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Scale setting foras beyond leading order
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We present a general procedure for incorporating higher-order information into the scale-setting prescription
of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading
coefficient or coefficients in a series in the strong couplingas are anomalously small and the original pre-
scription can give an unphysical scale. We give a general method for computing an optimum scale numerically,
within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the
heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the
latter, we find significant corrections to the scales for the ratio ofe1e2 to hadrons over muons, the ratio of the
quark pole toMS mass, the semileptonicB-meson decay width, and the top decay width. Scales for the latter
two decay widths, expressed in terms ofMS masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.
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I. INTRODUCTION

QCD processes computed to a finite order in perturba
theory depend on both the choice of renormalization sche
and the scale for the running coupling constantas(q). In
particular, changes in the scale induce variations at the
neglected order. While these variations diminish as hig
orders are included, for low-order calculations they can
significant, particularly for processes sensitive to relativ
low scales. Finding an optimum, physically motivat
method for choosing this scale in such cases is important
only to produce accurate results, but also to reasonably
mate convergence based on the size of the series terms.
a method allows a meaningful prediction or comparison w
data even at leading order.

A variety of procedures have been proposed to select
scale@1–17#. In this paper, we investigate the prescription
Brodsky, Lepage and Mackenzie~BLM ! @4#. In this method,
one chooses the scaleq* for as(q* ) which approximates the
use of the fully dressed gluon propagator within that proce
The choice is equivalent to determining the dominant m
mentum flowing through the propagator within a diagra
@13,16#. It has been applied successfully in a large variety
perturbative calculations. Among these, it was essentia
demonstrating the viability of lattice perturbation theo
@13#, and in extracting a precise value ofas from lattice
simulations of theY andc systems@18,19#.

In this paper, we generalize the prescription to remedy
anomaly observed in a variety of applications, particula
apparent when determining the scale over a range of pa
eters in the action. The nonrelativistic~NRQCD! QCD mass
and energy renormalizations presented in Sec. IX B are t
cal examples. In most of these cases, for some value of
bare quark mass, the BLM scale diverges. We show that
0556-2821/2003/67~3!/034023~16!/$20.00 67 0340
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breakdown is not a flaw in the general prescription, b
rather the result of employing only a single vacuum
polarization insertion to estimate the typical momentu
While we focus on setting the scale for one-loop diagram
we use information from two-loop and higher insertio
within these diagrams to provide a simple generalizat
which accurately estimates the scale over the full range
parameters. It is straightforward to implement for both an
lytic and numerical computations, requiring only a mode
extension beyond the leading order determination. For b
computations, one obtains the additional information
quired from one higher moment in log(q2) within the same
diagram as was used in the lowest order application.
processes where the series coefficients are known, it requ
only identifying the coefficient from vacuum polarization
the next order.

We note that other authors have developed a variety
extensions to Ref.@4#, which explore conformal symmetry
and the relation between various perturbative schem
@9–11#, or which estimate nonperturbative contributions a
resum classes of diagrams to all orders@14,16#. Our goal is
more modest: to provide a simple but robust scale deter
nation for a process calculated to finite order. Specifica
we choose a single optimized scale for the leading, one-l
diagram, to be used for all orders. We show, however, t
our prescription should effectively absorb into the leadi
term or terms the bulk of contributions from all higher ord
diagrams which dress the leading gluon.

II. GENERAL PRESCRIPTION

Following Refs.@4,13#, we choose theV scheme based on
the static-quark potential because of the direct connec
between the scale of its couplingaV and the momentum
©2003 The American Physical Society23-1
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flowing through its associated gluon. For a one-loop diagr
with an integrandf (q) which contributes predominantly a
large gluon momentumq, a natural choice for the scaleq* of
aV is a mean value which reproduces the result of a fu
dressed gluon within the diagram@4,13#,

aV~q* !E d4q f~q!5E d4qaV~q! f ~q!, ~1!

as illustrated in Fig. 1. However,aV(q) possesses a pole a
LV , an artifact of an all-orders summation of perturbati
logarithms. We avoid this singularity by truncating the ser
for aV(q) at a finite order, as is appropriate for an asympto
series.

ExpandingaV(q) in terms ofaV(q* ),

aV~q!5
aV~q* !

11aV~q* !b0log~q2/q* 2!

;aV~q* !2aV
2~q* !b0log~q2/q* 2!1••• ~2!

and solving to first nontrivial order gives@13#

log~q* 2!5

E d4q f~q!log~q2!

E d4q f~q!

[
^ f ~q!log~q2!&

^ f ~q!&

[^^ log~q2!&&, ~3!

a statement of this prescription suited for numerical calcu
tions. Here

b0[
1

4p S 11

3
CA2

4

3
TFnf D5

1

4p S 112
2

3
nf D , ~4!

and ^^ && indicates an average weighted byf (q). For sim-
plicity, we restrict theb function here to one loop, but show
in Sec. VII that our result is not limited by this approxim
tion.

By the definition ofaV , Eq. ~3! guarantees thataV(q* )
absorbs the effect of second-order vacuum polarization in
tions in the gluon’s propagator. An alternate method to
termine q* is then to require thatb0, or equivalentlynf ,
disappears to that order@4#. This version is useful when th
b0 or nf dependence of coefficients in a perturbative exp
sion are known explicitly. We discuss this in more detail
Sec. V.

Equation~3! produces an optimum scale by means of
average of log(q2) weighted byf (q). As such, it provides a

FIG. 1. The BLM prescription for fixing the optimum scaleq*
to leading order inas(q* ).
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measure of the typical momentum carried by this gluon
the dominant integration region, in accord with intuitio
However, in certain caseŝf & vanishes, renderingq* from
Eq. ~3! meaningless. This is a consequence of using an
pression first order inaV(q* ) for a process which is properly
second order, rather than a flaw in the general prescript
When^ f & vanishes, the diagram on the left in Fig. 1 does n
contribute. The leading contribution from this gluon is se
ond order, and the requirement thatq* be chosen to bes
approximate the all-order result leads to the equation ill
trated in Fig. 2. For an integrand dominated by large mom
tum, the left side of Eq.~1! is replaced by

2aV
2~q* !b0E d4q f~q!log~q2/q* 2!, ~5!

as is known from the running ofaV(q). ExpandingaV(q) as
in Eq. ~2! yields

log~q* 2!5
^ f log2~q2!&

2^ f log~q2!&
. ~6!

This, rather than Eq.~3!, is the appropriate statement of th
prescription for this case.

As a simple illustration, consider a one-dimension
model for f (q) in Eq. ~1! for which the Feynman diagram
produces an integrand with cancelling contributions

f ~q!5d~q2qa!2d~q2qb!; ~7!

hereqa and qb are positive. Such cancellations are not u
common in QCD for some choice of parameters, as for
ample in the calculations of Sec. IX B. A reasonable exp
tation would be thatq* should be some average of th
contributing scalesqa andqb , particularly if they are nearby
Becausê f & vanishes identically, Eq.~3! produces a diver-
gentq* , whereas Eq.~6!, which begins with the next orde
contribution, gives forq* the more reasonable geometr
mean

q* 5Aqaqb. ~8!

This is the same scale obtained by Eq.~3! applied to the
positive integrand

f ~q!5d~q2qa!1d~q2qb!, ~9!

as might be expected.
In other cases, while not strictly vanishing,^ f & may be

anomalously small, and the dominant contribution from t

FIG. 2. The BLM prescription applied to a process for which
gluon contributes first at orderas

2(q* ). The insertion on the left
side represents vacuum polarization from both quarks and gluo
3-2
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SCALE SETTING FORas BEYOND LEADING ORDER PHYSICAL REVIEW D67, 034023 ~2003!
gluon is still as in Fig. 2. It is useful to generalize the lowe
order prescription of Eq.~3! to incorporate both these cas
naturally, and also to anticipate the situation where^ f log(q2)&
is anomalously small.

The discrepancy between the left and right sides of
~1! relative to the lowest order termaV(q* )*d4q f(q) is

2aV~q* !b0^^ log~q2/q* 2!&&1aV
2~q* !b0

2^^ log2~q2/q* 2!&&.

~10!

Applying Eq. ~3! leaves a leading difference of

aV
2~q* !b0

2^^@ log~q2!2^^ log~q2!&&#2&&[aV
2~q* !b0

2s2

~11!

with s the standard deviation of log(q2) with respect to the
weight f (q)/^ f &. When f (q) does not change sign,f (q)/^ f &
ands2 are both positive. Whenf (q) changes sign and̂f & is
anomalously small due to cancellations, this error can
come arbitrarily large, indicating that treating this as a fi
order process is invalid and it is useful to incorporate inf
mation from the next order.

Matching the gluon’s contribution to next order to th
fully dressed gluon, as in Fig. 3, adds the term in Eq.~5! to
the left side of Eq.~1!. Expanding both sides in terms o
aV(q* ) as before leads to a leading relative difference o

aV
2~q* !b0

2^^ log2~q2/q* 2!&&

52aV
2~q* !b0

2@ log2~q* 2!22^^ log~q2!&& log~q* 2!

1^^ log2~q2!&&#. ~12!

When f (q)/^ f & is positive for allq, this discrepancy is also
strictly positive, and the best that can be done is to cho
q* to minimize it. The result of minimization is again jus
Eq. ~3!. This will also clearly be the case whenf (q) changes
sign in some small region without significant cancellatio
The leading error is then the same as in Eq.~11!.

However, whenf (q) possesses significant sign chang
the error in Eq.~12! can become negative for certain valu
of log(q*2), and minimization is not appropriate. In this cas
it is possible to eliminate the difference altogether by cho
ing one of the two solutions

log~q* 2!5
^ f log~q2!&6@^ f log~q2!&22^ f &^ f log2~q2!&#1/2

^ f &

[^^ log~q2!&&6@^^ log~q2!&&22^^ log2~q2!&&#1/2

~13!

[^^ log~q2!&&6@2s2#1/2.

FIG. 3. The BLM prescription applied to second order
as(q* ). The insertion on the left side represents vacuum polar
tion from both quarks and gluons.
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When the logarithmic moments are available over a rang
parameters, requiring thatq* be continuous and physicall
sensible makes the proper choice apparent, as will be
served below. In particular, when̂f & is nearly zero, this
requires choosing the sign opposite to that of^^ log(q2)&&. In
every case we have considered, the choice has been obv
However, if the need arises, one may resolve the sign un
biguously by using information from higher moments, as d
cussed in Sec. VII.

Were f (q) a probability distribution,s would be its stan-
dard deviation. A negative value fors2 indicates that
f (q)/^ f & has substantial changes of sign and is behav
significantly unlike a probability distribution. In this cas
^ f & will be anomalously small, the orderaV

2(q* ) contribu-
tion becomes important, and Eq.~13! provides the appropri-
ate choice of scale. As a result, Eq.~13! determinesq* when
s2 is negative, Eq.~3! when positive. This prescription is th
main result of this paper.

Although Eq.~13! uses information from part of the nex
order, it is the appropriate scale to use whens2 is negative,
even if only computing to first order inaV(q* ). In that case,
in addition to setting the scale for the leading term, it allo
for a reasonable estimate of the magnitude of the negle
next-order terms, based onaV

2(q* ). When^ f & is very small,
these neglected terms should give a sizable correction to
first-order term. And when one computes to orderaV

2(q* ) or
higher using this scale, higher-order terms which dress
leading gluon should be small, having been largely absor
into the first two, as in Fig. 3.

As an illustration, we consider a slightly more gene
version of the model of Eq.~7!,

f ~q!5~11c!d~q2qa!2d~q2qb!, ~14!

where^ f & vanishes exactly forc50, and has partial cancel
lation for c.21. Figure 4 presents the scaleq* determined
by Eq.~3! whens2.0 and by Eq.~13! whens2,0; that is,
when c.21. For c,21, with no cancellations, Eq.~3!
produces reasonable values forq* . It falls betweenqa and

-

FIG. 4. The BLM scaleq* for the model of Eq.~14! as a
function ofc, with qa52.0 andqb51.8. The first order solution of
Eq. ~3! determinesq* for c,21, the second order solution of Eq
~13! for c.21. The dark dotted lines show the first-order soluti
in regions in which it does not apply; light dotted lines displ
inapplicable second-order solutions.
3-3
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HORNBOSTEL, LEPAGE, AND MORNINGSTAR PHYSICAL REVIEW D67, 034023 ~2003!
qb , approachingqa for ucu large, andqb for c521. As c
approaches zero and^ f & vanishes,q* from this prescription
diverges. However, forc.21, s2 is negative, and Eq.~13!
provides the optimum scale. It evidently behaves accord
to expectations. Even for the case whenc is large and posi-
tive and Eq.~3! produces a fairly sensible result, it overes
matesq* and Eq.~13! is preferable.

To summarize, we restate the prescription in a more co
pact form. We have chosen inclusion of the running coupl
within the integrand for a first-order diagram
*d4qaV(q) f (q), as a natural means to account for the ru
ning of the coupling with the gluon’s momentum. It has t
advantage that it incorporates higher-order diagrams wh
dress the gluon, has no arbitrary scale dependence, an
propriately accounts for the strength of the coupling o
gluon with momentumq.

It has the disadvantage thataV(q) has an unphysical pole
at q5LV , making the integrand ill-defined. We avoid this b
expandingaV(q) at the scaleq* as in Eq.~2!, and working
to finite order inaV(q* ), giving

E d4q f~q!@aV~q* !2b0aV
2~q* !log~q2/q* 2!

1b0
2aV

3~q* !log2~q2/q* 2!1•••#. ~15!

We chooseq* to reproduce the full integral as well as po
sible. In the absence of significant cancellations
*d4q f(q), we may select the scale by Eq.~3! so that the first
nonleading term in Eq.~15! vanishes. The discrepancy
then the term of orderaV

3(q* ), which this choice forq*
minimizes. Furthermore, asq* will be near the typicalq,
f (q) will be roughly even aboutq* , and higher-order con
tributions should be either near zero or their minimum d
pending on whether they are even or odd inaV(q* ).

However, whenf (q) is essentially odd about someq and
so suffers from significant cancellations, this is not an app
priate prescription. The leading term in Eq.~15! will be
anomalously small compared to the second term; in extre
cases, it might even vanish, and it would no longer ma
sense to absorb the second term into the leading term.
thermore, the scale from Eq.~3! would no longer accurately
represent the typical momentum, and neglected higher o
terms in Eq.~15! would be anomalously large. It is, howeve
possible and sensible to require the third term to vanish
Eq. ~6!; that is, to absorb it into the first two. This aga
provides a typical scale about which, in this case,f (q) is
essentially odd, minimizes the fourth-order term, and s
presses higher-order terms.

III. SCHEMES OTHER THAN V

For prescriptions other thanaV , vacuum polarization in-
sertions will in general contribute subleading constants
addition to terms as in Eq.~5!. Though nonleading, thes
constants can make significant contributions at physically
teresting values ofq2, and so the optimum scale ought to b
chosen to account for them as well. One method for doing
is to focus on the fermion loop@4#. Both the log(q2) and the
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subleading constant will appear multiplied bynf . Replacing
nf with b0 using Eq.~4! leaves the fermion loop contributio
modified by a constant, to

2as~q* !b0„log~q2/q* 2!1a…. ~16!

When applying the first-order prescription, amending Eq.~3!
to

log~q* 2!5^^ log~q2!1a&& ~17!

absorbs both the leading log and subleading constant
as(q* ). For the modified minimal subtraction schem
(MS), a525/3 @20–23#, resulting in the shift in scale@4#

qMS
* 5exp~25/6!qV* 50.43qV* . ~18!

As with aV , this also absorbs the log associated with glu
vacuum polarization, sinceb0 determines its contribution
relative to the fermion loop. However, the gluonic sublea
ing constant need not contribute in this ratio, and so will n
also be completely absorbed. One might choose instea
completely absorb the gluonic constant by solving Eq.~4! for
the adjoint Casimir constantCA5N associated with the
gluon loop in terms ofb0, before absorbing theb0 term into
as(q* ). This would be particularly appropriate whennf

50, for example. ForMS, the result is a factor of
exp(231/66)50.63, not greatly different from Eq.~18!. This
indicates that to one loop, absorbing the fermion loop c
stant also largely accounts for the gluonic constant.

When applying the second-order prescription, a cons
subleading contribution leads to the same shift in Eq.~13! as
in Eq. ~17!, with

log~q* 2!5^^ log~q2!1a&&6@^^ log~q2!&&2

2^^ log2~q2!&&#1/2. ~19!

The second term on the right is invariant under a shift
log(q2) by a constant, and so remains unaffected.

Because theV scheme associates gluon exchange wit
physical process at the specific scaleq* 2, higher order con-
tributions associated with the running ofaV must vanish
identically when the gluon’s momentum hitsq* 2. As a re-
sult, logarithmic contributions log(q2/q*2) from these dia-
grams appear without subleading constants.

IV. DETERMINING q* IN MS

In order to provide a more realistic example, and to sh
how this prescription can be applied simply when using
mensional regularization, we determineq* for the one-loop
gf3 diagram of Fig. 5. We intend this as a simplified versi
of a quark self-energy diagram, and employ it here for
sake of clarity.

By introducing an additional denominator of the for
(q2)d into this diagram inn-dimensional Euclidean space,

g2

2 E dnq

~2p!n

1

q21m2

1

~p2q!21m2

1

~q2!d , ~20!
3-4
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and expanding the result ind to second order, we produc
the necessary logarithmic integrals:

^ f ~q!&2d^ f ~q!log~q2!&1
d2

2
^ f ~q!log2~q2!&1•••.

~21!

~Note that Refs.@24,14# present a different and elegant tec
nique for extracting these logarithmic moments based o
simple dispersion sum over a fictional gluon mass.!

We evaluate Eq.~20! using standard methods and obta

g2

~4p!2

G~d1e!

G~d!
E

0

1

dxdyyd21~12y!F4pm2

M2 G eF 1

M2Gd

,

~22!

where x and y are the usual Feynman parameters,e[(4
2n)/2, m is introduced to keepg dimensionless, and

M2[~12y!m21x~12y!~12x1xy!p2. ~23!

The integration regiony;0 produces a 1/d singularity. Par-
tial integration ofyd21 makes this explicit, and allows us t
expand ind under the integral. Keeping terms in 1/e to order
zero and comparing to Eq.~21! gives

^ f ~q!&52
1

e
1E

0

1

dxlogS m21x~12x!p2

m2 D ~24!

^ f ~q!log~q2!&5E
0

1

dxdyH 2
1

e2 1
1

e
logS y

m2D1
p2

12

2
1

2
log2S y

m2D1
1

2
log2S M2

y D
1F12

x2~12y!2p2

M2 G logS M2

y D J ~25!

^ f ~q!log2~q2!&52E
0

1

dxdyH 2
1

e3 1
1

e2logS y

m2D
1

1

e Fp2

12
2

1

2
log2S y

m2D G1
1

6 F2c9~1!

2
p2

2
logS y

m2D1 log3S y

m2D
13F12

x2~12y!2p2

M2 G log2S M2

y D
1 log3S M2

y D G J . ~26!

In the above, we have dropped the overall factorsg2/(4p)2,
which are here irrelevant, and substitutedegm2/4p for m2.
The latter greatly simplifies these expressions and allow
to apply the MS prescription by subtracting thee poles
alone, as one would for MS.

To renormalize these terms, we note that the log(q2) and
log2(q2) factors integrated within this one-loop diagram sta
03402
a

us

in for the large-momentum contributions of the first tw
higher-order vacuum polarization subdiagrams which sum
form the running coupling. In particular, as these factors
finite, they represent these subdiagrams with their subdi
gences already removed. For example, the factor log(q2),
which appears in the integrand which produced Eq.~25!,
comes from the large-momentum approximation to
MS-renormalized one-loop vacuum polarization diagra
that is, to Eq.~24! without the pole. The poles ine which
remain in Eqs.~24! to ~26! are then the new overall diver
gences associated with one, two and three loops, res
tively. In theMS prescription these are simply discarded.

Finally, we note that Eq.~24! in this model is the one-loop
vacuum polarization diagram in addition to being the pa
cle’s self-energy. At largep2, it is approximately log(p2/m2)
22, including the subleading constant. The constanta in Eq.
~17! is then22, and theMS value forq* will differ by a
factor exp(21) from the expression forq* in the V scheme.

While Eqs.~24! to ~26! allow us to determineq* for any
p and m, it is illuminating to consider two limits. Whenp2

@m2, after renormalization and choosingm25p2

^ f ~q!&522 ~27!

^^ log~q2!&&5 log~p2!2
p2

24
~28!

^^ log2~q2!&&5 log2~p2!2
p2

12
log~p2!1Fc9~1!

6
2

p2

12
12G

~29!

to leading order inm2/p2. These give

s2521
c9~1!

6
2

p2

12 F11
p2

48G ; ~30!

or numerically,s25.6077. The lowest order solution is the
appropriate and yields a value forq* close top, with

q* /p5exp~21!exp~2p2/48!5.2995, ~31!

which corresponds to a value of exp(2p2/48)5.8141 in the
V scheme. We can uses to give a measure of the relativ
spread in the momenta which contribute to this diagra
with

Dq/q's/25.3898, ~32!

FIG. 5. One loop self-energy diagram in thegf3 model.
3-5
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HORNBOSTEL, LEPAGE, AND MORNINGSTAR PHYSICAL REVIEW D67, 034023 ~2003!
independent of the prescription. In general, whenp2@m2 but
for m2 arbitrary, q* ;Apm. This is the same result as E
~8!, and reasonable for a diagram dominated by mome
between these two scales.

In the large mass limitm@p, with m2 chosen to equal the
natural scalem2, we find

^ f ~q!&5
1

6

p2

m2 ~33!

^ f ~q!log~q2!&5S p224

4 D1
1

6
log~m2!

p2

m2 ~34!

^ f ~q!log2~q2!&5S p224

4 D @11 log~m2!#2
c9~1!

3

1
1

3 F211
p2

6
1

1

2
log2~m2!G p2

m2 ~35!

to orderp2/m2. Clearly in this limit^ f (q)& becomes anoma
lously small, and we expect the second order solution to
necessary. We confirm this by noting that to this order

^ f &2s252S p224

4 D 2

1F S p224

12 D2
c9~1!

18 G p2

m2 ~36!

which is negative in this limit. The second order formu
applies, and gives

log~q* 2/m2!5221F12
2c9~1!

3~p224!
G1F p223

9~p224!

1
4c9~1!

27~p224!3
„23~p224!1c9~1!…G p2

m2 ,

~37!

or numerically,

q* /m50.695310.0574 p2/m2. ~38!

For theV scheme, the leading22 in Eq. ~37! is absent, and

qV* /m51.889910.1562 p2/m2. ~39!

Figure 6 and Fig. 7 displayq* as a function ofp for the
respective cases wherem5p andm5m. The limiting values
discussed above are evident. Form5p, the first-order solu-
tion determinesq* in both the large and smallp regions,
connected by the second-order solution in the interim. Imm
diately to the right of the point where the first-order soluti
diverges in Fig. 6, indicated by the vertical line, the seco
order solution with positive root determinesq* ; to the left,
the second-order negative root applies. Form5m ~Fig. 7!,
the first-order solution applies for largep, the negative root
second-order solution for smallp. In both cases, use of th
appropriate second order solution where applicable give
meaningful and continuous value forq* over the entire re-
gion in p. Which second-order solution to choose from E
~13! is obvious.
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Finally, we note that computing higher order average lo
for this diagram requires only expanding Eq.~22! to higher
orders in d, without the need to compute additional di
grams.

V. DETERMINING q* FROM A KNOWN SERIES

To apply this prescription we need the first two logarit
mic moments within the integrand associated with a gluo
propagator. Under certain conditions, we may apply this p
scription to set the scale for a process for which the exp
sion is already known by examining itsnf dependence. At
each order ofaV(m), the contribution from vacuum polar
ization will give the largest power ofnf , or equivalently, of
b0 @14,16,10#. It is therefore possible to read off the loga
rithmic integrals directly from the series coefficients.

FIG. 6. TheMS BLM scaleq* /p as a function of momentum
p/m for the diagram of Fig. 5 in the scalarf3 model, withm5p.
The first-order solution determinesq* in both the large and smallp
regions, connected by the second-order solution in the interim.
vertical line indicates the point where the first-order solution
verges. The dark dotted lines show the first-order solution in
region in which it does not apply; light dotted lines display inapp
cable second-order solutions.

FIG. 7. TheMS BLM scaleq* /m as a function of momentum
p/m for the diagram of Fig. 5 in the scalarf3 model, with m
5m. The first-order solution determinesq* in the largep region,
while the negative root second-order solution givesq* for small p.
The dark dotted line shows the first-order solution in the region
which it does not apply; the light dotted line displays the inapp
cable second-order solution.
3-6
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SCALE SETTING FORas BEYOND LEADING ORDER PHYSICAL REVIEW D67, 034023 ~2003!
Using Eq.~4! to replace the largest-nf terms withb0 in
contributions associated with a particular gluon, we obtai
series of the form

c0aV~m!1~a12c1b0!aV
2~m!

1~a21•••1c2b0
2!aV

3~m!1•••. ~40!

The coefficientscn are then associated with vacuum inse
tions in the gluon propagator. Comparison with the rig
sides of Eqs.~1! and ~2! gives

c05^ f &

c1 /c0'^^ log~q2/m2!&& ~41!

c2 /c0'^^ log2~q2/m2!&&,

which holds whenf (q) contributes predominantly at largeq.
Given this association, the prescription to second order i

log~q* 2/m2!5c1 /c06@~c1 /c0!22c2 /c0#1/2 ~42!

when the argument of the square root is positive, and

log~q* 2/m2!5c1 /c0 ~43!

otherwise.
For schemes other thanV, the presence of a subleadin

constanta contribution to fermion vacuum polarization lead
to the identification

c1 /c0'^^ log~q2/m2!1a&&

c2 /c0'^^„log~q2/m2!1a…2&&. ~44!

Becausec1 includesa and the square root is insensitive to
Eq. ~43! and Eq.~42! automatically incorporate the shift i
Eq. ~17! and so may be used unchanged. Also, if one is a
to identify in the series the constantsCA associated with
gluonic vacuum polarization, one could choose to use
instead to rewrite the series in terms ofb0. Equation~43!
and Eq.~42! would then automatically absorb the subleadi
gluonic constant, as discussed at the end of Sec. II.

VI. COMBINING SERIES

Determining the scale for the series formed by multip
ing two series,

Fa511caaV~qa* !1••• ~45!

and

Fb511cbaV~qb* !1••• ~46!

with known scales is straightforward when considering o
first-order scale setting:

Fab[FaFb511~ca1cb!aV~qab* !1••• ~47!

with
03402
a

-
t

le
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-

y

log~qab* 2!5
calog~qa*

2!1cblog~qb*
2!

ca1cb
. ~48!

Because of the need to first test the sign of the newsab
2 , the

prescription for applying second-order scale setting
slightly more involved. In that case,

sab
2 5

ca^^ log2~q2!&&a1cb^^ log2~q2!&&b

ca1cb

2S ca^^ log~q2!&&a1cb^^ log~q2!&&b

ca1cb
D 2

5
casa

21cbsb
2

ca1cb
1

cacb

~ca1cb!2 „^^ log~q2!&&a

2^^ log~q2!&&b…
2. ~49!

As usual, ifsab
2 .0, the first order combination

log~qab* 2!5
ca^^ log~q2!&&a1cb^^ log~q2!&&b

ca1cb
~50!

applies. Ifsab
2 ,0,

log~qab* 2!5
ca^^ log~q2!&&a1cb^^ log~q2!&&b

ca1cb
6@2sab

2 #1/2.

~51!

When combining two series by division,Fa/b[Fa /Fb ,
the first-order coefficients subtract rather than add. T
above formulas again apply, but with the replacementcb→
2cb . These also apply to series combined by addition a
subtraction, respectively, because the results at first orde
equivalent.

For schemes other thanV, one should amend the averag
logs to include the subleading constants, as discussed in
III. The relation between the scale inV and in other scheme
remains the same.

VII. HIGHER ORDERS

Extending this prescription beyond second order is re
tively straightforward, though it requires computation
^^ log3(q2)&& and higher moments, or information from third
order and higher terms in a known series. An extension
third order, for example, would be necessary should both^ f &
and^ f log(q2)& vanish, making the third term in Eq.~15! the
leading term. Absorbing the subsequent term by requir
^ f log3(q2/q*2)& to vanish would give

log~q* 2!5
^ f log3~q2!&

3^ f log2~q2!&
, ~52!

as one would also obtain from Fig. 2 with two loops on t
left side.

When ^ f & and ^ f log(q2)& are not identically zero but are
anomalously small relative to higher moments, requiri
^ f log3(q2/q*2)& to vanish still gives the appropriate scale.
3-7
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HORNBOSTEL, LEPAGE, AND MORNINGSTAR PHYSICAL REVIEW D67, 034023 ~2003!
symptom that this is the case would be a third-order sc
near Eq.~52! which shifts significantly the scale obtained
lower order, and which is more in line with physical expe
tations. If available, higher even moments near their mini
or odd moments near zero at this scale would confirm it.

An order-n equation is necessary to setq* only when all
of the first (n22) moments vanish or are anomalous
small. It would be unusual for a generic integrandf (q) to be
effectively orthogonal to more than a few powers of log(q2),
and so the need to use a high-order equation should be
We have found no realistic cases for which either Eqs.~3! or
~13! were not sufficient.

In Fig. 8 we illustrate the appropriate scales for a mod

f ~q!5Ad~q2qa!1Bd~q2qb!1~D1c!d~q2qd!,
~53!

with

B52A log~qa /qd!/ log~qb /qd!,D52~A1B!, ~54!

contrived such that botĥf & and ^ f log(q2)& vanish atc50.
The second- and third-order solutions behave as expe
where appropriate; the first-order solution, while not div
gent, is low throughout. The unphysical behavior of the fir
order solution, as well as the significant discrepancy betw
first- and third-order scales indicate that the first-order re
is inadequate.

Note the one- and two-node structures of the integr
f (q) in the two- and three-delta models of Eq.~14! and Eq.
~53!, similar to generic first and second excited-state wa
functions. This is the result of choosingf (q) to be orthogo-
nal to the zeroth, and to both the zeroth and first powers
log(q2), respectively. Integrands requiring higher-order eq
tions would necessarily have more nodes and additional
tailed structure.

In general, higher-order solutions can confirm that a sc
determined at a lower order is indeed typical. For exam
in Fig. 9 we include the third order solution for the Eq.~14!
model; where applicable, it does not differ significantly fro

FIG. 8. The BLM scaleq* for the model of Eq.~53! as a
function ofc, with qa52.0, qb51.8 andqd51.6. The second-orde
solution determinesq* for c,21, the third-order solution forc
.21. The dark dotted line shows the first-order solution; lig
dotted lines display inapplicable second and third-order solutio
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the first-order result. This will also be apparent when
examine higher moments for certain processes in Sec. IX

Thus far, for simplicity, we have restricted our discussi
to contributions toaV(q) from one loop vacuum polariza
tion. We show here that the above expressions forq* are not
limited to these. Specifically, including subleading contrib
tions to aV(q) expanded within a diagram as in Eq.~15!
gives

aV~q* !^ f &1aV
2~q* !@b0D1#1aV

3~q* !@b0
2D21b1D1#

1aV
4~q* !Fb0

3D31
5

2
b0b1D21b2D1G1aV

5~q* !

3Fb0
4D41

13

3
b0

2b1D313b0b2D21
3

2
b1

2D21b3D1G
1•••. ~55!

Here

b1[
1

~4p!2 S 1022
38

3
nf D , ~56!

and

b2[
1

~4p!3S 2857

2
2

5033

18
nf1

325

58
nf

2D , ~57!

and we have defined the moments

Dn[^ f logn~q* 2/q2!&5^ f @ log~q* 2!2 log~q2!#n&. ~58!

We see from Eq.~55! that the reasoning which led to th
prescriptions in Eq.~3! and Eq.~13! was not dependent on
the leading-log approximation toaV(q): the diagrams in
each new set introduced by increasing the order of
leading-log approximation have as coefficients the same
quence of momentsDn as in the leading approximation. Fo
nonanomalous cases, requiringD1 to vanish via Eq.~3! ab-
sorbs the first leading-log correction, proportional tob0D1,
into the first term. It also absorbs the first next-to-leading
contribution, proportional tob1D1, and so on for each loga

t
.

FIG. 9. The BLM scale for thed-function model of Eq.~14! as
in Fig. 4, but with the inclusion of the third-order solution. It
applicable forc,21 and indicated by the additional dark line
Dotted lines indicate inapplicable solutions.
3-8
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SCALE SETTING FORas BEYOND LEADING ORDER PHYSICAL REVIEW D67, 034023 ~2003!
rithmic order. And in each order, it leaves a leading discr
ancy proportional to the momentD2, which is minimized by
Eq. ~3!. Insofar as thisq* represents the typical momentu
carried by this gluon, higher-order terms proportional
higher moments should be suppressed. As a result, the
term aV(q* )^ f &, with the choice of a single scale forq* ,
should do reasonably well at approximating the right side
Eq. ~1! regardless of the number of loops kept in theb func-
tion for aV(q). When^ f & vanishes or is anomalously sma
it is inappropriate to absorb the leading correction at e
logarithmic order into the vanishing or small first term.
this case Eq.~13! gives the appropriate scale. It causesD2 to
vanish, and so absorbs the second correction at each
rithmic order into the set of leading corrections. Again, b
cause Eq.~13! produces a typical scale, higher-order term
should be small.

This illustrates one of the advantages of using a coup
based on a physical process, such asaV . For other schemes
there can be significant subleading constants associated
the diagrams which dress the gluon, not accounted for in
running coupling. These will appear, for example, in the c
efficients associated with the leading log term at each o
n; that is, withb0

n21, as

Dn[^ f @ log~q* 2!2„log~q2!1a0…#
n&, ~59!

and one may absorb them by adjusting the scale. Howe
only one such constant can be absorbed in this manner;
of those associated withb1 and higher will remain. By its
definition, these constants cannot appear foraV , and
aV(q* ) well represents the strength of a physical gluon
the scaleq* . This optimum choice of scale minimizes a
coefficients associated with dressing the gluon, not just th
associated withb0.

VIII. IMPROVING CONVERGENCE

Thus far we have been considering the appropriate s
q* for the leadingaV . For the sake of simplicity, we will be
content to optimize the scale for the leading term, and w
use the same scale for higher-order diagrams. From the
vious discussion, it is clear that this will be a reasona
scale for diagrams which dress the leading-order gluon; th
contributions should be small, having been largely absor
into the leading term or terms. There is no reason to belie
however, that it will be the best scale for other higher-ord
diagrams, and it should certainly be possible to improve
convergence of the series by choosing the scale for s
diagrams separately@4,10#.

There are other cases for which it could prove advan
geous to allow different scales at different orders, for diff
ent diagrams within the same order, or even within a sin
diagram. Returning to the simple and unexceptional mode
Eq. ~9!, for which the first-order scale setting Eq.~3! gives
Eq. ~8!, we note that the moments

^^ logn~q* 2/q2!&&5
1

2
@ logn~q* 2/qa

2!1 logn~q* 2/qb
2!#

~60!
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become zero forn odd, and logn(qa /qb) for n even. The latter
grow in magnitude when theqa is a few times greater than
qb . As these are proportional to the coefficients of ter
which dress the gluon, terms in the series become'1 when
this rangeqa /qb exceeds a few overas . The series become
badly behaved then not only when the scale foras is low, but
also when the range of important momenta is large@14,16#.

Nevertheless, in this simple case the remedy is obvio
The problem results from requiringas at a single scale to
incorporate two widely different scales. Separating these
writing the series for this model in terms of bothas(qa) and
as(qb) incorporates vacuum polarization contributions e
actly and causes higher moments to vanish. This reinfor
the idea that for a series in which gluons from different d
grams occur in loops sensitive to significantly different m
menta, allowing theas associated with each to have its ow
scale could improve the series’ convergence. Furtherm
for a series in which a gluon in a single diagram is sensit
to a wide range of momenta one might even consider
proving its behavior by splitting up the integrand, withas at
a different scale assigned to each region, as in the exam
above.

Even for diagrams which dress a specific gluon, it is p
sible to minimize higher moments by allowing the scale
sociated with these diagrams to differ at different orders.
particular, one may select the scale at every other order s
that the following moment vanishes, and the next is mi
mized. Variations in the scale would account for the differe
regions the moments probe in the integrand.

We will not pursue this further here, but mention that ca
must be taken to preserve gauge invariance if separate s
are assigned to different parts of a series.

IX. APPLICATIONS

A. Known series

In Table I we present a collection of results for perturb
tive quantities for which at least the second logarithmic m
ment is available, allowing us to apply scale setting beyo
lowest order. Reference@10# presents a useful compilatio
and discussion of many of these. These include the log of
131 Wilson loop in lattice QCD (2 logW11) @13,25#, the
ratio of e1e2 goes to hadrons over muons (Re1e2) @26–30#,
the ratio of the quark pole mass to itsMS mass (M /M̄ )
@31–36# and @14,16#, the ratio oft goes tont 1 hadrons
over t goes tonte

2ne (Rt) @37–42# and @29,30,15#, the
semileptonicB-meson decay width„G(B→Xuen̄)… @43–50#
expressed both in terms of the pole andMS b-quark masses
the top quark decay width„G(t→bW)… @51–56# and
@24,46,14# in terms of its pole andMS masses, the Bjorken
sum rules for polarized electroproduction„*0

1dx@g1
ep(x,Q2)

2g1
en(x,Q2)#… @57–62#, and deeply inelastic neutrino

nucleon scattering„*0
1dx@F1

n̄p(x,Q2)2F1
n p(x,Q2)#… @63–

66#, and the static quark potential„V(Q2)… @20–23# and
@67,68#.

We note that the nonsinglet part of the Ellis-Jaffe sum r
@69–72# and@62# gives the same scale as the former Bjork
3-9
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TABLE I. Applications of second-order scale setting to several processes. The coefficientscn are defined
in Sec. V.q1* gives the scale set by Eq.~3!. q2* gives the preferred scale by Eq.~13! where appropriate, also
indicated by boxes.Dq measures the range of momentum running through the gluon.
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ese
sum rule, the Gross-Llewellyn Smith sum rule@73,64,61,62#
the same scale as the latter.

All but the first scales are from knownMS series, and for
these at least the fermion vacuum polarization graphs m
be given to two loops. In several cases higher logarithm
moments are known, which will allow us to test the cons
tency of the procedure. We find four cases where the sec
order formula gives the preferred scale.

When the first-order solution is appropriate, the seco
moment gives a rough measure of the range in mome
which flow through the gluon, with

Dq

q
'

1

2 S D2

^ f & D
1/2

. ~61!

Here,Dq is the standard deviation inq andD2 is defined in
Eq. ~58!. A large range results in large coefficients at high
orders, as discussed above, and may indicate sensitivit
low q. When the second-order scale is appropriate, Eq.~61!
clearly is not. However, if higher moments are available,
may estimate this range using
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Dq

q
'U Dn12

4~n11!Dn
U1/2

, ~62!

with n odd. In Table I, we usen51. This expression gives
the standard deviation in a distribution modeled by a Gau
ian times@ log(q*2)2log(q2)#n to render it odd. We found it to
give reasonably consistent results for variousn when applied
to several examples discussed below, though other meas
are certainly possible.

For Re1e2, M /M̄ , and both G(B→Xuen̄) and G(t
→bW) expressed in terms ofMS masses, we find that th
second-order scale is appropriate, leading to significant
rections to the anomalously low first-order scales, especi
in the latter three. While the new scale forM /M̄ is signifi-
cantly increased, we note thatDq/q is still relatively large,
indicating sensitivity to low-momentum scales even whenM
is large, and threatening a poorly behaved series. This ap
ently infects theb andt decay rates when expressed in term
of pole masses, as shown by their low scales. By contr
MS masses behave more as bare masses, being sensit
short distances; expressing the two decays in terms of th
3-10
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SCALE SETTING FORas BEYOND LEADING ORDER PHYSICAL REVIEW D67, 034023 ~2003!
significantly improves their behavior@55,74,24,14,15#. This
is clear from both their scales and widths. Both these se
should be well-behaved, and well-represented byas at a
single, physically reasonable scale. But it is necessary to
second-order scale setting to see this; the first-orderq* for
each indicates a scale which is misleadingly low.

References@14,15,47# provide very useful values for fer
mion vacuum polarization contributions, and therefore lo
rithmic moments, computed to eighth order for the pole
MS ratio,t, B andt decays. These allow us to compute th
Dq’s using Eq.~62!, but more importantly, to confirm the
general picture as discussed in Sec. VII. In Fig. 10 we
this information to display the first eight momen

u^^@ log(q*2
MS)2 log(q2)#n&&u1/n as functions of log(q*2

MS/Mb
2) for

G(B→Xuen̄e) expressed in terms of theMS massM̄b . Here

q *2
MS absorbs the fermion loop constant associated with

MS prescription, as in Eq.~18!, andMb is theb-quark pole

mass. We observe that choosing log(q*2
MS/Mb

2) to set the sec-
ond moment to zero using Eq.~13! not only removes it and
minimizes the third moment, it also sets all of the high
moments near their minima or zeros. It is clear that this is
natural scale for this process, and that terms beyond se
order which dress the leading gluon should be small. T
first moment is clearly anomalous, and setting it to zero
ing Eq. ~3! would evidently lead to large higher-order co

FIG. 10. The momentsu^^@ log(q *2
MS)2 log(q2)#n&&u1/n as functions

of log(q *2
MS/Mb

2) for n51 to 8 ~left to right! for G(B→Xuen̄e) over

theMS massM̄b . The vertical line indicates the choice for the sca

log(q *2
MS/Mb

2) using Eq.~13!. By choosing the second-order pre

scription such that the second moment vanishes, log(q *2
MS/Mb

2) is
either near the minimum or the zero for all higher moments, m
mizing higher-order terms in Eq.~55!.
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rections. In general, we expectf (q) to be either roughly even
or odd about its typical scaleq* , and the sign of the secon
moment,s2, should distinguish the two. ForDq sufficiently
small, using Eq.~3! or Eq. ~13! depending on the sign ofs2

should give reasonable values except in very rare cases
The picture forM /M̄ , Fig. 11, is similar. While choosing

the second order scale is more appropriate than first, cau
the second moment to vanish and minimizing the third,
zeros and minima of higher moments drift progressiv
lower. Such behavior is anticipated by the relatively lar
value ofDq/q, which indicates a wide range of contributin
momenta. In this case, higher moments are increasingly
sitive to lowerq, and the corresponding coefficients will pro
gressively increase. We might improve the convergence
the series by methods discussed in Sec. VIII. For exam
choosingq* separately at each odd order inas , causing the
following even moment to vanish and miminizing the subs
quent odd moment, with eachq* indicating the characteristic
scale for that moment. An alternative is to resum the en
set of polarization diagrams@14,16#. Regardless, the ability
to detect sensitivity to a large range of momenta, in addit
to the scale itself, by computing the first few logarithm
moments is sufficient to warn of large higher order corre
tions. In this case, it suggests usingM̄ rather thanM in
expressions forb and t decays.

B. Quark mass and energy renormalization in lattice NRQCD

Lattice nonrelativistic QCD~NRQCD! is an effective field
theory designed to reproduce the results of continuum Q

-

FIG. 11. The momentsu^^@ log(q *2
MS)2 log(q2)#n&&u1/n as functions

of log(q *2
MS/M2) for n51 to 8 ~left to right! for M /M̄ . The vertical

line indicates the choice for the scale log(q *2
MS/M2) using Eq.~13!.
3-11
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TABLE II. The BLM scale for the pole mass renormalization factorZm for several values of the bare
lattice massaM0 in NRQCD without tadpole improvement.aq1* gives the scale set by Eq.~3! in units of the
inverse lattice spacing.aq2* gives the preferred scale by Eq.~13! where appropriate. The parametern is set
to ensure the stability of heavy quark propagator evolution in simulations@76#.

n aM0 ^ f &[(Zm21)/as ^ f log((aq)2)& ^ f log2
„(aq)2

…& aq1* aq2*

1 20.00 0.4679~39! 1.343~11! 4.091~62! 4.202~71! –
17.50 0.4860~34! 1.364~10! 4.196~65! 4.068~58! –
15.00 0.5125~30! 1.3907~85! 4.211~41! 3.883~44! –
12.50 0.5410~46! 1.426~14! 4.242~63! 3.736~65! –
10.00 0.5880~35! 1.463~12! 4.384~68! 3.469~43! –
7.00 0.7057~17! 1.5423~58! 4.880~32! 2.982~15! –
5.00 0.8624~14! 1.7153~48! 5.538~29! 2.7034~87! –
4.00 1.0071~27! 1.9021~70! 6.062~32! 2.571~11! –

2 4.00 1.0177~23! 1.9264~80! 6.164~33! 2.577~11! –
3.50 1.1268~23! 2.0710~83! 6.614~53! 2.507~10! –
3.00 1.2853~21! 2.2859~68! 7.351~35! 2.4333~74! –
2.70 1.4119~19! 2.4540~79! 7.911~34! 2.3846~73! –
2.50 1.5188~23! 2.6141~74! 8.390~52! 2.3646~66! –
2.00 1.9018~22! 3.1745~79! 10.214~32! 2.3039~53! –
1.70 2.2751~24! 3.7546~75! 12.039~56! 2.2823~43! –
1.60 2.4384~24! 4.0086~79! 12.857~39! 2.2750~41! –
1.50 2.6320~22! 4.3141~78! 13.745~37! 2.2694~37! –

3 1.40 2.8804~23! 4.7587~76! 15.073~37! 2.2842~34! –
1.20 3.5010~22! 5.7986~83! 18.143~39! 2.2891~30! –
1.00 4.4915~19! 7.4780~68! 23.109~31! 2.2990~19! –

5 0.80 6.3033~34! 10.720~11! 32.131~63! 2.3405~24! –

TABLE III. The BLM scale for the pole mass renormalization factorZm for several values of the bare lattice massaM0 in NRQCD with
tadpole improvement.aq1* gives the scale set by Eq.~3! in units of the inverse lattice spacing.aq2* gives the preferred scale by Eq.~13!
where appropriate. The parametern is set to ensure the stability of heavy quark propagator evolution in simulations@76#.

n aM0 ^ f &[(Zm21)/as ^ f log((aq)2)& ^ f log2
„(aq)2

…& aq1* aq2*

1 20.00 20.2381(39) 20.385(11) 20.367(62) 2.246~61! 1.34~11!

17.50 20.2224(34) 20.371(10) 20.278(65) 2.301~60! 1.240~91!

15.00 20.1996(30) 20.3530(85) 20.286(41) 2.422~61! 1.262~73!

12.50 20.1773(46) 20.333(14) 20.293(63) 2.56~12! 1.29~13!

10.00 20.1416(35) 20.323(12) 20.223(68) 3.14~16! 1.21~12!

7.00 20.0566(17) 20.3242(58) 0.066~32! 17.6~1.7! 0.95~13!

5.00 0.0386~14! 20.3018(48) 0.335~29! 0.0201~31! 0.75~17!

4.00 0.1126~27! 20.2881(70) 0.413~32! 0.278~12! 0.650~59!

2 4.00 0.1232~23! 20.2638(80) 0.515~33! 0.343~13! 0.471~81!

3.50 0.1722~23! 20.2664(83) 0.586~53! 0.461~12! –
3.00 0.2381~21! 20.2783(68) 0.737~35! 0.5574~85! –
2.70 0.2828~19! 20.3107(79) 0.781~34! 0.5773~84! –
2.50 0.3180~23! 20.3261(74) 0.807~52! 0.5988~74! –
2.00 0.4183~22! 20.4581(79) 0.846~32! 0.5783~57! –
1.70 0.4899~24! 20.6166(75) 0.765~56! 0.5329~44! 0.57~12!

1.60 0.5131~24! 20.7058(79) 0.699~39! 0.5027~42! 0.723~23!

1.50 0.5376~22! 20.8143(78) 0.518~37! 0.4689~37! 0.835~17!

3 1.40 0.5795~23! 20.8755(76) 0.542~37! 0.4698~34! 0.839~15!

1.20 0.6212~22! 21.2529(83) 20.043(39) 0.3648~28! 1.009~13!

1.00 0.6518~19! 21.9239(68) 21.139(31) 0.2286~16! 1.152~11!

5 0.80 0.6964~34! 23.009(11) 23.277(63) 0.1153~15! 1.293~24!
034023-12
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TABLE IV. The BLM scale for the energy shiftE0 for several values of the bare lattice massaM0 in
NRQCD without tadpole improvement.aq1* gives the scale set by Eq.~3! in units of the inverse lattice
spacing.aq2* gives the preferred scale by Eq.~13! where appropriate. The parametern is set to ensure the
stability of heavy quark propagator evolution in simulations@76#.

n aM0 ^ f &[E0 /as ^ f log((aq)2)& ^ f log2
„(aq)2

…& aq1* aq2*

1 20.00 2.25711~48! 2.5490~13! 10.8100~38! 1.75884~55! –
17.50 2.27657~44! 2.6011~12! 10.9496~40! 1.77051~52! –
15.00 2.30333~45! 2.6694~13! 11.1328~39! 1.78507~54! –
12.50 2.33892~69! 2.7653~22! 11.3882~87! 1.80606~92! –
10.00 2.39196~65! 2.9062~23! 11.7729~84! 1.83583~92! –
7.00 2.50419~41! 3.1988~14! 12.5623~49! 1.89398~57! –
5.00 2.64980~48! 3.5784~15! 13.5643~49! 1.96446~59! –
4.00 2.77360~93! 3.8995~38! 14.4035~99! 2.0198~15! –

2 4.00 2.77159~78! 3.8981~28! 14.380~11! 2.0203~11! –
3.50 2.8585~10! 4.1118~34! 14.952~11! 2.0529~13! –
3.00 2.97012~88! 4.3973~34! 15.670~12! 2.0965~13! –
2.70 3.0574~11! 4.6137~38! 16.228~11! 2.1266~15! –
2.50 3.12485~90! 4.7822~41! 16.660~12! 2.1494~15! –
2.00 3.3492~12! 5.3483~43! 18.116~15! 2.2221~16! –
1.70 3.5394~13! 5.8316~43! 19.302~14! 2.2791~15! –
1.60 3.6163~13! 6.0299~45! 19.843~16! 2.3018~16! –
1.50 3.7057~14! 6.2486~45! 20.406~17! 2.3236~16! –

3 1.40 3.7865~16! 6.4417~61! 20.873~18! 2.3411~21! –
1.20 4.0175~17! 7.0245~61! 22.344~17! 2.3970~20! –
1.00 4.32658~96! 7.8282~35! 24.418~11! 2.4711~11! –

5 0.80 4.6581~20! 8.7418~74! 26.784~27! 2.5557~23! –

TABLE V. The BLM scale for the energy shiftE0 for several values of the bare lattice massaM0 in NRQCD with tadpole improvement
aq1* gives the scale set by Eq.~3! in units of the inverse lattice spacing.aq2* gives the preferred scale by Eq.~13! where appropriate. The
parametern is set to ensure the stability of heavy quark propagator evolution in simulations@76#.

n aM0 ^ f &[E0 /as ^ f log((aq)2)& ^ f log2
„(aq)2

…& aq1* aq2*

1 20.00 1.05283~48! 20.3998(13) 3.2048~38! 0.82706~52! –
17.50 1.04985~44! 20.4027(12) 3.2027~40! 0.82549~50! –
15.00 1.04669~45! 20.4076(13) 3.1970~39! 0.82306~51! –
12.50 1.04040~69! 20.4143(22) 3.1878~87! 0.81948~89! –
10.00 1.03060~65! 20.4272(23) 3.1758~84! 0.81281~90! –
7.00 1.00820~41! 20.4643(14) 3.1150~49! 0.79431~56! –
5.00 0.97428~48! 20.5243(15) 2.9833~49! 0.76409~58! –
4.00 0.94100~93! 20.5878(38) 2.8305~99! 0.7318~15! –

2 4.00 0.93900~78! 20.5891(28) 2.807~11! 0.7307~11! –
3.50 0.9137~10! 20.6502(34) 2.671~11! 0.7006~13! –
3.00 0.87572~88! 20.7311(34) 2.444~12! 0.6588~13! –
2.70 0.8466~11! 20.7996(38) 2.266~11! 0.6236~15! –
2.50 0.82102~90! 20.8590(41) 2.111~12! 0.5927~15! –
2.00 0.7312~12! 21.0621(43) 1.583~15! 0.4837~16! –
1.70 0.6442~13! 21.2576(43) 1.018~14! 0.3768~15! 0.7950~59!

1.60 0.6056~13! 21.3421(45) 0.830~16! 0.3302~14! 0.8460~65!

1.50 0.5641~14! 21.4439(45) 0.566~17! 0.2781~14! 0.9029~73!

3 1.40 0.4953~16! 21.6171(61) 0.088~18! 0.1955~16! 0.986~12!

1.20 0.3523~17! 21.9501(61) 20.802(17) 0.06282~99! 1.106~24!

1.00 0.13779~96! 22.4285(35) 22.035(11) 0.0001489~93! 1.23~11!

5 0.80 20.3161(20) 23.4380(74) 24.629(27) 230.0~8.4! 1.416~75!
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for a heavy quark at energies small relative to its mass@75–
77#. Higher-dimensional operators provide systematic c
rections ordered by quark velocityv and lattice spacinga,
and account for radiative processes above the cutoff, t
cally around the mass. For a cutoff much larger thanLQCD,
lattice perturbation theory should give reliable values for
coefficients of these operators as well as the renormaliza
factors which connect bare to physical quantities. Refere
@13# demonstrates that this expectation is valid, provided
uses a renormalized rather than bare coupling constant,
divides link gauge fields by their mean value to remove la
tadpole contributions peculiar to the lattice.

References@78–80# present calculations of two of thes
quantities to first order inas : the renormalization factorZm ,
which connects the bare lattice heavy quark mass to its

FIG. 12. The BLM scaleq* for the pole mass renormalizatio
factor Zm as a function of the bare lattice massaM0 in NRQCD
without tadpole improvement. The first order solution determin
q* for all values.

FIG. 13. The BLM scaleq* for the pole mass renormalizatio
factor Zm as a function of the bare lattice massaM0 in NRQCD
with tadpole improvement. The first order solution determinesq*
betweenaM052.00 and 3.50, the second order elsewhere. Circ
indicate the appropriate scale; triangles indicate the first-order s
tion in regions where it does not apply.
03402
r-

i-

e
n

ce
e
nd
e

le

mass, andE0, the shift from zero of the nonrelativistic en
ergy of a heavy quark at rest. Reference@80#, using an action
improved toOv2 and Oa2, and toOv4 for spin-dependent
interactions, found that first-order scale setting produc
anomalous results for certain values of the bare mass,
ticularly after tadpole improvement.

In Tables II–V and Figs. 12–15, we present new valu
for the scale for a variety of bare quark massesM0, both
with and without tadpole improvement. By applying Eq.~13!
in regions where appropriate, we obtain a reasonable s
for all values ofM0, correcting the anomalies observed
Ref. @80#. As expected, there is a significant reduction in t
scale after tadpole improvement. The tadpole contributi
to these renormalizations are quadratically divergent in
inverse lattice spacing, and so are generally large and se

s

s
u-

FIG. 14. The BLM scaleq* for the energy shiftE0 as a function
of bare lattice massaM0 in NRQCD without tadpole improvement
The first order solution determinesq* for all values.

FIG. 15. The BLM scaleq* for the energy shiftE0 as a function
of bare lattice of the bare lattice massaM0 in NRQCD with tadpole
improvement. The first order solution determinesq* between
aM050.80 and 1.70, the second order elsewhere. Circles indi
the appropriate scale; triangles indicate the first-order solution
regions where it does not apply.
3-14
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tive to large momenta. Tadpole improvement is designed
remove the bulk of these contributions, and so reduces
typical scale from 2–4 to 0.5–1.5 in units of the inver
lattice spacinga.

X. CONCLUSIONS

In this paper we have derived a method which incorp
rates information from higher orders into the general p
scription of Ref.@4# for choosing the optimal scaleq* for the
strong coupling constantas . We find that it corrects errone
ous scales where the leading term or terms are anomalo
small.

The extended prescription states that Eq.~13! determines
the optimal scaleq* when the argument of the square root
positive. When it is not, the first order formula in Eq.~3!
applies. The choice of sign for the second-order solut
should be apparent either from continuity, or by check
that the solution minimizes the next higher~cubic! moment
in Eq. ~55! if it is available. In addition, higher moments giv
a measure of the rangeDq of momenta which flow through
the gluon, and can confirm that theq* chosen in either cas
v.

. A

hy

el,

J

ge

t

03402
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is indeed typical. Large values for the relative rangeDq/q
can indicate large higher-order contributions even whenq*
is large.

Our second-order prescription has several advantage
requires a simple extension to the calculation, either num
and analytic, needed to implement the first-order presc
tion, requiring only computation of an additional logarithm
moment. Calculation of higher moments can then help
further characterize the diagram and confirm the sc
choice. It can also identify cases where the first two terms
anomalously small, though such cases are apparently ra
is appropriate regardless of the number of loops included
the running coupling. Finally, it remedies erroneous scale
a variety of processes.
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