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Optimal renormalization-group improvement of the perturbative series for the e¿eÀ annihilation
cross section
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Using renormalization-group methods, we derive differential equations for the all-orders summation of
logarithmic corrections to the QCD series forR(s)5s(e1e2→hadrons)/s(e1e2→m1m2), as obtained from
the imaginary part of the purely perturbative vector-current correlation function. We present explicit solutions
for the summation of leading and up to three subsequent subleading orders of logarithms. The summations
accessible from the four-loop vector correlator not only lead to a substantial reduction in sensitivity to the
renormalization scale, but necessarily impose a common infrared bound on perturbative approximations to
R(s), regardless of the infrared behavior of the true QCD couplant.
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For center-of-mass squared-energys, QCD corrections to
R(s)[s(e1e2→hadrons)/s(e1e2→m1m2) are scaled by
a perturbative QCD series (S):

R~s!53(
f

Qf
2SFas~m!

p
, logS m2

s D G . ~1!

This series is extracted from the imaginary part of the mo
fied minimal subtraction scheme (MS) vector-current corre-
lation function@1,2#:

S@x,L#511 (
n51

`

xn (
m50

n21

Tn,mLm, ~2!

with the coefficientsTn,m tabulated in Table I for 3–5 active
flavors, as appropriate for the choice of the center-of-m
squared energys. Each order of this series depends upon
MS renormalization scale parameterm, both through the
couplant

x~m![as~m!/p ~3!

and through powers of the logarithm

L~m![ log~m2/s!. ~4!

Nevertheless, the all-orders seriesSmust ultimately be inde-
pendent of the renormalization scale.R(s) is a measurable
physical quantity necessarily independent ofm, the artificial
scale entering QCD calculations as a by-product of the re
lation of Feynman-diagrammatic infinities. Hence,

05m2
dS@x~m!,L~m!#

dm2
5S ]

]L
1b~x!

]

]xDS@x,L#. ~5!
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The above renormalization-group equation~RGE! is simply
a chain-rule relation in which

b~x![m2
dx~m!

dm2
52x2(

k50

`

bkx
k, ~6!

where known@3# MS b-function coefficientsbk are also
tabulated in Table I. Thus, the RGE~5! is generally em-
ployed to provide scale dependence to the couplantx.

‘‘Optimal’’ renormalization-group~RG! improvement is
the inclusion of every term in a perturbative series of t
form ~2! that can be extracted by RG-methods from a pert
bative computation to a given order@4#. For example, a next-
to-next-to-leading~NNL! order perturbative calculation de
termines only the coefficientsT1,0, T2,0, and T2,1 of the
series~2!. However, the RGE~5! can be utilized to determine

TABLE I. Coefficients for the imaginary part of the four-loop
order vector-current correlation function, as well as coefficients
the four-loop orderMS b function, are listed for three, four and fiv
quark flavors.

nf53 nf54 nf55

T1,0 1 1 1
T2,0 1.63982 1.52453 1.40924
T2,1 9/4 25/12 23/12
T3,0 210.2839 211.6856 212.8046
T3,1 11.3792 9.56054 7.81875
T3,2 81/16 625/144 529/144
b0 9/4 25/12 23/12
b1 4 77/24 29/12
b2 3863/384 21943/3456 9769/3456
b3 47.2280 31.3874 18.8522
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all coefficientsTk11,k and Tk12,k within the series~2!. The
contributions of this infinite set of coefficients may then
summed analytically, as described below, thereby provid
an ‘‘optimal RG improvement’’ of the NNL expression.

The seriesS@x,L#, as defined in Eq.~2!, may be rear-
ranged in the following form:

S@x,L#511 (
n51

`

xnSn~xL!, ~7!

where

Sk~u![(
n5k

`

Tn,n2ku
n2k. ~8!

Given knowledge of thekth-order series coefficientTk,0
5Sk(0), one canobtain Sk„x(m)L(m)… explicitly, thereby
summing over the entire set ofkth-order subleading loga
rithms contributing to the series~7!. If we substitute the
b-function series~6! into the RGE~5!, we find that the ag-
gregate coefficient ofxnLn2p vanishes (n>p) provided the
following recursion relation is upheld:

05~n2p11!Tn,n2p112 (
l 50

p22

~n2 l 21!b lTn2 l 21,n2p .

~9!

For example, if p52, this recursion relation@Tn,n21
5b0Tn21,n22# relates all leading-logarithm coefficien
03401
g

Tn,n21 within the series~2! to the known coefficientT1,0
51, thereby enabling one to sum all orders of the leadi
logarithm contributions

xS1~xL!5x(
n51

`

Tn,n21~xL!n215
x

12b0xL
~10!

to the seriesS@x,L#.
More generally, the recursion relation~9! may be utilized

to obtain a succession of first-order inhomogeneous lin
differential equations for the functionsSk(u) within Eq. ~7!.
If one multiplies Eq.~9! by un2p and then sums overn from
n5p to `, one finds from the definition~8! of Sk(u) that

05
dSp21

du
2u(

l 50

p22

b l

dSp2 l 21

du
2 (

l 50

p22

~p2 l 21!b lSp2 l 21 ,

~11!

which can be trivially rearranged (k5p21) into a set of
first-order linear differential equations

dSk

du
2

kb0

~12b0u!
Sk5

1

~12b0u! (
l 51

k21

b l S u
d

du
1k2 l DSk2 l ,

~12!

with initial conditionsSk(0)5Tk,0 .
Noting thatS0(u)51 and thatT1,051 regardless of the

number of active flavors, we find the first four solutions
Eq. ~12! to be
S1~xL!5
1

~12b0xL!
, ~13!

S2~xL!5

T2,02
b1

b0
log~12b0xL!

~12b0xL!2
, ~14!

S3~xL!5S b1
2

b0
2

2
b2

b0
D Y ~12b0xL!21

T3,02S b1
2

b0
2

2
b2

b0
D 2

b1

b0
S 2T2,01

b1

b0
D log~12b0xL!1

b1
2

b0
2
log2~12b0xL!

~12b0xL!3
, ~15!

S4~xL!52
1

2 Fb1

b0
S b1

2

b0
2

22
b2

b0
D 1

b3

b0
G ~12b0xL!221S 2T2,01

b1

b0
D S b1

2

b0
2

2
b2

b0
D ~12b0xL!23

12
b1

b0
S b2

b0
2

b1
2

b0
2D ~12b0xL!23log~12b0xL!1FT4,01

b3

2b0
2

1

2

b1
3

b0
3

22T2,0S b1
2

b0
2

2
b2

b0
D G ~12b0xL!24

1
b1

b0
F2

b1
2

b0
2

23
b2

b0
22T2,0

b1

b0
23T3,0G ~12b0xL!24log~12b0xL!1

b1

b0
F5b1

2

2b0
2

13T2,0

b1

b0
G ~12b0xL!24

3 log2~12b0xL!2
b1

3

b0
3 ~12b0xL!24log3~12b0xL!. ~16!
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d

OPTIMAL RENORMALIZATION-GROUP IMPROVEMENT . . . PHYSICAL REVIEW D 67, 034017 ~2003!
To explore the near-infrared regime of perturbative QCD, we specialize to the case of three active flavors. Using
nf53 values within Eqs.~13!–~16!, we find that the version of the series~7! which incorporates full summation of leading an
two subsequent subleading orders of logarithms is given by

S(S)@x~m!,L~m!#511xS1~xL!1x2S2~xL!1x3S3~xL!, ~17!

where (u5xL)

S1~u!51YS 12
9u

4 D , ~18!

S2~u!5

1.639822
16

9
logS 12

9u

4 D
S 12

9u

4 D 2 , ~19!

S3~u!52
1.31057

S 12
9

4
uD 2 1

28.9733328.99096 logS 12
9u

4 D13.16049 log2S 12
9u

4 D
S 12

9u

4 D 3 . ~20!

Moreover, we note from Eq.~16! that

S4~xL!52
5.35589

S 12
9

4
xLD 2 1

26.6281114.65981 logS 12
9

4
xLD

S 12
9

4
xLD 3

1

T4,0111.9840131.8738 logS 12
9

4
xLD129.5946 log2S 12

9

4
xLD25.61866 log3S 12

9

4
xLD

S 12
9

4
xLD 4 , ~21!
n
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thereby providing for inclusion of thex4S4(xL) contribution
to the series~7! for three active flavors. The series coefficie
T4,0 appearing in Eq.~21! has not yet been calculated pertu
batively, which is why we have not included thex4S4(xL)
contribution toS@x,L# in Eq. ~17!. ~An asymptotic Pade´ ap-
proximant estimateT4,0.1.90 for the nf53 case is pre-
sented in Ref.@2#.!

To examine whether the summation of leading and sub
quent subleading logarithm factors decreases dependenc
the unphysical renormalization-scale parameterm, we com-
pare them dependence of Eq.~17! for a fixed value ofs to
that of thenf53 version of the series~2! truncated after
four-loop-order (4l ) contributions to the vector-current co
relation function:

S(4l )@x~m!,L~m!#511x1~1.6398219L/4!x2

1~210.2839111.3792L181L2/16!x3.

~22!

Suchm-dependence enters Eqs.~17! and ~22! both through
L5 log(m2/s) and throughx5x(m), which is assumed to
03401
t

e-
on

evolve via Eq.~6! ~with nf53 choices forb023) from an
initial value choicex(mt)5as(mt)/p50.33/p @5,6#. Figure
1 displays a comparison of them dependence of Eqs.~17!
and ~22! at fixed s51.5 GeV2 . Although both expressions
exhibit little variation with m over the 1.3 GeV<m
<3 GeV range, we see that Eq.~17! exhibits much less
variation withm in the near-infrared regime below 1.3 Ge
These results clearly indicate that renormalization-sca
invariance is more effectively upheld via the summations
leading and subsequent subleading orders of logarithms
occur within Eq.~17!. We emphasize that Eqs.~17! and~22!
both follow from ‘‘RG improvement’’ of the same calcula
tional information~the coefficientsT1,0, T2,0, andT3,0); sim-
ply put, such RG-improvement is more effectively impl
mented in Eq.~17! than in Eq.~22!.

The usual prescription for obtaining the purel
perturbative~non-power-law! QCD contributions toR(s) at
four-loop order@6,7# is to setm5As within Eq. ~22!, and
then to substitute the resulting series,

S(4l )@x~As!,L~As!#511x~As!11.63982x2~As!

210.2839x3~As!, ~23!
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into Eq. ~1!. @Note from Eq.~4! that L(As)50.# This pre-
scription follows from the presumed renormalization-sc
invariance of the truncated series~22!, thereby leading to an
expression that depends only on the physical scales for the
electron-positron annihilation process. Note that alls depen-
dence of Eq.~17! resides entirely in the variableL. Let us
first fix m5mt within Eq. ~17! so as to incorporate th
benchmark couplant valuex(mt)50.33/p everywherex ap-
pears in Eqs.~18!–~20!. With this choice, the following
summation-of-logarithms series can be substituted into
~1! to obtainR(s):

S(S)@x~mt!,L~mt!#511
0.33

p
S1F0.33

p
logS mt

2

s D G
1S 0.33

p D 2

S2F0.33

p
logS mt

2

s D G
1S 0.33

p D 3

S3F0.33

p
logS mt

2

s D G .
~24!

In Fig. 2 we compare thes dependence of this series to th
of Eq. ~23!, for which all s dependence resides in the evol
tion of x(As). To make this comparison, such evolution
anchored to the initial valuex(mt)50.33/p via the differen-
tial equation~6! with nf53 values forb023 ~Table I!. This
initial value ensures that the series~23! and ~24! coincide

FIG. 1. The renormalization-scale (m) dependence of the
summation-of-logarithms (S) series~17! is compared to that of the
series~22!, which is truncated after four-loop (4L) contributions to
the vector-current correlation function. For both series the phys
momentum scales is fixed at 1.5 GeV2. The evolution of the cou-
plant x(m) for both series is referenced to the initial valu
as(mt)50.33.
03401
e

q.

whenAs5mt . Figure 2 shows that both series continue
coincide over the range 750 MeV<As<mt . For values of
As less than 750 MeV, however, the truncated series~23!
drops off quite suddenly atAs.650 MeV, a consequence o
the large negative coefficient ofx3(As), whereas the serie
~24! @as obtained from the full summation-of-logarithms s
ries ~17!# continues to probe the infrared domain ofR(s)
even for values ofAs.400 MeV. In short, the summation o
all leading and subsequent two subleading logarithms wit
the perturbative series~2! serves to extend the domain of th
R(s) series further into the infrared. This property, as well
the reduced renormalization-scale dependence evident in
1, suggests that such summation is particularly appropr
for the near-infrared region characterizing sum-rule appli
tions of purely perturbative QCD corrections to curren
correlation functions.

It is also evident from Fig. 2 that the domain of th
summation-of-logarithms series~24! manifests a singularity
belowAs5400 MeV, despite the fact that thes dependence
of the series~24! is decoupled entirely from any infrare
behavior of the couplantx, which is held constant atx(mt).
To understand this restriction on the domain ofR(s), we first
note that each summation~13!–~16! becomes singular when
12b0xL→0. Such resummation singularities have al
been observed to occur in completely different contexts,
cluding deep inelastic structure functions@8#.

The singularity property of Eqs.~13!–~16! is upheld for
all summationsSk(xL). The solution to the differential equa
tion ~12! is necessarily of the form

al

FIG. 2. The center-of-mass squared-energy~s! dependence of
the four-loop (4L-! truncated series~23! is compared to that of the
summation-of-logarithms (S) series~24!, as described in the text
In both series,as(mt) is taken to be 0.33 so that the series equ
brate atAs5mt .
7-4
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Sk~xL!5
Tk,0

~12b0xL!k
1~particular solution depending on

$Sk21 ,Sk22 , . . . ,S1%!. ~25!

Since the coefficientsTk,0 are results of kth-order Feynman
diagram calculations, the kth-order pole in Eq.~25! at 1
2b0xL50 is genuine and will not be canceled b
particular-solution contributions that are sensitive to at m
(k21)th-order Feynman-diagrammatic coefficien
$T1,0, T2,0, . . . ,Tk21,0%. For a given choice of renormaliza
tion scalem, this singularity implies@via Eqs.~3! and ~4!#
that each summationSk(xL) within the full series~7! be-
comes singular for a sufficiently small value ofs:

12b0

as~m!

p
logS m2

smin
D50 →smin5m2expS 2p

b0as~m! D .

~26!

For example, if the renormalization scalem is chosen~as in
Fig. 2! to bemt , a choice for whichas(mt) (50.3360.02
@6#! is phenomenologically accessible, then each term in
series~7! is seen to become progressively more singular as
approaches mt

2exp@24p/(930.33)#5(215 MeV)2 from
above. Furthermore, Fig. 3 shows that the low-energy beh
ior of the resummed expression~17! is only weakly depen-
dent on m in the regionAs.600 MeV for choices ofm
between 0.6mt and 1.6mt , with the appearance of singula
points corresponding to 195 MeV,smin,250 MeV from
~26!.

FIG. 3. Thes dependence of the four-loop truncated series~17!
for equally-spaced values of the renormalization scale in the ra
0.6mt<m<1.6mt . The couplantx(m) is obtained from three-
flavor four-loop evolution via Eq.~6! from the initial condition
x(mt)50.33/p using Table I values for theb function coefficients
b02b3.
03401
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It is to be emphasized that this infrared boundary on
physical scales entering term-by-term within the series~7! is
not a manifestation of any infrared boundary@9# on the evo-
lution of the QCD couplantx(m). Even if the higher order
contributions to theb function ~6! were somehow to con
spire to allow the couplant to be well-behaved in the infrar
region@e.g., to have infrared-stable fixed point behavior#, the
restriction ~26! would still apply upon making a specifi
choice of the renormalization-scale parameterm and its cor-
responding value ofas(m). Curiously, though, this infrared
restriction ons can be easily shown to coincide with th
‘‘infrared-slavery’’ Landau singularityL associated with na-
ive evolution of the QCD couplant via a one-loopb func-
tion. The one-loop version of Eq.~6!,

m2
dx

dm2
52b0x2, x5

as

p
, ~27!

is satisfied by the relation

as

p
5

1

b0log~m2/L2!
, ~28!

which is equivalent to Eq.~26! provided smin is identified
with L2. Indeed, in a one-loop world @x1l(m)
51/b0 log(m2/L2)# where L serves as auniversal infrared
boundary, the one-loop analogues of the summation
logarithms series~17! and the truncated series~23! are nec-
essarily equivalent:

S1l
(S)511x(1l )~m!S1@x(1l )~m!log~m2/s!#

511
1

b0 logS m2

L2D 5
1

12b0F 1

b0 logS m2

L2D G logS m2

s D 6
511

1

b0 logS s

L2D
511x(1l )~As! ~29!

We find it remarkable thatL, the one-loop couplant’s Lan
dau pole, persists as an infrared boundary on the domai
each summation contributing to Eq.~7!, the summation-of-
logarithms formulation of the perturbative series with
R(s). Consequently,s5L2 serves as an infrared bounda
for any approximation toR(s) involving the truncation of
the series~7!, such as the expression~17! obtained via opti-
mal RG-improvement of the four-loop vector-current corr
lation function’s imaginary part.
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