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Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model.
[I. Theoretical formalism
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The path integral formulation is given to obtain quark and antiquark distribution functions in the nucleon
within the flavor SU3) version of the chiral quark soliton model. The basic model action is a straightforward
generalization of the corresponding @Jone, except for one distinguishable feature, i.e., the presence of the
SU(3) symmetry breaking term arising from the sizably large mass differ&mog between the strange and
nonstrange quarks. We treat this @Usymmetry breaking effect by relying upon the first-order perturbation
theory in the mass parametamg. We also address the problem of the ordering ambiguity of the relevant
collective space operators, which arises in the evaluation of the parton distribution functions at the subleading
order of the IN. expansion.
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I. INTRODUCTION symmetry breaking mean-field configuration, which appears
as a zero-energy mode, is treated by using the first-order
In the preceding papg@6], which is referred to as I, we perturbation theory in the collective rotational velocidyof
have shown that the flavor $8) version of the chiral quark the soliton. This is justified since the velocity of this collec-
soliton model(CQSM) can give reasonable predictions for tive rotational motion is expected to be much slower than the
the hidden strange-quark distributions in the nucleon, whilevelocity of intrinsic quark motion in the hedgehog mean
preserving the success of the @UCQSM. The detailed field. According to this theoretical structure of the model,
theoretical formulation of the model was left out, however, inany baryon observables including parton distribution func-
consideration of its quite elaborate nature. The purpose of thions (PDF) are given as a sum of th@(Q°) contributions
present paper is to make up for this point. and theO(Q?) one[9,10.
The generalization of the CQSM to the case of flavor A completely new feature of the $8) CQSM, which is
SU(3) was already done many years ago independently byiot shared by the S model, is the existence of $8)
two groups[1,2]. The basic dynamical assumption of the symmetry breaking term due to the appreciable mass differ-
SU(3) CQSM is very similar to that of the SB) Skyrme  ence between the strange and nonstrange quarks. We believe
model [3,4]. It is the embedding of the SB) hedgehog that this mass differencér the mass of the strange quark
mean field into the S(B) matrix followed by the quantiza- itself) of the order 100 MeV is still much smaller than the
tion of the collective rotational motion in the full 8) col-  typical energy scale of hadron physics of the order 1 GeV,
lective coordinate space. The physical octet and decupleind it can be treated by relying upon the perturbation theory.
baryons including the nucleon with good spin and flavor Now, in the next section, we start to explain the detailed
quantum numbers are obtained through this quantization prgeath integral formulation of the SB8) CQSM for evaluating
cess. For the usual low energy observables of baryons su¢PDF. After explaining the general theoretical structure of the
as the magnetic moments or the axial-vector couplings, thenodel, we shall discuss tf@(°) contributions to the PDF,
theory can be formulated by using the standard cranking prathe O(Q2?) contributions, and the first-order corrections in
cedure which is familiar in the nuclear theory of collective Am in three separate subsections. Finally, in Sec. IV, we
rotation. However, what we want to investigate here is nobriefly summarize our achievement as well as what still re-
the usual low energy observables of baryons but the quarkains to be clarified in future studies.
and antiquark distributions in the nucleon, which are fully
relativistic objects. For obtaining these quantities, we must
evaluate nucleon matrix elements of quark bilinear operators Il. FORMULATION OF THE MODEL
containing two space-time coordinates with light-cone sepa-
ration. The most convenient method for investigating such We start with the familiar definition of the quark distribu-
quantities is the path integral formalism, which was alreadytion function given ag12]
used in the formulation of the similar observables in the
SU(2) version of the CQSM5-11].
The standard mean-field a}pproximation in the' nug:lea_r _ i o XMz
theory corresponds to the stationary-phase approximation in a(x)= 7| dze
the path integral formalisi{9]. The rotational motion of the
X(N(P=0)|¢"(0)0,¢(2)
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HereQ, is to be taken as is a composite operator carrying the quantum numbers
Y TT;,JJ; (hypercharge, isospin, and spiof the baryon,

_ 0.3
Oa=Aa(1+77y7), where «; the color index, Whilel“i:iT _fj’jc} is a symmetric
. . . . . . 3:vY3
with a=0,3, and 8 for unpolarized distribution functions matrix in spin-flavor indiced; . A basic dynamical assump-
(note here we take thaty=1), while tion of the SU3) CQSM [which one may notice is similar to
B 0.3 that of the SW3) Skyrme mode[3]] is the embedding of the
Oa=Na(1+7°7")7s, 3 SU(2) self-consistent mean-field solution of hedgehog shape

for longitudinally polarized ones. We recall that the above'M© the SU3) matrix as

definition of the quark distribution function can formally be

extended to the negativeregion. The functiorg(x) with a U75(x) = ( el 7570 O) 10
negative argument should actually be interpreted as giving an 0 0 1/
antiquark distribution with a physical value a{>0) ac-
cording to the rule That this would give the lowest energy classical configura-
_ tion can be deduced from a simple variational argun&ak
q(—=x)=—q(x) (0<x<1), (4 Infact, an arbitrary small variation of the (3,3) component of

UgS(x) would induce a change of the strange-quark single-
particle spectra in such a way that weak bound states appear

Aq(—x)=+Aq(x) (0<x<1), (5)  from the positive energy Dirac continuum as well as from the

negative energy one in a charge-conjugation symmetric way.

for the longitudinally polarized distributions. Here, the sign Since only the negative energy continuum is originally occu-
difference between the two types of distributions arises fronpied, this necessarily increases the total energy of the
the different ways of their transformations under charge conbaryon-number-one system. Because of energy degeneracy

jugation. of all the configurations attainable from the above configu-

As was explained in the previous paper, the starting pointation under the spatial rotation or the rotation in the flavor
of our theoretical analysis is the following path integral rep-SU(3) internal space, a spontaneous zero-energy rotational
resentation of a matrix element of a bilocal and bilinearmode necessarily arises. We also notice the existence of an-
quark operator between the nucleon state with definite mosther important zero mode corresponding to the translational

for the unpolarized distributions, and

mentum: motion of the soliton center. As in the previous paff&r 8],
the translational zero mode is treated by using an approxi-
(N(P)|/"(0)0,4(2)IN(P)) mate momentum projection procedyud the nucleon staje
1 which amounts to integrating over all the sH#tof the soli-
:ZJ d3x dSyefiP‘xeiP-yJ' DU ton center-of-mass coordinates,

T T (N(P)|¢"(0)O,h(2)|N(P))
T T T
X J DyDys JN(E,x)w <0>oa¢<z)JN( —z,y)
HJ d*R(N(P)|#"(0,—R)O,4(z,2— R)|N(P)).

, (6) (12)

Xexr{if d*xL(x)

where On the other hand, the rotational zero modes can be treated

o by introducing a rotating meson field of the form
L=y[iH—MU5(x)— AmP] ¢, (7)
Vs — s t

with U7s(x) = exdiyshama(X)/f ] being the basic Lagrangian U =AM U IA'D), (12

of the CQSM with three flavorgl,2]. Here, the mass differ-

enceAmg between the strange quark and nonstrange quarlééy

is introduced with use of the projection operator

hereA(t) is a time-dependent §8) matrix in flavor space.
key identity in the following manipulation is as follows:

. 0 0 O Ylib—MUYs(x) — AmPlo= (i d—H—AH—Q) Y,
P5:§_ﬁ)\8: 0 0O (8) (13
0 01 where
for the s-quark component. The quantity Ua= AT (14)
AT 3
1 {fy i}
INC) =Ty €N Ny 1 (X) g p (X)) .V

N.! YTT5:33; 791’1 ENNG @

c 3 H=——+MBU(x), (15)

©)
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1 1 for quarks, whereaaH is the SU3) symmetry breaking
AH=AmgPAT(t)| = — —=N\g | A1), (16)  correction toH. The quantity() is the SW3)-valued angular
3 \/§ velocity matrix later to be quantized in an appropriate way.
. . At this stage, it is convenient to introduce a change of quark
Q=—iAT()A1). (17

field variabley— i, , which amounts to getting on a body-

) . o ) fixed rotating frame of a soliton. Denoting, anew ¢ for
HereH is a static Dirac Hamiltonian with the background- notational simplicity, the nucleon matrix eleme(8) can

pion field Ug5(x), playing the role of mean-field potential then be written as

(N(P)|¢T(0)Oa¢(z)|N(P))=%F{f}F{g}*J d3x d3ye—iP-XeiP~yf d3Rf DAmeexp[if d*yf(io,—H—AH

N N
c T T C
~0)y|11 A(g) wfi(g,x) ¥1(0—RIAT(0)OaA(zo) (20, 2RI
x|yl ! A’ ! 18
Performing the path integral over the quark fields, we obtain
(N(P)[4(0)0a(2)IN(P))
_ ey fd?’x d3ye’ip'xeip'yf ngf pal (T lo_Rr [AT(0)0,A(z0)]
z ¢ i\27ig—H-AH-0[" 7/ o) lys
R ! ! Ti R ! 0,—R)AT(0)0,A
NP RGmrar-a T2 TP R mA s a |0 R)A(90AR)
1
T i T ﬁ T i T
2N —H-an—-0| 27 L[ | 2% io—H-—an-q| 27 .
1 i
XexgN:Splogidi—H—AHQ)], (19

with T =T A(T/2)]Ne, etc. Here Tr is to be taken over spin-flavor indices. Now the strategy of the following manipula-
tion is in order. As in all the previous works, we assume that the collective rotational velocity of the soliton is much slower
than the velocity of internal quark motion, which provides us with a theoretical support to a perturbative treattheSirice
Q is known to be af©(1/N.) quantity, this perturbative expansion{ihcan also be taken as aNJ expansion. We shall retain
terms up to the first order i2. We also use the perturbative expansiodimg, which is believed to be a small parameter as
compared with the typical energy scale of low energy QCBL(GeV).

Applying this expansion to Eq19), we obtain

(N(P)[¢(0)0,(2)IN(P)) = (N(P)| #'(0) O4h(2)[N(P))**
+(N(P)|¢/(0)0aui(2)IN(P)) 2"

+(N(P)[¢"(0)Oa¢(2)IN(P))* s+ - - . (20
To be more explicit, they are given by

(N(P)|"(0)0,41(2)[N(P))*°

1~ ~, 4 o ~ T [ i T
— —rifir{ae} 3 3y iP-XalP-y 3 _ _ _ o
ZF r chd x d°ye e fd Rj DA(Oa)yﬁ[ f1<2’xi<9t—H‘o' R>H<zo,z R TG —H 2,y> o
. N
Yan o) e o), I, (e 2
— ( 25,2—R|: — e E —-=y =, X| = —-=y
I
xex;{NCSplogmr—H)HEJ dit}, (21)
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(N(P)|(0)0,41(2)IN(P))*

1~  ~ . )
=Zr{f}r{g}TNc f d3x dPye P xeiPy f d°R f DA| f d3z" dzi Q,5(25)[AT(0)0.A(Z0) 15

z(’),z’> <z{),z' 0,—R> <zo,z—R
apg v

i T
i9,—H io—H| 2" .

1

i T
I&t_H _§1y g
1

z(’),z’> <z(’),z'
ap
0,— R>
Y

i T
—_— 0,—R> Zy,2—R| ; ——,y> Z5,2—R
y 5< Ic?t—H 2 gl*b‘

T i T
R =1y
i 9j

|(9t_H

Io"t—H

0- R>
Y

ex;{NCSp logid,—H)+i Iif dit}, (22

and

(N(P)|#"(0)0,44(2)|N(P))y~™s

1~ ~ ) .
=Zr{f}r{9}TNCJ d3x d3ye*'P'Xe""yJ d3RJ DA fd3z’dz()iAHaB(z(’,)[AT(O)OaA(ZO)]ya

T i 0_R R i T
|\ 2% T 227N 5 —h| 2Y
y 4 9

0 zé,z’> 25,7
idi—H a,8<

|5t_H

N T i 0-R R i L L i T T [ T
fl E,X|(9t_H ’ ZO,Z |(9t_H ZO’Z ZO,Z |(9t_H E,y f]_ E’X |(9t_H E,y
(<] 91
v 6 ap
X R I ’ ! ! / O R ﬁ T ! T
20: 2Rl —H |70? 22 g H | |\ 2 ie-H| 2
g.
) ap Y )
I
Xex;{NcSpIOQio"t—H)Jrizf Q2dt|. (23
We shall treat these three contributions to the PDF in separate subsections below.
|
A. 0(Q° contribution to PDF HamiltonianH, satisfying
Although we do not need any essential change for the Hm)=E/m). (24

derivation of theO(Q°) contribution, we recall here some
main ingredients, since it is useful for understanding the fol-

lowing manipulation. We first introduce the eigenstdi®$  The spectral representation of the single quark Green’s func-
and the associated eigenenergieg of the static Dirac tion is then given as
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<xt L t,> A0 =(1),f (), 32
19— H g with the definition
ottt E —iEmp(t—t") / N¢
=o(t—t) 2 e AXIMY(MIX) g f=Myo | 2 =2 [(nl(1+9°%%)8,In). (33
m>0 2 \is0 >0
—(t' 1) >, e Entt) (x{my(m|x')g. Here and hereafte{O)g should be understood as an abbre-
m<0 viated notation of the matrix element of a collective operator

(25) O between a baryon staB(mostly, the spin-up proton state
with appropriate quantum numbers, i.e.,

Using this equation together with the identity
<Z— Rl _ < _ R|eip-z (26) <O>BE f \I,g(n'l)'i;l]s[ gA]O[gA]‘Pg(n‘I)'B;JJS[fA]dgA .
(34)
with p being the momentum operator, we can perform the )
integration overR in Eq. (19). The resultant expression is N the flavor-nonsinglet case 3 or 8),

then put into Eq.(18) to carry out the integration ovex,. = 4 0 3\ 0. 3
This leads to the following expression for the quark distribu- Oa=A AL+ YY) =Davhp(1+ 777, (35

tion function: we have
(00 = | WL 5, [EAOOLENW Ny 5y [ €ldé Ne
qix YTT3i935L5A AT YTT3:0J5L SATESA O@[£A]=DapMn5-| 2 — 2 [(nINa(1+9°9%) 8, n)
2 n<0 n>0
(27)
0) . o . . N
Here O[] EanO(Q ) effective operator given by :DaSMN?C<n§O _nzo )(nl)\g(l+y°y3)5n|n>
OO E]=My— | 2 =2 [(n|Oa8(xMy—Eq—pa)In).
210 VR S L TE RS PATS
(28) B \/§ N 2 n<0 n>0 ’y 7 " '

Note that it is still a functional of the collective coordinates (36)

én that_ specify t_he orientation of the h_edgehog soliton i_n th%ere, we have used the generalized hedgehog symmetry of
collective coordinate space. The physical baryons are identyo ¢|assical configuratio10). This then gives, fora
fied as rotational states of this collective motion and the cor_4 4. g

responding wave functions are denotedB§Y .55 [£al,

which belongs to a S(3) representation of dimensianwith (@) /v 10y _ | a8
relevant spin-flavor quantum numbers. Using the standard AP0 = J3 F(x). (37)
Wigner rotation matrixor D function) of SU(3) group, they P
are represented as Turning to the longitudinally polarized distribution, we take
(n) —(_—1)JtJ (n) ~
\I’YTTB;JJ3[§a] (-1 3\/ﬁD,u,v(§a) (29 OazAT)\OA(l-I- 'yo'ys) Y5= Y5+ 23, (38

with u=(YTT3) andv=(Y'=1,J;). In the present study, for the flavor-singlet case, so that we find

we are interested in the quark distribution functions in the (v 40

nucleon, so that we can s¥&=1 andT=J=1/2. Ag(xQ7)=0. (39)
The general formula can now be used to derive som

more explicit form of theO(Q°) contribution to the quark

distribution functions. We first consider the unpolarized dis-

tributions. For the flavor-singlet case, we take

©On the other hand, for the flavor nonsinglet case we obtain

Oa=A™NA(1+7°9%) ¥5=Daphp(¥5+33).  (40)

Buo=ANALT YY) =145, (@30 "o OVes
) N
so that we find that o<a>[§A]=MN7°( > -2 )<n|Dabxb(y5+23>6nln>
n<0 n>0
N
o<°>[§A]=MN7°( 2 - )<n|<1+y°y3>6n|n>, N
=t =DasMy5| 2 — 2 [{nINs(ys5+323)8,In).
(31) 3 n<0 n>0
: - . (41
with the abbreviationd,=6(xMy—E,—p3). This then
gives We therefore have, foan=3 or 8,
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Aq(a)(X;QO):<_D33>pTg(X)! (42) soliton configuration followed by the SB8) symmetric col-
lective quantization. In the absence of satisfactory resolution
with to this problem, they advocated to use a phenomenologically
favorable procedure, which amounts to dropping some theo-
N retically contradictory terms by hand. In the present study,
9(x)=-M N7<n§o _nZO )(n|)\3( ¥s5+23)6yln). we shall basically follow this procedure. As we shall discuss
(43) below, however, the operator ordering problem is even more
complicated in our study of quark distribution functions,
since we must handle here quark bilinear operators which are
nonlocal also in time coordinates.

There is some controversy in the treatment of @{g)?) In our formulation of theO(Q?) contribution to the dis-
term in the CQSM. The dispute began after our finding of theribution function, the ordering problem arises when han-
novel 1N, correction(or more explicitly the first-order ro- dling the product of operators
tational correction in the collective angular veloci}) to
some isovector observables such as the isovector part of the Q5(2p)[AT(0)0,A(Z0) 15, (44)
nucleon axial-vector coupling consta@f’) or the isovector
magnetic momeni, -, [14]. We showed that this new 1},
correction, which is entirely missing in the theoretical frame-
work of the intimately connected effective meson theory, i.e.,
the Skyrme model, plays just a desirable role in solving the Q.42 [AT(0)0,A(20)],6
long-standingg, problem inherent in the soliton model

B. O(Q1) contribution to PDF

in Eq. (22). In the previous paper, we adopted the ordering

based on the hedgehog configuratid4,15. According to —[6(25,020)+ 0(26!ZO10)]Qu[36y5+[0(0120126)
Schechter and Weigéll6,17], however, thisO(Q?) contri-

bution originates from the ordering ambiguity of the collec- + 0(20,0,26)]6Y@QQB+ 6(0,z4,2p)

tive operators and it breaks ti@parity symmetry of strong .

interactions. We agree that the operator ordering ambiguity is X(0a)y srA, QapAs st 0(20,29,0)
unavoidable when going from a classical theory to a quan- t

tum theory. A different choice of ordering would, in general, X (Oa)v’é’Aé’@QaBAw ' (45)

define a different quantum theory. It was shown, however,
that the existence of this ne@(Q?) contribution is a natural
consequence of a physically reasonable choice of operat
ordering that keeps the time order of the relevant operator.
and that thisO(Q') contribution tog$® is nothing incom-
patible with any symmetry of strong interactions including
the G-parity symmetry{18—-20. We also recall the fact that
this time-order-keeping quantization procedure is nothing ex- Q. 5(Z)[AT(0)0,A(20)],5
traordinary in that it gives the same answer as the so-called

grecause it is a procedure faithful to the time order of all the
relevant collective operators. In consideration of the exis-
ence of operator-ordering ambiguity in quantization, we use
here a somewhat simpler ordering procedure specified as

cranking approach familiar in the nuclear many-body theory —[6(z4,020) + 6(2612010)]Qa[36y5+[0(0!20126)
[19]. [Alkofer and Weigel also claimed that the nex?)

term breaks the celebratépartial conservation of axial vic- +0(29,024)10,5Q g+ 0(0,29,20) 3{Q 0, O 5
tor currenj relation[21]. Here we do not argue on this prob- 5

lem further, since our view is that this problem does not exist + 0(20,25,0)§{Qaﬁ OIS (46)

within the framework of the S(2) CQSM, as discussed in

Ref.[19].] Summarizing our understanding about this prob-

lem up to this point, the ordering ambiguity of the collective The difference between the new and the old quantization
operator, in principle, exists, but a physically reasonablegrocedures turns out to be tl‘@fgl,) term in Eq.(67) of Ref.
time-order-keeping quantization procedure leads to the dg8] is absent in the new procedure. The operator-ordering
siredO(Q") contribution tog” , while causing no problem  ambiguity occurs also for the quantig{Q,0,},5 in Eq.

at least in the flavor S(2) version of the CQSM. However, (22), which corresponds to the first-order rotational correc-
Praszatowiczt al. noticed an unpleasant feature of the time-tjon arising from the nonlocalityin time) of the operator
order-keeping quantization procedure in the flavor(BU A*(0)0,A(z,). To explain it, we first recall the quantization

version of the CQSM22]. That is, it leads to nondiagonal yyle of the SU3) collective rotation given as
elements in the moment of inertia tensor of the soliton,

which may destroy the basic theoretical framework of the

soliton model. Since there is no such problem in the 23U 1

CQSM, the cause of this trouble seems to be attributed to the Q= EQa)‘a' (47)
incompatibility of the time-order-keeping quantization pro-

cedure with the basic dynamical assumption of the(33U

CQSM, i.e., the so-called trivial embedding of the (8J with

034006-6
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( 1 — 1 _
2 ~
IlQa_EAmsKlea (a=1,2,3 {Oa-Q}:m{Dab)\bO-‘]i)\i}'l'E{Dab)\boaJKkK}' (53
J,=—R,=¢ 2 where the summation over the repeated indices is understood
1,Q,— —=AmK,Dg, (a=4,5,6,7 with i running from 1 to 3, and witk from 4 to 7. To keep
3 compliance with the new operator-ordering proced#®e)
L J3/2 (a=8). explained above, we assume the symmetrization of the op-

(48)  erator products as

Here R, is the right rotation generator also familiar in the

1

SU(3) Skyrme model. Note that onlg=1,2,3 component of DavJe—2{Dap . Je} (54)
J,=— R, can be interpreted as the standard angular momen-
tum operators. In the above equatiohs,l, andK,,K, are JeDap— 3{Dap.Jct (55)
the components of the moment-of-inertia tensor of the soli-
ton defined by prior to quantization. This amounts to the replacement

Ne (n[xg|m)(m[xp|n) {0a. 0} {04,015, (56)

Iab= 5 _ ’ (49)
2 m=0,n<0 Em En with

N¢

Kab= 5" 2

2 m=0n<o En—

(n[xa|m){m|Xpy°In) - 1 1
E, ’ (50) {Oan}S:E{DabaJi}{)\ba)\i}+E{Dab,JK}{7\bv)\K}-
(57)
Now collecting all the terms, which are first orderih we
arrive at the following expression for th@(Q?!) effective

lap=diagly,11,11,12,12,12,12,0), (51 operator to be sandwiched between the rotational wave func-
tions as in Eq(27). It is given by

which reduce to the form

K.p=diag K;,K;,K;, K5, Ky, Ky, K5,0), (52
. o[ gx]=0"+0g)+0¢), (58)
because of the hedgehog symmetry. Settimg,=0, for the
moment, to keep the discussion below simpler, we obtain where
(1) Ne = ~
Ox’=Mn—- —=[(n[Oa( 8+ 8m) [M){m[ [ n) + (N[ Qm}(mM|O4( s + ) [M)], (59
2 m>0,n<0 Em En
o N 1 ~ ~
OB _MN_ - 2 — [<n|oa(5n_5m)|m><m|9|n>+<n|Q|m><m|Oa(5n_5m)|n>]= (60)
2 \m<On=0 n>0m>0 |Em—E,
|
while 1 _
€9 I— )
OC 4|1{Dab J}Z dX(nZO 2 )<n|{)\b!)\l}05n|n>
ow— - E > [(n|x;08,In) +i{D Jx > -
¢ 21, Ji 2 dX n<o0 >0 e 41, ab» 2 dX n=0 n>0
1 N.d — =
S DI YR WA X(0lhe OS] ©
2|2 2 dX n=<0 n>0
61
6 for the flavor-nonsinglet case. As was done in R84i, it is
convenient to trea®{? andO in a combined way, i.e., in
for the flavor-singlet case, and such a way that it is given as a sum of two parts, respec-
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tively, containing symmetric and antisymmetric pieces with

respect to the collective space operatdrg andJ. as
O +08)=0{Rs + O g - (63)

For obtaining the explicit forms 0D{?g, and Ofz)g,, we

will treat the two cases separately. First is the case in which

0O, is a flavor-singlet operator a@aza In this case, we
have

N
o) — _M.—3
{A.B} N4|1I m=all,n<0 m=all,n>0 '_En

X[(n[O & m)(mxi|n)+(n|xi[m)(m[O&,Im)],
(64)

OfRg=0. (65)

On the other hand, D, is a flavor-nonsinglet operator such
as0,=\,0, we find

m=all,n<0

Ofg =~ My Ne {Dab Ji}
’ 4| m=all,n>0

X n[<n|7\ba§n|m><m|)\i|”>+(n|?\i|m>

Em—E
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OfRg =

>

>0,n=<0

>

m=0,n>0

N¢
MN4| [Dab ‘]]( +

X

Em_En[<n|xb65n|m><m|m|n>—<n|m|m>

N
X (m|\pO8,In)]— MN4I

1
o |En—E

n[<nlxb65n|m>

[DabJK]

m>0n=<0

by

m=0,n>

X (m\|n) = (n[\|mY(m[X,08,n)]. (67)

We point out that these expressions also are not completely
free from operator-ordering ambiguities If we symmetrize

the order of two operator€ ,; and Oy,s in the f|rst and the
second term of Eq67), the antisymmetric terr®{ A g does
not appear from the first. A favorable aspect o} this symme-
trization procedure is that it does not cause an internal incon-
sistency of the S(B) CQSM, which was first pointed out by
Praszatowiczet al. [22] Unfortunately, however, it also
eliminates the phenomenologically welcome first-order rota-
tional correction t(g‘S) the sprout of which is contained in
the first term of Eq.(67). As repeatedly emphasized, the
presence of this novel N, correction itself is nothing in-
compatible with any symmetry of strong interaction. How-
ever it is not a completely satisfactory procedure, we there-
fore retain only the first term of Eq67) and abandon the
second one, which precisely corresponds to the symmetry-
preserving approach advocated by Praszatowical.

Now we consider the concrete case again. For the flavor-
singlet unpolarized distribution, we find there exists no

N,
X(mxsO )] =Mz~ 5 >(Pan.3d 0(QY) contribution, i.e.,
(0) 1y _
_ g¥(x,Q%)=0. (68)
| 33 e s | .
m=all,n<0 m=all,n>0 | Em—Ep In the flavor-nonsinglet case, tf@(Q!) contribution con-
— sists of two terms as
X(mixlny+ (i m(miAsOs )] (66) L
OM[£2]=0fRgy+ 0. (69)
and Here
Off)ay= 3{Dap RIMy 11" - [(Dh(L+ 50598, lm){mlng ) + (i fm)
ABT 2 17ab N | m=&fn=0  m=4Tn>0 | En—En bR =T YY) On ! '

0 3 1 Nc
X(M[\p(1+97y%) 8,n) ]+ E{Dab,RK}Merz

X{mng|n)+(nn e my(mINp(1+¥09®) 85 )]

n|Ap(1+ y°y3) 5, |m
m=all,n<0 m=all,n>0 Em_‘En[<| b( Y 7) n| >

3
Myl N,
= D.i R — — nInImYmn(1+ v°93) 8. n
S (Du RIT" 3; . (2 m:a..,n>o)Em—En< I Im) (L5 455 81ln)
! My N 1
N
+ > Dk Rd——5| 2= - X —=(n|\g|m)(m|X4(1+y°¥®) 8,/n). (70)
= 2 2 m=all,n<0 m=all,n>0 Em En
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In deriving the last equality, we have made use of the generalized hedgehog symmetry of the static soliton configuration. The
explicit summation symbol for the repeated indices has been restored here for clarity. For the second contriditipéath
we have

3
11 N. d
0F’=- E{DBH iz 5 2, 7 d| -

NN ImYymiN (14 92 93) 84 n
o> ma|‘n>0)Em_En< I (L 4979 8,ln)

7

1 N, d
- 2 {DSK !RK}2| ? d_( El,nSO _m=all,n>0 )Em_ En<n|)\4|m>
X(m|\g(1+9°9%) 8l n). (71

Here, we have used the identities

3
1
3 2ty NI L7y 81l = 3 (nl(2+ %) Srlm) (72
and
0.3 1 0.3
(NI gmy(mA4(1+ 923 8 n)=5 > (n[(1+9°%°%) 8,/n). (73
m=al.M(n) 2 )

Here and hereaftek, ), stands for the summation over the 1 13
third component of the grand spin of the eigenstatdhe ki(x)= MNT >3 E
second identity can be proved as follows: 1 1=

x{n|x |m><m Nj(1+ y0y3)< On 15') n>
j j “E 5%
> (g my(mINa(L+ ¥ 5iln) Em~En 2
m=all,M(n) (76)
_ 2 0.3
PR AL and
=> —>\8+E>\3 (1+9°y%)8,|n 1 N,
o) 237 2 " K()=Myg——| >~ (n|X4m)
2|2 2 m+all,n<0 m=all,n>0
_ 4043 S 1
n%>< (3 2\/—\f Ay > ><<m>\4(1+77)( - £ 3%n). @D
S OR LR RN 74
2 \i(n) VYol Here we have used the notatiéh= §(xMy—E,—p3) and

=" (xMy—E,,— p3). Turning to the longitudinally polar-

. . . . 1 . .
where the generalized hedgehog symmetry is used agail%ed distributions, theO({)") contribution to the flavor-

Now combiningog,ﬁ),B} andogl) terms, thed(02) contribu- singlet distribution consists of two terms as
tion to the flavor-nonsingleta(=3 or 8) unpolarized distri-

bution function can be expressed as O(l)[fA]:OE/%\),B}JF oW, (79)
3
a0 <2 {Da.,R}> ky(%) where
p
7
Ol g =—233My— —~
+<§=:4 {DaK,RK}> kZ(X)1 (75) (A8 ° N4|1 m=é%;nso m=all,n>0
p
x E (n[Ng[my(m|(ys+23)8,[n) (79
n

with Em—

034006-9
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and N
e(X)ZMNﬁ > - > ><n|)\3|m)
(L3 d N 2 (nnalm) 1\ m=all,ln<0  m=all,n>0
O¢’=2)3 - ar - n|Agm
¢ 3dX 8l 1 \ m=all,n<0 m=all,n>0 3 5n
x{mi(ys+2a)| g=—g—5%]||n)- (82
X(m|(ys+23)8nln). (80 m~En
Combining the two terms, we have The O(Q') contribution to the flavor-nonsinglet polarized
AGO(x: QY = (233} e(X), 81 distribution is a little more complicated. It generally consists
060 ={(2)a)prelx) (81 of three terms, i.e Q{Yg, ,O{Rg; ., andOL . Using the two
with identities,

= [(nNe(ys+ ) Sylmymin[n) +(n|x m)(mig( va-+ 23) 57/m)]
m=all,M(n) Em n

1
=6pelis ———=2(n|\g|m)(m[\g(y5+23) 8,/ N)
m=amM(n) Em—Eq
2 sada S S TEESRPATS! (83)
=— - ————(n|Aslm){m n
\/§ b8 |3m:a”’M(n) E.—E, 3 Vs 3)On
and
= [(n|sCys+ 2) Solmy(mi )+ (]| m)(mINg(va+E9) 5,/ ]
m=all,M(n) Em n
=4d3, > —=(nI\glm}(m\4(y5+23) ,In), (84)
m=amM(n) Em—En
we obtain

(n[Nglm)(m|(ys+33)8,[n)

1 N
OFg == —=>{Dag. Jg}My -
AB} \/§2{ a8 3} N4|1 mza?l,nso m=all,n>0 Em_En

(n[Nglmy(m[\4(ys+23)8pln). (89

4d 1{D JM h >
SKK o 1= aks-K N4|2 m=aln=0 m=amn>0 | Em—Ep

Next, theOY") term is given by

1 N. d
1H_— ¢ = _ )
O¢ _Z{DaC’J'}Sll dX(nZ’O nZO )<n|{)\m)\|}(7’5+23)5n|n>

1 N. d
+ 5{Dac Il d_x@o -2 )<nl{xc AH(v5+23) 34ln), (86)

wherei runs from 1 to 3, whileK runs from 4 to 7. To rewrite this term, we use two identities,

2
%) (nl{xc N} (yst23)6,n)= ﬁ5c86i3m:a;w|(n) (n|xglm)(m|(ys+23)6,/n) (87)
and
%) <n|{7\cv)\K}(75+23)5n|n>:4d30Km:a” ) (NN glm)(mM[\4(ys+23) 8y/N), (89)

which will be proved in Appendix A. We are then led to
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0= 2 3 1Dun el S S Jdmm et s s
+4d3KKE{D(a8K) :JK}& i( > - )<n|)\4|m><m|)\4( Y5+ 23) 5[ n). (89
2 8l, dX\ m=amin=0 m=amn>0
Combining theO{)g, andOf) terms, we obtain
21 1
Offey + OF'= 75 5{Das.Js] () + 4 5 {Darc I}, (90

wheree(x) is defined in Eq(82), while s(x) is defined by

Na(ys5+23)

S(X):_MN% > - > )<n|)\4|m><m

m=all,n<0 m=all,n>0

S, 1
———25"||n). (91)
E,—E, 2

The remaining antisymmetric term, which is already familiar D.s 3
in the SU2) CQSM, is given by q@x)={ —=) f)+{ > {Da.Ri}) ki(x)
3/, = )
Ofe; =~ Dash(), (92 7
+{ 2, Dak Rt | ka(x). (96)
with - P
N Using the proton matrix elements of the relevant collective
h(x)=—ieg; My oo I operators:
811\ m>0n=0 m=<0n>o0
1 V3
1 E— =
X =—=[(nI\j(y5+ ) 8,lm)(m|x;|n) (Das/\B)p=35:  (Pw/ =75, (97
m n
=(nInim)(miN; 75+ 22) 8ylm)]. (93 T A
<i21 {Ds; 1Ri}> =10 <§1 {Dsgi ,Ri}> =100 ©9
The O(QY) contribution to the flavor-nonsinglet polarized P p

distribution then becomes

7 7
AG®(x: Q1) = (=D 43)p (x) < 24 {Dsxk aRK}> p: % < 24 {Dsgk ,RK}> p: %5 (99
+ < 4é4 d3KK%{DaKaJK}> s(x) we finally arrive at
pT
_— q@(x)=f(x), (100
: E<E{Da8’%}>me(x)' o D00 =510+ Fka(0 + Hka(0), (109

At this stage, it would be convenient to summarize the com- 1 1 3

plete forms of the unpolarized and longitudinally polarized — —q®)(x)= —f(x)+ —=ky(X)+ =k,(X). (102

distribution functions up to the first order {n. First, for the V3 10 10 5

unpolarized distribution, the flavor-singlet distribution is

given by These three distribution functions are enough to give the
flavor decomposition of the unpolarized distribution func-

qO(x) =(1),f(x), (95  tions:

whereas the flavor-nonsinglet distributiors=(3 or 8) are

1 1 1
ux)==99x)+=q®x)+ —=q®(x), (103
given as (¥) =307+ 507(x) 2\/§q (x), (103
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M. WAKAMATSU PHYSICAL REVIEW D 67, 034006 (2003

1 1 1 where
400 = 3600~ 5400+ =d 0,
243 (104 q©@(x)="1(x), (118
1 1 a®(x) =ky(x), (119
s(X)= gq(o)(x)— ﬁq(g)(x)- (105

with f(x) andk,(x) being the same functions as appear in
, : .. the SU3) CQSM.

i T?e f'?t moment sum tru(ljes .Iﬁrt:}he uanIarlzett)JI distribu- Next, theO(Q°+ Q1) contributions to the longitudinally
1on functions are connected wi € quark-numboer Conser|50Iarized distribution functions can be summarized as

vation laws. The verification of them is therefore an impor-
tant check of the internal consistency of a theoretical

@) (x)=
formalism. We first point out that the three basic distribution Ag™(x)=(233)pe(x), (120
functions of the model, i.e.f(x),k;(x),ko(x), satisfy the . S
sum rules for the flavor-singlet distributions, and
fl f(x)dx=3 (108 AG@(0)=(~Daghpi[g(¥) +h(x)]
_1 ! 7
1
1 +<4K24 d3KK§{DaK,JK}> S(X)
f ki(x)dx=1, (107 Pl
X 2 Dag,J 121
1 "’ﬁ E{ as:J3} | €(X), (123
f Ko(X)dx=1. (108
-1

for the nonsinglet distributions. Using the matrix elements of
Using Egs.(100—(105 together with these sum rules, it is the relevant collective space operators between the spin-up

an easy task to show that proton state,
1
O)(x)dx— 7 V3
f—lq (x)dx=3, (109 (—Dawp=35 (~Dedpi=3p
fl q®(x)dx=1 (110 ! 7 ! J3
-1 <4E dsKKDsKJK> =15 <42 d3KKD8KJK> =15
K=4 pT K= pT
1
® =1 111
J - (x)dx=1, (111 3 3
<D38J3>pT:E! <D88‘]3>pT:%v
and (122
1 1 — .
f U(X)dX=f [u(x)—u(x)]dx=2, (112 ~ we obtain
-1 0
1 1 Aq@(x)=e(x), (123
f d(x)dx=f [d(x)—d(x)]dx=1, (113
-t 0 Aq®(x) = 35e(x) + 56[g() +h() ]+ f5s(x), (124
1 1 _
fﬁls(X)dX= fO[S(X)—S(X)]dX=0, (114 L a® 0= Lt - hooe -
NE q(x)= 75800+ 35[0 +h(}) ]+ 3z5(%).
which are just the desired quark-number conservation laws. (125
Incidentally, the unpolarized distribution functions in the
SU(2) CQSM are given in the following form: In terms of these three functions, the longitudinally polarized
distribution functions with each flavor are given by
u() =799+ 39®(x), (115
1 1 1
d()=329x) - z9®(x), (116) AUGO = = AgO(x) + = Ad®@(x) 4+ ——— Ag®(x
(0=340000+ 584900+ S==AqO00),
s(x)=0, (117 (126
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Ad(x)_lA Ox)— S Ag® L ag® _1 L2 K
=344 (x) 2Aq (X)+2\/§Aq (), Qaﬂ—zﬂa()\a)aﬁﬁz |1+ \/§Ams|1D8| (Ni)ap
(127
1 1 +%(‘:—:+ %Ams%DgK (A ap (134
As(x)= 5Aq<0>(x) - ﬁAq(B)(x). (128

brings about terms proportional to the mass differehog, .

For comparison, we also show the corresponding theoretic jhis SU3) Symmetfy breaking correctiqn, .WhiCh comes
formulas obtained within the framework of the G rom the Amg correction to the S(B) quantization rule, will

CQSM: be called the “kinematicaA mg correction.” The third cor-
rection is brought about by the mixing of the &Yirreduc-
Au(x)=21Aq@(x)+ 1Aq®)(x), (129  Ible representations, describing the baryon states as collec-
tive rotational states. Since this mixing occurs also at the first
Ad(x)= %Aq(O)(XH_ %Aq(3)(x), (130 order inAmg, we must take it into account. This last &)

symmetry breaking correction will be called the
“representation-mixingAmg correction.” In the following,

As()=0, (133 we shall treat these three corrections in order. The answer
where will be given in the form
Aq(x) = e(x), gy A06AMd
AqP(x)=3[g(x)+h(x)]. (133 :f P 0, EAIOC™LEAT Yy 1 5o €] dén,
We recall here that, as a consequence of the new operator- (139

ordering _procedure gdopted n t.he present paper, one NOlGihere the effective collective space operator consists of three
worthy difference with the previous treatment arises, con- ;

arts:
cerning theO(Q') contribution to the isovector distribution P
Aq®)(x). Namely, the[Au(x)—Ad(x)]f;,)+C term in Eq. O(Ams)[gA]:oéAyf:s)Jroﬁnms)JrOEé;ns)_ (136)
(114 of Ref. [8] is totally absent in the new formulation

here. We shall numerically check that the effect of thisFirst to evaluateofjir:s) by using Eq.(23), the ordering
change on the final predictions for the longitudinally polar-
ized distributions is very small. AHQB(Z{))[AT(O)OaA(zO)]y,;

Similarly as in the case of the unpolarized distributions, ~
we can write down the first-moment sum rules also for the —[6(25,020)+ 6(2,20,0)]JAH 50,5
longitudinally polarized distributions. No exact conservation ~
law follows from these sum rules, however. As a matter of +[6(029,29) + 6(29,020)10,5AH 15

course, this does not mean there is no useful sum rule for the
spin-dependent distributions. For example, the celebrated
Bjorken sum rulg 23,24 for the isovector part of the longi-
tudinally polarized distribution functions has an important

pher_lomeno_log|cf';\l significance, although_ It Is not a sort Ofis used in conformity with the rulé46). After carrying out
relation which gives an exact conservation laws for som

quantum numbers Ghe integration over the variabl&z',z} and overz,, we are
' led to the following answer for the dynamicAlmg correc-
tion:

+0(02),20)5{AH 5,0,

+0(20126:0)%{AH11,81675}1 (137)

C. Amg correction to PDF

Our strategy for estimating the $8 symmetry breaking @amg_ _ N&(
effects is to use the first-order perturbation theoryAimg, 2
i.e., the mass difference between g@ndu,d quarks. There _ -
are several such corrections that are all first orde ins. X[(n[AH[mM){m|O&,|n)+(n|O 8, m)(m[AH[n)],
The first comes from Eq23) containing the S(B) symme- (138
try breaking part of the effective Dirac HamiltoniaH ;.

Following Ref.[25], this SU3) symmetry breaking correc- \where©=A\,AO and

tion is hereafter referred to as the “dynamiciaing correc-

m=all,n<0 m=all,n>0 ) Em—En

tion.” The second correction originates from the te(g), 1 1 1 1
which is first order inQ, if it is combined with the quanti- AH=Amg A" 37 T?\s A=Amsy°(§— TDSC)\C :
zation rule(48) of the SUS3) collective rotation. In fact, one 3 3
can easily convince that the replacement (139
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In deriving the above equation, we have used the fact that the collective operators contaire@mO commute with each
other.
In the case of flavor-singlet unpolarized distribution, the above general formula gives

N
(Amg) c
Oayn™ =~ Mn

> - 1

Amg(n|(1—+/3Dg\¢)¥°|m
m=all,n<0 maII,n>O)Em_En3 S[< |( \F 8 C)y| >

X(MI(L+5°y%) 8afn) + (Nl (1+ y9®) 8 m)(m| (1~ V3Dgchc) ¥ )]

1 N, 1
- §AmSMN?( m=all,n<0 _m:all,n>0 )Em_ En[<n|(1_ \/§D88}\8)70|>
X(m[(1+ %) 8,/n) +(n|(1+ ¥°¥®) 8, m)(m|(1— V3D gghg) ¥°|N)]. (140

Using the generalized hedgehog symmetry, we therefore arrive at
q@(x:Am'") = — $(1—Dgg) Ayl 1Ko(X), (141

with

(n[y°Im)(m|(1+1°y?) 8,|n). (142

— 1N
Ko=——| > -
o(X) I, 4 (m—all,nso m=all,n>0 )Em_ En

Next we turn to the flavor-nonsinglet unpolarized distributioas@ or 8). The general formulél40) gives

N 1
(Amg c 0 0.3
O, Y=—My—= — — =AmJ(n|(1—/3Dg my(m{D gp\p(1+ Syl
dyn NS (m=§ns0 =0 )Em—En3 s[< |( \/— 8c c)')’| >< | abMb( YY) n| >
+<n|Dab)\b(l+707’3)5n|m><m|(1_\/§D8c)\c)7’o|n>] (143
1 N 1
= — ZAmMMy = 2 |=—=A{Da[(n[¥’Im)(m[xp(1+ y09%) 8y )+ ([N p(1+ y0¥%) 8, m)
3 2 \ m=alln=0 m=amn>0 |Em—Ey

X(m[°|n)]— v3DgeDap{N|A eyl MY(MIXp(1+ ¥°9%) 85| n) = V3D apDge( NN p(1+ ¥09%) 8 my(m[Ac»°|n)}. (144

It is easy to show that the contribution of the first term of Elgl4), (i.e., the term proportional tB,,), to q(a)(x,Amgy”) is
given by

4Amyl, [ Dg\ —
- Ko(X) (145
p

3 J3 .

with ko(x) given by Eq.(142). The manipulation of the remaining two terms is a little more complicated. First, we notice that,
sinceDg, andD,, commute, we can write

D8cDab<n|)\c'yO|m><m|)\b(1+ 7073) 5n| n>+ DabD8c<n|)\b(l+ 70')’3) 5n|m><m|)\c'yo|n>
= %{DabaDSC}[<n|)\b(l+ 7073) 5n|m><m|)\c7’o| n>+<n|)\c'yolm><m|)\b(l+ 7073) 5n| n>] (146

We now consider the two parts separately. For the parts where the itdacek: run from 1 to 3, the diagonal matrix element
of D4,Dg. between the spin-up proton state can be expressed as

_ 1 1
(DapDge)pi”™ 2% PA"=(D 43D ) p1 8,30c.3+ Z<Da,1+i2D8,1—i2>m5b,1—i25c,1+i2+ Z<Da,1—i2D8,l+i2>pT5b,l+i25c,1—i2-
(147)

Noting the equalities
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(Da1+i2Dg1-i2)p1 =(Da1-i2Dg1+i2)pt =2(Da3Dsg3)pr » (148
we can prove that
(DapDec)py ™ 2 PA"=(D43Dga)pi (Sp 1361+ p,20c.2 Sp30c.3)- (149

Using a similar relation for the product of operat@g.D,,, we then get

3

_ 1

({DapDgc})p 2P~ §< 2 {DaiDSi}> (8510c1+ 82002+ Fp.adc.2)- (150
- )

This relation is then used to derive the equality,

3

DRI T RIS I S L (Lt 53 s my(miney®ln)
b,c:l2 ab=8cl/pt 2 m=all,n<0 m=all,n>0 Em_En b " ¢

+(n|x Yo m)(mXp(1+5°¥) 5n[n) ]
. 1< Ne 1 0 0,3
- ;1 {D.i,Dgi} 3 21 7<(m§n<o P >>E s (nIN Y my(mIN (14 y7y°) 65ln). (151)
p ,N= m=all,n> m n

31
Next, for the parts wherb andc run from 4 to 7, we use the identities

> (P Im(mAa(L+ 92y s Iny= D (n[nsy?m)(mINs(1+7°y%) 8,ln)
m=all,M(n) m=all,M(n)

= > ) (NN’ Im)(m[Ng(1+ 90 85l n)

m=all,M(n

= 2 (A mymIay(1+9°9%) 8, [n). (152
m=all,M(n)

Using these relations, we find that

7

1 N,
2 §<{Dab1D80}>pT7( -

bic=4 m=all,n<0 m=all,n>0 ) Em_ En

X[(nNp(1+5%%®) Salm)(miXcy?Im)+ ([N ey m){mhp(1+ y7¥°) 8aln)]

! N, 1
=<K24{DaK,DgK}> 7<m§n<o— P> O)E — (M Imi(ma(L+9°9%) 3iln). (153
pT ,N= m=all,n> m n

Now combining the above three contributions, the dynamiaal, corrections to the flavor-nonsinglet unpolarized distribu-
tions can be written in the form

4Amyl; [ Dag\ -~ 2Amgl, | & - 2Amgl, | <& -
a®0GAmY ) = - —=—( — ko<x>+—s<2 {Dai Da}t) ka(0)+—=—( 2 {Dax.Dex}) ka(x),
Bl o= pi EERLS pt
(154
whereky(x) is already defined in Eq142), while
N, 13 1
KiO=Myzoz 2 | 2~ X (|7l m)(m|X;(1+¥°%*) 84[n), (159
4'131:1 m=all,n<0 m=all,n>0 Em En
Ko(x)=M Ne - 0 1+9%°9%)6 156
2(X)=My X=——=(n[Ag¥’[m){m|X4(1+¥"y?) 5yn). (156)
4|2 m=all,n<0 m=all,n>0 Em En
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Next, we consider the longitudinally polarized distributions. The flavor-singlet part is easily obtained in the form

4Amgl 4
AqO(x;Amg") = — 7 <D83>DTe (157)

with

- N, 1
0=t 3= 3 e e immls S a) (159

The flavor-nonsinglet part is again slightly more complicated. From the general fofiida we get

N 1 1

(Amg) _ c
0] = — My— — — =-Am
dyn N2 (maIEI,nio m=all,n>0 )Em_ En3 °

X[(N] (1= V3D geh o) 2 IMY(MIDaphp( ¥5+23) 8aln) +(N[Daphp( ¥5+ ) Spln)(m| (1= V3Dgehe) ¥IN)]

1 N,
= — §AmSMN?

3 et s+ S 3

+(n\p(ys+23) 8p|my(m| ?’O|n>]_ \/§D80Dab<n|)\c')’o|m><m|)\b(75+23) 8nln)
~ /3D 4pD s N[Ap( ¥5+ 2 3) Sy m)(m[A 7%y} (159

<m=all,nso

Similarly as before, the contribution of the first tefproportional toD,,) to Aq(o)(x;Amgy”) is found to be

4A mS
——(Dag)p €(X), (160

with ‘e(x) given by Eq.(158. On the other hand, the remaining two terms can be rewritten in the form

1 AMM N 1
S m E— —
\/§ sTN 2 m=all,n<0 m=all,n>0 Em_En
1
XE{DabiD80}[<n|)\b(75+23)5n|m><m|)\c70|n>+<n|)\c'yo|m><m|>\b(75+23)5n|n>]- (161)

First by confining to the terms in which either or bothlméndc run from 1 to 3, there are only two possibilities to survive,
i.e.,b=8,c=3 orb=3,c=8. The contributions of these termsqéa)(x;Amgy") are found to be

4Amgl 4

£ (N7 Im)(mixs(ys+23)63lm)

N,
D M
< a3 88>pT LAV (m_alhnso m= aI ,n>0 ) Em

4A m.S

—g (s’ Im)(ml(ys+2g) 5iln). (162

LD aeDsdp Ml S
ag~83/p7 N4I1 m=all,n<0 m=amn>0 | Em

In order to evaluate the remaining contributions in whicendc run from 4 to 7, we use the identity
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m:a;M(n) (NIXgy°|m){MIN4(ys+33) S/n) = m:a;M(n) (nINsy°Im)(m|Xs(ys+23) 8,[N)

== ) (nI\gy°|m){m|Ng(ys+S3) 5,n)

m=all,M(n

== 2 (A Im(ms(ys+33)84In), (163
m=all,M(n)
together with the familiar relation
d344= d3s55= — d366= — da77= % . (164

This enables us to express the corresponding contributimﬁa{@(;Amgy”) in the following form:

2Amd, | < N,
4 dackDakD My
\/§ < 24 3KKMaKY 8K o N4|2

1
E.—E, (n|X4¥°|m)y(m|X4(ys+23)8pIn). (165

( m=all,n<0 m=all,n>0 )

Now, by collecting the various terms explained above, the dynamioa| correction to the flavor-nonsinglet longitudinally
polarized distribution functions can be expressed as

4Amgl 4Amgl 2Amyl !
1 ~ 1 ~ 2 ~
Ag@(x; AmP") = > <Da3(1_D88)>pr(X)_—S<Da8D83>pTe(X)_ (4> dakkDakDex | S(X),
3 3 J3 K=4
(166
wheree(x) is defined in Eq(158), while f(x) and's(x) are given by
T M Ne ! |Y°] [\ +33)6,
X)=—Mp— - n|°|my(m ny,
( ) N4|1 m=all,n<0 m=all,n>0 Em_ En< Y >< 3(75 3/%n >
- N, 1 ,
S(X)=—My7— > - —— (NN gy’ [m)(m|N4(ys+23) 6nln). (167
4|2 m=all,n<0 m=all,n>0 Em En

Next we turn to the kinematical mg correction, which originates from the first-order correction with respeatrig in the
collective quantization rul€48). Putting this rule into the operatét contained in Eq(22), we are led to a simple rule for

obtaining the kinematicah mg correction toO(k?nms), ie.,

Amst D8i y (168)

I 12Ky (169
21, "2 37 00, %
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Taking care of the fact that the collective operator containe@® icommutes withDg; as well asDg, we obtain

2 K N — _
(Amg) _ 1 c
O, ¥=—Dg—=AMm—My\— — n|OS&,|m)y{m|\;|n)+{n{\;m){m|O5,|n)],
== Da zAm, 4(2 )E £ [O105,|m)(mi, [ +¢nlx m)(m[Oay )
2 Ki N; d
+D8i_\/§AmSI1 7 —dx(né:o Z )<n|)\ O§|n> (170

for the flavor-singlet distributions in whicﬁazAT)\oA6= O. On the other hand, the flavor-nonsinglet part becomes

o™= _p,D -iAm ﬁM Ne > - [(n|A,O 8| mY(m|X{|n)+(n|\;|m)(m|X,08,|n)]
kin ab™8i \/§ S |1 N 4 m=all,n<0 m=all,n>0 Em_En b " : : b "
—D,,D iAm Ko e > - > [(N|ApO Sl MMM\ [n) + (N[N |MY{M[A,O S8, [N)]
ab=8K \/§ s |2 N 4 m=all,n<0 m=all,n>0 Em_ En b " K K b .
2 Ky N, d 1
+DastiﬁAmslljd—x(go —nzo)<n§{?\ i n>
2 K, N, d
+DabD8KﬁAms L2 d—)((go —ng < n| 5 {AO N} > (171

Here, the last two terms of the above equation are rewritten by using the relations,

_ _ 2 _
> (n{Ap \YOSINY =28 X (n|OS,InY+ —=Spediz > (N[A308,|n) (172
M) NI () J3 M)

and
2> (N[{Ap A }O8,IN) = 8y > (N[O, |N)+28pkdack > (NA308,In), (173
M(n) M(n) M(n)

which will be proved in Appendix B. We thus get for the flavor-nonsinglet case,

2 K N
(Amg) _ 1 c E
kin ab~'8i J3 s l4 Ng (mall,nso m=all,n>0

E En[<n|)\b65n|m><m|)\i|n>+<n|)\i|m><m|)\b65n|n>]

Je= X UAND s min - i)
all,n<0 m=all,n>0 m n

— 2Amg K, —
x<m|)\b05n|n>]+WED 8i g dX(;O nZ )<”|O5n|”>

Am Kz — 2Amg K4 N, d —

\/—S I DakDegk - 2 dx(nZ‘o nz )<n|05n|n>+ 3 > I ——DagD 83Zd_(2 2 )<n|)\305n|n>

2Amg K, _

\/§S E dakkDakDegk — 2 dx(nzo nE )<n|)\305n|n>- (174

Let us first consider the unpolarized case. From the general for(hild, it is easy to see that the kinematicam,
correction to the flavor-singlet unpolarized distribution identically vanishes, i.e.,

034006-18



LIGHT-FLAVOR SEA-QUARK ... Il ... PHYSICAL REVIEW D 67, 034006 (2003

q@x;AmE™ =0. (179
On the other hand, by using the identities
13
2 (A IaIm=3 2 > (nlmmi(1+9°9%) 6n)
=2 2 (n[hgmy(mina(1+ 9% 5iln), (176
m=all,M(n)

the kinematicaA mg correction to the flavor-nonsinglet unpolarized distribution can be expressed in the form

2Amdl, K 2Amyl, K
\/rg 1 l<2 {Dai,Dgi} > ky(x)— \/n% 2 2<2 {DaK,DgK}> Ko(X). (177

P p

q(a)(x Amkm) _

Herek;(x) andk,(x) are the same functions as appeared in (Z§).
The kinematicalA mg correction to the flavor-singlet longitudinally polarized distribution can similarly be evaluated as

4Am K N
A (0) A kiny _ D s 1M Ne _
e ms )= < 83>pT \/§ Iy N4 ng,so m=all,n>0
Xt alm)ml( e+ 35) i) + (D e 2 Be S hslm)
n m){m n — n m
Enm— < >< (75 > 83>pT \/§ |1 8 dX m=all,<0 m=all,n>0 < 3
A4Amgl 4 Kl
X(m|(ys+23)8n/n)= 73 < 83)p1€(X) (178

with e(x) defined before in Eq82). For the flavor nonsinglet piece, we obtain

_ 4Am Kl Nc
q(a)(xiAls(m):_ 3 - (Da8D83>pTMN 4( 2 -

m=all,n<0 m=all,n>0 )

X n<n|7\3|m><m|(75+23)5n|n>

E,—E

2,/3S : 7 d : : < |)\ | >< | ( ) |
E C C v n m)(mjA Y +23)8,n
|2 K=4 KK Zak=eK ol N 4 m=all,n<0 m=all,n>0 Em_En 4 475 3/%n >

2Amg K
3 |11<Da8 83pl 1 4 dx(z 2 )<n|)\3(75+23)5n|n>

2Amg K,

V3 12

To rewrite the last two terms, we use the identities

d
<E dskkDa KD8K> Zd_( > _ngo )<n|)\3(75+23)5n|n>- (179

pT

%) (nINg(ys+23) 6pln)= (nI\glm)(m[(ys+23)8p[n)

m=all,M(n)

=2 (n[Xgm)(mM[\4(ys+23)8p[n). (180

m=all,M(n)

kin

This enables us to expreg®) (x;Am&'™) in the form
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4Amgl; K, 2Amd, Ky |
q®(x;AmkiM) = TS (DagDga)pre(x)+ TS T, 4};_:4 dskkDakDsgk | S(X), (181
B p1

with e(x) ands(x) being the functions, respectively, defined <§ 2.3
{D3| ' 8|

! : 2
in Egs.(82) and(91). T 2 {Dgi .Dg}) =¢.
It is now convenient to express the dynamical and kine- p =

P
matical Amg corrections in a combined form. For the unpo- (187
larized distributions, this gives

4am, <é{o D}> 2. <é{D D}>
H m ~ L = _! L :_1
q(O)(X;Amgymkm): _ 3 s 1<1_D88>pko(x). “, 3K 8K ; 45 = 8K 8K ; 5
(182 (188
q(a)(x;Amgy’”ki”) while, for the longitudinally polarized case,
4Amgl, [ Dag\ ~ 2Amgl, 7 J3
3
~ Ky 2Amgl,
X{ > {Dg4i,Dgit) |Kq(x)— —kq(x 13 J3
<i—1{ . 8|}> ! Iy ' \/§ <D33(1_D88)>pT=__! <D83(1_D88)>pT=__'
P 90 30
7 (190
~ K,
X<i=§; {DaKaDSK}> kz(X)_Ukz(X) : (183
P 1
(D3gDga)p=— 25’ (DggDga)p1 =0, (191
while, for the longitudinally polarized distributions, we have
A (x; Am@ykiny ! 22\3
42 dakkD3akDsk | = — =2z
= 135
4AmSI 1
= ;3 ——=(Daa)pi| €0 — e(X) (184
! 2
, 4K§_:4 dskkDgkDsek ) = — 15 (192
Aq(a)(X;Amgyn+k|n) =
4A (D (1—Dagg))p F(X) Because the firstmoment sum rules for the unpolarized
83 88'/p1 distributions are connected with the quark-number conserva-
4 Amd K, tion laws and since they are shown to be satisfied at the
mS 1<Da8D83> B(x)— —e(x) leading O(Q°+ Q) contributions to the distribution func-
Pl tions, one must check whether the above(3lWymmetry
7 breaking corrections do not destroy these fundamental con-
_ 2Amdl, 2 d servation laws. To verify them, we first notice the relations,
\/§ 3KKDaKD8K
pT
1
~ K k -
x| 's(x)— |—23( )| (185 J_lko(X)dX 0, (193
2
We summarize below the necessary matrix elements of col- ~ 1
lective operators. For the unpolarized case, we need _1k1(x)dx= K (194
Dag) _ 1 Des :E (186) 1 K>
J3 . 30’ J3 . 10’ f_lkz(x)dx= T, (195
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with 14,1, andK;,K, being the basic moments of inertia of 6 1
the soliton defined in Eq$49)—(52). Combining the above c§7= — E( a— 67)'2, (203
relations with the similar sum rules fég (x) andk,(x), we
then find that
where
1. Ky Ky K;
f ki(X) — —kq(X) |[dx= ——-—=0, (196 —
-1 I 1 I 1 I 1 g K2
a= —N—+I— Ams, (204)
1] K, K, K, ¢ 2
f Ky(X) — —ky(X) |[dX= — — —=0. (197
-1 I2 o Iz K: K,
y=2|———|Amg, (2095
It is now evident from these relations that i 12
fl qO(x: AmYMKimygx=0 (199 with o being the scalar charge of the nucleon given by
tAmg ,
-1
1 . o=N n|»%|n). 206
f q(3)(x:Amgy”+k'”)dx=0, (199 ano< |7| ) (206
-1
1 The representation mixing correction to any nucleon observ-
f g®(x: AmPYMKIM gx=0, (200  ables can therefore be evaluated based on the formula
-1

which ensures that there is no contribution from the dynami-  (p1|0[p1)=(8,p1|0|8,p1)+2c35¢10p1|O|8p1)
cal plus kinematicahmg corrections to the quark-number N . 5
sum rules. +2¢3427p1[0|8,p1)+ O[(Amg)*].

Since the mass difference between thendu,d quarks
breaks SUB) symmetry, a baryon state is no longer a mem-yere  as for the effective operat@, we take the basic
ber of the pure S(B) representation but it is generally a 0(Q°+ Q1) operators, which can be read from E€@5) and
mixture of several S(B) representations. Up to the first or- (96) for the unpolarized distributions, while from Eq420)
der in_Am_S, it can be shown that the proton state is a lineargpq (121) for the longitudinally polarized ones. From Eq.
combination of three S(3) representation as (95), it is easy to verify that there is no representation mixing

)= |8,pT>+CT—O|E,DT>+C'2\‘7|27,pT>. (201) correction to flavor-singlet unpolarized distribution

Here, the mixing coefficients are given by q@0:AmEP)=0. (207)
N \/_g -t 1 | (202 On the other hand, the representation mixing correction to
10 15 272 the flavor-nonsinglet distribution is given by

— | D, — :
q(a)(X:Am;ep)IZCT—O{ < 10,pT’ 738 8,DT> f(X)+< 10,p7 241 {Dsgi ,Ri} 8:DT> k1(x)
7
— N Dag
+< 10,p7| 2 {Dak.Rk} S,DT> kz(X)] +2027< 27va’ 8,pT> f(x)
K=4 \/§
3 7
+ < 27p1| 2, {Dai.R} sm> k1<x>< 27p1| 2, {Dak R} 8m> ka(x)}. (208
Given below are the matrix elements of the relevant collective operators,
10 % 8p)=— i 10 % 8p)|= L
P \/§ P = 6\/§, P \/§ P = 2\/1—5' (209)
o 3 1 _ 3 3
10 D. RYS8pD)=—— 10 Dg,Ri}{8p)=———= 210
< P Izl{ 3is |} ,p> 2\/51 < P ;1{ 8i s |} vp> 2\/?3' ( )
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o 7 which ensures that the quark-number sum rules are intact by
<10,p >, {Dsk,R¢}|8p the introduction of the representation mixidgmg correc-
K=4 tions.
- Next, we consider the representation mixing correction to
A the longitudinally polarized distributions. The representation
<10,p 24 {DaxRuc}|8 p> (213 mixing correction to the flavor-singlet distribution is again
Zero, i.e.,
and
(0)(y- repy _
<27 D . > 1 <27 s > 1 Ag™(x:Amg")=0, (220
yp 1p = T yp p = - =
‘/§ 156 \/§ 5.2 while, for the flavor-nonsinglet distribution, we have
(212
3 (@)(y- rep
1 AQ'¥(x:Amg™")
27, D3 ,Ri}|8 —,
<p2{3.}p> o7 o
. =2¢75) (10,pT[Das|8p 1) —g(X) —h(x)]
1
<271p 2 {DSi |Ri} p> == (213) 4
i=1 5\/5 — 1
+<10,pT 4iZK d3KK§{DaKv‘]K} 87PT>5(X)
! 4
<27,p 2 {D3k,Rk}|8 p> _ﬁ' 1 >
+{ 10,pT| 5{Das,J3}|8, —e(Xx
7 pTz{ass} pT\/g()
27p| 2 {Dax R} 8P )=— 7= (214
< f +20} (27p1|Dasl8,p1)[ ~g() ~ h(x)]
Using these, we finally arrive at - .
qO(x: Am(*P)=0, (215 +<27m 4K§=)4 dak 5 {Dak I} 8,pT>s(x)
and 1 >
+{ 27p7| 5{Das.J3}|8.pT ) —=e(x) . (221
(3)(x'Amrep)—_icNo[f(x)—3k (x)] < ’ 2{ o m>\/§ ]
q -AMmg 3\/5 1 1
Here we need the following matrix elements:
2
+ T F(x) 4+ kq(X) — 4ko(X)1,
T o 00+ ka0~ 4kz()] B i
(10p1[Dggl8pT)=— 35, (222
1
B)(x: AMEP) = + —=cN f(x) — 3Ky (X
q ( s ) \/1—5 1d: ( ) l( )] o 7 2\/§
, 10p1/4 2 ducDacdi 8P1 ) ==z (223
+ ——= N F(X) + kq(X) — 4ko(X)].
5@27[() 1(X) = 4ka(x)] .
_ 15
(218 (10,p7D3gls|8pT) =~ 60 (229
Remembering the sum rules fofx),k,(x), andk,(x) given
in Egs.(106), (107), and (108, we can show that \/1—5
1 (10,p7[Des|8pT)= 35 (229
f q@(x:AmEP)dx=0, (217
-1
7
— 215
1 —
J 4@ (x: AmP)dx=0, (218 <10,PT 424 d3kkDgkJk|8 pT> =15 (226)
-1
! (8)(y- rep _ - \/g
_,a®0cAmgNdx=0, (219 (10,p1|Dgss [8P1)= 5. (227
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and As for the SU3) symmetry breaking corrections, we have
taken into account three possible corrections, named the dy-
namical correction, kinematical correction, and the represen-
tation mixing correction, which are all linear order in the
mass parameteimg. It was emphasized that the simulta-
neous account of the dynamical and the kinematical correc-
tions is essential for maintaining the quark-number sum
rules. Unfortunately, we encounter a subtle problem in the
evaluation of the parton distribution functions at the sublead-
ing order of 1N, expansion, or more concretely, tag Q1)
contribution to the PDF. It arises from an ordering ambiguity
of two collective space operators in quantization. In the case
of SU(2) CQSM, this ambiguity can be avoided if one adopts
a physically plausible time-order-keeping quantization pre-
scription. However, it appears that this particular quantiza-
tion procedure is not compatible with the fundamental dy-
namical assumption of the $8) CQSM, i.e., the embedding

of the SU3) hedgehog followed by the quantization of soli-
ton rotation in the full SUB) collective coordinate space. On
the other hand, one can avoid this incompatibility, if one
adopts the symmetrized ordering of two collective operators
before quantization. The price to pay for it is, however, that
one loses phenomenologically desirable first-order rotational
correction to some flavor-nonsinglet observables, which we
know is essential for resolving the long-standigproblem

in the flavor SUW2) version of the CQSM. Undoubtedly, our
understanding of the theoretical aspects of the model is still
incomplete and some more work should be done for clarify-
ing these questions.

V6

270’

4.6

135’

(27p1|D33g8pT)=— (228

V2

(27p1|D3gl3l8,p1) = 60’

V2
%1

7

424 dakkDakdk (229

< 27p1
(230

(27p1|Dggd8pT)=— (231)

8!pT> =

J6

(27p1|Dggl3|8,pT)= 20

.
4>, dakkDerdk
K=4

442

e (232

<27,pT

(233
Using these relations, we finally obtain
Aq@(x:AmEP) =0,

F

+—c10[g

(234

Ag®(x:AmEP) = ) +h(x) —4s(x) —e(x)]
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Aq®(x:AmLEP) = — _Clo[g )+ h(x)—4s(x)—e(x)] APPENDIX A: PROOF OF EQUALITIES (87) AND (89)

Here, let us prove two identitig87) and (88), which we

+ %CQ{Q(X)JFh(x)_gs(x)+3e(x)]. have used in Sec. Il. Using the standard($algebra

4
(236) {)\C')\ } 5C|+2dC|e)\e! (Al)

IIl. CONCLUDING REMARKS we proceed as

We have developed a path integral formulation of the fla-
vor SU3) CQSM for evaluating quark and antiquark distri- E (nH{Xe A} (75+23) 8nln)
bution functions in the nucleon. It has been done so as to

take over the advantage of the &Y model such that the
polarization of Dirac-sea quarks in the hedgehog mean field
is properly taken into account. This is essential for making
reasonable predictions for the hidden strange-quark distribu-
tions in the nucleon, which has a totally nonvalence charac-
ter, as well as the light-flavor sea-quark distribution in the
nucleon. The theory as a whole is based on a double expan-
sion in two small parameters. One is the expansion in the
collective angular velocity operaté} of the rotating soliton,
which can also be regarded as &l l£expansion. The another

is the perturbation in the strange- and nonstrange-quark mass
difference, which is also thought to be small as compared
with the typical energy scale of baryon physics.

034006-23
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M(n)

4
(§ Ocit 2dgiehe (75+23) Sn n>

=2dci3%) (n|\g(ys+23) 8, n)

:2d3385c85i3%) (nI\3(ys+23)8p[n)

2

= ﬁ5c85|3 2

S (n|)\3|m>(m| ¥s+23)6,/N),

(A2)
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which proves the first identity. To prove the second identity,
we first notice that

,\%‘) (nl{\¢ A} (yst23) 8nln)

¥

=2d3ck 2 (nNg(ys+23)8[n).
M(n)

=>

M(n)

(ys+23) 8, N

!

(A3)

( 5C|+2che}\e

Second, we can show that

>

(NN glmy(m[\4(ys+23) 8,/ N)
=all,M(n)

= (NING(ys+23) 8,/ n)
M(n)

= < ( ;/5)\8+1>\

M(n)

(ys+23) 6,

)
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d

4 _
(§ 6bi+ 2dbi8)\8+ 2dbi3)\3) 05n

E <n|{)\b axi}65n|n>
M(n)

4 —
(gébiJrzdbiexe)oan

d

45 26,d !
3 bi T 2 0p ﬂsﬁ

d

+ Ohg O E < |)\ (OF) | >
— . n n ,
r—3 b8 ¢i3 © 3 n

+2dg3N30ps8i3 | O,

=28y >, (n|O&,/n)
M(n)

(B1)

where the index runs from 1 to 3. This proves the first
identity (172). Similarly, for the second case in whithruns

from 4 to 7, we can show that

|_\

> (nI\3(ys+23)8n[n).

M(n)

= (A%)

Combining the above two equations, we therefore obtain
> (n[{xe AH(ys+33)8,ln)
M(n)

Py

:4d30K <n|)\4|m><m|)\4(y5+23)5 [n),

(A5)

which proves the second identity.

APPENDIX B: PROOF OF EQUALITIES (172 AND (173

Here, we will prove the identitie€l72) and(173 used in
Sec. Il. Utilizing the generalized hedgehog symmetry to-
gether with the standard $8) algebra, we can proceed as
follows:

> (nl{\p,A}O8,|n)
M(n)

2
M(n)

)

4 _
(§ 5bK+ 2de8)\8+ Zdeg)\g) 05n

4 _
(§ é\bK'ip 2dee)\e) O5n

d

45 +26,kd !
3 %K bK 448\/§

d

=280k > <n|65n|n>+25bKd3KKE (n|x308,|ny,
M(n) M(n)

+2d3KK)\35bK> 03,

(B2)

which proves the second identi§73).
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