupling of a q"\;l_sz exp(—5/6)q% =0.43y% . (18)
gluon with momentun.

It has the disadvantage tha{(q) has an unphysical pole As with a, this also absorbs the log associated with gluon
atq=Ay, making the integrand ill-defined. We avoid this by yvacuum polarization, sincg, determines its contribution
expandinge(q) at the scalgy™ as in Eq.(2), and working  relative to the fermion loop. However, the gluonic sublead-

(16)

When applying the first-order prescription, amending 4.

to finite order ina\(q*), giving ing constant need not contribute in this ratio, and so will not
also be completely absorbed. One might choose instead to
4 *\_ 2% 2/ % 2 completely absorb the gluonic constant by solving @gfor
f daf(@)lav(a™) = Boav(a™)log(a/q™) the adjoint Casimir constan€,=N associated with the

2 3 YT gluon loop in terms of3,, before absorbing thg, term into
+Boav(q)log (a*/q* ) + - - ]. (15 as(q*). This would be particularly appropriate when
=0, for example. ForMS, the result is a factor of

We chooseg* to reproduce the full integral as well as pos- - — ) .
sible. In the absence of significant cancellations in?Xp( 31/66)=0.63, not greatly different from EQ18). This

[d*qf(q), we may select the scale by HS) so that the first indicates that to one loop, absorbing the fermion loop con-

. g . . . stant also largely accounts for the gluonic constant.
nonleading term in Eq(15) vanishes. The discrepancy is When applying the second-order prescription, a constant
then the term of order3(q*), which this choice forg* PPyINg b pHon.

. . . subleading contribution leads to the same shift in as
minimizes. Furthermore, ag* will be near the typicalq, g &9

in Eq. (17), with
f(q) will be roughly even abouti*, and higher-order con- in Eq. (17, wi
tributions should be either near zero or their minimum de- loa(a*2) = ({loa(a?) + a)) + [{{loa( a2)})2
pending on whether they are even or oddaip(q*). 9(a™) = ((log(a) +a)) =[({log(a™)))
However, wherf(q) is essentially odd about songeand —((log?(g?)))1*2. (19

so suffers from significant cancellations, this is not an appro-

priate prescription. The leading term in E€L5) will be The second term on the right is invariant under a shift in
anomalously small compared to the second term; in extrem®9(a”) by a constant, and so remains unaffected.

cases, it might even vanish, and it would no longer make Because th&/ scheme associates gluon exchange with a
sense to absorb the second term into the leading term. Fuhysical process at the specific scalé’, higher order con-
thermore, the scale from E) would no longer accurately tributions associated with the running ef, must vanish
represent the typical momentum, and neglected higher ordéglentically when the gluon’s momentum higg ?. As a re-
terms in Eq(15) would be anomalously large. It is, however, sult, logarithmic contributions logf/q*?) from these dia-
possible and sensible to require the third term to vanish bgrams appear without subleading constants.

Eqg. (6); that is, to absorb it into the first two. This again

provides a typical scale about which, in this cab@) is IV. DETERMINING @* IN MS
essentially odd, minimizes the fourth-order term, and sup- ] o
presses higher-order terms. In order to provide a more realistic example, and to show

how this prescription can be applied simply when using di-

mensional regularization, we determig& for the one-loop

g¢° diagram of Fig. 5. We intend this as a simplified version
For prescriptions other tham,, vacuum polarization in- Of a quark self-energy diagram, and employ it here for the

sertions will in general contribute subleading constants irsake of clarity.

addition to terms as in Eq5). Though nonleading, these By introducing an additional denominator of the form

constants can make significant contributions at physically in{g?)’ into this diagram im-dimensional Euclidean space,

teresting values ofi?, and so the optimum scale ought to be 5 \

chosen to account for them as well. One method for doing so Q_J dq s 1

is to focus on the fermion loopt]. Both the log¢?) and the 2) 2m)"g>+m? (p—q)’+m? (g%)°’

Ill. SCHEMES OTHER THAN V

(20
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and expanding the result i to second order, we produce q
the necessary logarithmic integrals:
52 /\
(f(@) = &(f(a)log(a*) + = (f(a)log*(9*) + - - > > >
(21 P P

92 T(5+e)

Tu?
Eo R R b

(Note that Refs[24,14] present a different and elegant tech- FIG. 5. One loop self-energy diagram in tge* model.
nique for extracting these logarithmic moments based on a
simple dispersion sum over a fictional gluon mass. in for the large-momentum contributions of the first two
We evaluate Eq(20) using standard methods and obtain higher-order vacuum polarization subdiagrams which sum to
5 form the running coupling. In particular, as these factors are
1 finite, they represent these subdiagrams with their subdiver-
[Mz ' gences already removed. For example, the factorgfdg(
(220 which appears in the integrand which produced E2p),
comes from the large-momentum approximation to the
where x andy are the usual Feynman parametess(4  \S_renormalized one-loop vacuum polarization diagram:
—n)/2, p is introduced to keep dimensionless, and that is, to Eq.(24) without the pole. The poles ia which
2 q 2 _ _ 2 remain in Eqs(24) to (26) are then the new overall diver-
MZ=(1=y)m =+ x(1=y)(1=x+xy)p*. 23 gences associated with one, two and three loops, respec-
The integration regioty~0 produces a H singularity. Par-  tively. In the MS prescription these are simply discarded.
tial integration ofy®~ ! makes this explicit, and allows us to ~ Finally, we note that Eq24) in this model is the one-loop
expand ind under the integral. Keeping terms ineltb order ~ vacuum polarization diagram in addition to being the parti-
zero and comparing to E21) gives cle’s self-energy. At largg?, it is approximately logt?¥ u?)
—2, including the subleading constant. The consgaint Eq.
m2+x(1—x)p2) (24 (17) is then—2, and theMS value forg* will differ by a
,uz factor exp-1) from the expression fay* in theV scheme.
While Egs.(24) to (26) allow us to determing* for any

1 1
(f(q))=— ;+ fo dxlog

5 y p andm, it is illuminating to consider two limits. Whep?
(f(a)log(g?)) = f dxd + |09 2 +E >m?, after renormalization and choosing' = p?
1 y\ 1 M?2 (f(q))y=-2 (27
— o2l L+ 002l —
29 (MZ) 3 ( y )
2
x*(1—y)?p? M? 2))y = 2y T
+[1_T}|og(7” - ((log(e?))) =log(p?) ~ 5, (29
1 1 1 y l//"( ) 71_2
f I22=2fddy{— +I(> 2y _ PAN B S
(f(@)log™(a™))=2 | "dxdy = Z+-log| -7 ((log*(®)))=log(p?) 12Iog(p )+ 1572
29
1[772 So?| 2| |+ 5| - .
—_— _O —
12 ¢ u? to leading order im?/p?. These give
2
Iog( Y )+Iog li/ 2_ 5 Y1) w? 1 m _ 20
=2t 5|1 18| (30
ofi- = o
or numerically,o>=.6077. The lowest order solution is then
M2 appropriate and yields a value fqi close top, with
+Iog3(— “ (26)
y q*/p=exp — 1)exp — mw2/48) = 2995, (31)

In the above, we have dropped the overall facgﬁ1:{47-r)2,
which are here irrelevant, and substituety?/4 for 42.  which corresponds to a value of exp?/48)=.8141 in the
The latter greatly simplifies these expressions and allows u¥ scheme. We can use to give a measure of the relative
to apply theMS prescription by subtracting the poles spread in the momenta which contribute to this diagram,
alone, as one would for MS. with

To renormalize these terms, we note that the d®génd
log?(qP) factors integrated within this one-loop diagram stand Ag/q~o/2=.3898, (32
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independent of the prescription. In general, wpésm? but
for w? arbitrary, g* ~\/pu. This is the same result as Eq.
(8), and reasonable for a diagram dominated by moment
between these two scales.

In the large mass limitn=p, with ©? chosen to equal the
natural scalen?, we find

1 p?
(f(Q)>:gW (33
5 m—4| 1 , P?
(f(@log(g*)=| —— |+ glog(m?) — (34)
2— n

(Halogt(q®) = Ty (1 +logrmey] - Y

2 2
+ % -1+ %+ %Iogz(mz)} % (35)

to orderp?m?. Clearly in this limit(f(q)) becomes anoma-
lously small, and we expect the second order solution to b
necessary. We confirm this by noting that to this order

55

18
which is negative in this limit. The second order formula
applies, and gives

772_

12

m—4
4

2
L
m2

(o=~ |

2¢9/'(1) -3
log(gq*?/m?)=—2+|1—
glar=/m?) 3(m2—4)| |9(7—4)
49/'(1) P’
————(—3(m=4)+¢"(1) | =,
e e LA
(37)
or numerically,
g*/m=0.6953+ 0.0574 p?/mZ. (39

For theV scheme, the leading 2 in Eq.(37) is absent, and

¥ /m=1.8899+0.1562 p?/m?. (39
Figure 6 and Fig. 7 displag* as a function ofp for the
respective cases where=p andu=m. The limiting values
discussed above are evident. o p, the first-order solu-
tion determinesg* in both the large and smaf regions,

connected by the second-order solution in the interim. Imme-

diately to the right of the point where the first-order solution
diverges in Fig. 6, indicated by the vertical line, the second
order solution with positive root determing$; to the left,
the second-order negative root applies. korm (Fig. 7),
the first-order solution applies for large the negative root
second-order solution for smail In both cases, use of the
appropriate second order solution where applicable gives
meaningful and continuous value fg¥ over the entire re-

gion in p. Which second-order solution to choose from Eq.

(13) is obvious.

PHYSICAL REVIEW [®7, 034023 (2003

a

/v

FIG. 6. TheMS BLM scaleq*/p as a function of momentum
p/m for the diagram of Fig. 5 in the scalar® model, with u=p.
The first-order solution determing$ in both the large and smatl
regions, connected by the second-order solution in the interim. The
vertical line indicates the point where the first-order solution di-
verges. The dark dotted lines show the first-order solution in the
region in which it does not apply; light dotted lines display inappli-
8able second-order solutions.

Finally, we note that computing higher order average logs
for this diagram requires only expanding E&2) to higher
orders in 8, without the need to compute additional dia-
grams.

V. DETERMINING g* FROM A KNOWN SERIES

To apply this prescription we need the first two logarith-
mic moments within the integrand associated with a gluon’s
propagator. Under certain conditions, we may apply this pre-
scription to set the scale for a process for which the expan-
sion is already known by examining its dependence. At
each order ofay(u), the contribution from vacuum polar-
ization will give the largest power af;, or equivalently, of
Bo [14,16,1Q. It is therefore possible to read off the loga-
rithmic integrals directly from the series coefficients.

3
q*/m
2

0

(=]

FIG. 7. TheMS BLM scaleg*/m as a function of momentum
p/m for the diagram of Fig. 5 in the scalap® model, with u
=m. The first-order solution determingg in the largep region,
@hile the negative root second-order solution gig&sfor small p.
The dark dotted line shows the first-order solution in the region in
which it does not apply; the light dotted line displays the inappli-
cable second-order solution.
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Using Eg.(4) to replace the largest; terms with B¢ in c.log(q} 2)+cblog(qf§ 2)
contributions associated with a particular gluon, we obtain a log(q22) = c1c . (48)
series of the form at’™h

Because of the need to first test the sign of the ny, the

_ 2
Coav(p)+ (a1~ C1fo)ay(p) prescription for applying second-order scale setting is

(@t +CB)ad(m)+ - (40)  slightly more involved. In that case,
The coefficientsc,, are then associated with vacuum inser- o2 = ca{(10g%(9%)))a+ cu((log?(a®)))p
tions in the gluon propagator. Comparison with the right ab CatCh

sides of Eqs(y and(2) gives [cal(log(a®))a + cul0g(c))y 2

CO=<f> CatCp

CI/CO~<<|Og(q2/IU’2)>> (41) B CaO'§+ Cbﬂ'g C5Cp

((log(a*)))a
CalCo~{({log(q? u2))), CatCp  (Catcy)”

—{(log(9?)))p)?. 49
which holds wherf(q) contributes predominantly at large ((log(@%)))») 49
Given this association, the prescription to second order is As ysual, if¢2,>0, the first order combination

2/ 2\ _ 2_ 112
log(q* “/u=)=cy/co*[(C1/Co)“—Ca/Co] (42 log(q* 2): ca(<log(q2)>>a+ Cb<(log(q2))>b 50
when the argument of the square root is positive, and ab CatCp
log(q* 2/ u?) =c, Ic 43  applies. Ifo2,<0,
otherwise. log(q2) = ca(109(9%)))at Cu{(10g(a*)))s L[ 2
For schemes other thavi the presence of a subleading 9(dap CatCp —L7 Tapnl
constanta contribution to fermion vacuum polarization leads (52

to the identification o ] o
When combining two series by divisioff,,,=F,/Fy,

cq/co=~((log(q?%/ u?)+a)) the first-order coefficients subtract rather than add. The
above formulas again apply, but with the replacengpt:
Co/co={{(log(q? u?)+a)?)). (44 —Cp. These also apply to series combined by addition and

subtraction, respectively, because the results at first order are
Because; includesa and the square root is insensitive to it, equivalent.
Eq. (43) and Eq.(42) automatically incorporate the shift in  For schemes other thar one should amend the average
Eqg. (17) and so may be used unchanged. Also, if one is abléogs to include the subleading constants, as discussed in Sec.
to identify in the series the constan®, associated with |lI. The relation between the scale ¥hand in other schemes
gluonic vacuum polarization, one could choose to use thisemains the same.
instead to rewrite the series in terms 8§. Equation(43)
and Eq.(42) would then automatically absorb the subleading VIl. HIGHER ORDERS

gluonic constant, as discussed at the end of Sec. II.
Extending this prescription beyond second order is rela-

VI. COMBINING SERIES tively3 straightforv_vard, though it requires c_omputation of
({log (q2)>> and higher moments, or information from third-
Determining the scale for the series formed by multiply-order and higher terms in a known series. An extension to

ing two series, third order, for example, would be necessary should Bbth
and(flog(g?)) vanish, making the third term in E¢L5) the
Fa=1+Caayv(q})+ - (45 leading term. Absorbing the subsequent term by requiring
and (flog*(q?/q*?)) to vanish would give
(flog’(g?))
— * * 2\ —
Fp=1+Cpay(qy) + (46) 000" = 3 oy (52)
with known scales is straightforward when considering only ) _ _
first-order scale setting: ;’isftong would also obtain from Fig. 2 with two loops on the
eft side.
Far=FaFp=1+(Catcp)ay(qi)+- - (47 When(f) and(f log(g®) are not identically zero but are
anomalously small relative to higher moments, requiring
with (f log®(g%g*?)) to vanish still gives the appropriate scale. A

034023-7



HORNBOSTEL, LEPAGE, AND MORNINGSTAR PHYSICAL REVIEW ®7, 034023 (2003

24 T I T :.'I 24 T T T T+

Flrs;; Order e " ".I Firs:; Order I
20 : Second Order 23 » - Second Order -
. Third Order 09 | " - Third Order ——
2| ; . o1k e ]
¢ 1.8 _—_————’A _ o2k T 2
L6 e e e e e A 19 W’—_:
.................... 1'8 I~ W T
Td e - 1.7k :::’-.' B

1.2 1 I BN ) 1 1 1.6 L 1 L L 1 1
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8

¢ c
FIG. 8. The BLM scaleq* for the model of Eq.(53) as a FIG. 9. The BLM scale for thé-function model of Eq(14) as

function ofc, with q,=2.0, g,=1.8 andgy=1.6. The second-order in Fig. 4, but with the inclusion of the third-order solution. It is
solution determines|* for c<—1, the third-order solution foc ~ applicable forc<—1 and indicated by the additional dark line.
>—1. The dark dotted line shows the first-order solution; light Dotted lines indicate inapplicable solutions.

dotted lines display inapplicable second and third-order solutions.
the first-order result. This will also be apparent when we

symptom that this is the case would be a third-order scal€x@mine higher moments for certain processes in Sec. IX.
near Eq.(52) which shifts significantly the scale obtained at ~ Thus far, for simplicity, we have restricted our discussion
lower order, and which is more in line with physical expec-t0 contributions toay(q) from one loop vacuum polariza-
tations. If available, higher even moments near their minimdion. We show here that the above expressiongjfoare not
or odd moments near zero at this scale would confirm it. limited to these. SpeCiﬁca”y, inClUding Subleading contribu-
An ordern equation is necessary to sgt only when all ~ tions to ay(q) expanded within a diagram as in E@.5
of the first 1—2) moments vanish or are anomalously 9IV€sS
small. It would be unusual for a generic integraifd) to be * 2 4 3, xar o2
effectively orthogonal to more than a few powers of kg (@ )(F) + au(qF)[ Bod]+ ay(q*)[ BoA o+ B1Aa]
and so the need to use a high-order equation should be rare.
We have found no realistic cases for which either Egsor + a@(q*)
(13) were not sufficient.
In Fig. 8 we illustrate the appropriate scales for a model,

+ay(g¥)

5
SA s+ 530,31A2+ BoA,

4 13 ) 3 5
X| BoAst ?BOIBIAB"' 3BoB2As+ 531A2+,33A1

f(a)=Ad(q—0a) +B(q—ap)+(D+c)é(q—0q),
(53 +oe (55

with Here

B=—Al0g(qa/qy)/l0g(dy/0g) D=~ (A+B), (54 By %( 102 3_8nf) 56)
(4) 3 '
contrived such that bottf) and(flog(g?)) vanish atc=0. and
The second- and third-order solutions behave as expectec‘1
where appropriate; the first-order solution, while not diver- 1 /2857 5033 325
gent, is low throughout. The unphysical behavior of the first- Bo= @i 2 ~ 8 nﬁgnf),
order solution, as well as the significant discrepancy between &
firs_t- and third-order scales indicate that the first-order result 4 \ve have defined the moments
is inadequate.
Note the one- and two-node structures of the integrand A,=(flog"(q*2/q?))={(f[log(g*?)—log(g?)]"). (58)
f(q) in the two- and three-delta models of E44) and Eq.
(53), similar to generic first and second excited-state wavéVe see from Eq(55) that the reasoning which led to the
functions. This is the result of choosiri§q) to be orthogo-  prescriptions in Eq(3) and Eq.(13) was not dependent on
nal to the zeroth, and to both the zeroth and first powers ofthe leading-log approximation tex,(q): the diagrams in
log(g?), respectively. Integrands requiring higher-order equa€ach new set introduced by increasing the order of the
tions would necessarily have more nodes and additional ddeading-log approximation have as coefficients the same se-
tailed structure. quence of moment4, as in the leading approximation. For
In general, higher-order solutions can confirm that a scal@onanomalous cases, requiring to vanish via Eq(3) ab-
determined at a lower order is indeed typical. For examplesorbs the first leading-log correction, proportional@g\ ;,
in Fig. 9 we include the third order solution for the Ed4) into the first term. It also absorbs the first next-to-leading log
model; where applicable, it does not differ significantly from contribution, proportional t@,A;, and so on for each loga-

(57)
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rithmic order. And in each order, it leaves a leading discrepbecome zero fon odd, and lo§(q,/qy) for n even. The latter
ancy proportional to the moment,, which is minimized by  grow in magnitude when the, is a few times greater than
Eq. (3). Insofar as thisy* represents the typical momentum q,. As these are proportional to the coefficients of terms
carried by this gluon, higher-order terms proportional towhich dress the gluon, terms in the series becermiewhen
higher moments should be suppressed. As a result, the firgis rangeq,/q, exceeds a few over,. The series becomes

term ay(q*)(f), with the choice of a single scale fof*, badly behaved then not only when the scaledgis low, but
should do reasonably well at approximating the right side ofalso when the range of important momenta is Idrtg 16].
Eq. (1) regardless of the number of loops kept in héunc- Nevertheless, in this simple case the remedy is obvious.

tion for ay(q). When(f) vanishes or is anomalously small, The problem results from requiring, at a single scale to
it is inappropriate to absorb the leading correction at eaclincorporate two widely different scales. Separating these and
logarithmic order into the vanishing or small first term. In writing the series for this model in terms of bathy(qg,) and
this case Eq(13) gives the appropriate scale. It caudgsto  a4(q,) incorporates vacuum polarization contributions ex-
vanish, and so absorbs the second correction at each logaetly and causes higher moments to vanish. This reinforces
rithmic order into the set of leading corrections. Again, be-the idea that for a series in which gluons from different dia-
cause Eq(13) produces a typical scale, higher-order termsgrams occur in loops sensitive to significantly different mo-
should be small. menta, allowing thexg associated with each to have its own
This illustrates one of the advantages of using a couplingcale could improve the series’ convergence. Furthermore,
based on a physical process, suclwas For other schemes, for a series in which a gluon in a single diagram is sensitive
there can be significant subleading constants associated witb a wide range of momenta one might even consider im-
the diagrams which dress the gluon, not accounted for in theroving its behavior by splitting up the integrand, with at
running coupling. These will appear, for example, in the co-a different scale assigned to each region, as in the example
efficients associated with the leading log term at each ordesibove.

n; that is, withﬁg’l, as Even for diagrams which dress a specific gluon, it is pos-
sible to minimize higher moments by allowing the scale as-
A= (f[log(g*?)— (log(q?) +ag)]™), (59 sociated with these diagrams to differ at different orders. In

particular, one may select the scale at every other order such
and one may absorb them by adjusting the scale. Howevethat the following moment vanishes, and the next is mini-
only one such constant can be absorbed in this manner; pantsized. Variations in the scale would account for the different
of those associated wit3; and higher will remain. By its regions the moments probe in the integrand.
definition, these constants cannot appear tay, and We will not pursue this further here, but mention that care
ay(g*) well represents the strength of a physical gluon atmust be taken to preserve gauge invariance if separate scales
the scaleq*. This optimum choice of scale minimizes all are assigned to different parts of a series.
coefficients associated with dressing the gluon, not just those

associated wittFo. IX. APPLICATIONS

VIIl. IMPROVING CONVERGENCE A. Known series

Thus far we have been considering the appropriate scale In Table | we present a collection of results for perturba-
g* for the leadinga,, . For the sake of simplicity, we will be tive quantities for which at least the second logarithmic mo-
content to optimize the scale for the leading term, and willment is available, allowing us to apply scale setting beyond
use the same scale for higher-order diagrams. From the préswest order. ReferencilQ] presents a useful compilation
vious discussion, it is clear that this will be a reasonableand discussion of many of these. These include the log of the
scale for diagrams which dress the leading-order gluon; theskx 1 Wilson loop in lattice QCD {logWy,) [13,25, the
contributions should be small, having been largely absorbedhtio ofe*e™ goes to hadrons over muory:.-) [26—-30,
into the leading term or terms. There is no reason to believehe ratio of the quark pole mass to kS mass (/M)
however, that it will be the best scale for other higher-orde31-3¢ and[14,16], the ratio of r goes tov,. + hadrons

diagrams, and it should certainly be possible to improve theyer  goes tov.e v, (R,) [37—47 and [29,30,15, the

convergence of the series by choosing the scale for such_ . - . — 3
diagrams separate[y,10]. semileptonicB-meson decay widtil'(B— X,ev)) [43-5Q

There are other cases for which it could prove advama_expressed both in terms Of. the pole M8 b-quark masses,
geous to allow different scales at different orders, for differ-N€ 0P quark decay width(I'(t—bW)) [51-5§ and
ent diagrams within the same order, or even within a singlé24,46,14 in terms of its pole andS masses, the Bjorken
diagram. Returning to the simple and unexceptional model ofum rules for polarized electroproductiéfi;dx g3%(x,Q?)

Eq. (9), for which the first-order scale setting EQ) gives —97(x,Q%)1) [57-62, and deeply inelastic neutrino-
Eq. (8), we note that the moments nucleon scattering(f tdx[ F2P(x,Q?) — F2P(x,Q?)]) [63—
66], and the static quark potentigV/(Q?)) [20-23 and
(67,68,
We note that the nonsinglet part of the Ellis-Jaffe sum rule
(60) [69—72 and[62] gives the same scale as the former Bjorken

1
((log(q*2/q?))) = 5 [log"(q* */qg) + log"(a* */q;)]
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TABLE I. Applications of second-order scale setting to several processes. The coeffigianésdefined
in Sec. V.q; gives the scale set by E¢B). 5 gives the preferred scale by Ed.3) where appropriate, also
indicated by boxesAqg measures the range of momentum running through the gluon.

c1/eo q% czleq o’ q3 Aq

—logW,;:

2448 3.402/a 6.316 0.3194 - 0.96/a

Re*e’(s):

—0.691772 0.7076+/s —0.186421 —0.66497 1.064+/s -

M/M:

—4.6862 0.09603M 17.623 —4.3374 0.27205M 0.38M

R,:

—22751 0.32060M . 5.6848 0.50872 - 0.11M,

T(B—X,ev)/M;:

—5.3382 0.06932M,, 34.410 5.9139 - 0.084M

I'(B—X,ev)/M;:

—4.3163 0.11554M,, 8.0992 —-10.531 0.58534M, 0.35M,

T(r—bW)/M?:

—4.2054 0.12213M, 23.046 5.3611 - 0.14M,

T(r—bW)/M?:

—5.7076 0.05763M, 6.0996 —26.477 0.75502M , 0.34M,

Jodx[g$(x,0%) — g5"(x,07)]:

-2 e 10=0.36790 115/18 43/18 - 0.280

Jodx[F7P(x,0%) —F*(x,0%)]:

—8/3 e *?0=0.26360 155/18 32 - 0.160

V(Q?):

-5/3 e 150 =0.43460 25/9 0 - 0
sum rule, the Gross-Llewellyn Smith sum r{i€3,64,61,62 Aq Ao |¥?
the same scale as the latter. F~ Zn+ DA, (62)

n

All but the first scales are from knowvS series, and for
these at least the fermion vacuum polarization graphs mustith n odd. In Table I. we us@a=1. This expression gives
be given to two loops. In several cases higher logarithmigne standard deviation in a distribution modeled by a Gauss-
moments are known, which will allow us to test the consis-j5, times{ log(q*2)—log(e®)" to render it odd. We found it to
tency of the procedure. We find four cases where the seconds;e reasonably consistent results for varioushen applied

order formula gives the preferred scale. to several examples discussed below, though other measures
When the first-order solution is appropriate, the second,,q certainly possible.

moment gives a rough measure of the range in momenta For Re.o M/M. and both F(B—>Xue7) and T(t

which flow through the gluon, with . .
9 9 —bW) expressed in terms d¥IS masses, we find that the
Ag 1[A,\1? second-order scale is appropriate, leading to significant cor-
7*5 m (61) rections to the anomalously low first-order scales, especially

in the latter three. While the new scale fot/M is signifi-

cantly increased, we note thAlg/q is still relatively large,
Here,Aq is the standard deviation ipandA, is defined in  indicating sensitivity to low-momentum scales even wiven
Eq. (58). A large range results in large coefficients at higheris large, and threatening a poorly behaved series. This appar-
orders, as discussed above, and may indicate sensitivity ®@ntly infects theb andt decay rates when expressed in terms
low g. When the second-order scale is appropriate,(E). ~ Of pole masses, as shown by their low scales. By contrast,
clearly is not. However, if higher moments are available, weMS masses behave more as bare masses, being sensitive to
may estimate this range using short distances; expressing the two decays in terms of these
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FIG. 10. The moments([log(ass) —log(@?)])[*" as functions FIG. 11. The momentg([log(g2) — log(@®) ™)' as functions

of log(/M3) for n=1 to 8 (left to right) for T(B—X,eve) Over  of log(q3/M?) for n=1 to 8 (left to right) for M/M. The vertical
theMS massM, . The vertical line indicates the choice for the scale |ie indicates the choice for the scale Iqéé/Mz) using Eq.(13).
Iog(q,i‘,l—élMﬁ) using Eq.(13). By choosing the second-order pre-
scription such that the second moment vanishesggiM?2) is  rections. In ggneral,_ we expeftq) to be either roughly even
either near the minimum or the zero for all higher moments, mini-or odd about its typical scalg*, and the sign of the second
mizing higher-order terms in E¢55). moment,o?, should distinguish the two. Faxq sufficiently
_ . . _ _ small, using Eq(3) or Eq.(13) depending on the sign @f?
§|gn|f|cantly IMProves . behaV|¢55,74,24,14,15 This . should give reasonable values except in very rare cases.
is clear from both their scales and widths. Both these series . — L . .
The picture forM/M, Fig. 11, is similar. While choosing

should be well-behaved, and well-represented dayat a d ord o i iate than first .
single, physically reasonable scale. But it is necessary to ustﬁe second order scale IS more appropriaté than first, causing
the second moment to vanish and minimizing the third, the

- I i his; the first- o ; . .
second-order scale setting to see this; the first-ogefor zeros and minima of higher moments drift progressively

h indicat le which is misleadingly low. L - :
each indicates a scale ch is misleadingly lo lower. Such behavior is anticipated by the relatively large

Reference$14,15,47 provide very useful values for fer- T . 2
mion vacuum polarization contributions, and therefore Ioga—VaIue ofAg/qg, which indicates a wide range of contributing

rithmic moments, computed to eighth order for the pole tonomenta. In this case, higher moments afe_"?creas"ﬁg'y Sen-
NS ratio. + B andt decays. These allow us to compute their5|t|ve to lowerq, and the corresponding coefficients will pro-
AQ's usi’ng’ Eq.(62), but rﬁore importantly, to confirm the gresswgly increase. We .m|ght improve the convergence of

h : - . ' ) the series by methods discussed in Sec. VIII. For example,
general picture as discussed in Sec. VII. In Fig. 10 we us

o . . ) . Géhoosingq* separately at each odd orderdg, causing the
this information to display the first eight moments following even moment to vanish and miminizing the subse-

|{([log(aié) —log(e®)I")[*" as functions of logiié/M b) for  quent odd moment, with eacft indicating the characteristic
I'(B— X, ev,) expressed in terms of tHdS massM,. Here  scale for that moment. An alternative is to resum the entire

q22 absorbs the fermion loop constant associated with th&€t of polarization diagramsl4,16. Regardless, the ability
MS prescription, as in Eq18), andM, is the b-quark pole to detect sensitivity to a large range of momenta, in a_dd|t|_0n

) 5 h to the scale itself, by computing the first few logarithmic
mass. We observe that choosing W/Mlb) to setthe sec-  moments is sufficient to warn of large higher order correc-
or}d. moment to zero using EQl;) not only removes it apd tions. In this case, it suggests usihg rather thanM in
minimizes the third moment, it also sets all of the higher :

R . o expressions fob andt decays.

moments near their minima or zeros. It is clear that this is the
natural scale for this process, and that terms beyond second
order which dress the leading gluon should be small. The™:
first moment is clearly anomalous, and setting it to zero us- Lattice nonrelativistic QCINRQCD) is an effective field
ing Eq. (3) would evidently lead to large higher-order cor- theory designed to reproduce the results of continuum QCD

Quark mass and energy renormalization in lattice NRQCD
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TABLE II. The BLM scale for the pole mass renormalization fackgy for several values of the bare
lattice massMg in NRQCD without tadpole improvemerdd; gives the scale set by EB) in units of the
inverse lattice spacin@g; gives the preferred scale by E@.3) where appropriate. The parameteis set
to ensure the stability of heavy quark propagator evolution in simulafiois

n aMg (H=(Zn—1)las (flog((ag)?)) (flog”((ag)?)) aqy ag;
1 20.00 0.467G9) 1.34311) 4.09162) 4.20271) -
17.50 0.486(34) 1.36410) 4.19665) 4.06858) -
15.00 0.512830) 1.390785) 4.21141) 3.88344) -
12.50 0.541(46) 1.42614) 4.24763) 3.73665) -
10.00 0.588(85) 1.46312) 4.38468) 3.46943) -
7.00 0.7057L7) 1.542359) 4.88032) 2.98215) -
5.00 0.862414) 1.715349) 5.53829) 2.703487) -
4.00 1.007127) 1.902170) 6.06232) 2.57111) -
2 4.00 1.017R23) 1.926480) 6.16433) 2.57711) -
3.50 1.12683) 2.071G83) 6.61453) 2.50710) -
3.00 1.285%1) 2.285968) 7.35135) 2.433374) -
2.70 1.411619) 2.454G79) 7.91134) 2.384673) -
2.50 1.51883) 2.614174) 8.39052) 2.364666) -
2.00 1.90182) 3.174579) 10.21432) 2.303953) -
1.70 2.275124) 3.754675) 12.03956) 2.282343) -
1.60 2.438(24) 4.008679) 12.85739) 2.275041) -
1.50 2.632(22) 4.314179) 13.745%37) 2.269437) -
3 1.40 2.88003) 4.758776) 15.07337) 2.284234) -
1.20 3.501(22) 5.798683) 18.14339) 2.289130) -
1.00 4.4918519) 7.478069) 23.10931) 2.299019) -
5 0.80 6.30384) 10.72G11) 32.13163) 2.340824) -

TABLE Ill. The BLM scale for the pole mass renormalization factyy for several values of the bare lattice madd, in NRQCD with
tadpole improvementaq; gives the scale set by E€B) in units of the inverse lattice spacingg; gives the preferred scale by EG.3)
where appropriate. The parameteis set to ensure the stability of heavy quark propagator evolution in simuldfi@hs

n aM (H)=(Zm—1)las (flog((ad)?)) (flog*((ag)?)) aqy aqg;

1 20.00 —0.2381(39) —0.385(11) ~0.367(62) 2.2461) 1.3411)
17.50 —0.2224(34) —0.371(10) —0.278(65) 2.30060) 1.24Q91)
15.00 —0.1996(30) —0.3530(85) —0.286(41) 2.42(61) 1.26279
12.50 —0.1773(46) —0.333(14) —0.293(63) 2.5612) 1.2913)
10.00 —0.1416(35) ~0.323(12) —0.223(68) 3.1416) 1.21(12)
7.00 —0.0566(17) —0.3242(58) 0.0662) 17.61.7) 0.9513)
5.00 0.038614) —0.3018(48) 0.3389) 0.020131) 0.7517)
4.00 0.112627) —0.2881(70) 0.4132) 0.27812) 0.65059)

2 4.00 0.12323) —0.2638(80) 0.51633) 0.34313 0.47181)
3.50 0.17223) —0.2664(83) 0.586:3) 0.46112) -
3.00 0.238121) —0.2783(68) 0.73@5) 0.557485) -
2.70 0.282819) —0.3107(79) 0.78(B4) 0.577384) -
2.50 0.318(23) —0.3261(74) 0.80(2) 0.598874) -
2.00 0.418822) —0.4581(79) 0.8462) 0.578357) -
1.70 0.489824) —0.6166(75) 0.7656) 0.532944) 0.5712)
1.60 0.513124) —0.7058(79) 0.6989) 0.502742) 0.72323)
1.50 0.537622) —0.8143(78) 0.51687) 0.468937) 0.83517)

3 1.40 0.579823) —0.8755(76) 0.54(87) 0.469834) 0.83915)
1.20 0.621222) —1.2529(83) —0.043(39) 0.364@9) 1.00913)
1.00 0.651819) —1.9239(68) —1.139(31) 0.228@.6) 1.15311)

5 0.80 0.696(34) —3.009(11) —3.277(63) 0.115@5) 1.29324)
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TABLE IV. The BLM scale for the energy shifE, for several values of the bare lattice madd, in
NRQCD without tadpole improvemenag; gives the scale set by E¢3) in units of the inverse lattice
spacing.ags gives the preferred scale by E@.3) where appropriate. The parameteis set to ensure the
stability of heavy quark propagator evolution in simulati¢ms].

n aMo (f)=Eo/as (flog((a)?) (flog?((aq)?)) aqy ag;
1 20.00 2.257118) 2.549013) 10.810038) 1.7588455) -
17.50 2.2765@4) 2.601112) 10.949640) 1.7705152) -
15.00 2.3033@15) 2.669413) 11.132839) 1.7850754) -
12.50 2.3389(69) 2.765322) 11.388287) 1.8060692) -
10.00 2.3919655) 2.906223) 11.772984) 1.8358392) -
7.00 2.5041011) 3.198814) 12.562349) 1.8939857) -
5.00 2.6498019) 3.578415) 13.564349) 1.9644659) -
4.00 2.7736(03) 3.899538) 14.4035%99) 2.019815) -
2 4.00 2.7715078) 3.898128) 14.38Q11) 2.020311) -
3.50 2.858510) 4.111834) 14.95211) 2.052913) -
3.00 2.9701089) 4.397334) 15.67012) 2.096513) -
2.70 3.057411) 4.613738) 16.22811) 2.126615) -
2.50 3.1248800) 4.782241) 16.6612) 2.149415) -
2.00 3.349p12) 5.348343) 18.11615) 2.222116) -
1.70 3.539413) 5.831643) 19.30214) 2.279115) -
1.60 3.6168L3 6.029945) 19.84316) 2.301816) -
1.50 3.705714) 6.248645) 20.40617) 2.323616) -
3 1.40 3.7866L6) 6.441761) 20.87318) 2.341121) -
1.20 4.017617) 7.024561) 22.34417) 2.397020) -
1.00 4.32656) 7.828235) 24.41811) 2.471111) -
5 0.80 4.658(20) 8.741874) 26.78427) 2.555723) -

TABLE V. The BLM scale for the energy shi, for several values of the bare lattice madd, in NRQCD with tadpole improvement.
ag; gives the scale set by E¢B) in units of the inverse lattice spacingq} gives the preferred scale by E@.3) where appropriate. The
parameten is set to ensure the stability of heavy quark propagator evolution in simuldfiGhs

n aMg (f)=Eo/as (flog((@d)?)) (flog*((ag)?) aq; ag;

1 20.00 1.0528@18) —0.3998(13) 3.20489) 0.8270652) -
17.50 1.0498614) —0.4027(12) 3.20230) 0.8254950) -
15.00 1.0466015) —0.4076(13) 3.197@9) 0.8230651) -
12.50 1.0404059) —0.4143(22) 3.18787) 0.8194889) -
10.00 1.0306(5) —0.4272(23) 3.175@84) 0.8128190) -
7.00 1.0082041) —0.4643(14) 3.115@9) 0.7943156) -
5.00 0.9742648) —0.5243(15) 2.98329) 0.7640958) -
4.00 0.9410(03) —0.5878(38) 2.83089) 0.731815) -

2 4.00 0.9390(78) —0.5891(28) 2.801) 0.730711) -
3.50 0.913710) —0.6502(34) 2.67L1) 0.700613) -
3.00 0.8757(88) —0.7311(34) 2.44412) 0.658813) -
2.70 0.846611) —0.7996(38) 2.26@.1) 0.623615) -
2.50 0.8210290) —0.8590(41) 2.11012) 0.592715) -
2.00 0.731212) —1.0621(43) 1.58@5) 0.483716) -
1.70 0.644213) —1.2576(43) 1.01@.4) 0.376§15) 0.795059)
1.60 0.605613) —1.3421(45) 0.83(16) 0.330214) 0.846065)
1.50 0.564114) —1.4439(45) 0.566.7) 0.278114) 0.902973

3 1.40 0.495816) —1.6171(61) 0.088.8) 0.195516) 0.98612)
1.20 0.352817) —1.9501(61) —0.802(17) 0.062889) 1.10624)
1.00 0.1377696) —2.4285(35) —2.035(11) 0.00014893) 1.2311)

5 0.80 —0.3161(20) —3.4380(74) —4.629(27) 230.8.4) 1.41675)
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FIG. 12. The BLM scaleg* for the pole mass renormalization FIG. 14. The BLM scaleg* for the energy shifg, as a function
factor Z,, as a function of the bare lattice maa#, in NRQCD of bare lattice masaMg in NRQCD without tadpole improvement.
without tadpole improvement. The first order solution determinesThe first order solution determingg for all values.

g* for all values.

mass, ands,, the shift from zero of the nonrelativistic en-

for a heavy quark at energies small relative to its nj@&s- ergy of a heavy quark at rest. Refereiig8], using an action

77]._ Higher-dimensional operato_rs provide_ systemz_atic Corimproved toO? and 0a2, and toOv* for spin-dependent
rections ordered by quark velocity and lattice spacing,

g tf diati b h toff t interactions, found that first-order scale setting produced
and account for radiative processes above the CUtoll, typly,omaious results for certain values of the bare mass, par-

cally around the mass. For a cutoff much larger thagp, ticularly after tadpole improvement.

lattice perturbation theory should give reliable values for the | "tapies 11—V and Figs. 12—15, we present new values

coefficients of these operators as well as the renormalizatio]xbr the scale for a variety of bare,quark masség, both

factors which connect bare to physical quantities. Referenc&,ith and without tadpole improvement. By applyiné E49)

[13] demonstrates that this expectation is valid, provided one, regions where appropriate, we obtain a reasonable scale

uses a renormalized rather than bare coupling constant, a'i’gr all values ofM correctiné the anomalies observed in

divides link gauge fields by _their mean V?"”e to remove IargeRef_ [80]. As expecot’ed, there is a significant reduction in the

tadpole contributions peculiar to the '3“'09- scale after tadpole improvement. The tadpole contributions
Reference$78-80 present calculations of two of these to these renormalizations are quadratically divergent in the

quantities to first order i t_he renormalization faCtCZ"?' inverse lattice spacing, and so are generally large and sensi-
which connects the bare lattice heavy quark mass to its pole

' T N ' T ' e 2 T T T T T T T T
3 S _- B -
- \\*\\ -
- \~_4____ - - -
B Rt i
* 2_ p— " -
a4; [ ] W, 1I- m
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aM, aM,

FIG. 13. The BLM scaleg* for the pole mass renormalization FIG. 15. The BLM scalg™* for the energy shifE, as a function
factor Z,, as a function of the bare lattice maaM, in NRQCD  of bare lattice of the bare lattice masM, in NRQCD with tadpole
with tadpole improvement. The first order solution determigés improvement. The first order solution determing$ between
betweenaMy=2.00 and 3.50, the second order elsewhere. CircleaM;=0.80 and 1.70, the second order elsewhere. Circles indicate
indicate the appropriate scale; triangles indicate the first-order soluhe appropriate scale; triangles indicate the first-order solution in
tion in regions where it does not apply. regions where it does not apply.
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tive to large momenta. Tadpole improvement is designed t@s indeed typical. Large values for the relative ranyg/q
remove the bulk of these contributions, and so reduces thean indicate large higher-order contributions even wh&n
typical scale from 2—4 to 0.5-1.5 in units of the inverseis large.
lattice spacing. Our second-order prescription has several advantages. It
requires a simple extension to the calculation, either numeric
X. CONCLUSIONS and analytic, needed to implement the first-order prescrip-
) ) o tion, requiring only computation of an additional logarithmic
In this paper we have derived a method which incorpomoment. Calculation of higher moments can then help to
rates information from higher orders into the general preéyrther characterize the diagram and confirm the scale
scription of Ref[4] for choosing the optimal scatg" forthe  cpojce. It can also identify cases where the first two terms are
strong coupling constants. We find that it corrects errone-  gnomalously small, though such cases are apparently rare. It
ous scales where the leading term or terms are anomalously appropriate regardless of the number of loops included in

small. o _ the running coupling. Finally, it remedies erroneous scales in
The extended prescription states that Bf) determines 5 yariety of processes.

the optimal scalg* when the argument of the square root is

positive. When it is not, the first order formula in E®) ACKNOWLEDGMENTS

applies. The choice of sign for the second-order solution
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