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Light-flavor sea-quark distributions in the nucleon in the SU„3… chiral quark soliton model.
II. Theoretical formalism

M. Wakamatsu*
Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

~Received 6 November 2002; published 12 February 2003!

The path integral formulation is given to obtain quark and antiquark distribution functions in the nucleon
within the flavor SU~3! version of the chiral quark soliton model. The basic model action is a straightforward
generalization of the corresponding SU~2! one, except for one distinguishable feature, i.e., the presence of the
SU~3! symmetry breaking term arising from the sizably large mass differenceDms between the strange and
nonstrange quarks. We treat this SU~3! symmetry breaking effect by relying upon the first-order perturbation
theory in the mass parameterDms . We also address the problem of the ordering ambiguity of the relevant
collective space operators, which arises in the evaluation of the parton distribution functions at the subleading
order of the 1/Nc expansion.
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I. INTRODUCTION

In the preceding paper@26#, which is referred to as I, we
have shown that the flavor SU~3! version of the chiral quark
soliton model~CQSM! can give reasonable predictions f
the hidden strange-quark distributions in the nucleon, wh
preserving the success of the SU~2! CQSM. The detailed
theoretical formulation of the model was left out, however,
consideration of its quite elaborate nature. The purpose o
present paper is to make up for this point.

The generalization of the CQSM to the case of flav
SU~3! was already done many years ago independently
two groups@1,2#. The basic dynamical assumption of th
SU~3! CQSM is very similar to that of the SU~3! Skyrme
model @3,4#. It is the embedding of the SU~3! hedgehog
mean field into the SU~3! matrix followed by the quantiza
tion of the collective rotational motion in the full SU~3! col-
lective coordinate space. The physical octet and decu
baryons including the nucleon with good spin and flav
quantum numbers are obtained through this quantization
cess. For the usual low energy observables of baryons
as the magnetic moments or the axial-vector couplings,
theory can be formulated by using the standard cranking
cedure which is familiar in the nuclear theory of collecti
rotation. However, what we want to investigate here is
the usual low energy observables of baryons but the qu
and antiquark distributions in the nucleon, which are fu
relativistic objects. For obtaining these quantities, we m
evaluate nucleon matrix elements of quark bilinear opera
containing two space-time coordinates with light-cone se
ration. The most convenient method for investigating su
quantities is the path integral formalism, which was alrea
used in the formulation of the similar observables in t
SU~2! version of the CQSM@5–11#.

The standard mean-field approximation in the nucl
theory corresponds to the stationary-phase approximatio
the path integral formalism@9#. The rotational motion of the
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symmetry breaking mean-field configuration, which appe
as a zero-energy mode, is treated by using the first-o
perturbation theory in the collective rotational velocityV of
the soliton. This is justified since the velocity of this colle
tive rotational motion is expected to be much slower than
velocity of intrinsic quark motion in the hedgehog me
field. According to this theoretical structure of the mod
any baryon observables including parton distribution fun
tions ~PDF! are given as a sum of theO(V0) contributions
and theO(V1) one @9,10#.

A completely new feature of the SU~3! CQSM, which is
not shared by the SU~2! model, is the existence of SU~3!
symmetry breaking term due to the appreciable mass dif
ence between the strange and nonstrange quarks. We be
that this mass difference~or the mass of the strange qua
itself! of the order 100 MeV is still much smaller than th
typical energy scale of hadron physics of the order 1 G
and it can be treated by relying upon the perturbation the

Now, in the next section, we start to explain the detai
path integral formulation of the SU~3! CQSM for evaluating
PDF. After explaining the general theoretical structure of
model, we shall discuss theO(V0) contributions to the PDF,
the O(V1) contributions, and the first-order corrections
Dms in three separate subsections. Finally, in Sec. IV,
briefly summarize our achievement as well as what still
mains to be clarified in future studies.

II. FORMULATION OF THE MODEL

We start with the familiar definition of the quark distribu
tion function given as@12#

q~x!5
1

4pE2`

`

dz0eixMNz0

3^N~P50!uc†~0!Oac~z!

3uN~P50!&uz352z0 ,z'50 . ~1!
©2003 The American Physical Society06-1
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HereOa is to be taken as

Oa5la~11g0g3!, ~2!

with a50,3, and 8 for unpolarized distribution function
~note here we take thatl051), while

Oa5la~11g0g3!g5 , ~3!

for longitudinally polarized ones. We recall that the abo
definition of the quark distribution function can formally b
extended to the negativex region. The functionq(x) with a
negative argument should actually be interpreted as giving
antiquark distribution with a physical value ofx(.0) ac-
cording to the rule

q~2x!52q̄~x! ~0,x,1!, ~4!

for the unpolarized distributions, and

Dq~2x!51Dq̄~x! ~0,x,1!, ~5!

for the longitudinally polarized distributions. Here, the si
difference between the two types of distributions arises fr
the different ways of their transformations under charge c
jugation.

As was explained in the previous paper, the starting po
of our theoretical analysis is the following path integral re
resentation of a matrix element of a bilocal and biline
quark operator between the nucleon state with definite
mentum:

^N~P!uc†~0!Oac~z!uN~P!&

5
1

ZE d3x d3ye2 iP•xeiP•yE DU

3E DcDc†JNS T

2
,xDc†~0!Oac~z!JN

† S 2
T

2
,yD

3expF i E d4xL~x!G , ~6!

where

L5c̄@ i ]”2MUg5~x!2DmsPs#c, ~7!

with Ug5(x)5exp@ig5lapa(x)/fp# being the basic Lagrangia
of the CQSM with three flavors@1,2#. Here, the mass differ
enceDms between the strange quark and nonstrange qu
is introduced with use of the projection operator

Ps5
1

3
2

1

A3
l85S 0 0 0

0 0 0

0 0 1
D ~8!

for the s-quark component. The quantity

JN~x!5
1

Nc!
ea1•••aNcG

YTT3 ;JJ3

$ f 1••• f Nc
%
ca1f 1

~x!•••caNc
f Nc

~x!,

~9!
03400
n

-

t
-
r
o-

ks

is a composite operator carrying the quantum numb
YTT3 ,JJ3 ~hypercharge, isospin, and spin! of the baryon,

where a i the color index, whileG
YTT3 ;JJ3

$ f 1••• f Nc
%

is a symmetric

matrix in spin-flavor indicesf i . A basic dynamical assump
tion of the SU~3! CQSM @which one may notice is similar to
that of the SU~3! Skyrme model@3## is the embedding of the
SU~2! self-consistent mean-field solution of hedgehog sh
into the SU~3! matrix as

U0
g5~x!5S eig5t• r̂F(r ) 0

0 1
D . ~10!

That this would give the lowest energy classical configu
tion can be deduced from a simple variational argument@13#.
In fact, an arbitrary small variation of the (3,3) component
U0

g5(x) would induce a change of the strange-quark sing
particle spectra in such a way that weak bound states ap
from the positive energy Dirac continuum as well as from t
negative energy one in a charge-conjugation symmetric w
Since only the negative energy continuum is originally occ
pied, this necessarily increases the total energy of
baryon-number-one system. Because of energy degene
of all the configurations attainable from the above config
ration under the spatial rotation or the rotation in the flav
SU~3! internal space, a spontaneous zero-energy rotatio
mode necessarily arises. We also notice the existence o
other important zero mode corresponding to the translatio
motion of the soliton center. As in the previous paper@5–8#,
the translational zero mode is treated by using an appr
mate momentum projection procedure~of the nucleon state!,
which amounts to integrating over all the shiftR of the soli-
ton center-of-mass coordinates,

^N~P!uc†~0!Oac~z!uN~P!&

→E d3R^N~P!uc†~0,2R!Oac~z0 ,z2R!uN~P!&.

~11!

On the other hand, the rotational zero modes can be tre
by introducing a rotating meson field of the form

Ug5~x,t !5A~ t !U0
g5~x!A†~ t !, ~12!

whereA(t) is a time-dependent SU~3! matrix in flavor space.
A key identity in the following manipulation is as follows:

c̄@ i ]”2MUg5~x!2DmsPs#c5cA
†~ i ] t2H2DH2V!cA ,

~13!

where

cA5A†~ t !c, ~14!

H5
a•“

i
1MbU0

g5~x!, ~15!
6-2
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DH5Dmsg
0A†~ t !S 1

3
2

1

A3
l8D A~ t !, ~16!

V52 iA†~ t !Ȧ~ t !. ~17!

Here H is a static Dirac Hamiltonian with the backgroun
pion field U0

g5(x), playing the role of mean-field potentia
03400
for quarks, whereasDH is the SU~3! symmetry breaking
correction toH. The quantityV is the SU~3!-valued angular
velocity matrix later to be quantized in an appropriate w
At this stage, it is convenient to introduce a change of qu
field variablec→cA , which amounts to getting on a body
fixed rotating frame of a soliton. DenotingcA anewc for
notational simplicity, the nucleon matrix element~8! can
then be written as
pula-
slower

as
^N~P!uc†~0!Oac~z!uN~P!&5
1

Z
G$ f %G$g%* E d3x d3ye2 iP•xeiP•yE d3RE DADcDc†expF i E d4xc†~ i ] t2H2DH

2V!c G)
i 51

Nc FAS T

2Dc f iS T

2
,xD Gc†~0,2R!A†~0!OaA~z0!c~z0 ,z2R!)

j 51

Nc

3Fcgj

† S 2
T

2
,yDA†S 2

T

2D G . ~18!

Performing the path integral over the quark fields, we obtain

^N~P!uc†~0!Oac~z!uN~P!&

5
1

Z
G̃$ f %G̃$g%†

NcE d3x d3ye2 iP•xeiP•yE d3RE DAH f 1K T

2
,xU i

i ] t2H2DH2V U0,2RL
g

@A†~0!OaA~z0!#gd

3
d
K z0 ,z2RU i

i ] t2H2DH2V U2 T

2
,yL

g1

2TrS K z0 ,z2RU i

i ] t2H2DH2V U0,2RL A†~0!OaA~z0! D
3 f 1K T

2
,xU i

i ] t2H2DH2V U2 T

2
,yL

g1
J )

j 52

Nc F f j K T

2
,xU i

i ] t2H2DH2V U2 T

2
,yL

gj

G
3exp@NcSp log~ i ] t2H2DHV!#, ~19!

with G̃$ f %5G$ f %@A(T/2)#Nc, etc. Here Tr is to be taken over spin-flavor indices. Now the strategy of the following mani
tion is in order. As in all the previous works, we assume that the collective rotational velocity of the soliton is much
than the velocity of internal quark motion, which provides us with a theoretical support to a perturbative treatment inV. Since
V is known to be anO(1/Nc) quantity, this perturbative expansion inV can also be taken as a 1/Nc expansion. We shall retain
terms up to the first order inV. We also use the perturbative expansion inDms , which is believed to be a small parameter
compared with the typical energy scale of low energy QCD (;1 GeV).

Applying this expansion to Eq.~19!, we obtain

^N~P!uc†~0!Oac~z!uN~P!&5^N~P!uc†~0!Oac~z!uN~P!&V0

1^N~P!uc†~0!Oac~z!uN~P!&V1

1^N~P!uc†~0!Oac~z!uN~P!&Dms1•••. ~20!

To be more explicit, they are given by

^N~P!uc†~0!Oac~z!uN~P!&V0

5
1

Z
G̃$ f %G̃$g%†

NcE d3x d3ye2 iP•xeiP•yE d3RE DA~Õa!gdF f 1
K T

2
,xU i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H U2T

2
,yL

g1

2
d
K z0 ,z2RU i

i ] t2H U0,2RL
g

•

f 1

K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

G)j 52

Nc F
f j

K T

2
,xU i

i ] t2H U2
T

2
,yL

gj

G
3expFNcSp log~ i ] t2H !1 i

I

2E Va
2dtG , ~21!
6-3
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^N~P!uc†~0!Oac~z!uN~P!&V1

5
1

Z
G̃$ f %G̃$g%†

NcE d3x d3ye2 iP•xeiP•yE d3RE DAH E d3z8 dz08iVab~z08!@A†~0!OaA~z0!#gd

3F
f 1

K T

2
,xU i

i ] t2H Uz08 ,z8L
a b

K z08 ,z8U i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H U2T

2
,yL

g1

1
f 1

K T

2
,xU i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a b

K z08 ,z8U i

i ] t2H U2 T

2
,yL

g1

2 f 1K T

2
,xU i

i ] t2H U2 T

2
,yL

g1 d
K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a d

K z08 ,z8U i

i ] t2H U0,2RL
g

G
1 iz0

1

2
$V,Õa%gdF f 1

K T

2
,xU i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H U2T

2
,yL

g12d
K z0 ,z2RU i

i ] t2H U0,2RL
g

3
f 1
K T

2
,xU i

i ] t2H U2
T

2
,yL

g1

G J )
j 52

Nc F
f j

K T

2
,xU i

i ] t2H U2
T

2
,yL

gj

GexpFNcSp log~ i ] t2H !1 i
I

2E Va
2dtG , ~22!

and

^N~P!uc†~0!Oac~z!uN~P!&Dms

5
1

Z
G̃$ f %G̃$g%†

NcE d3x d3ye2 iP•xeiP•yE d3RE DAH E d3z8 dz08iDHab~z08!@A†~0!OaA~z0!#gd

3F f 1
K T

2
,xU i

i ] t2H Uz08 ,z8L
a b

K z08 ,z8U i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H U2T

2
,yL

g1

1 f 1K T

2
,xU i

i ] t2H U0,2RL
g d

K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a b

K z08 ,z8U i

i ] t2H U2 T

2
,yL

g1

2
f 1
K T

2
,xU i

i ] t2H U2 T

2
,yL

g1

3

d

K z0 ,z2RU i

i ] t2H Uz08 ,z8L
a b

K z08 ,z8U i

i ] t2H U0,2RL
g

G J )
j 52

Nc F f j K T

2
,xU i

i ] t2H U2 T

2
,yL

gj

G
3expFNcSp log~ i ] t2H !1 i

I

2E Va
2dtG . ~23!

We shall treat these three contributions to the PDF in separate subsections below.
th
e
fo

nc-
A. O„V0
… contribution to PDF

Although we do not need any essential change for
derivation of theO(V0) contribution, we recall here som
main ingredients, since it is useful for understanding the
lowing manipulation. We first introduce the eigenstatesum&
and the associated eigenenergiesEm of the static Dirac
03400
e

l-

HamiltonianH, satisfying

Hum&5Emum&. ~24!

The spectral representation of the single quark Green’s fu
tion is then given as
6-4
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aK x,tU i

i ] t2H Ux8,t8L
b

5u~ t2t8! (
m.0

e2 iEm(t2t8)
a^xum&^mux8&b

2u~ t82t ! (
m,0

e2 iEm(t2t8)
a^xum&^mux8&b .

~25!

Using this equation together with the identity

^z2Ru5^2Rueip•z, ~26!

with p being the momentum operator, we can perform
integration overR in Eq. ~19!. The resultant expression i
then put into Eq.~18! to carry out the integration overz0.
This leads to the following expression for the quark distrib
tion function:

q~x;V0!5E CYTT3 ;JJ3

(n)* @jA#O(0)@jA#CYTT3 ;JJ3

(n) @jA#djA .

~27!

HereO(0)@jA# is anO(V0) effective operator given by

O(0)@jA#5MN

Nc

2 S (
n<0

2 (
n.0

D ^nuÕad~xMN2En2p3!un&.

~28!

Note that it is still a functional of the collective coordinat
jA that specify the orientation of the hedgehog soliton in
collective coordinate space. The physical baryons are ide
fied as rotational states of this collective motion and the c
responding wave functions are denoted asCYTT3 ;JJ3

(n) @jA#,

which belongs to a SU~3! representation of dimensionn with
relevant spin-flavor quantum numbers. Using the stand
Wigner rotation matrix~or D function! of SU~3! group, they
are represented as

CYTT3 ;JJ3

(n) @ja#5~21!J1J3AnDm,n
(n) ~ja! ~29!

with m5(YTT3) andn5(Y851,JJ3). In the present study
we are interested in the quark distribution functions in
nucleon, so that we can setY51 andT5J51/2.

The general formula can now be used to derive so
more explicit form of theO(V0) contribution to the quark
distribution functions. We first consider the unpolarized d
tributions. For the flavor-singlet case, we take

Õa505A†l0A~11g0g3!511g0g3, ~30!

so that we find that

O(0)@jA#5MN

Nc

2 S (
n<0

2 (
n.0

D ^nu~11g0g3!dnun&,

~31!

with the abbreviationdn5d(xMN2En2p3). This then
gives
03400
e

-

e
ti-
r-

rd

e

e

-

q(0)~x;V0!5^1&pf ~x!, ~32!

with the definition

f ~x!5MN

Nc

2 S (
n<0

2 (
n.0

D ^nu~11g0g3!dnun&. ~33!

Here and hereafter,^O&B should be understood as an abbr
viated notation of the matrix element of a collective opera
O between a baryon stateB ~mostly, the spin-up proton state!
with appropriate quantum numbers, i.e.,

^O&B[E CYTT3 ;JJ3

(n)* @jA#O@jA#CYTT3 ;JJ3

(n) @jA#djA .

~34!

In the flavor-nonsinglet case (a53 or 8),

Õa5A†laA~11g0g3!5Dablb~11g0g3!, ~35!

we have

O(a)@jA#5DabMN

Nc

2 S (
n<0

2 (
n.0

D ^nula~11g0g3!dnun&

5Da8MN

Nc

2 S (
n<0

2 (
n.0

D ^nul8~11g0g3!dnun&

5
Da8

A3
MN

Nc

2 S (
n<0

2 (
n.0

D ^nu~11g0g3!dnun&.

~36!

Here, we have used the generalized hedgehog symmet
the classical configuration~10!. This then gives, fora
53 or 8,

q(a)~x;V0!5K Da8

A3
L

p

f ~x!. ~37!

Turning to the longitudinally polarized distribution, we tak

Õa5A†l0A~11g0g3!g55g51S3 , ~38!

for the flavor-singlet case, so that we find

Dq(0)~x;V0!50. ~39!

On the other hand, for the flavor nonsinglet case we obt

Õa5A†laA~11g0g3!g55Dablb~g51S3!. ~40!

This gives

O(a)@jA#5MN

Nc

2 S (
n<0

2 (
n.0

D ^nuDablb~g51S3!dnun&

5Da3MN

Nc

3 S (
n<0

2 (
n.0

D ^nul3~g51S3!dnun&.

~41!

We therefore have, fora53 or 8,
6-5
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Dq(a)~x;V0!5^2Da3&p↑g~x!, ~42!

with

g~x!52MN

Nc

2 S (
n<0

2 (
n.0

D ^nul3~g51S3!dnun&.

~43!

B. O„V1
… contribution to PDF

There is some controversy in the treatment of theO(V1)
term in the CQSM. The dispute began after our finding of
novel 1/Nc correction~or more explicitly the first-order ro-
tational correction in the collective angular velocityV) to
some isovector observables such as the isovector part o
nucleon axial-vector coupling constantgA

(3) or the isovector
magnetic momentm I 51 @14#. We showed that this new 1/Nc
correction, which is entirely missing in the theoretical fram
work of the intimately connected effective meson theory, i
the Skyrme model, plays just a desirable role in solving
long-standinggA problem inherent in the soliton mode
based on the hedgehog configuration@14,15#. According to
Schechter and Weigel@16,17#, however, thisO(V1) contri-
bution originates from the ordering ambiguity of the colle
tive operators and it breaks theG-parity symmetry of strong
interactions. We agree that the operator ordering ambigui
unavoidable when going from a classical theory to a qu
tum theory. A different choice of ordering would, in gener
define a different quantum theory. It was shown, howev
that the existence of this newO(V1) contribution is a natura
consequence of a physically reasonable choice of oper
ordering that keeps the time order of the relevant opera
and that thisO(V1) contribution togA

(3) is nothing incom-
patible with any symmetry of strong interactions includi
the G-parity symmetry@18–20#. We also recall the fact tha
this time-order-keeping quantization procedure is nothing
traordinary in that it gives the same answer as the so-ca
cranking approach familiar in the nuclear many-body the
@19#. @Alkofer and Weigel also claimed that the newO(V1)
term breaks the celebrated~partial conservation of axial vic
tor current! relation@21#. Here we do not argue on this prob
lem further, since our view is that this problem does not ex
within the framework of the SU~2! CQSM, as discussed in
Ref. @19#.# Summarizing our understanding about this pro
lem up to this point, the ordering ambiguity of the collecti
operator, in principle, exists, but a physically reasona
time-order-keeping quantization procedure leads to the
siredO(V1) contribution togA

(3) , while causing no problem
at least in the flavor SU~2! version of the CQSM. However
Praszałowiczet al.noticed an unpleasant feature of the tim
order-keeping quantization procedure in the flavor SU~3!
version of the CQSM@22#. That is, it leads to nondiagona
elements in the moment of inertia tensor of the solito
which may destroy the basic theoretical framework of
soliton model. Since there is no such problem in the SU~2!
CQSM, the cause of this trouble seems to be attributed to
incompatibility of the time-order-keeping quantization pr
cedure with the basic dynamical assumption of the SU~3!
CQSM, i.e., the so-called trivial embedding of the SU~2!
03400
e

he

-
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e
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-

,
r,

tor
rs
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e
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-

,
e

he

soliton configuration followed by the SU~3! symmetric col-
lective quantization. In the absence of satisfactory resolu
to this problem, they advocated to use a phenomenologic
favorable procedure, which amounts to dropping some th
retically contradictory terms by hand. In the present stu
we shall basically follow this procedure. As we shall discu
below, however, the operator ordering problem is even m
complicated in our study of quark distribution function
since we must handle here quark bilinear operators which
nonlocal also in time coordinates.

In our formulation of theO(V1) contribution to the dis-
tribution function, the ordering problem arises when ha
dling the product of operators

Vab~z08!@A†~0!OaA~z0!#gd , ~44!

in Eq. ~22!. In the previous paper, we adopted the orderin

Vab~z08!@A†~0!OaA~z0!#gd

→@u~z08 ,0,z0!1u~z08 ,z0 ,0!#VabÕgd1@u~0,z0 ,z08!

1u~z0 ,0,z08!#ÕgdVab1u~0,z08 ,z0!

3~Oa!g8d8Agg8
† VabAd8d1u~z0 ,z08 ,0!

3~Oa!g8d8Ad8dVabAgg8
† , ~45!

because it is a procedure faithful to the time order of all
relevant collective operators. In consideration of the ex
tence of operator-ordering ambiguity in quantization, we u
here a somewhat simpler ordering procedure specified a

Vab~z08!@A†~0!OaA~z0!#gd

→@u~z08 ,0,z0!1u~z08 ,z0 ,0!#VabÕgd1@u~0,z0 ,z08!

1u~z0 ,0,z08!#ÕgdVab1u~0,z08 ,z0! 1
2 $Vab ,Õgd%

1u~z0 ,z08 ,0! 1
2 $Vab ,Õgd%. ~46!

The difference between the new and the old quantiza
procedures turns out to be thatOB8

(1) term in Eq.~67! of Ref.
@8# is absent in the new procedure. The operator-order
ambiguity occurs also for the quantity12 $V,Õa%gd in Eq.
~22!, which corresponds to the first-order rotational corre
tion arising from the nonlocality~in time! of the operator
A1(0)OaA(z0). To explain it, we first recall the quantizatio
rule of the SU~3! collective rotation given as

V5
1

2
Vala , ~47!

with
6-6



e

e

ol

n

tood

op-

nc-

LIGHT-FLAVOR SEA-QUARK . . . . II. . . . PHYSICAL REVIEW D 67, 034006 ~2003!
Ja[2Ra55
I 1Va2

2

A3
DmsK1D8a ~a51,2,3!

I 2Va2
2

A3
DmsK2D8a ~a54,5,6,7!

A3/2 ~a58!.
~48!

Here Ra is the right rotation generator also familiar in th
SU~3! Skyrme model. Note that onlya51,2,3 component of
Ja52Ra can be interpreted as the standard angular mom
tum operators. In the above equations,I 1 ,I 2 andK1 ,K2 are
the components of the moment-of-inertia tensor of the s
ton defined by

I ab5
Nc

2 (
m>0,n,0

^nulaum&^mulbun&
Em2En

, ~49!

Kab5
Nc

2 (
m>0,n,0

^nulaum&^mulbg0un&
Em2En

, ~50!

which reduce to the form

I ab5diag~ I 1 ,I 1 ,I 1 ,I 2 ,I 2 ,I 2 ,I 2,0!, ~51!

Kab5diag~K1 ,K1 ,K1 ,K2 ,K2 ,K2 ,K2,0!, ~52!

because of the hedgehog symmetry. SettingDms50, for the
moment, to keep the discussion below simpler, we obtai
03400
n-

i-

$Õa ,V%5
1

2I 1
$DablbŌ,Jil i%1

1

2I 2
$DablbŌ,JKlK%, ~53!

where the summation over the repeated indices is unders
with i running from 1 to 3, and withK from 4 to 7. To keep
compliance with the new operator-ordering procedure~46!
explained above, we assume the symmetrization of the
erator products as

DabJc→ 1
2 $Dab ,Jc%, ~54!

JcDab→ 1
2 $Dab ,Jc%, ~55!

prior to quantization. This amounts to the replacement

$Õa ,V%→$Õa ,V%S, ~56!

with

$Õa ,V%S5
1

2I 1
$Dab ,Ji%$lb ,l i%1

1

2I 2
$Dab ,JK%$lb ,lK%.

~57!

Now collecting all the terms, which are first order inV, we
arrive at the following expression for theO(V1) effective
operator to be sandwiched between the rotational wave fu
tions as in Eq.~27!. It is given by

O(1)@jA#5OA
(1)1OB

(1)1OC
(1) , ~58!

where
OA
(1)5MN

Nc

2 (
m.0,n<0

1

Em2En
@^nuÕa~dn1dm!um&^muVun&1^nuVum&^muÕa~dn1dm!un&#, ~59!

OB
(1)5MN

Nc

2 S (
m<0,n<0

2 (
n.0,m.0

D 1

Em2En
@^nuÕa~dn2dm!um&^muVun&1^nuVum&^muÕa~dn2dm!un&#, ~60!
ec-
while

OC
(1)5

1

2I 1
Ji

Nc

2

d

dx S (
n<0

2 (
n.0

D ^nul i Ōdnun&

1
1

2I 2
JK

Nc

2

d

dx S (
n<0

2 (
n.0

D ^nulKŌdnun&

~61!

for the flavor-singlet case, and
OC
(1)5

1

4I 1
$Dab ,Ji%

Nc

2

d

dx S (
n<0

2 (
n.0

D ^nu$lb ,l i%Ōdnun&

1
1

4I 2
$Dab ,JK%

Nc

2

d

dx S (
n<0

2 (
n.0

D
3^nu$lb ,lK%Ōdnun& ~62!

for the flavor-nonsinglet case. As was done in Ref.@8#, it is
convenient to treatOA

(1) andOB
(1) in a combined way, i.e., in

such a way that it is given as a sum of two parts, resp
6-7
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tively, containing symmetric and antisymmetric pieces w
respect to the collective space operatorsDab andJc as

OA
(1)1OB

(1)5O$A,B%
(1) 1O[A,B]

(1) . ~63!

For obtaining the explicit forms ofO$A,B%
(1) and O[A•B]

(1) , we
will treat the two cases separately. First is the case in wh
Oa is a flavor-singlet operator asOa5Ō. In this case, we
have

O$A,B%
(1) 52MN

Nc

4I 1
Ji S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En

3@^nuŌdnum&^mul i un&1^nul i um&^muŌdnun&#,

~64!

O[A,B]
(1) 50. ~65!

On the other hand, ifOa is a flavor-nonsinglet operator suc
asOa5laŌ, we find

O$A,B%
(1) 52MN

Nc

4I 1

1

2
$Dab ,Ji%S (

m5all ,n<0
2 (

m5all ,n.0
D

3
1

Em2En
@^nulbŌdnum&^mul i un&1^nul i um&

3^mulbŌdnun&#2MN

Nc

4I 2

1

2
$Dab ,JK%

3S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nulbŌdnum&

3^mulKun&1^nulKum&^mulbŌdnun&# ~66!

and
03400
h

O[A,B]
(1) 52MN

Nc

4I 1

1

2
@Dab ,Ji #S (

m.0,n<0
1 (

m<0,n.0
D

3
1

Em2En
@^nulbŌdnum&^mul i un&2^nul i um&

3^mulbŌdnun&#2MN

Nc

4I 2

1

2
@Dab ,JK#

S (
m.0,n<0

2 (
m<0,n.0

D 1

Em2En
@^nulbŌdnum&

3^mulKun&2^nulKum&^mulbŌdnun&#. ~67!

We point out that these expressions also are not comple
free from operator-ordering ambiguities. If we symmetri
the order of two operatorsVab andÕgd in the first and the
second term of Eq.~67!, the antisymmetric termO[A,B]

(1) does
not appear from the first. A favorable aspect of this symm
trization procedure is that it does not cause an internal inc
sistency of the SU~3! CQSM, which was first pointed out by
Praszałowiczet al. @22# Unfortunately, however, it also
eliminates the phenomenologically welcome first-order ro
tional correction togA

(3) , the sprout of which is contained in
the first term of Eq.~67!. As repeatedly emphasized, th
presence of this novel 1/Nc correction itself is nothing in-
compatible with any symmetry of strong interaction. How
ever it is not a completely satisfactory procedure, we the
fore retain only the first term of Eq.~67! and abandon the
second one, which precisely corresponds to the symme
preserving approach advocated by Praszałowiczet al.

Now we consider the concrete case again. For the fla
singlet unpolarized distribution, we find there exists
O(V1) contribution, i.e.,

q(0)~x,V1!50. ~68!

In the flavor-nonsinglet case, theO(V1) contribution con-
sists of two terms as

O(1)@jA#5O$A,B%
(1) 1OC

(1) . ~69!

Here
O$A,B%
(1) 5

1

2
$Dab ,Ri%MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
@^nulb~11g0g3!dnum&^mul i un&1^nul i um&

3^mulb~11g0g3!dnun&#1
1

2
$Dab ,RK%MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
@^nulb~11g0g3!dnum&

3^mulKun&1^nulKum&^mulb~11g0g3!dnun&#

5(
i 51

3

$Dai ,Ri%
MN

I 1

1

3 (
j 51

3
Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul j um&^mul j~11g0g3!dnun&

1 (
K54

7

$DaK ,RK%
MN

I 2

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul4um&^mul4~11g0g3!dnun&. ~70!
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In deriving the last equality, we have made use of the generalized hedgehog symmetry of the static soliton configura
explicit summation symbol for the repeated indices has been restored here for clarity. For the second contribution toO(1)@jA#,
we have

OC
(1)52(

i 51

3

$D8i ,Ri%
1

2I 1

1

3 (
j 51

3
Nc

2

d

dx S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul j um&^mul j~11g0g3!dnun&

2 (
K54

7

$D8K ,RK%
1

2I 2

Nc

2

d

dx S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul4um&

3^mul4~11g0g3!dnun&. ~71!

Here, we have used the identities

1

3 (
j 51

3

(
m5all ,M (n)

^nul j um&^mul j~11g0g3!dnun&5 (
M (n)

^nu~11g0g3!dnun& ~72!

and

(
m5all ,M (n)

^nul4um&^mul4~11g0g3!dnun&5
1

2 (
M (n)

^nu~11g0g3!dnun&. ~73!
e

a

Here and hereafter,(M (n) stands for the summation over th
third component of the grand spin of the eigenstaten. The
second identity can be proved as follows:

(
m5all ,M (n)

^nul4um&^mul4~11g0g3!dnun&

5 (
M (n)

^nul4
2~11g0g3!dnun&

5 (
M (n)

K nUS 2

3
2

1

2A3
l81

1

2
l3D ~11g0g3!dnUnL

5 (
M (n)

K nUS 2

3
2

1

2A3

1

A3
D ~11g0g3!dnUnL

5
1

2 (
M (n)

^nu~11g0g3!dnun&, ~74!

where the generalized hedgehog symmetry is used ag
Now combiningO$A,B%

(1) andOC
(1) terms, theO(V1) contribu-

tion to the flavor-nonsinglet (a53 or 8) unpolarized distri-
bution function can be expressed as

q(a)~x;V1!5K (
i 51

3

$Dai ,Ri%L
p

k1~x!

1K (
K54

7

$DaK ,RK%L
p

k2~x!, ~75!

with
03400
in.

k1~x!5MN

1

2I 1

Nc

2

1

3 (
j 51

3 S (
m5all ,n<0

2 (
m5all ,n.0

D
3^nul j um&K mUl j~11g0g3!S dn

Em2En
2

1

2
dn8D UnL

~76!

and

k2~x!5MN

1

2I 2

Nc

2 S (
m1all ,n<0

2 (
m5all ,n.0

D ^nul4um&

3K mUl4~11g0g3!S dn

Em2En
2

1

2
dn8D UnL . ~77!

Here we have used the notationdn[d(xMN2En2p3) and
dn8[d8(xMN2En2p3). Turning to the longitudinally polar-
ized distributions, theO(V1) contribution to the flavor-
singlet distribution consists of two terms as

O(1)@jA#5O$A,B%
(1) 1OC

(1) , ~78!

where

O$A,B%
(1) 522J3MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D

3
1

Em2En
^nul3um&^mu~g51S3!dnun& ~79!
6-9
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and

OC
(1)52J3

d

dx

Nc

8I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D ^nul3um&

3^mu~g51S3!dnun&. ~80!

Combining the two terms, we have

Dq(0)~x:V1!5^2J3&p↑e~x!, ~81!

with
03400
e~x!5MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D ^nul3um&

3 K mU~g51S3!S dn

Em2En
2

1

2
dn8D UnL . ~82!

The O(V1) contribution to the flavor-nonsinglet polarize
distribution is a little more complicated. It generally consis
of three terms, i.e.,O$A,B%

(1) ,O[A,B]
(1) , andOC

(1) . Using the two
identities,
(
m5all ,M (n)

1

Em2En
@^nulb~g51S3!dnum&^mul i un&1^nul i um&^mulb~g51S3!dnun&#

5db8d i3 (
m5all ,M (n)

1

Em2En
2^nul3um&^mul8~g51S3!dnun&

5
2

A3
db8d i3 (

m5all ,M (n)

1

Em2En
^nul3um&^mu~g51S3!dnun& ~83!

and

(
m5all ,M (n)

1

Em2En
@^nulb~g51S3!dnum&^mulKun&1^nulKum&^mulb~g51S3!dnun&#

54d3Kb (
m5all ,M (n)

1

Em2En
^nul4um&^mul4~g51S3!dnun&, ~84!

we obtain

O$A,B%
(1) 52

2

A3

1

2
$Da8 ,J3%MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul3um&^mu~g51S3!dnun&

24d3KK

1

2
$DaK ,JK%MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul4um&^mul4~g51S3!dnun&. ~85!

Next, theOC
(1) term is given by

OC
(1)5

1

2
$Dac ,Ji%

Nc

8I 1

d

dx S (
n<0

2 (
n.0

D ^nu$lc ,l i%~g51S3!dnun&

1
1

2
$Dac ,JK%

Nc

8I 2

d

dx S (
n<0

2 (
n.0

D ^nu$lc ,lK%~g51S3!dnun&, ~86!

wherei runs from 1 to 3, whileK runs from 4 to 7. To rewrite this term, we use two identities,

(
M (n)

^nu$lc ,l i%~g51S3!dnun&5
2

A3
dc8d i3 (

m5all ,M (n)
^nul3um&^mu~g51S3!dnun& ~87!

and

(
M (n)

^nu$lc ,lK%~g51S3!dnun&54d3cK (
m5all ,M (n)

^nul4um&^mul4~g51S3!dnun&, ~88!

which will be proved in Appendix A. We are then led to
6-10
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OC
(1)5

2

A3

1

2
$Da8 ,J3%

Nc

8I 1

d

dx S (
m5all ,n<0

2 (
m5all ,n.0

D ^nul3um&^mu~g51S3!dnun&

14d3KK

1

2
$DaK

(8) ,JK%
Nc

8I 2

d

dx S (
m5all ,n<0

2 (
m5all ,n.0

D ^nul4um&^mul4~g51S3!dnun&. ~89!

Combining theO$A,B%
(1) andOC

(1) terms, we obtain

O$A,B%
(1) 1OC

(1)5
2

A3

1

2
$Da8 ,J3%e~x!14d3KK

1

2
$DaK ,JK%s~x!, ~90!

wheree(x) is defined in Eq.~82!, while s(x) is defined by

s~x!52MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D ^nul4um&K mUl4~g51S3!S dn

Em2En
2

1

2
dn8D UnL . ~91!
ia

d

m
ed

is

ive

the
c-
The remaining antisymmetric term, which is already famil
in the SU~2! CQSM, is given by

O[A,B]
(1) 52Da3h~x!, ~92!

with

h~x!52 i«3i j MN

Nc

8I 1
S (

m.0,n<0
1 (

m<0,n.0
D

3
1

Em2En
@^nul j~g51S3!dnum&^mul i un&

2^nul i um&^mul j~g51S3!dnun&#. ~93!

The O(V1) contribution to the flavor-nonsinglet polarize
distribution then becomes

Dq(a)~x:V1!5^2Da3&p↑h~x!

1K 4 (
K54

7

d3KK

1

2
$DaK ,JK%L

p↑
s~x!

1
2

A3
K 1

2
$Da8 ,J3%L

p↑
e~x!. ~94!

At this stage, it would be convenient to summarize the co
plete forms of the unpolarized and longitudinally polariz
distribution functions up to the first order inV. First, for the
unpolarized distribution, the flavor-singlet distribution
given by

q(0)~x!5^1&pf ~x!, ~95!

whereas the flavor-nonsinglet distributions (a53 or 8) are
given as
03400
r

-

q(a)~x!5K Da8

A3
L

p

f ~x!1K (
i 51

3

$Dai ,Ri%L
p

k1~x!

1K (
K54

7

$DaK ,RK%L
p

k2~x!. ~96!

Using the proton matrix elements of the relevant collect
operators:

^D38 /A3&p5
1

30
, ^D88/A3&p5

A3

10
, ~97!

K (
i 51

3

$D3i ,Ri%L
p

5
7

10
, K (

i 51

3

$D8i ,Ri%L
p

5
A3

10
, ~98!

K (
K54

7

$D3K ,RK%L
p

5
1

5
, K (

K54

7

$D8K ,RK%L
p

5
3A3

5
, ~99!

we finally arrive at

q(0)~x!5 f ~x!, ~100!

q(3)~x!5 1
30 f ~x!1 7

10 k1~x!1 1
5 k2~x!, ~101!

1

A3
q(8)~x!5

1

10
f ~x!1

1

10
k1~x!1

3

5
k2~x!. ~102!

These three distribution functions are enough to give
flavor decomposition of the unpolarized distribution fun
tions:

u~x!5
1

3
q(0)~x!1

1

2
q(3)~x!1

1

2A3
q(8)~x!, ~103!
6-11
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d~x!5
1

3
q(0)~x!2

1

2
q(3)~x!1

1

2A3
q(8)~x!,

~104!

s~x!5
1

3
q(0)~x!2

1

A3
q(8)~x!. ~105!

The first moment sum rules for the unpolarized distrib
tion functions are connected with the quark-number con
vation laws. The verification of them is therefore an imp
tant check of the internal consistency of a theoreti
formalism. We first point out that the three basic distributi
functions of the model, i.e.,f (x),k1(x),k2(x), satisfy the
sum rules

E
21

1

f ~x!dx53, ~106!

E
21

1

k1~x!dx51, ~107!

E
21

1

k2~x!dx51. ~108!

Using Eqs.~100!–~105! together with these sum rules, it
an easy task to show that

E
21

1

q(0)~x!dx53, ~109!

E
21

1

q(3)~x!dx51, ~110!

E
21

1

q(8)~x!dx51, ~111!

and

E
21

1

u~x!dx5E
0

1

@u~x!2ū~x!#dx52, ~112!

E
21

1

d~x!dx5E
0

1

@d~x!2d̄~x!#dx51, ~113!

E
21

1

s~x!dx5E
0

1

@s~x!2 s̄~x!#dx50, ~114!

which are just the desired quark-number conservation la
Incidentally, the unpolarized distribution functions in th

SU~2! CQSM are given in the following form:

u~x!5 1
2 q(0)~x!1 1

2 q(3)~x!, ~115!

d~x!5 1
2 q(0)~x!2 1

2 q(3)~x!, ~116!

s~x!50, ~117!
03400
-
r-
-
l

s.

where

q(0)~x!5 f ~x!, ~118!

q(3)~x!5k1~x!, ~119!

with f (x) and k1(x) being the same functions as appear
the SU~3! CQSM.

Next, theO(V01V1) contributions to the longitudinally
polarized distribution functions can be summarized as

Dq(0)~x!5^2J3&p↑e~x!, ~120!

for the flavor-singlet distributions, and

Dq(a)~x!5^2Da3&p↑@g~x!1h~x!#

1K 4 (
K54

7

d3KK

1

2
$DaK ,JK%L

p↑
s~x!

1
2

A3
K 1

2
$Da8 ,J3%L e~x!, ~121!

for the nonsinglet distributions. Using the matrix elements
the relevant collective space operators between the spi
proton state,

^2D33&p↑5
7

30
, ^2D83&p↑5

A3

30
,

K 4 (
K54

7

d3KKD3KJKL
p↑

5
7

15
, K 4 (

K54

7

d3KKD8KJKL
p↑

5
A3

15
,

^D38J3&p↑5
A3

60
, ^D88J3&p↑5

A3

20
,

~122!

we obtain

Dq(0)~x!5e~x!, ~123!

Dq(3)~x!5 1
30 e~x!1 7

30 @g~x!1h~x!#1 7
15 s~x!, ~124!

1

A3
Dq(8)~x!5

1

10
e~x!1

1

30
@g~x!1h~x!#1

1

15
s~x!.

~125!

In terms of these three functions, the longitudinally polariz
distribution functions with each flavor are given by

Du~x!5
1

3
Dq(0)~x!1

1

2
Dq(3)~x!1

1

2A3
Dq(8)~x!,

~126!
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Dd~x!5
1

3
Dq(0)~x!2

1

2
Dq(3)~x!1

1

2A3
Dq(8)~x!,

~127!

Ds~x!5
1

3
Dq(0)~x!2

1

A3
Dq(8)~x!. ~128!

For comparison, we also show the corresponding theore
formulas obtained within the framework of the SU~2!
CQSM:

Du~x!5 1
2 Dq(0)~x!1 1

2 Dq(3)~x!, ~129!

Dd~x!5 1
2 Dq(0)~x!1 1

2 Dq(3)~x!, ~130!

Ds~x!50, ~131!

where

Dq(0)~x!5e~x!, ~132!

Dq(3)~x!5 1
3 @g~x!1h~x!#. ~133!

We recall here that, as a consequence of the new oper
ordering procedure adopted in the present paper, one n
worthy difference with the previous treatment arises, c
cerning theO(V1) contribution to the isovector distributio
Dq(3)(x). Namely, the@Du(x)2Dd(x)#B81C

(1) term in Eq.
~114! of Ref. @8# is totally absent in the new formulatio
here. We shall numerically check that the effect of th
change on the final predictions for the longitudinally pola
ized distributions is very small.

Similarly as in the case of the unpolarized distribution
we can write down the first-moment sum rules also for
longitudinally polarized distributions. No exact conservati
law follows from these sum rules, however. As a matter
course, this does not mean there is no useful sum rule for
spin-dependent distributions. For example, the celebra
Bjorken sum rule@23,24# for the isovector part of the longi
tudinally polarized distribution functions has an importa
phenomenological significance, although it is not a sort
relation which gives an exact conservation laws for so
quantum numbers.

C. Dms correction to PDF

Our strategy for estimating the SU~3! symmetry breaking
effects is to use the first-order perturbation theory inDms ,
i.e., the mass difference between thes andu,d quarks. There
are several such corrections that are all first order inDms .
The first comes from Eq.~23! containing the SU~3! symme-
try breaking part of the effective Dirac HamiltonianDHab .
Following Ref. @25#, this SU~3! symmetry breaking correc
tion is hereafter referred to as the ‘‘dynamicalDms correc-
tion.’’ The second correction originates from the term~22!,
which is first order inV, if it is combined with the quanti-
zation rule~48! of the SU~3! collective rotation. In fact, one
can easily convince that the replacement
03400
al

or-
te-
-

-

,
e

f
he
d

t
f
e

Vab5
1

2
Va~la!ab→ 1

2 S Ji

I 1
1

2

A3
Dms

K1

I 1
D8i D ~l i !ab

1
1

2 S JK

I 2
1

2

A3
Dms

K2

I 2
D8KD ~lK!ab ~134!

brings about terms proportional to the mass differenceDms .
This SU~3! symmetry breaking correction, which come
from theDms correction to the SU~3! quantization rule, will
be called the ‘‘kinematicalDms correction.’’ The third cor-
rection is brought about by the mixing of the SU~3! irreduc-
ible representations, describing the baryon states as co
tive rotational states. Since this mixing occurs also at the fi
order inDms , we must take it into account. This last SU~3!
symmetry breaking correction will be called th
‘‘representation-mixingDms correction.’’ In the following,
we shall treat these three corrections in order. The ans
will be given in the form

q~x;Dms!

5E CYTT3 ;JJ3

(n)* @jA#O(Dms)@jA#CYTT3 ;JJ3
@jA#djA ,

~135!

where the effective collective space operator consists of th
parts:

O(Dms)@jA#5Odyn
(Dms)1Okin

(Dms)1Orep
(Dms) . ~136!

First to evaluateOdyn
(Dms) by using Eq.~23!, the ordering

DHab~z08!@A†~0!OaA~z0!#gd

→@u~z08 ,0,z0!1u~z08 ,z0 ,0!#DHabÕgd

1@u~0,z0 ,z08!1u~z0 ,0,z08!#ÕgdDHab

1u~0,z08 ,z0! 1
2 $DHab ,Õgd%

1u~z0 ,z08 ,0! 1
2 $DHab ,Õgd%, ~137!

is used in conformity with the rule~46!. After carrying out
the integration over the variablesR,z8,z08 and overz0, we are
led to the following answer for the dynamicalDms correc-
tion:

O(Dms)52MN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

3@^nuDHum&^muÕdnun&1^nuÕdnum&^muDHun&#,

~138!

whereÕ5A†laAŌ and

DH5Dmsg
0A†S 1

3
2

1

A3
l8D A5Dmsg

0S 1

3
2

1

A3
D8clcD .

~139!
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In deriving the above equation, we have used the fact that the collective operators contained inDH andÕ commute with each
other.

In the case of flavor-singlet unpolarized distribution, the above general formula gives

Odyn
(Dms)52MN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

1

3
Dms@^nu~12A3D8clc!g

0um&

3^mu~11g0g3!dnun&1^nu~11g0g3!dnum&^mu~12A3D8clc!g
0un&#

52
1

3
DmsMN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nu~12A3D88l8!g0u&

3^mu~11g0g3!dnun&1^nu~11g0g3!dnum&^mu~12A3D88l8!g0un&#. ~140!

Using the generalized hedgehog symmetry, we therefore arrive at

q(0)~x:Dms
dyn!52 4

3 ^12D88&DmsI 1k0̃~x!, ~141!

with

k0̃~x!5
1

I 1

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nug0um&^mu~11g0g3!dnun&. ~142!

Next we turn to the flavor-nonsinglet unpolarized distributions (a53 or 8). The general formula~140! gives

Odyn
(Dms)52MN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

1

3
Dms@^nu~12A3D8clc!g

0um&^muDablb~11g0g3!dnun&

1^nuDablb~11g0g3!dnum&^mu~12A3D8clc!g
0un&# ~143!

52
1

3
DmsMN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
$Dab@^nug0um&^mulb~11g0g3!dnun&1^nulb~11g0g3!dnum&

3^mug0un&#2A3D8cDab^nulcg
0um&^mulb~11g0g3!dnun&2A3DabD8c^nulb~11g0g3!dnum&^mulcg

0un&%. ~144!

It is easy to show that the contribution of the first term of Eq.~144!, ~i.e., the term proportional toDab), to q(a)(x,Dms
dyn) is

given by

2
4DmsI 1

3 K Da8

A3
L

p↑
k0̃~x! ~145!

with k0̃(x) given by Eq.~142!. The manipulation of the remaining two terms is a little more complicated. First, we notice
sinceD8c andDab commute, we can write

D8cDab^nulcg
0um&^mulb~11g0g3!dnun&1DabD8c^nulb~11g0g3!dnum&^mulcg

0un&

5 1
2 $Dab ,D8c%@^nulb~11g0g3!dnum&^mulcg

0un&1^nulcg
0um&^mulb~11g0g3!dnun&#. ~146!

We now consider the two parts separately. For the parts where the indicesb andc run from 1 to 3, the diagonal matrix elemen
of DabD8c between the spin-up proton state can be expressed as

^DabD8c&p↑
b,c51,2,3 part5^Da3D8c&p↑db,3dc,31

1

4
^Da,11 i2D8,12 i2&p↑db,12 i2dc,11 i21

1

4
^Da,12 i2D8,11 i2&p↑db,11 i2dc,12 i2 .

~147!

Noting the equalities
034006-14
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^Da,11 i2D8,12 i2&p↑5^Da,12 i2D8,11 i2&p↑52^Da3D83&p↑ , ~148!

we can prove that

^DabD8c&p↑
b,c51,2,3 part5^Da3D83&p↑~db,1dc,11db,2dc,21db,3dc,3!. ~149!

Using a similar relation for the product of operatorsD8cDab , we then get

^$DabD8c%&p↑
b,c51,2,3part5

1

3 K (
i 51

3

$DaiD8i%L
p↑

~db,1dc,11db,2dc,21db,3dc,3!. ~150!

This relation is then used to derive the equality,

(
b,c51

3
1

2
^$DabD8c%&p↑

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nulb~11g0g3!dnum&^mulcg

0un&

1^nulcg
0um&^mulb~11g0g3!dnun&#

5K (
i 51

3

$Dai ,D8i%L
p↑

1

3 (
j 51

3
Nc

2 K S (
m5all ,n<0

2 (
m5all ,n.0

D L 1

Em2En
^nul jg

0um&^mul j~11g0g3!dnun&. ~151!

Next, for the parts whereb andc run from 4 to 7, we use the identities

(
m5all ,M (n)

^nul4g0um&^mul4~11g0g3!dnun&5 (
m5all ,M (n)

^nul5g0um&^mul5~11g0g3!dnun&

5 (
m5all ,M (n)

^nul6g0um&^mul6~11g0g3!dnun&

5 (
m5all ,M (n)

^nul7g0um&^mul7~11g0g3!dnun&. ~152!

Using these relations, we find that

(
b,c54

7
1

2
^$Dab ,D8c%&p↑

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

3@^nulb~11g0g3!dnum&^mulcg
0un&1^nulcg

0um&^mulb~11g0g3!dnun&#

5K (
K54

7

$DaK ,D8K%L
p↑

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul4g0um&^mul4~11g0g3!dnun&. ~153!

Now combining the above three contributions, the dynamicalDms corrections to the flavor-nonsinglet unpolarized distrib
tions can be written in the form

q(a)~x;Dms
dyn!52

4DmsI 1

3 K Da8

A3
L

p↑
k̃0~x!1

2DmsI 1

A3
K (

i 51

3

$Dai ,D8i%L
p↑

k̃1~x!1
2DmsI 2

A3
K (

K54

7

$DaK ,D8K%L
p↑

k̃2~x!,

~154!

wherek̃0(x) is already defined in Eq.~142!, while

k̃1~x!5MN

Nc

4I 1

1

3 (
j 51

3 S (
m5all ,n<0

2 (
m5all ,n.0

D 3
1

Em2En
^nul jg

0um&^mul j~11g0g3!dnun&, ~155!

k̃2~x!5MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D 3

1

Em2En
^nul4g0um&^mul4~11g0g3!dnun&. ~156!
034006-15
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Next, we consider the longitudinally polarized distributions. The flavor-singlet part is easily obtained in the form

Dq(0)~x;Dms
dyn!52

4DmsI 1

A3
^D83&p↑ẽ~x!, ~157!

with

ẽ~x!52MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul3g0um&^mu~g51S3!dnun&. ~158!

The flavor-nonsinglet part is again slightly more complicated. From the general formula~144!, we get

Odyn
(Dms)52MN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

1

3
Dms

3@^nu~12A3D8clc!g
0um&^muDablb~g51S3!dnun&1^nuDablb~g51S3!dnun&^mu~12A3D8clc!g

0un&#

52
1

3
DmsMN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
3$Dab@^nug0um&^mulb~g51S3!dnun&

1^nulb~g51S3!dnum&^mug0un&#2A3D8cDab^nulcg
0um&^mulb~g51S3!dnun&

2A3DabD8c^nulb~g51S3!dnum&^mulcg
0un&%. ~159!

Similarly as before, the contribution of the first term~proportional toDab) to Dq(0)(x;Dms
dyn) is found to be

4DmsI 1

3
^Da3&p↑ẽ~x!, ~160!

with ẽ(x) given by Eq.~158!. On the other hand, the remaining two terms can be rewritten in the form

1

A3
DmsMN

Nc

2 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En

3
1

2
$Dab ,D8c%@^nulb~g51S3!dnum&^mulcg

0un&1^nulcg
0um&^mulb~g51S3!dnun&#. ~161!

First by confining to the terms in which either or both ofb andc run from 1 to 3, there are only two possibilities to surviv
i.e., b58,c53 or b53,c58. The contributions of these terms toq(a)(x;Dms

dyn) are found to be

4DmsI 1

3
^Da3D88&p↑MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nug0um&^mul3~g51S3!dnun&

1
4DmsI 1

3
^Da8D83&p↑MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul3g0um&^mu~g51S3!dnun&. ~162!

In order to evaluate the remaining contributions in whichb andc run from 4 to 7, we use the identity
034006-16
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(
m5all ,M (n)

^nul4g0um&^mul4~g51S3!dnun&5 (
m5all ,M (n)

^nul5g0um&^mul5~g51S3!dnun&

52 (
m5all ,M (n)

^nul6g0um&^mul6~g51S3!dnun&

52 (
m5all ,M (n)

^nul7g0um&^mul7~g51S3!dnun&, ~163!

together with the familiar relation

d3445d35552d36652d3775
1
2 . ~164!

This enables us to express the corresponding contribution toq(a)(x;Dms
dyn) in the following form:

2DmsI 2

A3
K 4 (

K54

7

d3KKDaKD8KL
p↑

MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul4g0um&^mul4~g51S3!dnun&. ~165!

Now, by collecting the various terms explained above, the dynamicalDms correction to the flavor-nonsinglet longitudinall
polarized distribution functions can be expressed as

Dq(a)~x;Dms
dyn!5

4DmsI 1

3
^Da3~12D88!&p↑ f̃ ~x!2

4DmsI 1

3
^Da8D83&p↑ẽ~x!2

2DmsI 2

A3
K 4 (

K54

7

d3KKDaKD8KL
p↑

s̃~x!,

~166!

whereẽ(x) is defined in Eq.~158!, while f̃ (x) and s̃(x) are given by

f̃ ~x!52MN

Nc

4I 1
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nug0um&^mul3~g51S3!dnun&,

s̃~x!52MN

Nc

4I 2
S (

m5all ,n<0
2 (

m5all ,n.0
D 1

Em2En
^nul4g0um&^mul4~g51S3!dnun&. ~167!

Next we turn to the kinematicalDms correction, which originates from the first-order correction with respect toDms in the
collective quantization rule~48!. Putting this rule into the operatorV contained in Eq.~22!, we are led to a simple rule fo
obtaining the kinematicalDms correction toOkin

(Dms) , i.e.,

Ji

2I 1
→ 1

2

2

A3
Dms

K1

I 1
D8i , ~168!

JK

2I 2
→ 1

2

2

A3
Dms

K2

I 2
D8K . ~169!
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Taking care of the fact that the collective operator contained inÕ commutes withD8i as well asD8K , we obtain

Okin
(Dms)52D8i

2

A3
Dms

K1

I 1
MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nuŌdnum&^mul i un&1^nul i um&^muŌdnun&#,

1D8i

2

A3
Dms

K1

I 1

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nul i Ōdnun&, ~170!

for the flavor-singlet distributions in whichÕa5A†l0AŌ5Ō. On the other hand, the flavor-nonsinglet part becomes

Okin
(Dms)52DabD8i

2

A3
Dms

K1

I 1
MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nulbŌdnum&^mul i un&1^nul i um&^mulbŌdnun&#

2DabD8K

2

A3
Dms

K2

I 2
MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nulbŌdnum&^mulKun&1^nulKum&^mulbŌdnun&#

1DabD8i

2

A3
Dms

K1

I 1

Nc

4

d

dx S (
n<0

2 (
n.0

D K nU12 $lbŌ,l i%UnL
1DabD8K

2

A3
Dms

K2

I 2

Nc

4

d

dx S (
n<0

2 (
n.0

D K nU 1

2
$lbŌ,lK%UnL . ~171!

Here, the last two terms of the above equation are rewritten by using the relations,

(
M (n)

^nu$lb ,l i%Ōdnun&52dbi (
M (n)

^nuŌdnun&1
2

A3
db8d i3 (

M (n)
^nul3Ōdnun& ~172!

and

(
M (n)

^nu$lb ,lK%Ōdnun&5dbK (
M (n)

^nuŌdnun&12dbKd3KK (
M (n)

^nul3Ōdnun&, ~173!

which will be proved in Appendix B. We thus get for the flavor-nonsinglet case,

Okin
(Dms)52DabD8i

2

A3
Dms

K1

I 1
MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
@^nulbŌdnum&^mul i un&1^nul i um&^mulbŌdnun&#

2DabD8K

2

A3
Dms

K2

I 2
MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
3@^nulbŌdnum&^mulKun&1^nulKum&

3^mulbŌdnun&#1
2Dms

A3

K1

I 1
DaiD8i

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nuŌdnun&

1
Dms

A3

K2

I 2
DaKD8K

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nuŌdnun&1
2Dms

3

K1

I 1
Da8D83

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nul3Ōdnun&

1
2Dms

A3

K2

I 2
(
K54

7

d3KKDaKD8K

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nul3Ōdnun&. ~174!

Let us first consider the unpolarized case. From the general formula~170!, it is easy to see that the kinematicalDms
correction to the flavor-singlet unpolarized distribution identically vanishes, i.e.,
034006-18
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q(0)~x;Dms
kin!50. ~175!

On the other hand, by using the identities

(
M (n)

^nu~11g0g3!dnun&5
1

3 (
j 51

3

(
m5all ,M (n)

^nul j um&^mul j~11g0g3!dnun&

52 (
m5all ,M (n)

^nul4um&^mul4~11g0g3!dnun&, ~176!

the kinematicalDms correction to the flavor-nonsinglet unpolarized distribution can be expressed in the form

q(a)~x;Dms
kin!52

2DmsI 1

A3

K1

I 1
K (

i 51

3

$Dai ,D8i%L
p

k1~x!2
2DmsI 2

A3

K2

I 2
K (

i 54

7

$DaK ,D8K%L
p

k2~x!. ~177!

Herek1(x) andk2(x) are the same functions as appeared in Eq.~75!.
The kinematicalDms correction to the flavor-singlet longitudinally polarized distribution can similarly be evaluated

Dq(0)~x;Dms
kin!52^D83&p↑

4Dms

A3

K1

I 1
MN

Nc

4 S (
m5all ,<0

2 (
m5all ,n.0

D
3

1

Em2En
^nul3um&^mu~g51S3!dnun&1^D83&p↑

4Dms

A3

K1

I 1

Nc

8

d

dx S (
m5all ,<0

2 (
m5all ,n.0

D ^nul3um&

3^mu~g51S3!dnun&5
4DmsI 1

A3

K1

I 1
^D83&p↑e~x!, ~178!

with e(x) defined before in Eq.~82!. For the flavor nonsinglet piece, we obtain

q(a)~x;Ds
kin!52

4Dms

3

K1

I 1
^Da8D83&p↑MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D
3

1

Em2En
^nul3um&^mu~g51S3!dnun&

2
2Dms

A3

K2

I 2
K 4 (

K54

7

d3KKDaKD8KL
p↑

MN

Nc

4 S (
m5all ,n<0

2 (
m5all ,n.0

D 1

Em2En
^nul4um&^mul4~g51S3!dnun&

1
2Dms

3

K1

I 1
^Da8D83&p↑

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nul3~g51S3!dnun&

1
2Dms

A3

K2

I 2
K (

K54

7

d3KKDaKD8KL
p↑

Nc

4

d

dx S (
n<0

2 (
n.0

D ^nul3~g51S3!dnun&. ~179!

To rewrite the last two terms, we use the identities

(
M (n)

^nul3~g51S3!dnun&5 (
m5all ,M (n)

^nul3um&^mu~g51S3!dnun&

52 (
m5all ,M (n)

^nul4um&^mul4~g51S3!dnun&. ~180!

This enables us to expressq(a)(x;Dms
kin) in the form
034006-19
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q(a)~x;Dms
kin!5

4DmsI 1

3

K1

I 1
^Da8D83&p↑e~x!1

2DmsI 2

A3

K2

I 2
K 4 (

K54

7

d3KKDaKD8KL
p↑

s~x!, ~181!
d

ne
o-

e
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rva-
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-

on-
s,
with e(x) ands(x) being the functions, respectively, define
in Eqs.~82! and ~91!.

It is now convenient to express the dynamical and ki
maticalDms corrections in a combined form. For the unp
larized distributions, this gives

q(0)~x;Dms
dyn1kin!52

4DmsI 1

3
^12D88&pk̃0~x!,

~182!

q(a)~x;Dms
dyn1kin!

52
4DmsI 1

3 K Da8

A3
L

p

k̃0~x!1
2DmsI 1

A3

3K (
i 51

3

$Dai ,D8i%L
p

F k̃1~x!2
K1

I 1
k1~x!G1

2DmsI 2

A3

3K (
i 54

7

$DaK ,D8K%L
p

F k̃2~x!2
K2

I 2
k2~x!G , ~183!

while, for the longitudinally polarized distributions, we hav

Dq(0)~x;Dms
dyn1kin!

52
4DmsI 1

A3
^D83&p↑F ẽ~x!2

K1

I 1
e~x!G , ~184!

Dq(a)~x;Dms
dyn1kin!

5
4DmsI 1

3
^D83~12D88!&p↑ f̃ ~x!

2
4DmsI 1

3
^Da8D83&p↑F ẽ~x!2

K1

I 1
e~x!G

2
2DmsI 2

A3
K 4 (

K54

7

d3KKDaKD8KL
p↑

3F s̃~x!2
K2

I 2
s~x!G . ~185!

We summarize below the necessary matrix elements of
lective operators. For the unpolarized case, we need

K D38

A3
L

p

5
1

30
, K D88

A3
L

p

5
A3

10
, ~186!
03400
-
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K (
i 51

3

$D3i ,D8i%L
p

5
2A3

45
, K (

i 51

3

$D8i ,D8i%L
p

5
2

5
,

~187!

K (
i 54

7

$D3K ,D8K%L
p

52
2A3

45
, K (

i 54

7

$D8K ,D8K%L
p

5
6

5
,

~188!

while, for the longitudinally polarized case,

^D33&p↑52
7

30
, ^D83&p↑52

A3

30
, ~189!

^D33~12D88!&p↑52
13

90
, ^D83~12D88!&p↑52

A3

30
,

~190!

^D38D83&p↑52
1

45
, ^D88D83&p↑50, ~191!

K 4 (
K54

7

d3KKD3KD8KL 52
22A3

135
,

K 4 (
K54

7

d3KKD8KD8KL 52
2

15
. ~192!

Because the firstmoment sum rules for the unpolari
distributions are connected with the quark-number conse
tion laws and since they are shown to be satisfied at
leading O(V01V1) contributions to the distribution func
tions, one must check whether the above SU~3! symmetry
breaking corrections do not destroy these fundamental c
servation laws. To verify them, we first notice the relation

E
21

1

k̃0~x!dx50, ~193!

E
21

1

k̃1~x!dx5
K1

I 1
, ~194!

E
21

1

k̃2~x!dx5
K2

I 2
~195!
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with I 1 ,I 2 andK1 ,K2 being the basic moments of inertia o
the soliton defined in Eqs.~49!–~52!. Combining the above
relations with the similar sum rules fork1(x) andk2(x), we
then find that

E
21

1 F k̃1~x!2
K1

I 1
k1~x!Gdx5

K1

I 1
2

K1

I 1
50, ~196!

E
21

1 F k̃2~x!2
K2

I 2
k2~x!Gdx5

K2

I 2
2

K2

I 2
50. ~197!

It is now evident from these relations that

E
21

1

q(0)~x:Dms
dyn1kin!dx50, ~198!

E
21

1

q(3)~x:Dms
dyn1kin!dx50, ~199!

E
21

1

q(8)~x:Dms
dyn1kin!dx50, ~200!

which ensures that there is no contribution from the dyna
cal plus kinematicalDms corrections to the quark-numbe
sum rules.

Since the mass difference between thes and u,d quarks
breaks SU~3! symmetry, a baryon state is no longer a me
ber of the pure SU~3! representation but it is generally
mixture of several SU~3! representations. Up to the first o
der in Dms , it can be shown that the proton state is a line
combination of three SU~3! representation as

up↑&5u8,p↑&1c10
N u10,p↑&1c27

N u27,p↑&. ~201!

Here, the mixing coefficients are given by

c10
N

52
A5

15 S a1
1

2
g D I 2 , ~202!
03400
i-

-

r

c27
N 52

A6

25 S a2
1

6
g D I 2 , ~203!

where

a5S 2
s̄

Nc
1

K2

I 2
DDms , ~204!

g52S K1

I 1
2

K2

I 2
DDms , ~205!

with s̄ being the scalar charge of the nucleon given by

s̄5Nc(
n<0

^nug0un&. ~206!

The representation mixing correction to any nucleon obse
ables can therefore be evaluated based on the formula

^p↑uÔup↑&5^8,p↑uÔu8,p↑&12c10̄
N

^10,p↑uÔu8,p↑&

12c27
N ^27,p↑uÔu8,p↑&1O@~Dms!

2#.

Here, as for the effective operatorÔ, we take the basic
O(V01V1) operators, which can be read from Eqs.~95! and
~96! for the unpolarized distributions, while from Eqs.~120!
and ~121! for the longitudinally polarized ones. From Eq
~95!, it is easy to verify that there is no representation mixi
correction to flavor-singlet unpolarized distribution

q(0)~x:Dms
rep!50. ~207!

On the other hand, the representation mixing correction
the flavor-nonsinglet distribution is given by
q(a)~x:Dms
rep!52c10

N H K 10,p↑U Da8

A3
U8,p↑L f ~x!1K 10,p↑U(

i 51

3

$D8i ,Ri%U8,p↑L k1~x!

1K 10,p↑U (
K54

7

$DaK ,RK%U8,p↑L k2~x!J 12c27
N K 27,p↑U Da8

A3
U8,p↑L f ~x!

1K 27,p↑U(
i 51

3

$Dai ,Ri%U8,p↑L k1~x!K 27,p↑U (
K54

7

$DaK ,RK%U8,p↑L k2~x!%. ~208!

Given below are the matrix elements of the relevant collective operators,

K 10,pU D38

A3
U8,pL 52

1

6A5
, K 10,pU D88

A3
U8,pL 5

1

2A15
, ~209!

K 10,pU(
i 51

3

$D3i ,Ri%U8,pL 5
1

2A5
, K 10,pU(

i 51

3

$D8i ,Ri%U8,pL 52
3

2A15
, ~210!
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K 10,pU (
K54

7

$D3K ,RK%U8,pL 50,

K 10,pU (
K54

7

$D8K ,RK%U8,pL 50, ~211!

and

K 27,pU D38

A3
U8,pL 5

1

15A6
, K 27,pU D88

A3
U8,pL 5

1

5A2
,

~212!

K 27,pU(
i 51

3

$D3i ,Ri%U8,pL 5
1

15A6
,

K 27,pU(
i 51

3

$D8i ,Ri%U8,pL 5
1

5A2
, ~213!

K 27,pU (
K54

7

$D3K ,RK%U8,pL 52
4

15A6
,

K 27,pU (
K54

7

$D8K ,RK%U8,pL 52
4

5A2
. ~214!

Using these, we finally arrive at

q(0)~x:Dms
rep!50, ~215!

and

q(3)~x:Dms
rep!52

1

3A5
c10

N
@ f ~x!23k1~x!#

1
2

15A15
c27

N @ f ~x!1k1~x!24k2~x!#,

q(8)~x:Dms
rep!51

1

A15
c10

N
@ f ~x!23k1~x!#

1
2

5A2
c27

N @ f ~x!1k1~x!24k2~x!#.

~216!

Remembering the sum rules forf (x),k1(x), andk2(x) given
in Eqs.~106!, ~107!, and~108!, we can show that

E
21

1

q(0)~x:Dms
rep!dx50, ~217!

E
21

1

q(3)~x:Dms
rep!dx50, ~218!

E
21

1

q(8)~x:Dms
rep!dx50, ~219!
03400
which ensures that the quark-number sum rules are intac
the introduction of the representation mixingDms correc-
tions.

Next, we consider the representation mixing correction
the longitudinally polarized distributions. The representat
mixing correction to the flavor-singlet distribution is aga
zero, i.e.,

Dq(0)~x:Dms
rep!50, ~220!

while, for the flavor-nonsinglet distribution, we have

Dq(a)~x:Dms
rep!

52c10
N H ^10,p↑uDa3u8,p↑&@2g~x!2h~x!#

1K 10,p↑U4(
i 5K

4

d3KK

1

2
$DaK ,JK%U8,p↑L s~x!

1K 10,p↑U 1

2
$Da8 ,J3%U8,p↑L 2

A3
e~x!J

12c27
N H ^27,p↑uDa3u8,p↑&@2g~x!2h~x!#

1K 27,p↑U4 (
K54

7

d3KK

1

2
$DaK ,JK%U8,p↑L s~x!

1K 27,p↑U 1

2
$Da8 ,J3%U8,p↑L 2

A3
e~x!J . ~221!

Here we need the following matrix elements:

^10,p↑uD33u8,p↑&52
A5

30
, ~222!

K 10,p↑U4 (
K54

7

d3KKD3KJKU8,p↑L 52
2A5

15
, ~223!

^10,p↑uD38J3u8,p↑&52
A15

60
, ~224!

^10,p↑uD83 u8,p↑&5
A15

30
, ~225!

K 10,p↑U4 (
K54

7

d3KKD8KJKU8,p↑L 5
2A15

15
, ~226!

^10,p↑uD88J3 u8,p↑&5
A5

20
, ~227!
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and

^27,p↑uD33u8,p↑&52
A6

270
, ~228!

K 27,p↑U4 (
K54

7

d3KKD3KJKU8,p↑L 52
4A6

135
, ~229!

^27,p↑uD38J3u8,p↑&5
A2

60
, ~230!

^27,p↑uD83u8,p↑&52
A2

30
, ~231!

K 27,p↑U4 (
K54

7

d3KKD8KJKU8,p↑L 52
4A2

15
, ~232!

^27,p↑uD88J3u8,p↑&5
A6

20
. ~233!

Using these relations, we finally obtain

Dq(0)~x:Dms
rep!50, ~234!

Dq(3)~x:Dms
rep!51

A5

15
c10

N
@g~x!1h~x!24s~x!2e~x!#

1
A6

135
c27

N @g~x!1h~x!28s~x!13e~x!#,

~235!

Dq(8)~x:Dms
rep!52

A15

15
c10

N
@g~x!1h~x!24s~x!2e~x!#

1
A2

15
c27

N @g~x!1h~x!28s~x!13e~x!#.

~236!

III. CONCLUDING REMARKS

We have developed a path integral formulation of the
vor SU~3! CQSM for evaluating quark and antiquark dist
bution functions in the nucleon. It has been done so a
take over the advantage of the SU~2! model such that the
polarization of Dirac-sea quarks in the hedgehog mean fi
is properly taken into account. This is essential for mak
reasonable predictions for the hidden strange-quark distr
tions in the nucleon, which has a totally nonvalence char
ter, as well as the light-flavor sea-quark distribution in t
nucleon. The theory as a whole is based on a double ex
sion in two small parameters. One is the expansion in
collective angular velocity operatorV of the rotating soliton,
which can also be regarded as a 1/Nc expansion. The anothe
is the perturbation in the strange- and nonstrange-quark m
difference, which is also thought to be small as compa
with the typical energy scale of baryon physics.
03400
-

to

ld
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e

ss
d

As for the SU~3! symmetry breaking corrections, we hav
taken into account three possible corrections, named the
namical correction, kinematical correction, and the repres
tation mixing correction, which are all linear order in th
mass parameterDms . It was emphasized that the simulta
neous account of the dynamical and the kinematical cor
tions is essential for maintaining the quark-number s
rules. Unfortunately, we encounter a subtle problem in
evaluation of the parton distribution functions at the suble
ing order of 1/Nc expansion, or more concretely, theO(V1)
contribution to the PDF. It arises from an ordering ambigu
of two collective space operators in quantization. In the c
of SU~2! CQSM, this ambiguity can be avoided if one adop
a physically plausible time-order-keeping quantization p
scription. However, it appears that this particular quanti
tion procedure is not compatible with the fundamental d
namical assumption of the SU~3! CQSM, i.e., the embedding
of the SU~3! hedgehog followed by the quantization of so
ton rotation in the full SU~3! collective coordinate space. O
the other hand, one can avoid this incompatibility, if o
adopts the symmetrized ordering of two collective operat
before quantization. The price to pay for it is, however, th
one loses phenomenologically desirable first-order rotatio
correction to some flavor-nonsinglet observables, which
know is essential for resolving the long-standinggA problem
in the flavor SU~2! version of the CQSM. Undoubtedly, ou
understanding of the theoretical aspects of the model is
incomplete and some more work should be done for clar
ing these questions.
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APPENDIX A: PROOF OF EQUALITIES „87… AND „88…

Here, let us prove two identities~87! and~88!, which we
have used in Sec. II. Using the standard SU~3! algebra

$lc ,l i%5
4

3
dci12dciele , ~A1!

we proceed as

(
M (n)

^nu$lc ,l i%~g51S3!dnun&

5 (
M (n)

K nUS 4

3
dci12dcieleD ~g51S3!dnUnL

52dci3 (
M (n)

^nul3~g51S3!dnun&

52d338dc8d i3 (
M (n)

^nul3~g51S3!dnun&

5
2

A3
dc8d i3 (

m5all ,M (n)
^nul3um&^mu~g51S3!dnun&,

~A2!
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which proves the first identity. To prove the second ident
we first notice that

(
M (n)

^nu$lc ,lK%~g51S3!dnun&

5 (
M (n)

K nUS 4

3
dci12dcKeleD ~g51S3!dnUnL

52d3cK (
M (n)

^nul3~g51S3!dnun&. ~A3!

Second, we can show that

(
m5all ,M (n)

^nul4um&^mul4~g51S3!dnun&

5 (
M (n)

^nul4
2~g51S3!dnun&

5 (
M (n)

K nUS 2

3
2

1

2A3
l81

1

2
l3D ~g51S3!dnUnL

5
1

2 (
M (n)

^nul3~g51S3!dnun&. ~A4!

Combining the above two equations, we therefore obtain

(
M (n)

^nu$lc ,lK%~g51S3!dnun&

54d3cK (
m5all ,M (n)

^nul4um&^mul4~g51S3!dnun&,

~A5!

which proves the second identity.

APPENDIX B: PROOF OF EQUALITIES „172… AND „173…

Here, we will prove the identities~172! and~173! used in
Sec. II. Utilizing the generalized hedgehog symmetry
gether with the standard SU~3! algebra, we can proceed a
follows:
,

v,

03400
,

-

(
M (n)

^nu$lb ,l i%Ōdnun&

5 (
M (n)

K nUS 4

3
dbi12dbieleD ŌdnUnL

5 (
M (n)

K nUS 4

3
dbi12dbi8l812dbi3l3D ŌdnUnL

5 (
M (n)

K nUS 4

3
dbi12dbid118

1

A3

12d833l3db8d i3D ŌdnUnL
52dbi (

M (n)
^nuŌdnun&

1
2

A3
db8 d i3 (

M (n)
^nu l3Ōdnun&, ~B1!

where the indexi runs from 1 to 3. This proves the firs
identity ~172!. Similarly, for the second case in whichK runs
from 4 to 7, we can show that

(
M (n)

^nu$lb ,lK%Ōdn un&

5 (
M (n)

K nUS 4

3
dbK12dbKeleD ŌdnUnL

5 (
M (n)

K nUS 4

3
dbK12dbK8l812dbK3l3D ŌdnUnL

5 (
M (n)

K nUS 4

3
dbK12dbKd448

1

A3

12d3KKl3dbKD ŌdnUnL
52dbK (

M (n)
^nuŌdnun&12dbKd3KK (

M (n)
^nul3Ōdnun&,

~B2!

which proves the second identity~173!.
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