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We prove thek; factorization theorem in perturbative QGBQCD for exclusive processes by considering
7y* — y(m) andB— y( W)J The relevant form factors are expressed as the convolution of hard amplitudes
with two-parton meson wave functions in the impact parambtspace,b being conjugate to the parton
transverse momenta; . The point is that on-shell valence partons carry longitudinal momenta initially, and
acquirekt through collinear gluon exchanges. Tivelependent two-parton wave functions with an appropriate
path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the
parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant.
We compare the predictions for two-body nonleptoBieneson decays derived froky factorization (the
PQCD approachand from collinear factorizatiofthe QCD factorization approath
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[. INTRODUCTION nation, this conclusion is obviously too strong. We would
rather conclude that it is collinear factorization which fails,
Both collinear andk; factorizations are the fundamental and that exclusiv®8 meson decays demaikg factorization.
tools of perturbative QCIHPQCD), wherek; denotes parton Retaining the dependence on the parton transverse momen-
transverse momenta. For inclusive processes, considéum k;, and resumming the resultant double logarithms
deeply inelastic scatterindIS) of a hadron, carrying a mo- a¢n’k; into a Sudakov form factdrl2], the singularity does
mentump, by a virtual photon, carrying a momentuqa  not exist. PQCD is then self-consistent and reliable as an
Collinear factorizatior{1] and k; factorization[2—4] apply ~ expansion in a small coupling constant [18—20.
when DIS is measured at a large and small Bjorken variable In this paper we shall prove the factorization theorem
xg=—0%/(2p-q), respectively. The cross section is written with the k; dependence included into two-parton meson
as the convolution of a hard subprocess with a hadron distriwave functions and into hard amplitudes. In our previous
bution function in a parton momentum fractionin the  works we have proposed a simple all-order proof of the col-
former, and in bothx andky in the latter. Wherxg is small, linear factorization theorem for the exclusive procesg*
x=xg can reach a small value, at whiéh is of the same  _, ,(7) andB— y(=)l v up to the two-parton twist-3 level
order of magnitude as the longitudinal momentum and  [21]. The proof of thek; factorization theorem follows simi-
not negligible. For exclusive processes, such as hadron fora; procedures. We stress that it is more convenient to per-
factors, collinear factorization was Qevelopec[ﬁq-s]. The  form k; factorization in the impact parameterspace, in
range of a parton momentum fractian contrary to that in  \hich infrared divergences in radiative corrections can be
the inclusive case, is not experimentally controllable, andsytracted from parton-level diagrams explicitly. We shall ex-
must be integrated over between 0 and 1. Hence, the engjjain how to construct a gauge-invaridntiependent meson
point region with a smalk is not avoidable. If there is no \yaye function defined as a nonlocal matrix element with a
end-point singularity developed in a hard amplitude, collin-gpecial path for the Wilson link. Evaluating this matrix ele-
ear factorization works. If such a singularity occurs, indicat-ment in perturbation theory, the infrared divergences in the
ing the breakdown of collinear factorizatidky factorization  narton-level diagrams are exactly reproduced.
should be employed. Since thke factorization theorem was We emphasize that predictions for a physical quantity
proposed9,10}, there have been wide applications to vari- from the k; factorization theorem are gauge-invariant, even
ous processefll]. However, a rigorous proof is not yet though three-parton wave functions are not included. The
available. . o valence partons, carrying only longitudinal momenta, are ini-
Based on the concepts of collinear andfactorizations, tjally on-shell. They acquire the transverse degrees of free-
the PQCD[12-19 and QCD factorizatiotQCDF) [16] ap-  dom through collinear gluon exchanges, before participating
proaches to exclusivB meson decays have been developedin hard scattering. Therefore, the parton-level amplitudes are
respectively. While applying collinear factorization to the gauge-invariant. A hard amplitude, derived from the parton-
semileptonic decayB— ¢ v at large recoil, an end-point level amplitudes with the gauge-invariant and infrared-
singularity fromx— 0 was observefil7]. Some authors then divergent meson wave function being subtracted, is then
concluded that PQCD is not applicable to these decays evegauge-invariant and infrared-finite. At last, we obtain gauge-
in the heavy quark limif16]. According to the above expla- invariant and infrared-finite predictions by convoluting the
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FIG. 1. Lowest-order diagrams for the procesg* — . é6®

hard amplitude with a model wave function, which is deter- LLL LLL LLL

mined from nonperturbative methodsuch as lattice QCD (@) () (£

and QCD sum rulgs FIG. 2. O(as) corrections to Fig. ().

Il. FACTORIZATION OF = my* —y(ar) Equation(2) is then factorized into

We first prove thek; factorization theorem for the exclu- (0)( o\ — ,1.(0) (0)
sive processry* —vy. This process, though containing no G0 =g 00 HTX), @
end-point singularity, is simple and appropriate for a demonyhere
stration. The momentuni®, (P,) of the initial-state pion
(final-state photonis chosen as 1 o
P O(x) = —U(xP) y*h_u(xPy),
X 0 4P;
P1=(P1,007) ﬁ(l,ODT),

Py, P1Y°)
HO(x)=je2—— 27w 1V ]
o (x)=ie oXP, P, 6)
P>=(0,P; ,0r)= /—2(0’1O ). (D) with the dimensionless vectan_=(0,10;) on the light

cone, defined as the lowest-order distribution amplitude and
We concentrate on the kinematic region with large hard amplitude in perturbation theory, respectively. Note that
== 0?% q=P,— P, being the momentum transfer from the GO(x), ‘ﬁ(o)_(x), andHO(O)(x) do not depend on a transverse
virtual photon, in which the scattering mechanism is gov-momentum in theD(as) factorization.
erned by PQCD. The lowest-order diagrams are displayed in

Fig. 1. Assume that the on-shelland u quarks carry the A. O(a) factorization

fractional momentaxP, and xP;, respectively, withx=1 Next we consider th®(«as) radiative corrections to Fig.

—x. The reason for considering an arbitracyill become  1(a) shown in Figs. £a)-2(f), where the gluon carries the

clear later. Figure () gives the parton-level amplitude loop momenturr. As stated in21], there are two types of
infrared divergences, soft and collinear, which arise fiom

e P,—xP; — with the components
GO(x)=—ie?u(xPy)é—————y,u(xPy), (2
(Pz_XP1)2 |+~|*~|T~K,

wheree denotes the polarization vector of the outgoing pho-
ton. Figure 1b) leads to the same result.

The factorization in the fermion flow is achieved by in-
serting the Fierz identity

1" ~Q, 1"~A%Q, I;~A, (6)

respectively. Heré\, being ofO(Aqcp), represents a small
scale. Below we work out the factorization of the collinear

1 1 1 enhancement frorhparallel toP; without integrating out the

i ”‘:ZI ikhj +Z(y“)ik(ya),j + Z(f’ya)ik( yayS)U transverse components. The prescription is basically simi-
lar to that for collinear factorization. The wave function and

1 the hard amplitude then beconhgdependent through col-

(Y)ik(¥°); +§('}’50'aﬁ)ik(0'aﬁ75)lj , (3 linear gluon exchanges.
We derive theO(«g) kt factorization formula, written as
with | being the identity matrix ane,z=i[ y,,y4]/2. For the convolution over the momentum fractigrand over the

the momenta chosen in E¢L), only the structure®y® with ~ impact parametel:

a=+ contributes to the wave function at leading tw(istist f

2). The other structures contribute at higher twists, and the g(l)(x):E g(l)(x)
factorization of the corresponding wave functions is similar. = '

+
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d2b The Fourier transformation introduces the additional factor
gfl)(x)zf dé S dV(x,£,0)HO(£,b) exp(—ilt-b) into the wave functiong{!) compared to the
(2m) result in collinear factorizatiof21], since the hard amplitude
n zﬂ(o)(x)Hi(l)(x). @ depends ont in this case.

The integrand associated with the two-particle irreducible
The above expression, with th®(as) wave functions diagram in Fig. 2d) is given by
»M(x,£,b) andH(¢,b) specified, defines th®(«s) hard

amplitudes (")(x), which do not contain collinear diver- _ P,—xP,

gences. It is now obvious why we consider an arbitvafgr 1= —e?g?Cru(x PE—F"

the parton-level diagrams in Figs. 1 and 2: we can obtain the (P2=xPy)

functional form of () in x. Equation(7) is a conse- Po—xPot] Pt 1

quence of our assertion that partons acquire transverse de- 2 ! y, ———y u(xP)=. (12
grees of freedom through collinear gluon exchanges®, (Po—=xPy+1)2 " (xP+1)? 12

convoluted with the lowest-ordelr-independenty(©), is
then identical to that in collinear factorization. As explainedTo collect the leading contributiony” and y, must bey™

later, this consequence is crucial for constructing gaugeandy_=y", respectively. In the collinear region the follow-

invariant hard amplitudes. ing approximation holds:
Figures 2a) and Zc) are self-energy corrections to the

external lines. In this case, the loop momentligioes not

flow through the hard amplitude. TH&(«,) wave functions (P2=XPy)y"(P2=XPy+1)~2P5Py, (13
extracted from these two diagrams are the same as in the
collinear factorizatiori21]. We simply quote the results where thel™ and |+ terms, being power-suppressed com-
pared toP, , have been dropped.
—ig2C 4 1 The factorization of the collinear enhancement from Fig.
¢(al)(X,§,b)= FJ u(xP;) yoh_— 2(d) requires further approximation for the product of the
4P (2m)* XPq two internal quark propagatof&1],
xP,+! — 1 ”
Xy’ ———— 3, U(xP1)= 8(£—X), (8) 2P
(xP,+1) | 2 2
(Py—=xPy)4(Py—xPy+1)
) _—|gchf df — , XPy—I _n 1 B 1 | "y
de (xEb) 4P; (2w)4d(xpl)7 (xP;—1)? N--1[(P,=xPy)? (P,~xP+1)? 49

where the numeratorR2, comes from Eq(13), and the fac-
torn”/n_-1 is exactly the Feynman rule associated with a
Wilson line in collinear factorization. Similarly, we have ne-
The loop integrand associated with FigbRis given by  glected the power-suppressed terms, such?and xP; 1.
The first (secondl term on the right-hand side of E§14)

1 . — 1
Xy, ==y h_U(XP)56(£=x). (9
xPq I

_ xP;—I Po—xP +1 corresponds to the case withduiith) the loop momentunh
|(M=e?g?Cru(xP;)y” 5 5 flowing through the hard amplitude.
xP1—1)* (Po—xP+1) The above eikonal approximation also applies to Fig).2
_ Hence, the extracte®(as) wave functions are written as
y xP+) (xP )1 10
— v, Uu(xP;)—.
Texp 2 Y2 © co+b
Inserting the Fierz identity, we obtain the wave function
$O(x,£.b) igchf Py ’
X,&,b)= u(x
P ap; J emt Tt
LY OPD YR Pyt Dy,
(xP—1)2(xP,+1)212 0
_ (s ,
Xu(xPl)é( E—x+— e b (11 FIG. 3. The path for the Wilson link in &-dependent two-
Py parton meson wave function.
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14

SDED) —igchf dl TxPu XPy+! P )1 n”
X,&,0)= u(Xx = Y,UuX -
d ap; ) mt Y T G2 T Y

+

S(E—x)— 5( E—x+ L—+) e”rbl, (15)

1

|+
S(E—X)— 8| é—x+—
(§—x) (§ X+P+

1

igZCFJ a4 — xP,—1 1n

W(x. £.b)= P1) Y, ———— y?h_u(xP
¢e (x,&,b) 4P1r (277)4U(X 1)yV(XP1_I)27 U(X l)|2 n_-l

e”T'bl, (16)

where the first(second term in the brackets is associated [y ) _ ) -

with the first (second term on the right-hand side of Eq. —|gf dzexdiz(n_-l+ie)—ily-bln_-A(l)

(14). Because of the Fourier transformation, the second ”

terms acquire the additional factor exj(;-b) compared to a , L

the results in collinear factorization. = —gﬁe_"T‘be" VAL, (19
Figure Zf) does not exhibit a collinear enhancement, -

since the radiative gluon gives a self-energy correction to thg\lh . o .
. . . ere the Fourier factor e leads to the function
off-shell internal line. Hence, we hawg"(x,£,b)=0. It is 5é§—x+|+/P*u)l xb(y") unct
1)

easy to ot_)sgrve that the soft divergences_cancel among th At last, for the evaluation of the lowest-order hard ampli-
O(«ay) radiative corrections. In the soft region lofve have tude, we neglect only the minus componéntin the de-

—i . ~ +% i
exp(~ily-b)~1 af_‘d'. 0, and the_ two terms in Eq¢15) nominator{see the second term on the right-hand side of Eq.
and(16) cancel. Similarly, the soft divergences cancel among(14)]

Figs. da)—2(c). This is the reason we discuss only the fac-
torization of the collinear enhancements.

The aboveO(as) wave functions can be reproduced by
the O(as) terms of the following nonlocal matrix element in

(Py—XxPy+1)2~— (2P, - Py+132). (20)

Note that in collinear factorization both™ and I are

theb space: dropped. Theb-dependent hard amplitude is then given by
(X,&,b)=i dle*ifpfmoﬁ( )ysh_P
ex.&b)=1 | 5= y)ysh- H<0>(§,b)=fdleH<°)(g,|T)exp(i|T.b),
y — —
xexp{—igf ds-A(s) [u(0)|u(xP)u(xPy)), tr(EPov. PrD
0 H(°>(§,|T)=ie2L’“72), (21)
17) 26P,-P,+12

with the coordinatey=(0y~,b). The path for the Wilson Equivalently, the abovet (*)(¢1+) is derived by considering
link is composed of three pieces: from 0 ¢ along the an off-shell u quark, which carries the momentugP,
direction ofn_, from = to «+b, and from=+b back toy = —Iy, and the leading structur®,ys associated with the
along the direction of-n_ as displayed in Fig. 3. We show pion, which is the same as in collinear factorization.

that the first piece corresponds to the eikonal line associated

with the first terms in Eqs(15) and(16). Fourier transform- B. All-order factorization

ing the gauge field(s) into A(l), we have In this subsection we present the all-order proof ofkhe

factorization theorem for the process* — vy, and construct

_igf dzexdiz(n_-1+ie)In_-A(l) the parton-level wave function in EGL7). The proof is simi-
0 lar to that for collinear factorization, if it is performed in the
e impact parameteb space. It will be observed that collinear
:gn_ilﬁA“(l ). (18) factorization is thédo— 0 limit of k¢ factorization. Therefore,

- we just highlight the differences, and for the rest of the de-
tails we refer the reader tf21]. The idea of the proof is
The fieldA(1), contracted with other gauge fields, gives thebased on induction. The factorization of t@as) collinear
propagator of the gluon attaching the eikonal line. The secenhancements has been derived in the previous subsection.
ond piece does not contribute because of the appropria@onsiderG(®)(x,b) andG®)(x,b) defined via
choice of the small imaginary constantie in the above

expression. The third piece corresponds to the eikonal line GO W) =g M(x,kr=0)

associated with the second terms in E4%) and(16). The 2

additional Fourier factor expfilt-b) is a consequence of =f GO Wx b), (22)
the shift byb from the first piece: (2m)?
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which indicates that the integration over the variableor-
responds to an amplitude with;=0 for external particles. + &ﬁ + = 0
The O(ay) hard amplitudeHM)(£,b) is defined similarly via l

HD(€). We obtain the factorization formula up @(ay),

(a)
GO(x,b)+GM(x,b) = f dél O (x,€,b) + pM(x,€b)]

X[HO(E D) +HM(ED)], (23 |
= + ® aN
with ¢(O(x,£,b) = ((x) 5(£—x). The summation over all = ’UOU“
the diagrams is understood.
(b)

Assume that the factorization theorem holds uﬁ)’(@xSN),

j FIG. 4. (a) Ward identity.(b) Factorization ofg (N1,
GO (x,b)=>, f dépM(x,&,)HI"D(g D), j=1,... N,
=0 (24) The first term on the right-hand side extracts the first type of

collinear enhancements, since the lightlike veatar, se-
lects the plus component of*, and the dominant component
| = — in the collinear region selects the minus component of
the vertex. The components;_, , do not change the
collinear structure, since they are negligible in the numera-
Yors compared to the leading terms proportionaPi and
P, . This can be confirmed by contractihg to Figs. 2d)
and Ze), from which Eq.(14) is obtained. The second term
extracts the second type of collinear enhancements. The last
term does not contribute a collinear enhancement due to the
equation of motion for thel quark. We shall concentrate on
the factorization of’jﬁ““’ corresponding to the first term on

where G* represents a physical amplitude with an externalthe right-hand side of Eq26), and the factorization associ-

gluon carrying the momentumand withn external quarks ated with the second term can be included simply by follow-

. ing the procedure if21].
carrying the momentk; ,k,, ... k. All these external par- ; . .
ticles are on the mass shell. It is known that factorization of Those diagrams with Figs.(@ and 2b) as theO(a)

a QCD process in momentum, spin, and color spaces r _ubdiagr_ams are excluo_led from the Seg@dﬂ) as discu;s-
quires summation of many diagrams. With the Ward identity"9 the first type of collinear qonflguratlons, since the iden-
the diagram summation can be handled in an elegant Way.t|f|ed'gluon do_es not. attagh aline paralleRg. Consider the

Look for the gluon in a complete set @(als\l+l) dia- physical amplitude, in which the two on-shell quarks and one
gramsG™N*1D), one of whose ends attaches the outermosPn-Shell gluon carry the momeng®,, xP,, andl, respec-
vertex on the uppeu quark line in the pion. Letx denote the ~ tively. Figure 4a), describing the Ward identity, contains a
outermost vertex, ang denote the attachments of the other cOMplete set of contractions bf, since the second and third
end of the identified gluon inside the rest of the diagramsdiagrams have been added back. The second and third dia-
There are two types of collinear configurations associate@rams in Fig. 4a) lead to
with this gluon, depending on whether the veris located
on an internal line with a momentum aloi®y. The quark | 1 Bu(EP,) = 1
spinor adjacent to the vertexis u(xP,). If B8 is not located 'BEPl—r 4 ! Epl—r
on a collinear line alond®;, the componeny™ in y* and o
the minus component of the vertgkgive the leading con- =—U(éPy), (27)
tribution. If B is located on a collinear line along,, B
cannot be minus, and bothand 3 label the transverse com- _ 1 o
ponents. This configuration is the same as of the self-energy [ gu(xPq) yP =—u(xPy), (28
correction to an on-shell particle. xPy—1

According to the above classification, we decompose the . o
tensor g,z appearing in the propagator of the identified respectively. The terma(£P;) andu(xP,) at the ends of

where¢((x,£,b) is given by theD(«al) terms in the pertur-
bative expansion of Eq(17). HUI™D(&,b) stands for the
O(ak™) infrared-finite hard amplitude. Equatiorig3) and
(24) approach the expressions in collinear factorization a
b—0 as stated above. We shall show that @ ") dia-
gramsG(N*D in the momentum space are written as the
convolution of theO(al) diagramsG™ with the O(as)
wave function by employing the Ward identity,

|, G*(I,ky K, - . . Kp) =0, (25)

(1= €P,+ EPU(EPY)

gluon into the above expressions correspond to(ﬂ(ezs'\‘) diagrams.
Figure 4b) shows that the diagramg{* " associated
_nfalﬁ s St _ N_,lg s s with the first term in Eq(26) are factorized into the convo-
Gap=™ )~ Qe GapT T T QatOpL | lution of the parton-levelO(a)) diagramsG™ with the

(26)  O(as) collinear piece extracted from Fig(d). The double
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line represents the Wilson line. The first diagram means that Equation(17) plays the role of an infrared regulator for
the gluon momentum does not flow in@N), while in the  parton-level diagrams. A hard amplitude then corresponds to
second diagram the gluon momentum does. Similar reasorthe regularized parton-level diagrams. After determining the
ing applies to the identified gluon, one of whose ends atgauge-invariant infrared-finite hard amplitud&(x,b), we
taches the outermost vertex of the lowequark line. Sub- ~ convolute it with the physical two-parton pion wave func-
stituting Eq.(24) into G (&,b) in the b space on the right- tion, whose all-order gauge-invariant definition is given by
hand side of Fig. éb), and following the procedure if21], _

i d ) o
we arrive at ¢(x,b)=if%e"xpl+y (o[uly) ysh
N+1
(N+1) _ (i) (N+1-1) y
GIHxb)= 2 | dég(x£b)H (&.5), Pexp[—igf ds-A(s) [u(0)|7(Py). (33)
(29 0
with the infrared-finiteO(aN*?) hard amplitudeHN*D.  The valence-quark stajei(xP;)u(xP;)) has been replaced

Equation(29) implies that all the collinear enhancements in by the pion statd=(P;)), and the pion decay constafy
the processry* — y can be factorized into the wave func- has been omitted. The relevant form fackofor the process

tion in Eq. (17) order by order. my* — v is then expressed as
C. Gauge invariance B d?b
F=| dx d(X,b)H(x,b). (39
(2m)?

We now demonstrate the gauge invariance ofkhdac-
torization theorem. Equation17) is explicitly gauge-
invariant because of the presence of the Wilson link from
toy [3,22]. Below we argue that hard amplitudeskin fac-
torization are also gauge-invariant. Equati@hm approaches
the collinear factorization under the approximation

oWe conclude that predictions derived from tkefactoriza-
tion theorem are gauge-invariant and infrared-finite.

The ky factorization theorem for the pion form factor in-
volved in the processry* — o can be proved in the same
way. TheO(«s) factorization is similar to the collinear fac-

D (x,&,b)~ pD(x,£,00= VX, &), (30) torization performed in21]. The only difference is the extra

Fourier factor expfil;-b) associated with the diagrams, in
with (x,&) being the distribution amplitude in collinear which the loop momentum flows through the hard amplitude.
factorization. The integration of the hard amplitude Following the steps in Sec. Il A, the eikonal line can be
H©)(£,b) overb givesH(O)(£,1:=0). Hence, we have the constructed from the diagrams with collinear gluons attach-
collinear factorization formula, ing the hard amplitude and the outgoing pion. The decompo-
sition in EqQ.(26) and the whole procedure presented above

1) on 1 0 0 1 then apply. That is, the all-order proof is also similar to that

g¢ )(X)_J dey D xOH &)+ 200H D), of collinear factorization[21]. Compared to the process

(B)  my*—, the structuresys and yso*# from the Fierz iden-

. _ tity contribute, and the corresponding twist-3 pion wave
where the summation over the diagrams has been Suggnctions appear.

pressed. Sinc€ V(x), ¢ 1(x,&), andH (&) are gauge-
invariant in collinear factorization,H ¥(x) is gauge-

invariant. From Eq(7), the gauge invariance @*)(x,£,b) lll. FACTORIZATION OF - B—y(m)/v

stated(%bove, together with the gauge i'nvariancg(éf(x) In this section we prove thle factorization theorem for
af‘d_H (), then |mp!y the gauge lnvarlancze B9)(¢,b). the radiative decap— vyl v, retaining the transverse degrees
Similarly, thekr factorization formula 0O(as), of freedom of internal particles, and construct fheneson
&b wave function in the impact parametbrspace. We shall
(2)(y) — 2) (0) discuss only theD(«a) factorization, and demonstrate that
g f dg(zw)z[qﬁ (x.&D)HTED) the all-order factorization can be proved in a way similar to
W i collinear factorizatio21]. The momentunP, of the B me-
+ ¢ (X, §,b)H(&,b) ] son and the momentum, of the outgoing on-shell photon
+ O H @ (%), (32 are chosen as
leads to the gauge invariancetsf!)(&,b): Both G?)(x) and _Ms _Ms
JO(X)HP)(x) are gauge-invariant in collinear factoriza- P1 2 (1,10), P, 2 (0.,00), (35

tion, and all $()(x,&,b) are gauge-invariant as explained

previously. The gauge invariance H{%)(&,b) stated above where the photon energy fractiopis large enough to justify
then implies the gauge invariance EfY(¢£,b). Therefore, the applicability of PQCD. Assume that the light spectator
the hard amplitudes ik factorization are gauge-invariant at quark in theB meson carries the momentuknin collinear

all orders. factorization, only the plus componeht is relevant through
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the inner produck- P, [23]. The lowest-order diagrams for
the B— y/v decay are displayed in Fig. 1, but with the

upper quark(virtual photon replaced by & quark (W bo-
son.
Below we shall concentrate on Figal, because Fig.(b)

is power-suppressed. Figur¢al gives the parton-level am-

plitude,

g<o>(x):ei(k)é(P2—k)2 ¥,(1— y5)b(P;—k), (36)
.

which does not depend on a transverse momentum. Inserting

the Fierz identity in Eq(3) into Eg. (36), we obtain Eq(4)
with

w<°><x>=ii<k>y A_b(P;—k)
4P+ 5¥i— 1 )

1

tr[észM( 1-ys)h, y°]P;
2xP- P, ’

HO(x)=

_ MMEP27, (1 75)(P1+ M) (s /f)ys]
2xP;- P,

(37)

with the dimensionless vectan, =(1,00;) on the light
cone. We have dropped the higher-power tdtrim the nu-
merator, and the momentum fractionis defined byx
=k*/P; .

Y5y

structurey™ ys=Mn_ ys contributes to the hard amplitude.

Next we consider th®(«a,) radiative corrections to Fig.
1(a) shown in Figs. 2a)—2(f). We discuss the factorization of

the soft divergence from the loop momenturtt

For theB meson wave functions, there are two
leading-twist components associated with the structures
For the B—ylv decay, we choose the structure
vsy " =yshh_, since£ in Eq. (37) involvesy, , and only the

PHYSICAL REVIEW 87, 034001 (2003

~([TKK) whereA can be regarded as tfB2meson and

quark mass differencéy =Mg—m,. The dependence of the

B meson wave function on the transverse momentum is gen-
erated by soft gluon exchanges. The analysis is similar to
that in Sec. I, and we obtain E7). The factorization of the
two-particle reducible diagrams in FiggaP-2(c) is straight-
forward. Take Fig. th) as an example, which gives the inte-
grand

k= Py—K+!

I =ieg?Cru(k)y" ¢
A PRI A T

Pi—k+I+ 1
2 7b(P1=K) 5.

Xyu(1- YS)W

(38

Employing the eikonal approximation in the heavy-quark
limit, we have

Pi—k+I+m
(Py— k+1)2—m

2 S y.b(Py— k)~

-k), (39

with the velocityv =P,/Mg. TheO(as) wave function ex-
tracted from EQq(38) is then written as

ig2C d4 (k=)
(1) _ F ; Y
¢p (X, €,b)= = f (277)4-J(k)(k_|)2I2
X yeh_b(Py—k) %8| £—x+ ) it
ST 1 v-l |:>l+ '
(40)

The loop integrands associated with Figéd)2and 2e)
are given by

|(1)——ie 2C U(k)é Pz_k P —Kk+/ ( P K+Y+mb b(P —k)— (41)
d 9 2 (k2 T e S PP
O ieg?Cru(k) v, ¢ PZ ke Pz_k (1- yo)b(P,—K)> (42)

respectively. Neglecting the subleading terms proportion#l amd! in the numerators in comparison wi#,, we have the

eikonal approximation

P—k P,

—k+t n”

1 1

(P2 (Pt 1

P, (43

(Py— k)2 (Py—k+1)?

similar to Eq.(14). Inserting the Fierz identity, we extract tky «;) wave functions,

—ig°Ce
4P,

dP(x,¢,b)=

d
J’ (27 )4J(XP1)7’5V‘ b(P;— k)

+

—| O(&— x)—(S( §—X+I|D—+ e

1

(44)
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d4 —
(271_)4U(XP1) Yv

ig®C
4P;

J

(1) -
be’(x,€,D) P

The eikonal approximation in E¢39) has been applied. Fig-

CETE

PHYSICAL REVIEW D 67, 034001 (2003

v +

1

b(Pi—k 1—7
( 1 )|_2n_'|

S(E—X)— 5(
(45)

torization, implying the importance of the end-point region,

ure 2f) does not have the soft divergence due to the off-shelk; factorization must be employed. Exclusizemeson de-

internal quark.
It is obvious that the abov®(«) parton-level wave

functions are similar to those derived in Sec. Il: the eikonal
line in n_ is the same as in collinear factorization, and the

integrands contain the additional Fourier factor exiyf
-b), when the loop momentum flows through the hard am
plitude. The decomposition in E€R6) and the procedure for
the all-order proof presented in Sec. Il apply to tBe

—>yl7 decay. We construct a gauge-invariant light-cdhe
meson wave function,

d Lty —
B 00b)=i [ Se 1 (ofuly) yey P
xex;{—igjde'A(s)

0

whereb, is the rescaled quark field characterized by the
velocity v. The lowest-order hard amplitude in thespace is
given by Eq.(21) with

HOE )

etr[épzyﬂ(l_ y5)(P1+Mpg) (1 /1/2)¥°]
26P,-P,+I12 ’

b,(0)[B(P1)),

(46)

(47)

where the momentum fractiog is defined by &= (k"

cays belong to this category, for whiéf factorization is a
more appropriate tool. We have proved thefactorization

ltheorem for the processesy* — y(7) andB— y(w)l? in

this paper. The proof performed in the impact paramébter
space indicates that collinear factorization is the 0 limit

of kg factorization.

The prescriptions for determining wave functions and
hard amplitudes in th&; factorization theorem are summa-
rized as follows.

(i) A two-partonb-dependent wave function is factorized
from parton-level diagrams in the same way as in collinear
factorization(for example, under the same eikonal approxi-
mation), but the loop integrand is associated with an addi-
tional Fourier factor expfil;-b), when the loop momentum
| flows through a hard amplitude.

(i) A kr-dependent hard amplitude is obtained in the
same way as in collinear factorization, but considering off-
shell external partons, which carry the fractional momenta
k=xP+kT(k2=—k$), P being the external meson mo-
menta. Then Fourier transform this hard amplitude intolthe
space.

(i) The insertion of the Fierz identity to separate the
fermion flow between a wave function and a hard amplitude
is the same as in collinear factorization. Take the process
7y*—a discussed in Sec. Il as an example. Up to the
twist-3 accuracy for the initial pion, adopt the structures
vsy", vs, and yso®? with a,8=*, i.e., without thel
components.

Under the above prescriptions, the Wilson link for the

—17)/P; . The above expression can be derived by considb-dependent wave function is the same as in collinear factor-

ering an off-sheIIUquark of the momentuméP;,0,—1+),
and the leading structureP¢+Mg) (.. /\/2)y°® associated

ization, but with a shifto between the two pieces of paths
along the light cone. Both thedependent two-parton meson

with the B meson, which is the same as in collinear factor-wave functions and hard amplitudes are gauge-invariant in

ization.

kt factorization, without introducing three-parton wave func-

As emphasized in the |ntroduction, the Sem”eptonic de_tionS. Therefore, prEdiCtionS for a phySicaI quantity obtained

cayB— 7l v, because of the end-point singulariti¢ise fail-
ure of collinear factorization demands; factorization. Its

all-order proof is also performed in the same way. Note tha

for this mode, both the leading-twi& meson wave func-
tions ¢. , associated with the structuregy™, contribute
[21].

IV. DISCUSSION

from the k; factorization theorem are gauge-invariant. For
inclusive processes in smalg physics, the gauge invariance

f the unintegrated gluon distribution function and of the

ard subprocess of Reggeized gluons, being also off-shell by
—k3, is ensured in a similar way. The distinction is that the
structures ofy matrices from the Fierz identity are replaced
by eikonal vertices, which contain only the longitudinal com-
ponentd 3].

There are more differences between khefactorizations

We have explained that the range of a parton momenturof inclusive and exclusive processes. Inclusive processes in-
fractionx in exclusive processes, contrary to that in inclusivevolve a single scale, and only single logarithms. Exclusive
processes, is not experimentally controllable. Hence, th@rocesses involve two scaléshen a valence parton is soft,

end-point region with a smak is not avoidable. If a hard

amplitude develops an end-point singularity in collinear fac-

another is fagtand double logarithms. That is, no rapidity
ordering is assumef24]. Hence, the required resummation

034001-8
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techniques are different. The definition of meson wave func- 7’ x
tions constructed in this work serves as the starting point of
kt resummation[25-27. The resultant Sudakov factor B
- . o . . F5m B
smears the end-point singularity in the semileptonic decay
™
(6)

PHYSICAL REVIEW 87, 034001 (2003

B— wl?by increasing the magnitude kf though infinitely

—_—

needs to be justified by evaluating next-to-leading-order cor-
rections inag in the ky factorization theorem. If higher-order T s
In our next work we shall construdt; factorization of B %
two-body nonleptonicB meson decays. Below we briefly
ing only the CP asymmetry in theBgH a7~ mode. Ac- _ o o+ -
cording to the power counting rules of QCIDE6] based on FIG. 5. Diagrams contributing to thigy— "7~ decay.
B— ar form factorF®™ is not calculable. Because Figabis  CP asymmetryC . [28], while PQCD prefers a large and
real, the strong phase arises from the factorizable annihilaaegativeC ..~ —30% [15,29,3Q. It is expected that in the

many gluon exchanges. The perturbative expansion of deca
amplitudes then makes sense. Certainly, this conclusion (a)
contributions converge quickly enough, the PQCD approach
to exclusiveB meson decays will be theoretically solid.
T B § m
compare the phenomenological consequences for these de
cays derived from collinear ankl; factorizations, mention- (d) (e)
collinear factorization, the factorizable emission diagram in5(c) are opposite in sign, and the former has a large magni-
Fig. 5(a) gives the leading contribution @(a2), since the tude. This is the reason QCDF prefers a small and positive
tion diagram in Fig. &), being ofO(asmy/Mg), and from
the vertex correction in Fig. (6), being of O(ag). For

near future the two different approaches to exclufvene-
son decays, based on collinear dandfactorizations, could

mo/Mg slightly smaller than unity, Fig. (6) is the leading be distinguished by experimerit31,32.

source of strong phases in collinear factorizaliQ€CDPF). In

kt factorization, the power counting rules change. The fac-

torizable emission diagram is calculable and@fa.) as
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