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Optimal renormalization-group improvement of the perturbative series for the ete™ annihilation
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Using renormalization-group methods, we derive differential equations for the all-orders summation of
logarithmic corrections to the QCD series ®fs)=o(e*e” —hadrons)&(e*e” —u* 1), as obtained from
the imaginary part of the purely perturbative vector-current correlation function. We present explicit solutions
for the summation of leading and up to three subsequent subleading orders of logarithms. The summations
accessible from the four-loop vector correlator not only lead to a substantial reduction in sensitivity to the
renormalization scale, but necessarily impose a common infrared bound on perturbative approximations to
R(s), regardless of the infrared behavior of the true QCD couplant.
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For center-of-mass squared-enesgyQCD corrections to  The above renormalization-group equati®®GE) is simply
R(s)=o(e*e” —hadrons)b(ete”—u" u ) are scaled by a chain-rule relation in which
a perturbative QCD seriesS|:

ax( ) -
2 X)= 2 :—X2 Xk, (6)
R(s)=32f Q?s[ asiTM),log(,U«_> | B(X)=pu W IZ,O B

S

D

where known[3] MS g-function coefficientsg, are also
This series is extracted from the imaginary part of the moditabulated in Table I. Thus, the RGE) is generally em-
fied minimal subtraction schem@S) vector-current corre- ployed to provide scale dependence to the couptant
lation function[1,2]: “Optimal” renormalization-group(RG) improvement is
the inclusion of every term in a perturbative series of the
form (2) that can be extracted by RG-methods from a pertur-

Six,L]= 1+nzl X”mE:O Toml™, 4 bative computation to a given ordef]. For example, a next-

to-next-to-leading(NNL) order perturbative calculation de-
with the coefficientsT,, , tabulated in Table | for 3—5 active termines only the coefficients, o, T,o, and T, of the
flavors, as appropriate for the choice of the center-of-masge'ies(2). However, the RGES) can be utilized to determine
squared energy. Each order of this series depends upon the
MS renormalization scale parametgr, both through the
couplant

o n—1

TABLE I. Coefficients for the imaginary part of the four-loop-
order vector-curreﬂcorrelation function, as well as coefficients for
the four-loop ordeMS g function, are listed for three, four and five

X(w)=ag(w)lw 3) quark flavors.

and through powers of the logarithm ni=3 ni=4 n=5
- ) Tio 1 1 1
L(p)= log(u?/s). @ 1, 1.63982 152453 1.40924
Nevertheless, the all-orders serig@must ultimately be inde- Taa o4 25/12 23/12
o ) Tso —10.2839 —11.6856 —12.8046
pendent of the renormalization scak(s) is a measurable : 11.3702 0.56054 2 81875
physical quantity necessarily independenfugfthe artificial T3’1 8'1 116 6 és 1144 5 2 o144
scale entering QCD calculations as a by-product of the regu-32
lation of Feynman-diagrammatic infinities. Hence, Bo 9/4 2512 23/12
B1 4 77124 29/12
B 3863/384 21943/3456 9769/3456
_ L OSIx(p),L(w)] [ 9 9 2
=2 +B(X)—|9x,L]. (B Bs 47.2280 31.3874 18.8522
du? dL IX
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all coefficientsT, .1, and Ty o, Within the serieg(2). The
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Tn.n—1 Within the series(2) to the known coefficient; o

contributions of this infinite set of coefficients may then be=1, thereby enabling one to sum all orders of the leading-
summed analytically, as described below, thereby providingogarithm contributions

n “optimal RG improvement” of the NNL expression.
The series§ x,L], as defined in Eq(2), may be rear-
ranged in the following form:

Sx,L]= 1+2 X"S,(xL), (7)
where
&(u)zgk Tonoku" k. (8)

Given knowledge of thek'"-order series coefficienTy o
=5,(0), one canobtain S,(x(u)L(x)) explicitly, thereby
summing over the entire set ¢f"-order subleading loga-
rithms contributing to the serie€’). If we substitute the
B-function serieg6) into the RGE(5), we find that the ag-
gregate coefficient ok"L"~P vanishes (=p) provided the
following recursion relation is upheld:

p—2
Oz(n_p+1)Tn,n7p+l_ IEO (n_l_l)IBITnflfl,nfp-
€)

if p=2, this recursion relation[ T, -1
relates all leading-logarithm coefficients

For example,
= BOTnfl,nfﬂ

xsl<xL>=xn§1 Tono1(xL)" 1= (10)

X
1—BoxL
to the seriesS x,L].

More generally, the recursion relatié®) may be utilized
to obtain a succession of first-order inhomogeneous linear
differential equations for the functior&(u) within Eq. (7).
If one multiplies Eq.(9) by u"~? and then sums over from
n=p to «, one finds from the definitiofB) of S, (u) that

UE le

dpl

E (p—1-1)BSp-1-1,
(12)

which can be trivially rearrangedk&p—1) into a set of
first-order linear differential equations

dS kg 1
T 0 B S T ) 2

2 ﬁ.( k—l)skl,

(12)
with initial conditionsS,(0)= Ty .
Noting thatSy(u)=1 and thatT, o=1 regardless of the

number of active flavors, we find the first four solutions of
Eqg. (12) to be

1
Si(xL)= 1= BoxL)’ (13
Tso %Iog(l BoxL)
_ 0
SXL = —— (14
2 2
Tg‘o—(%—%) £2(2T20+ ﬁl log(1— ,BOXL)+I'§—I092(1 BoxL)
1 0 0
Sa(xL)= ( )/(1 BoxL)? IR . (15
_ LB B B2 B 2( Bl) B: B2 .
Sy(xL)= 2[3 (ﬂo 230) B](l BoXL) ™2+ | 2Tzt 5 2 B (1— BoxL)~
Bi[B: B Bs 183 Bl B
2B—z<ﬁ—2—ﬁ—:>(1 BoxL) "3og(1— BoxL) +| T4g+ 2[;0_53_5_2“'0(_%_32”(1 BoxL) ™4
B.| Bi B B1 B1| 587 B1
B; 2[?%_352 2T20B —3T30| (1~ BoxL) *log(1— BOXL)+BO 2—[%+3T2031(1 BoxL) 4
B 43
(1— BoxL) ~*log¥(1— BoxL). (16

X log?(1— BoxL) — ,3_8
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To explore the near-infrared regime of perturbative QCD, we specialize to the case of three active flavors. Using Table |
n;=3 values within Eqs(13)—(16), we find that the version of the seri€® which incorporates full summation of leading and
two subsequent subleading orders of logarithms is given by

SPIX(), L (1) ]=1+xS;(XL) +X2S,(XL) +X3Sy(xL), (17)

9u
S(w=1 (1—7), (18)

16 u
1.63982- —log| 1— e

where 4=xL)

9
Sy(u)= T , (19
4
8.97333-8.99096 log 1 ou 3.1604910g| 1 ou
131057 : gl=7 |+ o9l -7 -
Sy(u)= ot o (20
2! 4
Moreover, we note from Eq16) that
6.62811 4.65981 log 1 3 L
5.35589 : : 0917 3%
Sy(xL)=— 9 7+ 9 |3
1—ZXL 1_ZXL
9 9 9
Tyt 11.9840+ 31.8738 log 1 — 7 xL +29.5946 log 1-7xL —5.61866 log 1-7xL
+ 9 T , (21
1_ZXL)

thereby providing for inclusion of the*S,(xL) contribution  evolve via Eq.(6) (with n;=3 choices forB,_3) from an

to the serieg7) for three active flavors. The series coefficient initial value choicex(m,) = ag(m,)/ == 0.33Ar [5,6]. Figure
T, oappearing in Eq(21) has not yet been calculated pertur- 1 displays a comparison of the dependence of Eq$17)
batively, which is why we have not included théS,(xL) ~ and(22) at fixeds=1.5 GeV? . Although both expressions
contribution to§[x,L] in Eq. (17). (An asymptotic Padap- ~ exhibit little variation with x over the 1.3 Ge¥u
proximant estimateT, ,~1.90 for then=3 case is pre- <3 GeV range, we see that E¢L7) exhibits much less
sented in Ref[2]) variation with . in the near-infrared regime below 1.3 GeV.

To examine whether the summation of leading and subselh€se results clearly indicate that renormalization-scale-

quent subleading logarithm factors decreases dependence {yariance is more effectively upheld via the summations of
the unphysical renormalization-scale parametemwe com- leading _an_d subsequent sublead!ng orders of logarithms that
pare they dependence of Eq17) for a fixed value ofsto  OCCUr within Eq.(17). We emphasize that Eq€l7) and(22)

that of then;=3 version of the serie€?) truncated after both follow from “RG improvement” of the same calcula-

L tional information(the coefficientdl; o, T, andT3g); Sim-
];ce)?art_ilgr?%%rg?c:n(f‘) contributions to the vector-current cor- ply put, such RG-improvement is more effectively imple-

mented in Eq(17) than in Eq.(22).

(al) _ 2 The wusual prescription for obtaining the purely-
STX(w) L) ]=14x+(1.63982- OL/4)x perturbative(non-power-laww QCD contributions tdR(s) at

+(—10.2839-11.3792 +81.2/16)x3.  four-loop order[6,7] is to setu= /s within Eq. (22), and
22) then to substitute the resulting series,

SUNIx(vs),L(Vs)]=1+x(v/s)+1.639823(\/s
Such u-dependence enters Eq4.7) and (22) both through [(X(VS).L(VS)] (V9) (V9)
L=log(u%s) and throughx=x(u), which is assumed to —10.2839%3(Y/s), (23)
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FIG. 1. The renormalization-scaleu] dependence of the
summation-of-logarithmsy) series(17) is compared to that of the FIG. 2. The center-of-mass squared-enefgydependence of

series(22), which is truncated after four-loop (4 contributions to  the four-loop (4.-) truncated serie€23) is compared to that of the
the vector-current correlation function. For both series the physicafummation-of-logarithmsX) series(24), as described in the text.
momentum scals is fixed at 1.5 Ge¥. The evolution of the cou- In both seriespg(m,) is taken to be 0.33 so that the series equili-
plant x(x) for both series is referenced to the initial value brate at/s=m, .

ag(m,)=0.33.

. . when \/'s=m,. Figure 2 shows that both series continue to
into Eq. (1). [Note from Eq.(4) thatL(vs)=0.] This pre-  ¢qincide over the range 750 Me¥4/s<m.. For values of

scription follows from the presumed renormalization- scale\/— less than 750 MeV, however, the truncated se(2S)
f th h I ) ' '
invariance of the truncated seri€%?), thereby leading to an drops off quite suddenly afs~650 MeV, a consequence of

expression that depends only on the physical ssdite the : A .
electron-positron annihilation process. Note thasalepen- ~ the large negative coefficient af(1s), whereas the series

dence of Eq(17) resides entirely in the variable. Let us (24) [as obtained from the full summation-of-logarithms se-

first fix w=m, within Eq. (17) so as to incorporate the fi€s (17)] continues to probe the infrared domain R¢s)

benchmark couplant valugm,)=0.33/r everywherex ap-  even for values ot/gz 400 MeV. In short, the summation of

pears in Egs.(18)—(20). With this choice, the following all leading and subsequent two subleading logarithms within

summation-of-logarithms series can be substituted into Edhe perturbative serig®) serves to extend the domain of the

(1) to obtainR(s): R(s) series further into the infrared. This property, as well as
the reduced renormalization-scale dependence evident in Fig.
1, suggests that such summation is particularly appropriate
for the near-infrared region characterizing sum-rule applica-
tions of purely perturbative QCD corrections to current-
correlation functions.

It is also evident from Fig. 2 that the domain of the
summation-of-logarithms serig24) manifests a singularity
below \/'s=400 MeV, despite the fact that tisedependence
of the series(24) is decoupled entirely from any infrared
behavior of the couplant, which is held constant at(m,).

(24 To understand this restriction on the domairRgt), we first
note that each summatidt3)—(16) becomes singular when
In Fig. 2 we compare the dependence of this series to that 1— g,xL—0. Such resummation singularities have also
of Eq. (23), for which all s dependence resides in the evolu- been observed to occur in completely different contexts, in-
tion of x(\/s). To make this comparison, such evolution is cluding deep inelastic structure functiof&j.
anchored to the initial value(m,) =0.33/r via the differen- The singularity property of Eqg13)—(16) is upheld for
tial equation(6) with n;=3 values forB,_5 (Table ). This  all summationsS,(xL). The solution to the differential equa-
initial value ensures that the serié€®3) and (24) coincide tion (12) is necessarily of the form

0.33 [0.33 [m?
S®[x(m,),L(m,)]= 1+—sl[—|og( )

"o

{2 e )

0.33
A2,

T
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It is to be emphasized that this infrared boundary on the
physical scales entering term-by-term within the seri€s) is
not a manifestation of any infrared boundd8j on the evo-
lution of the QCD couplank(w). Even if the higher order
contributions to theB function (6) were somehow to con-
spire to allow the couplant to be well-behaved in the infrared
region[e.g., to have infrared-stable fixed point behalitre
restriction (26) would still apply upon making a specific
choice of the renormalization-scale parameteand its cor-
responding value ofrg(u). Curiously, though, this infrared
restriction ons can be easily shown to coincide with the
“infrared-slavery” Landau singularityA associated with na-
ive evolution of the QCD couplant via a one-logpfunc-
tion. The one-loop version of E6),

dx a
2 7 2 =_°
u 4 Box, x=—, (27)

0 T T T T T T T is satisfied by the relation
02 04 06 08 10 12 14 16 18

s1./'2 (Gev) a_S _ 1 (28)
2/A 2]
FIG. 3. Thes dependence of the four-loop truncated se(led T Bolog(uIAY)

for equally-spaced values of the renormalization scale in the range , . | . . . . .
0.6m.<u=1.6m_. The couplantx(x) is obtained from three- which is equivalent to Eq(26) provided s, is identified

; 2 ; 1
flavor four-loop evolution via Eq(6) from the initial condition V_V'th A*. 2In(geed, in a one-loop .World _[X (w)
x(m.)=0.33kr using Table | values for thg function coefficients  — +/B0109(1/A%)] where A serves as ainiversalinfrared
Bo— Ba. boundary, the one-loop analogues of the summation-of-

logarithms serie$17) and the truncated seri¢23) are nec-
essarily equivalent:

Tko . . .
Sk(xL) (1= BoxL)* + (particular solution depending on S = 14 XA 1) S,[x U ) log( /)]
{Skfl!sk721 ot !Sl})' (25) 1+ 1 1

Since the coefficientd, o are results of ¥-order Feynman (MZ) 1 ( 2)

: : oot : Bolog| — | { 1-Bo log| —
diagram calculations, the'’korder pole in Eq.(25) at 1 A2 w?
—BoxL=0 is genuine and will not be canceled by Bolog )
particular-solution contributions that are sensitive to at most A
(k—1)th-order Feynman-diagrammatic coefficients 1
{T10, T20, ..., Tk_1,0}- FOr a given choice of renormaliza- =1+
tion scaleu, this singularity impliegvia Egs.(3) and (4)] S
that each summatioS,(xL) within the full series(7) be- ﬂolog(P)
comes singular for a sufficiently small value of

) =1+x(\s) (29
1- aS(M)Io - )—0 — Smin= m2ex _—W)
Po g Smin/ min— Boas(w)] We find it remarkable thai, the one-loop couplant’s Lan-
(26) dau pole, persists as an infrared boundary on the domain of

) o ) ) each summation contributing to E(), the summation-of-
For example, if the renormalization scaleis chosen(@as in - |5garithms formulation of the perturbative series within

Fig. 2) to bem_, a choice for whichag(m,) (=0.33+0.02  R(s). Consequentlys= A2 serves as an infrared boundary
[6]) is phenomenologically accessible, then each term in the,, any approximation taR(s) involving the truncation of

series(7) is seeg to become progressively morezsingulas aS the serieq7), such as the expressigh7) obtained via opti-
approaches miex —4m/(9X0.33)]=(215 MeV)" from  ma RG-improvement of the four-loop vector-current corre-
above. Furthermore, Fig. 3 shows that the low-energy behavyation function’s imaginary part.

ior of the resummed expressigh7) is only weakly depen-
dent onpu in the region/s>600 MeV for choices ofu
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