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kT factorization of exclusive processes
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We prove thekT factorization theorem in perturbative QCD~PQCD! for exclusive processes by considering

pg* →g(p) andB→g(p) l n̄. The relevant form factors are expressed as the convolution of hard amplitudes
with two-parton meson wave functions in the impact parameterb space,b being conjugate to the parton
transverse momentakT . The point is that on-shell valence partons carry longitudinal momenta initially, and
acquirekT through collinear gluon exchanges. Theb-dependent two-parton wave functions with an appropriate
path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the
parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant.
We compare the predictions for two-body nonleptonicB meson decays derived fromkT factorization~the
PQCD approach! and from collinear factorization~the QCD factorization approach!.
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I. INTRODUCTION

Both collinear andkT factorizations are the fundament
tools of perturbative QCD~PQCD!, wherekT denotes parton
transverse momenta. For inclusive processes, cons
deeply inelastic scattering~DIS! of a hadron, carrying a mo
mentum p, by a virtual photon, carrying a momentumq.
Collinear factorization@1# and kT factorization@2–4# apply
when DIS is measured at a large and small Bjorken varia
xB[2q2/(2p•q), respectively. The cross section is writte
as the convolution of a hard subprocess with a hadron di
bution function in a parton momentum fractionx in the
former, and in bothx andkT in the latter. WhenxB is small,
x>xB can reach a small value, at whichkT is of the same
order of magnitude as the longitudinal momentumxp, and
not negligible. For exclusive processes, such as hadron f
factors, collinear factorization was developed in@5–8#. The
range of a parton momentum fractionx, contrary to that in
the inclusive case, is not experimentally controllable, a
must be integrated over between 0 and 1. Hence, the
point region with a smallx is not avoidable. If there is no
end-point singularity developed in a hard amplitude, coll
ear factorization works. If such a singularity occurs, indic
ing the breakdown of collinear factorization,kT factorization
should be employed. Since thekT factorization theorem was
proposed@9,10#, there have been wide applications to va
ous processes@11#. However, a rigorous proof is not ye
available.

Based on the concepts of collinear andkT factorizations,
the PQCD@12–15# and QCD factorization~QCDF! @16# ap-
proaches to exclusiveB meson decays have been develop
respectively. While applying collinear factorization to th
semileptonic decayB→p, n̄ at large recoil, an end-poin
singularity fromx→0 was observed@17#. Some authors then
concluded that PQCD is not applicable to these decays e
in the heavy quark limit@16#. According to the above expla
0556-2821/2003/67~3!/034001~10!/$20.00 67 0340
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nation, this conclusion is obviously too strong. We wou
rather conclude that it is collinear factorization which fai
and that exclusiveB meson decays demandkT factorization.
Retaining the dependence on the parton transverse mom
tum kT , and resumming the resultant double logarithm
asln

2kT into a Sudakov form factor@12#, the singularity does
not exist. PQCD is then self-consistent and reliable as
expansion in a small coupling constantas @18–20#.

In this paper we shall prove the factorization theore
with the kT dependence included into two-parton mes
wave functions and into hard amplitudes. In our previo
works we have proposed a simple all-order proof of the c
linear factorization theorem for the exclusive processpg*

→g(p) andB→g(p) l n̄ up to the two-parton twist-3 leve
@21#. The proof of thekT factorization theorem follows simi-
lar procedures. We stress that it is more convenient to
form kT factorization in the impact parameterb space, in
which infrared divergences in radiative corrections can
extracted from parton-level diagrams explicitly. We shall e
plain how to construct a gauge-invariantb-dependent meson
wave function defined as a nonlocal matrix element with
special path for the Wilson link. Evaluating this matrix el
ment in perturbation theory, the infrared divergences in
parton-level diagrams are exactly reproduced.

We emphasize that predictions for a physical quan
from thekT factorization theorem are gauge-invariant, ev
though three-parton wave functions are not included. T
valence partons, carrying only longitudinal momenta, are
tially on-shell. They acquire the transverse degrees of fr
dom through collinear gluon exchanges, before participat
in hard scattering. Therefore, the parton-level amplitudes
gauge-invariant. A hard amplitude, derived from the parto
level amplitudes with the gauge-invariant and infrare
divergent meson wave function being subtracted, is th
gauge-invariant and infrared-finite. At last, we obtain gau
invariant and infrared-finite predictions by convoluting th
©2003 The American Physical Society01-1
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hard amplitude with a model wave function, which is det
mined from nonperturbative methods~such as lattice QCD
and QCD sum rules!.

II. FACTORIZATION OF pg*\g„p…

We first prove thekT factorization theorem for the exclu
sive processpg* →g. This process, though containing n
end-point singularity, is simple and appropriate for a dem
stration. The momentumP1 (P2) of the initial-state pion
~final-state photon! is chosen as

P15~P1
1,0,0T!5

Q

A2
~1,0,0T!,

P25~0,P2
2 ,0T!5

Q

A2
~0,1,0T!. ~1!

We concentrate on the kinematic region with largeQ
5A2q2, q5P22P1 being the momentum transfer from th
virtual photon, in which the scattering mechanism is go
erned by PQCD. The lowest-order diagrams are displaye
Fig. 1. Assume that the on-shellu and ū quarks carry the
fractional momentax̄P1 and xP1, respectively, withx̄[1
2x. The reason for considering an arbitraryx will become
clear later. Figure 1~a! gives the parton-level amplitude

G (0)~x!52 ie2ū~xP1!e”
P” 22xP” 1

~P22xP1!2
gmu~ x̄P1!, ~2!

wheree denotes the polarization vector of the outgoing ph
ton. Figure 1~b! leads to the same result.

The factorization in the fermion flow is achieved by i
serting the Fierz identity

I i j I lk5
1

4
I ikI l j 1

1

4
~ga! ik~ga! l j 1

1

4
~g5ga! ik~gag5! l j

1
1

4
~g5! ik~g5! l j 1

1

8
~g5sab! ik~sabg5! l j , ~3!

with I being the identity matrix andsab[ i @ga ,gb#/2. For
the momenta chosen in Eq.~1!, only the structureg5ga with
a51 contributes to the wave function at leading twist~twist
2!. The other structures contribute at higher twists, and
factorization of the corresponding wave functions is simil

FIG. 1. Lowest-order diagrams for the processpg* →g.
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Equation~2! is then factorized into

G (0)~x!5c (0)~x!H (0)~x!, ~4!

where

c (0)~x!5
1

4P1
1

ū~xP1!g5n”2u~ x̄P1!,

H (0)~x!5 ie2
tr~e”P” 2gmP” 1g5!

2xP1•P2
, ~5!

with the dimensionless vectorn25(0,1,0T) on the light
cone, defined as the lowest-order distribution amplitude
hard amplitude in perturbation theory, respectively. Note t
G (0)(x), c (0)(x), andH (0)(x) do not depend on a transvers
momentum in theO(as

0) factorization.

A. O„as… factorization

Next we consider theO(as) radiative corrections to Fig
1~a! shown in Figs. 2~a!–2~f!, where the gluon carries th
loop momentuml. As stated in@21#, there are two types o
infrared divergences, soft and collinear, which arise froml
with the components

l 1; l 2; l T;L̄,

l 1;Q, l 2;L̄2/Q, l T;L̄, ~6!

respectively. HereL̄, being ofO(LQCD), represents a smal
scale. Below we work out the factorization of the colline
enhancement froml parallel toP1 without integrating out the
transverse componentsl T . The prescription is basically simi
lar to that for collinear factorization. The wave function an
the hard amplitude then becomel T-dependent through col
linear gluon exchanges.

We derive theO(as) kT factorization formula, written as
the convolution over the momentum fractionj and over the
impact parameterb:

G (1)~x!5(
i 5a

f

G i
(1)~x!,

FIG. 2. O(as) corrections to Fig. 1~a!.
1-2
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kT FACTORIZATION OF EXCLUSIVE PROCESSES PHYSICAL REVIEW D67, 034001 ~2003!
G i
(1)~x!5E dj

d2b

~2p!2
f i

(1)~x,j,b!H (0)~j,b!

1c (0)~x!H i
(1)~x!. ~7!

The above expression, with theO(as) wave functions
f i

(1)(x,j,b) andH (0)(j,b) specified, defines theO(as) hard
amplitudesH i

(1)(x), which do not contain collinear diver
gences. It is now obvious why we consider an arbitraryx for
the parton-level diagrams in Figs. 1 and 2: we can obtain
functional form of H i

(1)(x) in x. Equation~7! is a conse-
quence of our assertion that partons acquire transverse
grees of freedom through collinear gluon exchanges:H (1),
convoluted with the lowest-orderl T-independentc (0), is
then identical to that in collinear factorization. As explain
later, this consequence is crucial for constructing gau
invariant hard amplitudes.

Figures 2~a! and 2~c! are self-energy corrections to th
external lines. In this case, the loop momentuml does not
flow through the hard amplitude. TheO(as) wave functions
extracted from these two diagrams are the same as in
collinear factorization@21#. We simply quote the results

fa
(1)~x,j,b!5

2 ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!g5n”2

1

x̄P” 1

3gn
x̄P” 11 l”

~ x̄P11 l !2
gnu~ x̄P1!

1

l 2
d~j2x!, ~8!

fc
(1)~x,j,b!5

2 ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!gn

xP” 12 l”

~xP12 l !2

3gn

1

xP” 1

g5n”2u~ x̄P1!
1

l 2
d~j2x!. ~9!

The loop integrand associated with Fig. 2~b! is given by

I b
(1)5e2g2CFū~xP1!gn

xP” 12 l”

~xP12 l !2
e”

P” 22xP” 11 l”

~P22xP11 l !2

3gm

x̄P” 11 l”

~ x̄P11 l !2
gnu~ x̄P1!

1

l 2
. ~10!

Inserting the Fierz identity, we obtain the wave function

fb
(1)~x,j,b!5

ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!

3
gn~xP” 12 l”!g5n”2~ x̄P” 11 l”!gn

~xP12 l !2~ x̄P11 l !2l 2

3u~ x̄P1!dS j2x1
l 1

P1
1D e2 i lT•b. ~11!
03400
e

de-

e-

he

The Fourier transformation introduces the additional fac
exp(2ilT•b) into the wave functionfb

(1) compared to the
result in collinear factorization@21#, since the hard amplitude
depends onl T in this case.

The integrand associated with the two-particle irreduci
diagram in Fig. 2~d! is given by

I d
(1)52e2g2CFū~xP1!e”

P” 22xP” 1

~P22xP1!2
gn

3
P” 22xP” 11 l”

~P22xP11 l !2
gm

x̄P” 11 l”

~ x̄P1 l !2
gnu~ x̄P1!

1

l 2
. ~12!

To collect the leading contribution,gn and gn must beg2

andg25g1, respectively. In the collinear region the follow
ing approximation holds:

~P” 22xP” 1!gn~P” 22xP” 11 l”!'2P2
nP” 2 , ~13!

where thel 2 and l T terms, being power-suppressed com
pared toP2

2 , have been dropped.
The factorization of the collinear enhancement from F

2~d! requires further approximation for the product of th
two internal quark propagators@21#,

2P2
n

~P22xP1!2~P22xP11 l !2

'
n2

n

n2• l F 1

~P22xP1!2
2

1

~P22xP11 l !2G , ~14!

where the numerator 2P2
n comes from Eq.~13!, and the fac-

tor n2
n /n2• l is exactly the Feynman rule associated with

Wilson line in collinear factorization. Similarly, we have ne
glected the power-suppressed terms, such asl 2 and xP1• l .
The first ~second! term on the right-hand side of Eq.~14!
corresponds to the case without~with! the loop momentuml
flowing through the hard amplitude.

The above eikonal approximation also applies to Fig. 2~e!.
Hence, the extractedO(as) wave functions are written as

FIG. 3. The path for the Wilson link in ab-dependent two-
parton meson wave function.
1-3
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fd
(1)~x,j,b!5

2 ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!g5n”2

x̄P” 11 l”

~ x̄P11 l !2
gnu~ x̄P1!

1

l 2

n2
n

n2• l F d~j2x!2dS j2x1
l 1

P1
1D e2 i lT•bG , ~15!

fe
(1)~x,j,b!5

ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!gn

xP” 12 l”

~xP12 l !2
g5n”2u~ x̄P1!

1

l 2

n2
n

n2• l F d~j2x!2dS j2x1
l 1

P1
1D e2 i lT•bG , ~16!
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where the first~second! term in the brackets is associate
with the first ~second! term on the right-hand side of Eq
~14!. Because of the Fourier transformation, the seco
terms acquire the additional factor exp(2ilT•b) compared to
the results in collinear factorization.

Figure 2~f! does not exhibit a collinear enhanceme
since the radiative gluon gives a self-energy correction to
off-shell internal line. Hence, we havef f

(1)(x,j,b)50. It is
easy to observe that the soft divergences cancel among
O(as) radiative corrections. In the soft region ofl we have
exp(2ilT•b)'1 and l 1'0, and the two terms in Eqs.~15!
and~16! cancel. Similarly, the soft divergences cancel amo
Figs. 2~a!–2~c!. This is the reason we discuss only the fa
torization of the collinear enhancements.

The aboveO(as) wave functions can be reproduced b
theO(as) terms of the following nonlocal matrix element i
the b space:

f~x,j,b!5 i E dy2

2p
e2 i jP1

1y2
^0uū~y!g5n”2P

3expF2 igE
0

y

ds•A~s!Gu~0!uū~xP1!u~ x̄P1!&,

~17!

with the coordinatey5(0,y2,b). The path for the Wilson
link is composed of three pieces: from 0 tò along the
direction ofn2 , from ` to `1b, and from`1b back toy
along the direction of2n2 as displayed in Fig. 3. We show
that the first piece corresponds to the eikonal line associ
with the first terms in Eqs.~15! and~16!. Fourier transform-
ing the gauge fieldA(s) into Ã( l ), we have

2 igE
0

`

dzexp@ iz~n2• l 1 i e!#n2•Ã~ l !

5g
n2

a

n2• l
Ãa~ l !. ~18!

The field Ã( l ), contracted with other gauge fields, gives t
propagator of the gluon attaching the eikonal line. The s
ond piece does not contribute because of the approp
choice of the small imaginary constant1 i e in the above
expression. The third piece corresponds to the eikonal
associated with the second terms in Eqs.~15! and ~16!. The
additional Fourier factor exp(2ilT•b) is a consequence o
the shift byb from the first piece:
03400
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2 ig Èy2

dzexp@ iz~n2• l 1 i e!2 i lT•b#n2•Ã~ l !

52g
n2

a

n2• l
e2 i lT•beil 1y2

Ãa~ l !, ~19!

where the Fourier factor exp(il1y2) leads to the function
d(j2x1 l 1/P1

1).
At last, for the evaluation of the lowest-order hard amp

tude, we neglect only the minus componentl 2 in the de-
nominator@see the second term on the right-hand side of
~14!#,

~P22xP11 l !2'2~2jP1•P21 l T
2!. ~20!

Note that in collinear factorization bothl 2 and l T are
dropped. Theb-dependent hard amplitude is then given b

H (0)~j,b!5E d2l TH (0)~j,l T!exp~ i lT•b!,

H (0)~j,l T!5 ie2
tr ~e”P” 2gmP” 1g5!

2jP1•P21 l T
2

. ~21!

Equivalently, the aboveH (0)(j,l T) is derived by considering
an off-shell ū quark, which carries the momentumjP1
2 lT , and the leading structureP” 1g5 associated with the
pion, which is the same as in collinear factorization.

B. All-order factorization

In this subsection we present the all-order proof of thekT
factorization theorem for the processpg* →g, and construct
the parton-level wave function in Eq.~17!. The proof is simi-
lar to that for collinear factorization, if it is performed in th
impact parameterb space. It will be observed that collinea
factorization is theb→0 limit of kT factorization. Therefore,
we just highlight the differences, and for the rest of the d
tails we refer the reader to@21#. The idea of the proof is
based on induction. The factorization of theO(as) collinear
enhancements has been derived in the previous subsec
ConsiderG(0)(x,b) andG(1)(x,b) defined via

G (0),(1)~x![G (0),(1)~x,kT50!

5E d2b

~2p!2
G(0),(1)~x,b!, ~22!
1-4
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which indicates that the integration over the variableb cor-
responds to an amplitude withkT50 for external particles.
TheO(as) hard amplitudeH (1)(j,b) is defined similarly via
H (1)(j). We obtain the factorization formula up toO(as),

G(0)~x,b!1G(1)~x,b!5E dj@f (0)~x,j,b!1f (1)~x,j,b!#

3@H (0)~j,b!1H (1)~j,b!#, ~23!

with f (0)(x,j,b)5c (0)(x)d(j2x). The summation over al
the diagrams is understood.

Assume that the factorization theorem holds up toO(as
N),

G( j )~x,b!5(
i 50

j E djf ( i )~x,j,b!H ( j 2 i )~j,b!, j 51, . . . ,N,

~24!

wheref ( i )(x,j,b) is given by theO(as
i ) terms in the pertur-

bative expansion of Eq.~17!. H ( j 2 i )(j,b) stands for the
O(as

j 2 i) infrared-finite hard amplitude. Equations~23! and
~24! approach the expressions in collinear factorization
b→0 as stated above. We shall show that theO(as

N11) dia-
gramsG (N11) in the momentum space are written as t
convolution of theO(as

N) diagramsG (N) with the O(as)
wave function by employing the Ward identity,

l mGm~ l ,k1 ,k2 , . . . ,kn!50, ~25!

whereGm represents a physical amplitude with an exter
gluon carrying the momentuml and with n external quarks
carrying the momentak1 ,k2 , . . . ,kn . All these external par-
ticles are on the mass shell. It is known that factorization
a QCD process in momentum, spin, and color spaces
quires summation of many diagrams. With the Ward ident
the diagram summation can be handled in an elegant wa

Look for the gluon in a complete set ofO(as
N11) dia-

gramsG (N11), one of whose ends attaches the outerm
vertex on the upperu quark line in the pion. Leta denote the
outermost vertex, andb denote the attachments of the oth
end of the identified gluon inside the rest of the diagram
There are two types of collinear configurations associa
with this gluon, depending on whether the vertexb is located
on an internal line with a momentum alongP1. The quark
spinor adjacent to the vertexa is u( x̄P1). If b is not located
on a collinear line alongP1, the componentg1 in ga and
the minus component of the vertexb give the leading con-
tribution. If b is located on a collinear line alongP1 , b
cannot be minus, and botha andb label the transverse com
ponents. This configuration is the same as of the self-en
correction to an on-shell particle.

According to the above classification, we decompose
tensor gab appearing in the propagator of the identifie
gluon into

gab5
n2al b

n2• l
2da'db'1S gab2

n2al b

n2• l
1da'db'D .

~26!
03400
s
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f
e-
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The first term on the right-hand side extracts the first type
collinear enhancements, since the lightlike vectorn2a se-
lects the plus component ofga, and the dominant componen
l b52 in the collinear region selects the minus component
the vertexb. The componentsl b51,' do not change the
collinear structure, since they are negligible in the nume
tors compared to the leading terms proportional toP1

1 and
P2

2 . This can be confirmed by contractingl b to Figs. 2~d!
and 2~e!, from which Eq.~14! is obtained. The second term
extracts the second type of collinear enhancements. The
term does not contribute a collinear enhancement due to
equation of motion for theu quark. We shall concentrate o
the factorization ofG i

(N11) corresponding to the first term o
the right-hand side of Eq.~26!, and the factorization assoc
ated with the second term can be included simply by follo
ing the procedure in@21#.

Those diagrams with Figs. 2~a! and 2~b! as theO(as)
subdiagrams are excluded from the set ofG i

(N11) as discuss-
ing the first type of collinear configurations, since the ide
tified gluon does not attach a line parallel toP1. Consider the
physical amplitude, in which the two on-shell quarks and o
on-shell gluon carry the momentaj̄P1 , xP1, and l, respec-
tively. Figure 4~a!, describing the Ward identity, contains
complete set of contractions ofl b , since the second and thir
diagrams have been added back. The second and third
grams in Fig. 4~a! lead to

l b

1

j̄P” 12 l”
gbu~ j̄P1!5

1

j̄P” 12 l”
~ l”2 j̄P” 11 j̄P” 1!u~ j̄P1!

52u~ j̄P1!, ~27!

l bū~xP1!gb
1

xP” 12 l”
52ū~xP1!, ~28!

respectively. The termsu( j̄P1) and ū(xP1) at the ends of
the above expressions correspond to theO(as

N) diagrams.
Figure 4~b! shows that the diagramsG i

(N11) associated
with the first term in Eq.~26! are factorized into the convo
lution of the parton-levelO(as

N) diagramsG (N) with the
O(as) collinear piece extracted from Fig. 2~d!. The double

FIG. 4. ~a! Ward identity.~b! Factorization ofG (N11).
1-5
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line represents the Wilson line. The first diagram means
the gluon momentum does not flow intoG (N), while in the
second diagram the gluon momentum does. Similar rea
ing applies to the identified gluon, one of whose ends
taches the outermost vertex of the lowerū quark line. Sub-
stituting Eq.~24! into G(N)(j,b) in the b space on the right-
hand side of Fig. 4~b!, and following the procedure in@21#,
we arrive at

G(N11)~x,b!5 (
i 50

N11 E djf ( i )~x,j,b!H (N112 i )~j,b!,

~29!

with the infrared-finiteO(as
N11) hard amplitudeH (N11).

Equation~29! implies that all the collinear enhancements
the processpg* →g can be factorized into the wave func
tion in Eq. ~17! order by order.

C. Gauge invariance

We now demonstrate the gauge invariance of thekT fac-
torization theorem. Equation~17! is explicitly gauge-
invariant because of the presence of the Wilson link from
to y @3,22#. Below we argue that hard amplitudes inkT fac-
torization are also gauge-invariant. Equation~7! approaches
the collinear factorization under the approximation

f (1)~x,j,b!'f (1)~x,j,0![c (1)~x,j!, ~30!

with c (1)(x,j) being the distribution amplitude in collinea
factorization. The integration of the hard amplitud
H (0)(j,b) over b givesH (0)(j,l T50). Hence, we have the
collinear factorization formula,

G (1)~x!5E djc (1)~x,j!H (0)~j!1c (0)~x!H (1)~x!,

~31!

where the summation over the diagrams has been
pressed. SinceG (1)(x), c (1)(x,j), andH (0)(j) are gauge-
invariant in collinear factorization,H (1)(x) is gauge-
invariant. From Eq.~7!, the gauge invariance off (1)(x,j,b)
stated above, together with the gauge invariance ofG (1)(x)
andH (1)(x), then imply the gauge invariance ofH (0)(j,b).
Similarly, thekT factorization formula ofO(as

2),

G (2)~x!5E dj
d2b

~2p!2
@f (2)~x,j,b!H (0)~j,b!

1f (1)~x,j,b!H (1)~j,b!#

1c (0)~x!H (2)~x!, ~32!

leads to the gauge invariance ofH (1)(j,b): BothG (2)(x) and
c (0)(x)H (2)(x) are gauge-invariant in collinear factoriza
tion, and all f ( i )(x,j,b) are gauge-invariant as explaine
previously. The gauge invariance ofH (0)(j,b) stated above
then implies the gauge invariance ofH (1)(j,b). Therefore,
the hard amplitudes inkT factorization are gauge-invariant a
all orders.
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Equation~17! plays the role of an infrared regulator fo
parton-level diagrams. A hard amplitude then correspond
the regularized parton-level diagrams. After determining
gauge-invariant infrared-finite hard amplitudeH(x,b), we
convolute it with the physical two-parton pion wave fun
tion, whose all-order gauge-invariant definition is given b

f~x,b!5 i E dy2

2p
e2 ixP1

1y2
^0uū~y!g5n”2

P expF2 igE
0

y

ds•A~s!Gu~0!up~P1!&. ~33!

The valence-quark stateuū(xP1)u( x̄P1)& has been replaced
by the pion stateup(P1)&, and the pion decay constantf p

has been omitted. The relevant form factorF for the process
pg* →g is then expressed as

F5E dx
d2b

~2p!2
f~x,b!H~x,b!. ~34!

We conclude that predictions derived from thekT factoriza-
tion theorem are gauge-invariant and infrared-finite.

The kT factorization theorem for the pion form factor in
volved in the processpg* →p can be proved in the sam
way. TheO(as) factorization is similar to the collinear fac
torization performed in@21#. The only difference is the extra
Fourier factor exp(2ilT•b) associated with the diagrams, i
which the loop momentum flows through the hard amplitu
Following the steps in Sec. II A, the eikonal line can
constructed from the diagrams with collinear gluons atta
ing the hard amplitude and the outgoing pion. The decom
sition in Eq. ~26! and the whole procedure presented abo
then apply. That is, the all-order proof is also similar to th
of collinear factorization@21#. Compared to the proces
pg* →g, the structuresg5 andg5sab from the Fierz iden-
tity contribute, and the corresponding twist-3 pion wa
functions appear.

III. FACTORIZATION OF B\g„p…l n̄

In this section we prove thekT factorization theorem for
the radiative decayB→g l n̄, retaining the transverse degre
of freedom of internal particles, and construct theB meson
wave function in the impact parameterb space. We shall
discuss only theO(as) factorization, and demonstrate th
the all-order factorization can be proved in a way similar
collinear factorization@21#. The momentumP1 of theB me-
son and the momentumP2 of the outgoing on-shell photon
are chosen as

P15
MB

A2
~1,1,0T!, P25

MB

A2
~0,h,0T!, ~35!

where the photon energy fractionh is large enough to justify
the applicability of PQCD. Assume that the light specta
quark in theB meson carries the momentumk. In collinear
factorization, only the plus componentk1 is relevant through
1-6
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the inner productk•P2 @23#. The lowest-order diagrams fo
the B→gl n̄ decay are displayed in Fig. 1, but with th
upper quark~virtual photon! replaced by ab quark (W bo-
son!.

Below we shall concentrate on Fig. 1~a!, because Fig. 1~b!
is power-suppressed. Figure 1~a! gives the parton-level am
plitude,

G (0)~x!5eū~k!e”
P” 22k”

~P22k!2
gm~12g5!b~P12k!, ~36!

which does not depend on a transverse momentum. Inse
the Fierz identity in Eq.~3! into Eq. ~36!, we obtain Eq.~4!
with

c (0)~x!5
1

4P1
1

ū~k!g5n”2b~P12k!,

H (0)~x!52e
tr@e”P” 2gm~12g5!n”1g5#P1

1

2xP1•P2
,

52e
tr@e”P” 2gm~12g5!~P” 11MB!~n”1 /A2!g5#

2xP1•P2
,

~37!

with the dimensionless vectorn15(1,0,0T) on the light
cone. We have dropped the higher-power termk” in the nu-
merator, and the momentum fractionx is defined by x
5k1/P1

1 . For theB meson wave functions, there are tw
leading-twist components associated with the structu
g5g6. For the B→g l n̄ decay, we choose the structu
g5g15g5n”2 , sincee” in Eq. ~37! involvesg' , and only the
structureg2g55n”1g5 contributes to the hard amplitude.

Next we consider theO(as) radiative corrections to Fig
1~a! shown in Figs. 2~a!–2~f!. We discuss the factorization o
the soft divergence from the loop momentuml m
03400
ng

s

;(L̄,L̄,L̄), whereL̄ can be regarded as theB meson andb

quark mass difference,L̄5MB2mb . The dependence of th
B meson wave function on the transverse momentum is g
erated by soft gluon exchanges. The analysis is simila
that in Sec. II, and we obtain Eq.~7!. The factorization of the
two-particle reducible diagrams in Figs. 2~a!–2~c! is straight-
forward. Take Fig. 2~b! as an example, which gives the inte
grand

I b
(1)5 ieg2CFū~k!gn

k”2 l”

~k2 l !2
e”

P” 22k”1 l”

~P22k1 l !2

3gm~12g5!
P” 12k”1 l”1mb

~P12k1 l !22mb
2
gnb~P12k!

1

l 2
.

~38!

Employing the eikonal approximation in the heavy-qua
limit, we have

P” 12k”1 l”1mb

~P12k1 l !22mb
2
gnb~P12k!'

vn

v• l
b~P12k!, ~39!

with the velocityv5P1 /MB . TheO(as) wave function ex-
tracted from Eq.~38! is then written as

fb
(1)~x,j,b!5

ig2CF

4P1
1 E d4l

~2p!4
ū~k!

gn~k”2 l”!

~k2 l !2l 2

3g5n”2b~P12k!
vn

v• l
dS j2x1

l 1

P1
1D e2 i lT•b.

~40!

The loop integrands associated with Figs. 2~d! and 2~e!
are given by
I d
(1)52 ieg2CFū~k!e”

P” 22k”

~P22k!2
gn

P” 22k”1 l”

~P22k1 l !2
gm~12g5!

P” 12k”1 l”1mb

~P12k1 l !22mb
2
gnb~P12k!

1

l 2
, ~41!

I e
(1)5 ieg2CFū~k!gn

k”2 l”

~k2 l !2
e”

P” 22k”1 l”

~P22k1 l !2
gn

P” 22k”

~P22k!2
gm~12g5!b~P12k!

1

l 2
, ~42!

respectively. Neglecting the subleading terms proportional tok” and l” in the numerators in comparison withP” 2, we have the
eikonal approximation

P” 22k”

~P22k!2
gn

P” 22k”1 l”

~P22k1 l !2
'

n2
n

n2• l F 1

~P22k!2
2

1

~P22k1 l !2GP” 2 , ~43!

similar to Eq.~14!. Inserting the Fierz identity, we extract theO(as) wave functions,

fd
(1)~x,j,b!5

2 ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!g5n”2b~P12k!

1

l 2

n2•v
n2• lv• l F d~j2x!2dS j2x1

l 1

P1
1D e2 i lT•bG , ~44!
1-7
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fe
(1)~x,j,b!5

ig2CF

4P1
1 E d4l

~2p!4
ū~xP1!gn

k”2 l”

~k2 l !2
g5n”2b~P12k!

1

l 2

n2
n

n2• l F d~j2x!2dS j2x1
l 1

P1
1D e2 i lT•bG .

~45!
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The eikonal approximation in Eq.~39! has been applied. Fig
ure 2~f! does not have the soft divergence due to the off-s
internal quark.

It is obvious that the aboveO(as) parton-level wave
functions are similar to those derived in Sec. II: the eiko
line in n2 is the same as in collinear factorization, and t
integrands contain the additional Fourier factor exp(2ilT
•b), when the loop momentum flows through the hard a
plitude. The decomposition in Eq.~26! and the procedure fo
the all-order proof presented in Sec. II apply to theB

→g l n̄ decay. We construct a gauge-invariant light-coneB
meson wave function,

f1~x,b!5 i E dy2

2p
e2 ixP1

1y2
^0uū~y!g5g1P

3expF2 igE
0

y

ds•A~s!Gbv~0!uB~P1!&,

~46!

wherebv is the rescaledb quark field characterized by th
velocity v. The lowest-order hard amplitude in theb space is
given by Eq.~21! with

H (0)~j,l T!

52e
tr@e”P” 2gm~12g5!~P” 11MB!~n”1 /A2!g5#

2jP1•P21 l T
2

,

~47!

where the momentum fractionj is defined by j5(k1

2 l 1)/P1
1 . The above expression can be derived by cons

ering an off-shellū quark of the momentum (jP1
1,0,2 lT),

and the leading structure (P” 11MB)(n”1 /A2)g5 associated
with the B meson, which is the same as in collinear fact
ization.

As emphasized in the Introduction, the semileptonic
cayB→p l n̄, because of the end-point singularities~the fail-
ure of collinear factorization!, demandskT factorization. Its
all-order proof is also performed in the same way. Note t
for this mode, both the leading-twistB meson wave func-
tions f6 , associated with the structuresg5g6, contribute
@21#.

IV. DISCUSSION

We have explained that the range of a parton momen
fractionx in exclusive processes, contrary to that in inclus
processes, is not experimentally controllable. Hence,
end-point region with a smallx is not avoidable. If a hard
amplitude develops an end-point singularity in collinear fa
03400
ll

l

-

-

-

-

t

m

e

-

torization, implying the importance of the end-point regio
kT factorization must be employed. ExclusiveB meson de-
cays belong to this category, for whichkT factorization is a
more appropriate tool. We have proved thekT factorization

theorem for the processespg* →g(p) and B→g(p) l n̄ in
this paper. The proof performed in the impact parameteb
space indicates that collinear factorization is theb→0 limit
of kT factorization.

The prescriptions for determining wave functions a
hard amplitudes in thekT factorization theorem are summa
rized as follows.

~i! A two-partonb-dependent wave function is factorize
from parton-level diagrams in the same way as in collin
factorization~for example, under the same eikonal appro
mation!, but the loop integrand is associated with an ad
tional Fourier factor exp(2ilT•b), when the loop momentum
l flows through a hard amplitude.

~ii ! A kT-dependent hard amplitude is obtained in t
same way as in collinear factorization, but considering o
shell external partons, which carry the fractional mome
k5xP1kT(k252kT

2), P being the external meson mo
menta. Then Fourier transform this hard amplitude into thb
space.

~iii ! The insertion of the Fierz identity to separate t
fermion flow between a wave function and a hard amplitu
is the same as in collinear factorization. Take the proc
pg* →p discussed in Sec. II as an example. Up to t
twist-3 accuracy for the initial pion, adopt the structur
g5g1, g5, and g5sab with a,b56, i.e., without the'
components.

Under the above prescriptions, the Wilson link for th
b-dependent wave function is the same as in collinear fac
ization, but with a shiftb between the two pieces of path
along the light cone. Both theb-dependent two-parton meso
wave functions and hard amplitudes are gauge-invarian
kT factorization, without introducing three-parton wave fun
tions. Therefore, predictions for a physical quantity obtain
from the kT factorization theorem are gauge-invariant. F
inclusive processes in smallxB physics, the gauge invarianc
of the unintegrated gluon distribution function and of t
hard subprocess of Reggeized gluons, being also off-she
2kT

2 , is ensured in a similar way. The distinction is that t
structures ofg matrices from the Fierz identity are replace
by eikonal vertices, which contain only the longitudinal com
ponents@3#.

There are more differences between thekT factorizations
of inclusive and exclusive processes. Inclusive processe
volve a single scale, and only single logarithms. Exclus
processes involve two scales~when a valence parton is sof
another is fast! and double logarithms. That is, no rapidi
ordering is assumed@24#. Hence, the required resummatio
1-8
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techniques are different. The definition of meson wave fu
tions constructed in this work serves as the starting poin
kT resummation @25–27#. The resultant Sudakov facto
smears the end-point singularity in the semileptonic de

B→p l n̄ by increasing the magnitude ofkT though infinitely
many gluon exchanges. The perturbative expansion of de
amplitudes then makes sense. Certainly, this conclu
needs to be justified by evaluating next-to-leading-order c
rections inas in thekT factorization theorem. If higher-orde
contributions converge quickly enough, the PQCD appro
to exclusiveB meson decays will be theoretically solid.

In our next work we shall constructkT factorization of
two-body nonleptonicB meson decays. Below we briefl
compare the phenomenological consequences for these
cays derived from collinear andkT factorizations, mention-
ing only theCP asymmetry in theBd

0→p1p2 mode. Ac-
cording to the power counting rules of QCDF@16# based on
collinear factorization, the factorizable emission diagram
Fig. 5~a! gives the leading contribution ofO(as

0), since the
B→p form factorFBp is not calculable. Because Fig. 5~a! is
real, the strong phase arises from the factorizable annih
tion diagram in Fig. 5~b!, being ofO(asm0 /MB), and from
the vertex correction in Fig. 5~c!, being of O(as). For
m0 /MB slightly smaller than unity, Fig. 5~c! is the leading
source of strong phases in collinear factorization~QCDF!. In
kT factorization, the power counting rules change. The f
torizable emission diagram is calculable and ofO(as) as
indicated in Fig. 5~d!. The factorizable annihilation diagram
has the same power counting as for Fig. 5~b!. The vertex
correction becomes ofO(as

2) as shown in Fig. 5~e!. There-
fore, Fig. 5~b! contributes the leading strong phase inkT
factorization~PQCD!. The strong phases from Figs. 5~b! and
-

03400
-
f

y

ay
n

r-

h

de-

n

a-

-

5~c! are opposite in sign, and the former has a large mag
tude. This is the reason QCDF prefers a small and posi
CP asymmetryCpp @28#, while PQCD prefers a large an
negativeCpp;230% @15,29,30#. It is expected that in the
near future the two different approaches to exclusiveB me-
son decays, based on collinear andkT factorizations, could
be distinguished by experiments@31,32#.
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FIG. 5. Diagrams contributing to theBd
0→p1p2 decay.
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