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Radiative corrections to double Dalitz decays: Effects on invariant mass distributions
and angular correlations
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We review the theory of meson decays to two lepton pairs, including the cases of identical as well as
nonidentical leptons, as well &P-conserving andCP-violating couplings. A complete lowest-order calcula-
tion of QED radiative corrections to these decays is discussed, and comparisons of predicted rates and kine-
matic distributions between tree-level and one-loop-corrected calculations are presented fof hathK°
decays.

DOI: 10.1103/PhysRevD.67.033008 PACS nuni§er12.15.Lk, 13.20.Cz, 13.20.Eb, 13.40.Hq

I. BACKGROUND ment of the branching ratio for that process remains the only
one published to date.

Meson decays to two photons should exhibit interesting Experimental observations of the much rarer kaon double
correlations between the photon polarizatiph Although  Dalitz decays began to appear in the 1990s. Several measure-
existing particle detectors cannot measure photon polarizanents have been made of the decky—e’e e’e”
tions directly, it has long been known that the polarization[8—14], the most recent of which are based on several hun-
correlations can be measured indirectly by studying angulagired 0+bs_erv+ed ‘events. The still rarer double Dalitz mode
correlations in the related double Dalitz decfgbin which ~ KL—€ € u"u " is particularly interesting because it is free
both photons undergo internal conversion to a lepton paiPf complications arising when there are two identical lepton
More recently, it has been pointed off] that a detailed P&rs in th_e flr_1al stqte, and because _|t probes only the kine-
study of these correlations can be used to determine the rel§1atiC region in which one of the virtual photons ha$
tive amount of two possible mesopy couplings(one CP- >4my, . The first example of th[s decay was reported in 1996
conserving and on€P-violating for mesons that ar€P [15]. In 2001 the KTeV experiment published a branching

eigenstatesthat can contribute to this process. ratio based on a sample of 43 evepiS]; most recently,

Dalitz and double Dalitz decays are also of interest be-KTeV hgs rep_orted result_s from a combined sample of 132
events, including the earlier 437].

cause they can be exploited to perform a measurement of the Further experimental results on bati—e*e e*e™ and
electromagnetic form factor of the decaying mes_on—that isthe two kaon decays are expected in the near future from the
how the meson couples to one real and one virtual photoR A48 ang KTeV experiments. As the statistics available to
(Dalitz decayzor two virtual photons(double Dalita de- e experimenters increase, it will be necessary to have a
pends on they” values of the photdis). An accurate knowl-  mqre accurate theoretical description of these decays, incor-
edge of this form factor is essential, for example, to calculatgyorating the significant effects of QED radiative corrections.
the so-called long-distance contribution to the rare decaynese corrections, discussed in this paper, have a significant

Ki—pu" p". The short-distance contribution to this Process,impact on the extraction of both form factors and angular
mediated by loops involving heavy quarks and massive veCggrrelations from high-statistics data.

tor bosons, is sensitive to the Cabibbo-Kobayashi-Maskawa

(CKM) matrix elementV,y, but this contribution cannot be

extracted from the accurate experimental measurement of the Il. TREE-LEVEL AMPLITUDES

partial width unless the long-distance amplitude is precisely ) . ) )

Known. The most generalPT invariant interaction governing the

The tree-level rates for several double Dalitz procesself@nsition of a spin-zero meson to two photons is

have been published in various forfizs-5]. The first experi-

mental observation of a double Dalitz decay was published —ij

in 1+96_2 [+67_] A total of 206 examples_ of the decay® £=m[fpew,,ﬁfs(g#pgw,—gm,gyp)]F“VFP“qS,

—e"e e’e were observed by Samios in a sample of some

800,000 bubble chamber photographs. Based on the ob-

served angular correlations, Samios was able to exclude the

possibility that thew® was a scalar particléwith a CP-  whereF» and Fs are dimensionless form factors for a pseu-

conserving decayat the 3.3 confidence level. His measure- doscalar and scalar coupling which may be momentum de-
pendentF#" is the electromagnetic field tensor, a#ds the
field of a meson of madd. The factor of—i defines a phase

@

*Email address: tonyb@cuhep.colorado.edu convention in which the form factors will be real @PT
TCurrent address: Department of Physics, 104 Davey Lab, Penrinvariance holds and there are no absorptive decay ampli-
sylvania State University, University Park, PA 16802-6300. tudes. It will be convenient to decompose the couplings into
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real and imaginary parts, and define thasp to an arbitrary B. Application to neutral pion and kaon decays
verall ph in terms of a mixing ang| n h ~
gif?e?engegsel}) terms of a g angl¢, and a phase One can computg for the 7°— yy, K .— vy, andKg

— vy decays using the current experimental val[&8] of

2 Lo iw > 2 - the two-photon branching ratios along with the meson life-
Fp=0pfp(ki,ky)e'™ =gfp(ki,ky)cosie’™, (28 {imes and masses, with the results

Fo=gsfo(k2 kD) =gf (k2 kD)singe' e, (2b) 9o=(1.70£0.06)x 102, (78)
whereg?=g3+g% and 6=®—W. f, andfg are functions 9.=(8.75£0.12X10 %, (7b)
of the k? values of the two virtual photons and are normal- 5
ized such thaf(0,0)=1 for both couplings. In principle it is gs=(1.36+0.11)x 10" °. (70

also possible fow to depend ork? andk3.
It will be useful to defineCP-even andCP-odd yy states:

A Twophotondecay [(ym)ey=(++) == =)I2. ®)
The two-photon partial width provides information about

the coupling constarg along with some constraints on the The matrix elements forr°— yy are then given by

mixing angle{ and phase differencé. The matrix element

for the decay to two real photons with helicitieg andA , is <(3,7)+|T|770>= —j \/EM wéosin goe‘%, (9a)

2 - .

M}\l)\zz M[‘FPE}LVpO'_I_‘FS(gMngO'_ gua'gyp)]kfetlvkge‘;:' <(77)—|T|7TO>: - \/EM ﬂgOCOSéTOeI\PO' (gb)
®) Similar expressions can be given for tkg and K, decay

matrix elements with the 0 subscripts changed to 1 or 2,

respectively, andV . replaced byMy . These expressions

may be compared to those in REE9] in which CP-violation

observables for th& — vy decays were calculated. In that

article Sehgal defines

wherek* and € are the momentum and polarization of a
photon. The calculation of the two-photon couplings for pho-
tons of arbitrary mass is carried out in Appendix B. For real
photons, the kinematic factors in the couplings reducg to

=z=1 andw=0, and the momentum-dependent functions
I\;Oagg;;il;i(zité%e;:to unity. Therefore, one has the following (7)< | TIK1) = coei?e, (109

~ . _|T|K ) =icye'Po, 10b

M., = — M3(sinze®—i cosp), 43 ((yy)-|TIK)=icqe (10b)

5 ‘ ((y7) +|TIKp) = —ide'*e, (100
M__=—Mg(sinze'’+i cos?). (4b) _

((yy)-|T|Kz)=dge' . (100

The partial width is obtained by integrating 1ND times

the squared matrix element over the available phase spad#. our notation we have

The matrix element is a constant, so the integration results in

a factor of 1/(16r). The partial widths for the two allowed Ce=\2Mgysingy, (119
helicity states are then

- Co=— 2M ;0084 (11b
Mg
I'. ., =—=——(1-2sin{cos{sind), 5 -
T ceosesing) 52 de=V2MQsingy, (110
Mg? do=— 2Mg,c0S{>. 11
F,,=%(1+25in§cos§sin5). (5b) 0 V2 K92€0SL; (119

The observable phase differences are givendby p.—p,

The decay rates to the two final states will be identical if2Nd 92= ke Ko- o _
either the phase difference between the two couplings is zero 11€ Phases; are observable only €Pis wolated.my%
or one of the form factors is zero. In any case, the total ratd€cays. As Sehgal noted in R¢L9], the phased, in
. =2 : decays should be very close to zeroGPT is conserved
is equal tol",,,=Mg“/(167). An experimental measure of : .

vy , ~ because the relevant absorptive amplitudes are of aréler
the two-photon width then gives a value @f

In the case of kaon decays, on-shell intermediate states such
B asmr couple strongly so that the phas&sand 6, may be
g=+16xIl",, /M. (6) large even ifCPTis conserved.
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s andTI is the fermion current for an electron of momentam
and spinr and positron of momentump and spins

- #(q,p;r,5)=—ieu(a) y*vs(p). (14
1
X The sum in the propagator extends over the three helicity
states and the term proportionalktk” vanishes when con-
l;" tracted with the current. The matrix element can then be cast
as
Iy M= E Hy b b, (19
Nihp

FIG. 1. Double Dalitz tree-level diagram. whereH is one of the two-photon couplings given in Egs.

(B4),(B5). The quantityL contains all the lepton information
and is equal td., =i €{T , /K>,

While the total two-photon decay rate provides informa- The squared matrix element, summed over final state he-
tion about the constant part of the form factors, the fouricities can be expressed in terms of the five phase space
lepton rate can be utilized to probe both the momentum devariablesx,s, Xa4, Y12, Y34, and¢ (defined in Appendix A
pendence of the form factors and the mixing of theFocusing on thep dependence, the squared amplitude is
couplings. The decay to four leptons may contain either two
pairs of identical particlege.g.,K, —e*e"e*e™) or pairs of , 287%a%g?
non-identical particlege.g., K, —e“e  u*u"). The tree- 2 My BEYE S
level Feynman diagram for the decay is depicted in Fig. 1. If
the final state does contain identical particles, then there is +Dsing+Ecos¢+F), (16
also an exchange diagram, as shown in Fig. 2. The matrix
element is then the sum of the two diagramg=M,;  Where
+M, and its square is |M|?=|My|?+]|M,l?
+2 Re(M7 M,). The analysis presented in the rest of this

C. Four-lepton decay

(Asirf¢+B cog ¢+ C sing cose

A=wW2{F2co@IN 1+ (1 - N2+ y2 ) (1— N3+ Y3p]

section applies only to the direct contribution to the double | f26j2/72r2 — N2.— A2, + v2.+ 2 17
Dalitz process. Appendix C gives an explicit expression for ssimez] 2™ Mot YigtYaal}, (79
the interference term. w2 f2ci 2 2 2 2 1\2
B=wW{f&sinf{z[ 1+ (1— N+ Yi) (1= N5+
The matrix element for the direct contribution to the {TSIMEZ A+ (1Mot Vi) (17 A5+ y30)]
double Dalitz process can be written as +12c0SIN 22— N3,— N34+ Yit+ yaalb, (170
M= H KA KEIT7PT 12)  c=2fpfesing cos cosohzwWA(N2—y2) (A2~ y2), (170
whereH is a two-photon coupling given by E¢B2), kis a D =2fpfssing cosf cossAw?y 1y, (Mo~ YD (M3~ Y3a).
photon momentunmll is the propagator for a photon of mo- (179
mentumk ). SR
E=2f3sif{zwly15y 30V (N o= Y1) (N34~ Y30, (179
i - F=fZsifiwi(1—-y3,)(1—y3y, 17
HMV(k)zP(E e;Me;—kﬂkV), (13 SSITEWH(1=y1) (1730 7
A

where the kinematic variables, z, and N are defined in
Appendix A. TermsA andB arise from the diagonal pieces of

I the transverse part of the pseudoscalar and scalar couplings

while termF is due to the diagonal piece of the longitudinal

part of the scalar coupling. Ter@ is the interference be-

- tween the transverse parts of the pseudoscalar and scalar
1 couplings while term® and E are due to interference be-

X tween the longitudinal part of the scalar and the transverse
+ parts of the pseudoscalar and scalar couplings, respectively.
i The partial width is obtained by integrating 1NQ times

the square of the matrix element over the eight dimensional
phase spacégiven in Appendix A. The integrals ovew;;

Iy extend from—\;; to +\;; and can be done analytically. The
differential partial width, normalized to the two-photon
FIG. 2. Double Dalitz exchange diagram. width and integrated ovey;, andya,, is
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TABLE |. Results of numerical integrations ovey, andxs, assumingfp=fg=1.

Integral Ki—eeuu Ki—pppp K, —eeee m’—eeee

I4 0.10627 2.97%10 ¢ 14.146 7.2287

I 0.11147 1.14%10°° 14.201 7.2838

I3 0.21713 1.126010°° 28.343 14.509

l4 0.74203 5.498 10 4 27.725 15.600

Is 0.76948 1.59% 103 27.809 15.684

le 0.01503 5.24& 10 4 0.0556 0.0555
1 dFl Sa? Ref. [3] o_f a scala_r couplingy,,,9,,, rather than the cor-
} a6 [I 1C0ZLsit ¢+ | ,SirP{ cos ¢ rectly antisymmetrized tenqung—qung. Qne conse-
guence of the much smaller value we find fgris that the

total width for the double Dalitz decay is almost completely

insensitive to the mix of scalar and pseudoscalar couplings
+1,4c08¢+ (I5+1g)siP{], (18 (except for theK, —u*u u*u~ decay, in contradistinc-

tion to the conclusion of Ref3] but in agreement with the

whereS is a symmetry factor which is 1/4 for modes with comments near the end of R§2].

identical particles and 1 otherwise. Thefactors represent The differential rate can also be expressed in a compact

the integrals ovex,, andxz,4 given below. The factors, and  form, suitable for experimental fits to thg distribution, in-

I, correspond to the pseudoscalar couplingandls are the  volving a constant term, @P-conserving cos@ term, and a

analogous terms for the scalar couplithg,is the additional CP-violating sin 2p term

longitudinal term in the scalar coupling, ahglis the inter-

+13Sin cos{ cosd sin ¢ coseg

ference term, 1 dlr; o?

r—w 3 3R(1+ K1COS 2+ k,Sin2¢),  (20)

13 PSP w2 where
NAZAZ2 R=S[(1/2+1,)cog{+ (1,/2+15+1g)sir?L], (218

=5 [ et B (19b

w? k1=8(1,8inf{—1,c08¢)/(2R), (21b
4 MaSaN2z =Sl 4sin¢ cos¢ cosd/(2R). 210
_§J JdX12dX34fpfs 12\;;1 , (190 k2= Sl 3sin cosy (2R) (219

The values oR and «; at {=0 and{= /2, along with the
maximum value ofk, and the angl€, at which it takes on
o N1oN 3N that value, are listed in Table Il. As expected, for a pure
I4_j f a8 Tp (3 MzmN5d), (199 pseudoscalar decay, the amplitude of the apsm will be
negative while the amplitude of the sigpdsanishes. For a
N 1o\ 3\ 22 pure scalar decay, the amplitude of the cg¢g@rm is nearly
I5=f f dxlzdx34f§—2(3—)\f2—)\§4), (199  the same magnitude as in the pseudoscalar decay but posi-
W tive, and the amplitude of sinf2again vanishes. Depending
on the mode, the amplitude for ti@&P-violating sin 2 term
- %f f Ay tea 2N s e (3— 22 (3— 220 (199) i;/;naximal for values of the mixing angle betweer8 and
Alternatively, we could have integrated ovérbeforex,,
The double integral is performed by first integrating oxgf  andxs,, in which case we would have
from x3, to (1— \/Z 2 and then overx,, from x2, to (1
—x3)2% wherex?=(m+m)%M?2. Inorder to obtainval- 1 d?I';  2Sa® Ao g\
3 ij i (3—\1)(3—\3y)
ues for these integral$, and fg must first be specified and r dxlzdx34 972 2 12 3
then the integrals can be done numerically. Table | summa-
rizes the values for the different double Dalitz modes assum- X[f3coS N2+ F2SiPZ(N2+3w12)], (22)
ing thatfp="fg=1
The numerical value ofs+1g was found to be several where we have userf=\%+w?. The interference term in-
orders of magnitude larger in Ref3]. Extractinglg from  tegrates to zero and what remains clearly shows the kine-
that result yields a value of 3578.0, compared with our valuematic differences between the contributions of the two cou-
of 0.01503. This discrepancy has been traced to the use jlings.

w
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TABLE Il. Coefficients of ¢ dependencies for various values of the mixing andgle: Q).

K —eeuu KL= pppp K, —eeee m’—eeee
R(0) 0.7952 1.37%10 4 8.6995 4.8037
R(7/2) 0.8402 5.31%10 4 8.7412 4.8453
k1(0) —0.0668 —0.0027 —0.2033 —0.1881
K1(7l2) +0.0663 +0.0027 +0.2031 +0.1879
Zo 44.32° 26.98° 44.94° 44.89°
k2(Lo) +0.0664 +0.0026 +0.2031 +0.1880

Going back to Eq(20), the final integral ovets from 0to  model was originally proposed to describe the coupling in
27 can be performed to get the direct contribution to thethe single Dalitz decaik, —e* e~y and was therefore writ-

four-lepton decay rate relative to the two-photon rate ten as a function of onk? only
I, 2a? = @3 Fx.0) 1 Cag+ [4 1
—_—— . X7 = —_——
T, 372 1-r, X 1-rx[3 1-r)X
The total tree-level rate can now be computed for arbi- _ l 1 2
) . ) - . + . (25
trary form factors for modes without identical particles in the 9\1-r,x 1-ryX

final state. For the other modes, there is the interference be- N )
tween the direct and exchange graphs that must be includedhe quantities;=M?/M{ for M; equal to thep, K*, w, or

The decay rate has the form ¢ meson masses. To apply this model to the double Dalitz
decay, it is assumed that the coupling factors so that
F=T1+T5+Ty, (24 f(xq,%X5) =1(x4,0)- f(X,0). In this paper we will use a sim-

plified form of the DIP form factor, which involves only the
where, for modes without identical particlds,=1",,=0, p meson and two parameters,

and for modes with identical particlds,=1";. The expres-
sion given in Appendix C for the interference term could in X1 X2
principle be integrated numerically. We choose instead to use ~ f(X1,X2)=1+app Ve Ve
a Monte Carlo(MC) simulation to integrate the rate and x;—Mj/M X—M/M
make histograms of the relevant phase space variables. The
decay rates for the various modes, broken into diagonal and + Boip _
interference terms, are listed in Table IIl. (X1 —M2IM?)(x,—M2/M?)

Referencd5] included a similar table of values, some of
which are in disagreement with our results. The most signifiAs will be seen in Appendix D, the BMS model can be
cant discrepancy involves the size of the interference ternexpressed as a generalized DIP model involving ghev,
for the decayK, —e*e ete” and7°—e’e e'e”. We and¢ vector mesons.
find that the interference iiK, —e*e e*e™ is roughly 9 Experimentally, the form factor has traditionally been lin-
times smaller than Ref5] reports, and that the interference earized in the case of the pion with just a slope parameter
in 7°—e*e ete ™ is about 4 times smaller. We also differ measured, while for the kaon, the BMS model has been used
in the total rate fork, —e*e u™u~, but the factor of 2 and values oftvg+ quoted. The conversion to the DIP param-
difference is likely due to a typographical error in the previ- eters is easily done, using the world averdg] for the
ous publication. kaon we will use app=—1.5 and for the pion,app

The assumption that the form factor is flat contradicts=—1.0. There is as yet no experimental sensitivity3gp
current experimental findings. The two models that haveand so we will use8pp=0. The effect of using the DIP
been used to parametrize the kaon form factor are thenodel with these values of is that them®—e*e e*e”
Bergstran-MasseSinger (BMS) model [20] and the rate increases by less than 0.4%, te—e“e e*e™ rate
D’Ambrosio-Isidori-Portole (DIP) model [21]. The BMS increases by 6.5%, thik, —e"e” u* ™~ rate increases by

X1X2

(26)

TABLE lll. The decay rate for pseudoscalar couplings=() assuming p=fg=1.

Mode ry,Iir,, /T, rm,,
K —eeuu 2.859< 10 © 0 2.859x 106
KL — pupmu 9.914x10° 10 —0.512x10°1° 9.402<10° 10
K —eeee 6.256x10 ° —0.036x10°° 6.220< 10 °
m’—eeee 3.456x10°° —0.036x10°° 3.420<10°°
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I Iy
iy Iy
X X
I Iy
Iy ly
FIG. 3. Vacuum polarization diagram. FIG. 5. 5-point diagram.

56%, and thek, — " u~ u*u~ rate increases by 68%. It is The combined process will be indicated by

clear that the assumption of a flat form factor is completely—!1 111515 (7), where the radiated photon may or may not
invalid for modes containing muons. be detectable. The distinction between the non-radiative and

radiative decays is an experimental issue and ultimately re-

lated to the hardware. We will use the energy of the radiated
IIl. HIGHER ORDER PROCESSES photon in the c.m. frame to differentiate between events with
a hard photonE ,>E, and events withou€ ,<E,. The
cutoff is chosen such that photons with energies below the
utoff can have no significant effect on the 4-lepton accep-
nce. The rate for radiative events with soft photons will be
O(e”): the vacuum polarization, the vertex correction, andfadded to the rate for non-radiative decays. This contribution

3 . .
the 5-point diagram. A representative diagram from each of also(’)l(a ) and therefore must be considered along with
these processes is displayed in Figs. 3, 4, and 5, respectivef)l?.e_l_?]ne(']looglCOIrDr elgtlogsf.f ial d ord
There are wo graphs for both the vacuum polarization and. fe Otl: e Dalitz dl erential rate to second order can
the vertex correction, one for each pair, plus four graphs fof€'efore be expressed as
the 5-point function. If there are identical particles in the 50 _ 45 ‘
final state, there are exchange diagrams and the number of 0T raq= 0T tred 1+ Srem™ duir). 27)

graphs ddouhbles. Tre magrference be?fweeg trr:e t:cee-level d'@\?hereéb,em is the bremsstrahlung contribution due to radia-
?Tg”’t‘ ant ttﬁ o?e-toop()j |agr§mt_s@$a ) ant_t etre tohre (c:jon-bl tive decays with photons below the photon energy cutoff and
ributes fo the Mrst order radiative correction 1o the dou eé\,m is the virtual correction due to the interference between

Dalitz rate. the tree-level and one-loop diagrams. The virtual correction

Bpth the vertex correction and thg 5—pomt graph contain.,n he further decomposed into the contributions from the
IR divergences, that is, divergences in the limit that the ex:

three one-loop diagrams
changed photon energy goes to zero. In order to handle this P diag
singular bghawor, one Inysi zi\lso_cons!der the radiative Suirt= Supt Syt Bsp, (28)
double Dalitz decayX— Il 1,15 v, in which one of the

leptons internally radiates a photon. There are two contribuwhere 8,, is the correction from the vacuum polarization
tions to this process, shown in Figs. 6 and 7. The radiativgliagrams, 8, is the correction from the vertex correction

process diverges in the opposite manner from the one-loogiagrams, andss, is the correction from the 5-point dia-

The tree-level double Dalitz process @(«?) since it
contains two electromagnetic vertices. Higher order contri
butions to the double Dalitz rate contain one or more internaf
loops. There are three types of graphs that contribute

graphs making the combined decay rate finite. grams.
I It
Y
i -
l
X X

l+
I 2

Iy ly

FIG. 4. Vertex correction diagram. FIG. 6. Radiative diagram 1.
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l1+ TABLE IV. Tree-level rates for radiative decays including both
I+ all radiation and only hard radiation such that<0.95, withfp
2 = fS: 1
2 Mode Ly (Xee<XG)/Ty,  T4(X4e<0.95),,
-
X ! —eeee 6.614(1)x 10 2.055(1)x 10~
K —eeeey 1.540(1)x10°° 0.504(1)x 10 ®
K.—eeuuy 3.279(3)x 1077 0.873(1)x 107”7
KL= pppumy 5.634(3)x 1012 0.346(1)x 10 12
Y
FIG. 7. Radiative diagram 2. Table IV shows the tree-level radiative decay rates for the
four modes, with no form factor. The rates in the first column
IV. RADIATIVE DECAYS include photons of all energies, while the rates in the second

column include only photons with energies large enough that
X46<0.95. This value ok, is chosen to closely match the
resolutlon on the four-lepton mass in current experiments.

The radiative double Dalitz decay will only be considered
at tree level. It is straightforward but tedious to write down
the expression for the rate. The two contributions to the rate
are shown in Figs. 6 and 7. For each process there exists
three additional diagrams where the photon is radiated off of
the other leptons, plus four exchange graphs if applicable.

Our results for the radiative decay rates use a Monte Carlo The next four sections will describe the different contri-
simulation in which we calculate the amplitudes for eachputions to the radiative corrections to the double Dalitz dif-
helicity state using explicit representations of the spinors angerential rate. The first three contributions are relatively
polarization vector. A photon energy cutoff of 400 keV in the straightforward to determine and we will therefore only sum-
c.m. frame is used for kaon decays while for pions, a cutofimarize the relevant formulas. The last contribution, coming
of 100 keV is used. It is useful to define the quantit,. ~ from the 5-point diagram, is considerably more difficult to
—m4e/M2, wherem,, is the reconstructed four-lepton in- calculate. In particular, numerical instabilities plague the
variant mass, to distinguish between the radiative and norevaluation of the tensor 5-point integrals involving light lep-
radiative processes. In terms of this variable, the cutoff fotons. The fourth section, along with much of the Appendix,
both kaon and pion decays isﬁ@two.9985. Figure 8 shows will outline our procedure for obtaining thigisually small
the distribution of x,, for K ,—e"e"e*e” and K,  but non-negligible contribution. We will present the full
—e"e e'e y events. The large peak a,=1 is due to 5-point diagram corrections to the differential rate in closed
non-radiative events. The part of the distribution which fallsform. In Ref.[22], van Neerven and Vermaseren reported a
away from the peak at 1 is due to radiated photons from th@umerical integral of the radlatlve corrections to the related
process of Fig. 6. The rising part of the distribution neartwo-photon process®e”—e"e” 0 but did not present the
X40=0 is due to hard Dalitz photons from the process of Fig.corrections to the differential cross section. As we will dis-

7. Lost due to bin size is the low energy cutoff Bt, cuss in Sec. VI, the effects of radiative corrections are much
=400 keV and the high energy cutoff &= 16m§/M 2 more important compared to form factor effects when con-
sidering double Dalitz decays, because tfievalues in the
accessible phase space are much smaller than those typically
probed in two-photon resonance formation with final state
lepton tags.

V. RADIATIVE CORRECTIONS

o
E
T

S}
o

A. Bremsstrahlung correction

The contribution to the double Dalitz differential decay
rate due to the soft bremsstrahlung part of the radiative decay
is defined as

o
>
T

Sorend P LI
X 1X H H il :—!
brem X12,X34,Y12,Y34 dSFtree/d5¢)

(=]
w

o
~
T

N(K, —> eeee(y)), arbitrary units

T Y whered®T,./d°® is the differential decay rate for the soft

‘ ' ’ part of the radiative decay integrated over the photon mo-
mentum with the constraink,<E,. The full differential
FIG. 8. x4, for K, —ete e'e” andK, —e'e eTe yevents. rateis

=
o
[
o
IS
o
»
o
to
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1 d3k rection, the next four cancel divergences in the 5-point func-
dgl“brem:m > |Mb,enlzd5<b—3, (30  tions, and the last four cancel the electron self-energy diver-
(2m)°2Ey gences (which are included in the renormalized vertex

i . . function). For k; #k;
where d°® is the four-body phase space differential and unction). Fork;#k;

Myremis the matrix element for the soft bremsstrahlung con- _
tribution. If the photon energy cutoff is taken small enough, (K, k)= Zij ( in| 2 i) In( 2Ecut) N Elnz( Q_I)
the matrix element can be approximated as t 8m2\;; Zjj— \jj A 4 QF
P2-€ Pg-€ P1-€ P3-€ 1 Q- Y. QFf
M —@ — — M , 31 ] B . _ =51
brem p2k p4k plk p3k tree ( ) 4|n ( T +L|2 1 —Xij)\ij )

where € and k are the radiated photon’s polarization and
momentum 4-vectors, respectively. There is one contribution +Li,
from each of the radiative diagrams represented by Fig. 6.

J
Y00 Y07
—Liy| 1—
Xij)\ij

The other type of radiative procesig. 7) does not contrib- _
ute in this limit. If the cutoff is small enough, the lepton L (1_ YiJQi ) (36)
momenta can be held fixed while the photon momentum is 2 XijNij /|’
integrated out, with the result
3 where
Sorem=4 wat * g (32)
brem=— 4T —)D, .
em o (2m)32E, QF =(1+ 6 jlu*Ni jki)/2, (373
where .
Qj_:(1+ 5j,ik|i)\j,ik|)/(20-ij)! (37b)
Py i pf 4 ) ?
= + — —
B Ee (p2~k Ps-k  pi-k ps-k Cu Yij=0ij(1+ 6 ji) = (1+ 5 ki) (379
_ 2pl'p2 + 2p3'p4 + 2pl'p4 UI]:(ZIJ+)\IJ)/(1_ZIJ+5IJ)’ (37d)
(P1-K)(P2-K) ~ (P3-K)(Psa-k) ~ (P1-K)(Pa-k)
and the variou®, z, and\ symbols are defined in Appendix
2Py Ps3 2P Pa L
_ A. For ki=k;
(P2 K)(P3-K)  (P2-K)(Pa-k)
. 2 2 1 2E 1 1+ N
~_2piPs P P (ki ki) = _Z[m( Acut)_z_ln(l u”' 39)
(P1-K(P3-K)  (py-K)2  (py k)2 4 Nii —Nii
pg pzzl where);; is again defined in Appendix A.

(33 It will be enlightening to extract the IR divergent part of

(Ps-k)®  (Pa-k)> trac It
the soft bremsstrahlung contribution and express it in a way
The correction can be expressed in terms of a sum of tefhat will make the cancellation obvious. Collecting terms,

integrals which can be done in closed form one has
Obrem=4ma[21(p1,P2) +21(P3,P4) +21(P1,P4g) R 2ua Zio [ Zgot Mo
Sprem=INA{ —|1— =—In| ——
+21(p2,p3) = 21(P2,P4) —21(p1,p3) —1(P1,P1) 2N12 | Ziz Mo
—1(P2,P2) = 1(P3,P3) — (P4, Pa) ], (34) 2a Zas | [Zaathas|| @ Zi3
+—1-=—1In ——
m 2N34 \Zasg—Nza) | T N3
where
, <IN Zizt MNig) @ Zig (Zagt Nag) @ Zp3
o [Ben Ok ki-k Zi3—Nia) T Nag \Zig—Naa) T Np3
I(ki k)= 3 KKk K (35
0 (277) 2Ek 1 ] In( 223+)\23) 32 224+)\24 } (39)
Each integral yields both a finite part and an IR divergent Zpz—Ng3) T Naq \Zag—Noa) )’

part which goes as In&,;/A) whereA is the photon mass

which will be taken to zero after the divergent terms areAs will be seen shortly, the first two terms cancel the diver-
canceled against each other. The first two divergent termgent part of the vertex correction while the last four cancel
will be seen to cancel the divergent parts of the vertex corthe divergent part of the 5-point correction.
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B. Virtual correction
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Bij= 1= 4m71(x;M?), (483

As mentioned above, the virtual correction arises from the

interference between the tree-level and one-loop diagrams.
the full matrix element is

M= Myt Myinn+ O( eG), (40
then the squared matrix element@fa?) is

2 RE{ M;ee/\/lvirt)

(41)

|MraJ2: |Mtret42[ 1+

= |Mtreel 2(1+ virt) - (42

This definess,;; ,

2 Re MieeMyin)
5vin=ﬁ- (43)
re

Therefore, we must compute the matrix element for each o

the one-loop contributions.

1. Vacuum polarization

If pij= W (480

The correction then is

, (49

5Vp:2§ |E Rell; (x;j)
9

where the first sum is over the number of vacuum polariza-

tion graphs and the second sum is over the possible lepton

species in the loop.

2. Vertex function

The vertex function involves higher order corrections to
the QED vertex and is a function of the momenta of the pair.
One contribution is shown in Fig. 4. The vertex correction
contains both UV and IR divergences. We will also include
the self-energy correction to the lepton lines which also are
PV and IR divergent. Both UV divergences will be handled
simultaneously by renormalization of the electromagnetic
coupling and the lepton wave function while the IR divergent
part will cancel the IR divergence in the soft bremsstrahlung
correction. The matrix element corresponding to one of the

The vacuum polarization process involves higher ordegjagrams is
corrections to the photon propagator and is a function of the

square of the photon momentum, or thef that pair. There
is one contribution for each photon propagator. One contri

Mye= Mtreev(xij 1Yij ) (50)

bution is shown in Fig. 3. The vacuum polarization diagramwhere

is IR finite but UV divergent. The divergence can be handled
by renormalization of the photon wave function. The vacuum
polarization matrix element can be written as the tree-level

matrix element times the renormalized polarization insertion

Mvp=Mtree$ I(x;)), (44)

where the sum is over lepton species in the loop and th
renormalized polarization insertion is

2a (1 )
1L (i) = 7f dzz21-2z)In[1-2z(1-2)x;M?/m?—ie],
0
(45)

wherem, is the mass of the lepton in the loop. The integra-
tion depends on the size rf, compared ton?/M?, such that

8 ij 1-8y) .
H|(xij)=—%(§—ﬁﬁ+%(3—ﬁﬁ-) |n(1+g;)+m

for x;>4m?/M?, while

pij

a |8
HI(Xij):_ﬂrg"_pizj_ > (3+pi2j)[77_2tanlpij]Jv

(47)

for x;; <4m?/M?2. The functionsp and 3 are related to. as
defined in Appendix A but are functions of the loop mass

V(Xij»Yij) =Fi(xij) + Fo(Xij))| ————=|- (6D
2Nty
F, andF, are vertex form factors defined by
F (x--)=z 1—i In 2ty —2im Inﬂ—l
! ar 2)\” Zij_)\ij A
e
+1+2)\ﬁ Zij+)\ij o }
—2im
8)\” Zij_)\ij
2
B LygfEh) 7
iz [ 2\ -
?)\—” n 1—2z. z) )" (52
Fo(xy )= — & A 2N g (53)
2\ 7j g 4)\” Zij_)\ij ’

wherez; and\j; are defined in Appendix A and is the
photon mass.
The correction is then just

8e=22, ReV(X;j,Yij), (54)
g

where the sum oveg is over the number of vertex function
graphs.
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The IR divergent part is contained withky. Twice the For the diagram shown in Fig. 5, the arguments of the
real part of the Im\ term is exactly what is necessary to 5-point integral functions should take on the values
cancel the first two divergent ternisne for each vertex cor-

rection graph in the soft bremsstrahlung contribution. The ki=—p2, ko=—py, (573
final four divergent soft bremsstrahlung terms will have to

wait for the last piece of the virtual correction, the 5-point ks=ps, Ks=-—py, (57b
diagram.

SO we can write
3. 5-point diagram

l50=1l50(— P2, — P1,P5,— 58
There are four distinct 5-point diagrams that contribute to 5015~ P2, ~P1.Ps. ~Pa) 58

the direct process, plus four more if there is an exchanggor the scalar integral, and analogous expressions for the
process. The diagram shawn in Fig. 5 contains a photon eX5igher-rank tensor integrals. The spinor terms for this dia-
changed betweeh, andl; . The matrix element for that gram are

graph is
2 A= —4(py- p3)u(p2) Y v (p)u(ps) ¥ v(ps), (598
Ml :f —_[‘FPE v o’+f3(g 900~ 94090 )] — —

) @mt M “ HoEe BX"P=2[u(p) ¥"v(P1)U(Pa) ¥ ¥*Bov(Pa)

—ig?” —u(pa)P3y*¥"v(pu(ps)yu(ps)], (590

X (P12t ) (Pag—1)P| 5—5——
(P12t t)*(Pas—t) 2 A’+ic

iy CHP7=U(p,) Yy ¥ o (P)U(P4) Y ¥ Y, v (Ps). (590
—ig o

The spinor terms for the diagram containing a photon ex-

_i av
.
changed betweely andl, are

(p12+t)2_A2+i€

(p34_t)2_A2+i6
i

T — A#=4(p,- pa)u(p2) y*v(P1)U(ps) ¥'v(ps), (608

Xu(pp)(—ieys)

B#"P=2[u(p,) Pay* ¥ v (P1)U(P4) Y0 (P3)

—u(pz) y"v(PU(P4) B2 7" ¥"v(Ps)], (60D
X(—iey,v(ps), (55) S — _ o
T CH7P7=—u(p2) ¥"y* ¥ v(P1)U(P4) YY" Y v(P3),
wheret is the loop momentum ang,, p,, ps, andp, are (600
the momenta of, , 17, |, , andl, , respectively. This can
be reexpressed as

N 2iet I50=150(—P2,~ P1,P5, — Pa)- (62)
M5p: - V(fpe,u,pva'{_ p'fngil 5OAVU+ I ngZU

x(—ieya>v<pl>u<p4>(—iem(m

and the scalar integral for this diagram is

The spinor terms for the diagram containing a photon ex-

+ +
+|§‘§CZ'[;]+pg[l’s’lA””Hé’?BZ”JrI‘ég‘BCZ‘;]} changed betweely andl, are
+ F{[(P12: P2 9*" — P5Ps][1s0A .+ 151B e A*'=4(py- Pa)U(P2) Y*v (P1)U(P4) ¥'v(P3), (623

+1 ggc,uvaﬂ] + ( P3a— p12)pgp,v[ I glAMV+ I ggBZV

+125PCHET— 0, [ (150 SAR + (159)7, BH"

+(159)5,C*P"1}), (56) N o
L _ CrP7=—u(p2) ¥ ¥* ¥ (PU(P4) Y7 ¥" ¥ v (P3),

whereA, B, andC are combinations of spinors and gamma (620
matrices ands=p;+p,+ps+ps. The factors ofl; are in-
tegrals over the loop momentum. There are three basic intexnd the scalar integral for this diagram is
gral forms from which all the others may be obtained. The
notation for the integrals has the following meaning: the first I50=150(—=P1,~P2,Ps5,~ Pa). (63
digit in the subscript refers to the number of denominators
and the second refers the number of powers of the loop mo- The spinor terms for the diagram containing a photon ex-
mentum appearing in the integral. The 5-point integrals aréhanged betweely andl, are
defined in Appendix D as a function of four 4-vector argu-

mentsky ,k;,Ks,Ky. ART=—4(py-pU(P) Y o(p1)u(ps) ¥'v(ps), (648

B#"=2[u(p,) ¥ ¥*Psv (P1)U(P4) ¥v(ps)
—u(pa) Y v(p)U(Py) ¥ y*Pro(ps)],  (62b
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B#7P = Z[U( p2) YVU(pl)U( P4) By ¥ v (ps)
—u(p2) Y ¥ Pav(p)U(Ps) Yv(ps)],  (64b)

[S]
S
[

o
w
T

CHP7=U(py) Y ¥y "0 (PU(P4) Y, ¥ 0(P3), (649

, arbitrary units

and the scalar integral for this diagram is

(=}
~
T

Iso=1l50(—P1,—P2,P5,— P3)- (65

The tensord\, B, andC are computed for a given helicity
combination and combined with the integrals to yield the
matrix element for that helicity state. The correction then
involves a sum over the sixteen possible final states

N(r® —> eeee)

T

:‘|,",”H..| P SR BN RTINS VU AN R

16 07 06 05 04 -03 =02 <01 o0 01 02
21 2 RE M d M Ms (V)] Oorem Cuint
F5p= 16 g (66) FIG. 9. Distribution of the total radiative correction far®
D | Myed M2 —eeeeevents with an IR cutoff ofxja=0.9985, with fp="fg
A=1 =1.
where\ here refers to the helicity state and
Y IR a Zy3| [ Zpzt gzl
M5 = Myees— —| In| ———| =2im|InA. (71)
o P 27 Npg| \Zpz— Mg
Mtree()\)ZE Mtree()\)' (67)
g The IR divergent part of the 5-point correction coming from
all four diagrams is
MsgN)=2 ME(N). (68)
’ SRS g i EE N (72)
R D VR PR VY h

The sums here are over the number of graphs for each pro-
cess.

The IR divergent part of the 5-point correction is most
easily isolated by looking at the 5-point matrix element in
the IR limit. All terms involving tensor integrals vanish leav-
ing only thel s, term. The divergent part df is due to the
two divergent box integrals$3) and!(}) . The relevant terms

wheres;; is the product of the sign of the chargespfand

p; and the sum is over the four diagrams. Again, it can be
seen that this is the necessary form to cancel the remaining
four divergent bremsstrahlung terms.

in the scalar 5-point function for Fig. 5, in terms of the di- VI. MC SIMULATION RESULTS
vergent 3-point function, are The inclusion of the radiative corrections impacts both the
differential rate and the total rate. The total correction to the
> S/t > Sit differential m°—e*e e*e” rate is shown in Fig. 9. The
[IR_ _ } ] N i | average size of the correction factor for the four different
50 2 p§4— M% pfz_ Mi IR modes is shown in Table V. The total rate for the combined

4-lepton plus photon process is independent of IR cutoff.
Table VI summarizes the tree-level rate and the rate for the
combined, cutoff independent process, divided into the rate
including all radiation and the rate including only soft radia-
tion (X4e>0.95), all withfp=fg=1. It is the last column

i which should most accurately predict the observed non-
IR_ —! radiative 4-lepton rate. It is seen that the non-radiative rate is
0 162N pap2d pZ— M2)(p2,— M2) smaller than the tree-level rate for both 4-electron modes
while it is larger for the modes with muons.

The probability of radiation can now be computed as the
ratio of the radiative rate to the combined rate. Table VIl lists
the probability of radiating a photonx{,<<0.9985) along
where u is a kinematic function with dimensions of mass with the probability of radiating a hard photom,(<0.95)
which is independent of. The divergent part of the 5-point for each of the four modes. The probability is highest for
matrix element, dropping the finite term involving is pro- K, —e*e e*e (y) where thex values can be the smallest.
portional to the tree-level matrix element The probabilities forkK, —e*e” u* u ™ () are slightly less

=1r/[(pL— M%) (p3—M2)]. (69)

Extracting the IM\ piece ofl g, |5 can be written as

Zyzt A3

X|In

A
In—, (70
Z337 A3 M

o
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TABLE V. Average size of the radiative correction to the differ- accessibleg? values for then® decay is relatively small in

ential rate with an IR cutoff Of(fl:t=0.9985 withfp=fg=1. addition to being far from our assumedpole.
5 For the kaon modes, we observe that the form factor has a
7 —eeee K—eeee K—eeuu Ko—upup much larger effect on the distribution than the radiative
5 01948 02618 00788 4£0.0805 corrections do. Figures 12 and 13 show the distributior,of

andx,, respectively, fork, —e*e e"e™ events. The plot
on the left compares the distribution using the tree-level ma-
_ trix element with no form factor ¢=0) to that using the
than half of what they are for the four electron mode, and inggme matrix element but witk= — 1.5. The plot on the

+, =+, - ; ; o

Ki—u"p pu”u () there is very little radiation. _ right compares the distribution using the tree-level matrix

The effect of the radiative corrections on the differential gjement with no form factor to that using the radiatively-
rate can be observed in the distributions of the five phasgqrected matrix element also with no form factor. The roll
space variables. The statistics in the following plots reflecy 4t high x in plot (c) of Fig. 13 is due to presence of the
the amount of CPU time dedicated to each mode. While thgychange diagram in this mode. Figures 14 and 15 show the
calculation of the radiative corrections is CPU intensive, it iSgame distributions fok, —e"e utu" events. Here there
actually the generation of the radiative decays that takes the,s o pairing ambiguities and we phai, andx , , . It can be

most time. o n seen that there is no roll off in pldt) of Fig. 15, and fur-
For the modes with identical leptons, it is useful to adoptihermore, a small quadratic dependence is observable. While
a method of pairing the electrons with the positrons in ordegne « of the ee pair is slightly modified by the radiative

to study the dilepton mass distributions. We choose to use thg,rections, thex of the u . pair does not change at all. This
pairing for which the product of’s is minimized. It is this ;o 55 expected for the massive muons.

pairing that will contribute the most to the matrix element in Figure 16 shows the distribution of, andy, for the
a

general. Thereforex, andx, are thex’s belonging (o this e jevel differential rate and the radiatively-corrected dif-
pairing, with the additional requirement thef<x,. In ad-  forential rate fork, —e*e ee~ events. The effect here is
dition, y, is they variable defined in the-pair c.m., andy,  qyite small. Since is a measure of the energy asymmetry of
is the same quantity in thie-pair c.m. And lastly¢ap iS the  he |epton pair, it is seen that the radiative corrections tend to
angle between the planes of thepair andb pair in the 516 the pairs slightly more asymmetric on average.
overall cm. ) ) L i The effect on the¢ distribution is due entirely to the
The first variable that we will look at is which is modi- 5-point diagram. Figure 17 shows a comparison of the dis-
fied by both the existence of a form factor and the inclusionyip iion of ., generated with the tree-level matrix element
of the radiative corrections. In all cases we get0 in the {5 the same distribution generated with the radiative correc-
DIP form factor model. Figures 10 and 11 show the distribu-jons  for K,—p"p p*p~ events. The enhancement at
tion of x, andx,, respectively, for7-r°'—> g*ef e*e*_ events. é.,= and the corresponding depletionat,=0=2 can
The plot on the left compares the distribution using the treepe ynderstood in terms of Coulomb interaction between the
!evel matrix eleme.nt with no form factora(=0) to that us-  fing| state particles. The configurationg 0 has all leptons
ing the same matrix element but with=—1.0. The plot on 5 5 plane with the same sign particles near each other. The
the right compares the distribution using the tree-level matrix,¢oct is only observable in th&, —u"u u*u~ decay

element with no form factor to that using the radiatively-\yhere the leptons in each pair are usually well separated.
corrected matrix element also with no form factor. We have

provided a linear fit to the ratio over some reasonable range
on a scale appropriate for comparing the two effects. For the
form factor comparisons, the dependence should be prima-
rily linear. This is not the case for the radiative corrections in  The main conclusion that can be drawn from these distri-
general. Thee? per degree of freedom is included as a mea-butions is that the radiative corrections are extremely impor-
sure of the linearity. It can be seen that the form factor has #&nt for extracting a form factor in ther®—~e‘*e e’e”
much smaller effect on the distribution than the radiative mode. For the kaon modes, the form factor has a larger im-
corrections do. This is not too surprising since the range opact on thex distribution and the modification of the distri-

VII. CONCLUSIONS

TABLE VI. Summary of tree-level 4-lepton rate and combined radiatively corrected 4-lepton plus photon rate, including the rate for all
Xaze @nd the rate fox,e>0.95, usingfp=fg=1.

1_‘lll(“y)/rw
Mode ryeer,, all X4e X46>0.95
m—eeee 3.421(4)x10°° 3.536(4)x10°° 3.331(4)x10°°
K —eeee 6.222(5)x10°° 6.406(4)x 10°° 5.903(4)x 10°°
K.—eeuu 2.858(1)x10 ¢ 2.996(3)x10 ¢ 2.909(3)x10°®
KL — e 0.941(1)x10°° 1.026(1)x10°° 1.025(1)x10°°
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~

TABLE VII. Probability of radiation (&,,<<0.9985) and prob- 0 107§
ability of hard radiation X,,<0.95), defined a® =14, /T4, . % wos;
> sE
Mode P(X4<0.9985) P(X40<0.95) % :Z,
P—eeedy) 0.187 0.058 3ok oo, at L
Ki—eeegy) 0.240 0.079 g ‘02? . tlree, alz‘l,[O I 1 Fe l1~\oo‘p, a:(!]
Ki—eeuu(y) 0.109 0.029 Z o oz 05 o7s i o oz 05 075 1
KL= mpmpmp(y) 0.006 0.0003 Xy Xy
O 5 X/ndi4872 /13 15 X' /naf35.88 /13
=14 %AO 0.9959 + 0.5538E-03 1.4 3:;\0 1.010+ 0.4074E-02
E 1.3 B Al 0.6816E~01 £ 0.5531E-02 1.3 :: Al -0.1707 £ 0.3377E401
bution due to the radiative corrections is less important. The 2 e 3 0 3 i HH
only published result for th&, —e*e e*e” mode [14] 2 T f‘*@“&ﬂ w[
quotesapp= — 1.1+ 0.6(stat). Figure 13 shows that at most o0& = o8 £ Jr J(
the radiative corrections would change the slope by 0.22 g oe 3 © o6 3 @
which, while significant, is smaller than the current experi- 08 e e e T 08
mental error. Likewise, for th&, —e*e” u* u~ mode, the X, Xy

latest resul{17] based on the invariant mass shaperise FIG. 11. (a) x, in m°—eeeeevents using the tree-level differ-

_ 181 : . :
=—4.53'575. The present experimental error is again largerg ia) rate witha =0 (dots and witha= — 1.0 (histogram. (b) X,
than the impact of the radiative corrections on the mass disp 70—, eeeeevents using the tree-level differential rate with

tribution. As for the extraction of the mixing anglefrom =0 (dotg and the corrected rate for events with,>0.95, also
the observedp distribution, the radiative corrections can be with a=0 (histogram. The ratio of the dots to the histogram in
safely neglected at present. both cases are shown {n) and (d).

The two publications above quote an integrated (ate-
malized to the two-photon ratef (6.24+0.34)x 10 ° for ACKNOWLEDGMENTS
K. —e'e e'e and (4.510.42)x10°% for K, This work was supported by Department of Energy grant

—e"e u"u”, where the errors are purely statistical. Thesepg_FG03-95ER40894 and by NSF/REU grant PHY-
results are in good agreement with our predictions when bothpg7381. The authors also acknowledge useful comments
the radiative corrections and a form factor with- — 1.5 are  from Professor L. M. Sehgal.

included. Fork, —e“e"e"e™, the two effects offset and

I I I 0,
the net result Is an increase of just Iess+ trlan+2/£) over the APPENDIX A: KINEMATICS
tree-level rate with no form factor. I, —e"e" u " u™, the
form factor is the dominant effect. The four particle final state can be kinematically de-

scribed by considering subsystems containing only two par-

n 107 0 107 108
— E -+
S 10k (a) (b) S 1ot @ 105 o)
SF
o 'OF o 10° 104
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FIG. 10. (a) x, in m°—eeeeevents using the tree-level differ- FIG. 12. (a) x, in K, —eeeeevents using the tree-level differ-

ential rate witha=0 (dot9 and with = — 1.0 (histogran). (b) x, ential rate witha=0 (dotg and with a= — 1.5 (histogran). (b) x,
in m°—eeeeevents using the tree-level differential rate with  in K, —eeeeevents using the tree-level differential rate with

=0 (dotg and the corrected rate for events with,>0.95, also =0 (doty and the corrected rate for events with,>0.95, also
with =0 (histogram. The ratio of the dots to the histogram in with =0 (histogran). The ratio of the dots to the histogram in
both cases are shown {n) and (d). both cases is shown ifc) and (d).
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FIG. 13. (a) x, in K, —eeeeevents using the tree-level differ- FIG. 15. (@ x,,, in K. —eeuu events using the tree-level dif-

ential rate witha=0 (doty and with @= — 1.5 (histogran). (b) x,, ferential rate witha=0 (dot9 and with o= — 1.5 (histogram. (b)

in K .—eeeeevents using the tree-level differential rate with  x,, in K. —eeuu events using the tree-level differential rate with
=0 (doty and the corrected rate for events with,>0.95, also  «=0 (dot9 and the corrected rate for events with,>0.95, also
with @=0 (histogram. The ratio of the dots to the histogram in with =0 (histogram. The ratio of the dots to the histogram in

both cases is shown ift) and (d). both cases is shown ift) and (d).

ticles. Consider the system composed of two particles witifThe energy and momentum of each particle in the two-
momentap; and p; and total momentunp;=p;+p; and particle c.m. frame are

mass squaredwizj = pizj . We will define a dimensionless dot . .

product of any two vectorp; andp; as Eff =m;(1+6;)/2, Ef=m(1-5;)/2, (A3

_ 2 _ *=m;\,i/2, A4
zij=2(pi- PP =1-X—X;, (A1) P 1) (Ad)
where
where
2, 2 2, 2 5” :Xi_xj y (AS)
Xi=pi/pi,  X;=pj/pij- (A2)
_ 2 2
Nij =NzZjj —wjj, (AB)
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FIG. 14. (a) X¢c in K_—eeuu events using the tree-level dif- v, Ve

ferential rate witha=0 (dot9 and with «= — 1.5 (histogran). (b)

Xee iIN K —eeupu events using the tree-level differential rate with FIG. 16. (a) y, in K, —eeeeevents using the tree-level differ-
a=0 (dotg and the corrected rate for events wikl,>0.95, also  ential rate(doty and the corrected rate for events with,>0.95
with =0 (histogram. The ratio of the dots to the histogram in (histogran). (b) y, for the same events. The ratio of the corrected
both cases is shown i) and (d). distributions to the tree-level distributions is shown(én and (d).
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25000
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15000
Cioooo - tree where the second term in the numerator of yevanishes
X since §1,= 83,=0. Any use ofz, w, or A without subscripts
g o0 r will refer to the functions ofx;, and X4, SOX=X\1; 34 for
S 0 g b instance. The last phase space variable is defined as
;ﬂob/’rY —1 .

¢p=tan ~(sin¢/cosqe), (A14)
o 1.05 E
o104 E
o 1'82 3 H HWL Jujﬂ’]t b where
© ok ++Jf f SR
S Lt T 16€,.,,,0 P4 P5PPT
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FIG. 17. (a) The distribution ofg,, in K. —uuup events us-

ing the tree-level differential ratéloty and the corrected rate for The angle¢ is defined so that ab=0 the two pairs lie in a

events withx,.>0.95 (histogram. (b) The ratio of the corrected plane with the like-sign particles adjacent to each other. The

distribution to the tree-level distribution. orientation of¢= 7r again has both pairs in a plane, but with
the opposite signed particles adjacent.
W;j zzm. (A7) The general expression for the phase space integral is
Occasionally we will use symbols likg j whose meaning 44 _ 1 d%pyd®p,dpsd®py 5 (P— 1Py pa—pa)
is interpreted ag(p; ,p;+ Py)- (2m)® 16Ep Ep Ep Ep, P17 P27 P~ Pa).
Now consider a three-body system composed of momenta (A17)
pi, pj, andpy. There are two phase space variables needed
to describe the system. The first one will kg= pﬁ-/pi"}k. Upon integrating out theS functions, integrating over the
The other one is defined in thjec.m. frame as the cosine of Euler angles, and changing variables to those listed above,
the angle between the direction of particland particlek, the phase space reduces to
(D—p)—D3. 8 Z: M*
cos@ij,kzzlok (P Zp’) Pk 2%k (A8) Ao =8 ——Ndxpdxady;dysde,  (AL8)
PijkNijNij k 2%

sWhere the factosS is a symmetry factor which is required for
modes containing identical particles in the final state. The
double Dalitz modes with identical particles contain two sets,
thus requiring two factors of 1/2. S8 1/4 if the final state
contains identical particles, arg=1 otherwise.

When there are identical leptons in the final state, the
amplitudes for the exchange diagrams have the same alge-
Finally, the four-body final state requires five phase spac braic form as for the non-exchange diagrams except that the

’ %inematic variableXy,, Xs4, Y12, Y34, and ¢ are replaced

variables to uniquely describe it. We will use tikeandy bY X1a Xa3, Y14r Yoz, ANd s 25 These exchange variables

values for the two lepton pairs plus the angle between th(\?vill in general be functions of all five of the non-exchange

normals of the planes de.f'”ed by each pair in the overall C-Myariables. As is turns out, we only need explicit representa-
frame. The first four variables are : .
tions forx,4 andx,3. These are given by

A more convenient variable that will be used in place o
cost  is

Yij = \ijCcoSbij ks (A9)

wherek will always refer to the total momentum minus tie
momentum.

2 N2
X12= P2 M, (A10) X14=[ 1= N X1~ N5 Xaa— N(Y12— Yaa) — ZY1Y34

Xa4= P2/ M2, (A11) +W\ (AT~ Y1) (34— Y30 COS1/4, (A19)

Xo3=[ 1= NfX1o— N3 Xaat NM(Y1o— Y30) — ZY1Y34
+ WA= Y15 (N34 Y30 COS /4. (A20)

_ 2p3a- (P1—P2)

, (A12)
M2\

Y12
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APPENDIX B: MESON —vyy COUPLINGS 23772a,2'§2
* —
In this section we will work out the explicit form of the 2 RgM; M) = M 2X 1 X X1 X {Afp(X12,Xa0)
12234714123

two-photon couplings, allowing for photons of arbitrary
mass, using the polarization vectors in the helicity basis. The X fp(X14,X03) COSL

eneral form of the coupling is
J Ping + B[ fp(X12,X34) fs(X14,X23)

Hon, = Hunpoki € K2€R (BD) + fp(X14,X23) fs(X12,X34) ]SIN{ COSE
whereH is either +Cfg(X12,%34) Fs(X14,X29)SIP L}, (CD)
b 2 where
H,uvpa': prep,vpa ) (Bza)
A=\*2E?+87*+E[87°— 2(y12t Yas)’]
2 2 2 2
H oo™ 177600900~ 0uo8yp).  (B2D) TWALHY1Y30) (27 Y12 Y3
+49°(Y12+ Y30 (X1Y 12+ XaaY3a)} (C2

The three polarization vectors for a massive photon in the
helicity basis are chosen to be B=— 2\[ 72(Xy+ Xa4— X14— X23)

et (£2)=(0,1xi1,0/+2, (B3a +4(X12X34— X14X29) ] E tan, (C3

€ (£2)=(0,17i,0/\2, (B3b)  C=-E%-E67°z—W?—(222+W?)y15y34]

. —E[2(Z2—2w?) + (2 + 2w?)y2,y3,+ 27°

(=2 =(k,0,0=E)/ I, (B39) L Jra WYidYsat 22912
R —272(Z2+ WP)(1+ 3y 1530 +87°2] + WPZy3 Y3,

for a photon traveling in the: z direction. With these polar-

2,2 2 2 2\\,2 \,2 2052 2
ization vectors, one finds three couplings for the scalar case ~ — W 2 Y12Yaat W(32° = 2wy 54— 2w (2"~ w")

2 2 2052 _ w2} — 2 2l 327 22
“MFz,  A=h,=+, X (Yot Y30 + WA (22— 2wW) — 27 3w’z YTy,

Hfl)\zz “MFsZ, Ay=hp=—, (B4) —2(22— 22— W)Y oy aut 22(Z%— 3W?/2) — 2(Z2+ W) ]

+ Mfsw, )\12)\2=0, _8774[(2_22)_W2y12y34], (C4)

wherez andw are defined in Appendix A. The longitudinal where  E=w\(Z\—yL)(NZ—y2)cosé and 72
— 12 1 34 3

c_ontrlbutlon vanlshgs for the pseudoscalar case, and ON€, 2/M2. The exchange variables , andx,; are defined
finds only two couplings

in Appendix A in terms of the five non-exchange phase space
variables. The term proportional to éggesults from inter-
_ ference between a pseudoscalar coupling in both the direct

Hfm: —IMFpN, Nj=Ap=—, (B5  and exchange graphs, while the one proportional t&; g

0, A1=N>=0, due to scalar couplings in both graphs, and the one propor-
tional to sin{cos{ is due to a pseudoscalar coupling in one
where\ is also defined in Appendix A. There are three in-graph and a scalar coupling in the other.
teresting differences between the scalar and the pseudoscalar
couplings. First, assuming that= 0, there is a relative phase APPENDIX D: 5-POINT EUNCTION
between them. Additionally, the transverse couplings differ
in the kinematic factor. And lastly, there is the additional ~The matrix element for the 5-point diagram is composed
scalar coupling due to the contribution from longitudinally of tensor integrals with five propagators in the denominator.
polarized photons. Where as the transverse couplings go likéne can express tensor integrals in terms of lower rank ten-
\ or z, both of which areD(1) on average, the longitudinal sor integrals with the same number of propagators and lower
coupling goes likav, which isO(x), making its contribution ~ rank tensors with fewer propagatdi23]. In the end, every
less significant. tensor integral can be decomposed into scalar 2-, 3-, 4-, and
5-point functions. The scalar 5-point function is not indepen-
dent and can itself be expressed in terms of scalar 4-point
functions.
The interference between the tree-level direct and ex- This appendix will outline our procedure for first reducing

change contributions for modes with identical leptons is ahe tensor integrals to scalar integrals, and then computing
sum of three terms the scalar integrals in closed form.

+|pr)\, )\1:)\2:+,

APPENDIX C: DOUBLE DALITZ INTERFERENCE
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1. Tensor integrals

The notatione

PHYSICAL REVIEW D 67, 033008 (2003

1
Sk ui-), (062

1 2 2 2
Sluz—pi—(kitky)]—s-ky, (D6b)

1
Ska=5lui—pui—(kitkotkg)?l—s-ki=s-kz.  (D6Q

1o 5 2
S'k4—2[M5 pi— (Kt kot ka+Kkg) 7]

—s-ky—s-k,—s-kj3.

(D6d)

kikeksks js shorthand fore”"?7k, Kz, K3, Ka, -

The reduction then proceeds as follows:

Begin by defining sky=
I oKy, Ko, Ks,Ky) f d* : (D1a)
SO 2T (27r)* N1NaN3NgNs '’ s ko=
1£(Ky Ky, k k)—f d* v
51\, R2,R3,”4 (277)4 N1N2N3N4N5’ (le)
1£)(Kq, Ky, Ks,Kyg) f d* v (D1lo
1 1 1 = 1 C
s2iT e (27r)* N1N2N3NgNg
1420 (Ky Ky K k)—f dt i (D1d)
P3 T (27r)* N1N2N3NgNs’
where
Ni=t?=uf,  Np=(t+ky)?—pu3,
Ng= (t+k;+kp)?— u3, =
(D2)
Ny=(t+ky+ko+Kg)2— 2,
Ng=(t+ky+ko+kg+kg)2— u2,
where u; is an internal mass and thHe are external mo-
menta.
The original reduction scheme of R¢R4], while theo- |y
52~

retically sound, suffers from uncontrollable numerical inac-
curacies. To avoid this problem, we follow the procedure
suggested in Ref23], and use a reduction scheme based on
the Schouten identity which utilizes Gram determinants to
express any tensor integral as a sum of integrals, one with the
same number of propagators and the rest with one less propa-
gator, and all with the power of the loop momentum reduced
by one. The identity has the following form:

i ekakokaka— (¢. kl)fp.kzk3k4+ (t-Ky) ekamkaka 4 (t. ks) ekikanky |4}e=
+(t-kgy) e¥akakan, (D3)
=ph— %(Nleﬂkzkskz;_ N, e (ki tkalkske
+ Ngerkalkatkaka N, ghkika(ks k)
+ Ngerkakaks) (D4)

where

v#=(s-kp)etokeka— (5. k,) erkikakat (s. ks) ekikoka

— (5-kg) erakels, (D5)
ands* is defined in terms of its dot products
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=———10v"l
Ek1k2k3k4[

Kikokaks

1
D ukokakay (1) (kg +ko)kskay (2)
Mlso— 5L e 45 erliarialicke (G

+ eikalkatka)ky| 513(‘))_ eKika(kgtka)) 2‘(1))4_ eKikoKs| E‘%)] ,

(D7)
1 1
v kokska( 1 (1)v 1
M[v’”sl_ E['E“ 2kaka(1 57— KN GY)
— et katko)kgky) 5‘21)”4— ekalka sk ES)V
— emkakalkatka) | (Dvy cukakoka) (B (D8

1
“lg— SLertska(1 R — kil 0 — kil

+ kK2 %)) — eir(kgtkoksky| 5122)”!14_ etki(koTka)ky) g)VP

— enkakalkatka)| (9vp 1 gukakoka) (S)ve] | (D9)

where for anyl ;o= f[d*t/(27)*](1/N;N,N3N,),

ukoksz [

1= o LRl OB N a0 [ 6
41 25k1k2k3{ kykoks Ok kokg! 40 [ kykoks' 30
k

1koks

_ silkatkaks (2) | guki(katka) (3)  gukiky | (4)
5k1k2k3 b0+ 5k1k2k3 50 5k1k2k3| 301

(D10)
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20,

1
my_ ukoks vv g (1)
152 = —Zioks | Ok k2k35k okl 217 L0l (131~ K1l 50)
Kikoks

5M(k1+kz)k3|(2)v+ 5Mk1(k2+k3)|(3)v 5/k‘kk1kk2 |(4)V]
k3 2K3

kikokg St* k1)k2k3| (1)

skykokyl 401 5 ( kqkoks

26k1k2k3,u. 6k1k2k3v [
+

kykok
5123
Kqkoks

55(k1+k2)k3|(2)+ 55k1(k2+k3)|(3) fkﬁki |(4))”
273
(D11)
and for anyl o= [[d*/(27)*](1/N;N,N3)
k (kq+k»)
Bk, Ol 30~ 5 —[5" 2150 = Skl 15

14 =—
317 ik,

kika

+ o g%n] . (D12)
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(159 5 =15"— k159, (D14b)
(Is2)§P# =1 P~ kN1 PP~ KD+ kiK1 . (D149

While this procedure is generally much more reliable than
that of Ref.[24], there are still problems that occur whef
as defined in Eq(D5) is not an independent combination of
the final state momenta. This happens when all the momenta
in the parent particle’s rest frame lie in a plane. Even though
these configurations form a subspace of zero measure in the
final state phase space, finite numerical precision dictates
that they will be generated with non-zero probability by the
MC program. In this case, we use the identity

klk2k3 SrLaB ukokg
oo =uk(u-t) + 5 [5\S iekok gk ™ N1F ity

+ N, o KKe

A N Srkake N45Mk1k2]

kqkoks kykokgd?
(D15)

where u#= e<1k2ks#_ The first term on the right vanishes

upon integration, allowinds; to be written as

The reduction notation has the following meanitg}, is the
4-point function obtained froryy by dropping theth propa-

el ! . . . |t= {85 S1P 1 gg—[ K23 | (D — gikaka @)
gator, 1) is the 3-point function obtained from its corre- 5k1'|§2‘;3 K kzks K kzks Kikoks 40 Thkqkyky' 40
sponding 4-point function by dropping thgh propagator, 23
and so on. The Gram determinants that appear in the reduc- 5fktk|?k;|(3) 5f:kklkk2 1518 (D16)

tion are kinematic functions which are defined as

ko di-ky di-ko
N9 |gy-Ky Op-k|’
di-kKi 091-ky  0q-Kg
kikoky ) ) )
5q1q22q3;— d2-Ki 02-ky  0z-Kg|, (D13
ds-ki 03-kKy Qs-Kg
di-ki di-ky di-ks 0p-ky
LKokaks O2-Ki G2-Kz d2-ks da-kg
%030 ds3-Ki Q3-Kp 03-Kz dz-Ka|
ds-Ky dg4 Ky da-Kg Qa-Ky

The traces that appear in Eg6) can also be reduced

(Isk=155, (D143

The other tensor integrals can be expanded in a similar man-
ner. The same problem can arise in the reduction of the
4-point tensor integrals if the three momektg k,, andk,

are linearly dependent, in which case this same procedure is
reproduced at one lower rank.

In these degenerate cases we have a choice between nu-
merical inaccuracies resulting from antisymmetric invariants,
such asekik2ksks being very small, or inaccuracies resulting
from assuming exact linear dependence. To decide which
approximation is better, we do the calculation of the tensor
integrals both ways and check whether identities such as
those in Eqs(D14) are satisfied. More than 99% of the time,
one of the two methods yields good agreement for all these
“trace checks.”

2. Scalar integrals

The most general 5-point function we will need to con-
sider is

1

dPt
o f<2w>D{[tz—ni+ie][<t+kl>2—u§+ie][<t+k1+kz>2—né+ie]

X
[(t+ky+kot+kg)?— ui+iel[(t+ky+ko+kgtky)?—

pétie] (b7
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rametersa; and B8;; must be adjusted. For the simple DIP
model, only ap meson term is included with; = app and

P1 B11=Bpip . The DIP model requires the inclusion of four
t—po 5-point diagrams involving all combinations of photons and
D2 \t—p1—po p mesons. The BMS model is more complicated, requiring
my Ml\ D5 25 different diagrams. To simplify this we have Ist,,

=M,, which reduces the number of diagrams to 16. The
values of the generalized parameters, in termgof are

10Cayx«M2,
b+ps 4= =1t g (D203
D4 9( M K* M p)
4Cays 5M> M3
FIG. 18. Scalar 5-point function. a=— >3 5 5o~ 3 > |
6(Mix—M?)  6(M5—Mi,)
In the case at hand;=0, u,=m;, u3=M;, us=M,, and (D20b
us=m, where them’s are lepton masses and thk’s are 5
boson masses. In additiok,= —p,, k,=—p;, k3=ps, and 2Cay« M. (0200
C

k,=—p4, Where the external momenta satisfy the relation®3= — 9M2—M2Z,)’
p1+po+p3+ ps=ps. The diagram representing this integral ¢ *

is shown in Fig. 18. R . . .
We have allowed the boson propagators to have arbitraranedg v Oaéﬁld' ,BA- ffé form factor is obtained by setting all of
i ij

massedM; andM,, in order to include a form factor in the We will write the 5-point function in Eq(D17) as a sum

calculation of the 5-point functhn. This is necessary SINCE 4-point functions using the following relationship between
the form factor becomes a function of the loop momentum

We will use a generalized DIP form factor which, with the n-point functions andf—1)-point functions25],
appropriate choice of coefficients, can reproduce both the n

DIP and the BMS form factor models. The generalized DIP |n:_{ -> ¢l +(n—5+2€)cylP=62¢| (D21)
form factor is 2| =1

X1 X2 where
f(Xq1,Xp)=1+ a; +
b 2 X1—MZM?  X,— M2/M? ) ) )
2 XX Ci:jzl Sﬁly CO:iEj_ Ci:ijzl Sﬁly
+ - , = = ~
] B”(xl—MiZ/MZ)(xz—MjZ/Mz)

(D18) Sj=(ui+uf—k3)2, (D22)
whereM is the total mass and the sum is over propagator'de
massedM; . The diagram containing two photon propagators
and a form factor is then replaced by a summéfdiagrams

of four different types, one containing two photon propaga-

tors, tW? contaaunlng on? .phototn and one rtr:asswe bOSOWe will use u to refer to the propagator mass when the
propagator, and one containing two massive Doson propaddisinction between vector bosons and leptons is irrelevant.

kiizoa kij:ki+ki+1+"'+k]’71, for |<J
(D23

tors, In the case at hand=5 so the second term in E¢D21) is

f(Xq,X5) 1 +E 1 O(e), and since the 5-point function iD=6—2¢ dimen-

A al —— : e S L ;
XXz x4 N\ X x— M2IM2) sions is finite in the limite—0, the scalar 5-point function

can be written as a sum of five scalar 4-point functions
1

+—

Xo(X1— MZIM?)

180+ 0O(e). (D24)

1 5
lso=—5 2, (]El s;!

i=1

1 . . , : .
) VN (a) The 4-point functionTwo of the five 4-point functions

X1 = M{IM) (2= M{IM?) contain IR divergences due to the presence of the 3-point

(D19) functions where both of the vector boson propagators have

been removed. Therefore, there are two distinct 4-point func-

The general form of Eq.D17) permits the evaluation of all tions that we will need. The first has one zero mass propa-

four of these contributions. To use a specific model, the pagator

+2 Bij
ij (
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lao(Ka, Ko Kg, 1, 02, 143)

d®t 1
— ,,2€
H f(zw)D [t2+ie][(t+ky)2— pi+iel[(t+ky+kp)2— ui+iel[(t+ky+kotkg)?—ud+ie]’ (b29)

and the other has two zero mass propagators and two lepton propagators
dPt 1

(2m)P [2+i€e][(t+k)2+ie][(t+ky+ky)2—me+ie][ (t+ky+ky+kg)2—mi+ie]’
(D26)

|Ao(k1.k2,k3,m1,m2)://«2€f

where inl g, (ki+kp)2=m? and (k;+kp+kg)?=m3.
In order to use Eq(D25) for I(l) where all four propagators have non-zero masses, and to extract the divergentl @rt of
andl%), we make use of the following propagator identity:

! @ l1-«
[+ PP p2I(@+p+K1P— 2] [+ PP 2 (a+prak?  [(q+p+KiP—u2l(a+p+ak)? (02D
|
wherea is chosen to be the positive root of the equation ay=(1+ 8pst Ap9)2, az=1-— M%/p§4,
al-lé-(1-au-au=0. (029 ag=1-M2/p2,. (D30)

This identity allows us to write the five 4-point functions as The finite 4-point functior 4, defined in Eq(D25) can be

Y= a1l 4 — @1P23, — P1.Ps, M1, M1, M)+ (1—ay)l 40 expressed in closed form as a sum of 36 dilogarithms. We
will define it in terms of the function
X ((1—a1)P23,Pa—Ps,Ps, My, M1, M5), (D293

1 dz . .
J(A,B)= foﬁ[ln(z— Bxie)—In(A—B=*ie)]

19 =120( = P12,Ps, — Pa.M1,Mz,m,), (D29b)
159= cral s — @3P34, = P2, P2z, My, Mp) + (1= a3)l 4o ( ) ( A—1 )
=Liy| ——=——]| —Liy| m——=——].
X (1= @3)P3s,P1—Ps,P23,M2,my,my),  (D290) ?|A-B=ie ?|A-B=ie

(D31)

1$0= aal 4( @aP12,P3, — P23, My, My)
40 = %4140 ¥4P12:P3: ™ P2a. Mz, My For arbitrary complex argumentsy, and B, the integration

+(1—ag)la(— (1= as)P12,P1,P23, M1, My, My), would also produce additional logarithms with prefactors
which depend on the relative difference between the signs of

(D299 the imaginary parts oA and B [26]; however, ifA is real
1) =14o(—P2,— P1.Ps5,M,M1,M)), (D29¢  these additional terms vanish. In the case at hanaill
always be real and we will only need the dilogarithms. In
where terms of these new functions,
|
ke o = i [J(ﬁ-l- . —e—d+ie J([H— _ —e—d+ie j( nt —d+ie
40\ K1, K2, K, fhyy f2s U3 16729(7" — 0 ) n K m K 1-8' e+k
7~ —d+ie —n" —d+ie j(—r] —d+ie e
+j(l—,8’ Tk +J( 5 e B e J(B+n",z] tie)
77+
—JAB+nTzi—ie)+TB+n 2 +ie)+ A B+ n,zl—ie)+j(1_ﬁ,z;+ie

FE e
_j(‘ +j<_ +J(_T7]_,Z§—is) .
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where g is either root of the equatiog8®+jB+b=0, »~ are the roots of the equation
[eg— jk—Bgk]»?+[eh—ck—dj—2Bdg]»+[ae—cd+ B(ak—dh)]=0, (D33

and y=eg— jk— Bgk. The quantitieg;” are the roots of the following equations:

0=gZ+(h+j+k)z;+(a+b+c+d+e), (D343
0=(b+g+j)z5+(c+e+h+k)z,+(a+d), (D34b)
0=bZ+(c+e)zz+(a+d). (D340

The lower case variables are combinations of the elements of the relexahivatrix S;; defined in Eq(D22),
a=S33+S44—2Sy, =S4,
b=Sy+S33—2S3,  9=S11+ S~ 25y,
C=2(Sp3—S24—S33+S3a), h=2(S13— S14— Spat+Spa), (D3Y)
d=2(S34=S44),  ]=2(S12~ S13— Sp2+ S239),
e=2(S4—Sz4), k=2(S14— Sp4).

The divergent 4-point functiohy, defined in Eq(D26) can also be written in closed from. The divergent part is just the
divergent 3-point function

| _j d“t 1
") 2t (2= AZ+iE][(t— py)2— mE+iE][(t+pg)2—mB+ie]

2
I Zy3t )\23) . P23 . ( 2N\ 23
= —2im|In—=—-27%4+2 Li,| —=—
327r2p§3)\23[ (Zzs_kzs A2 2\ 1+ Sp3t Nog
. 2\ o3 . 14 053—Nog| [ 1+ o3t Np3
+ [R— I —
2 L|2<1_523+)\23 dimin,g In( Phms 5
+In)\23In(T23 +In)\23In TB +§ In T
1— 8531 Np3 14+ 83— N3 1—655—Np3
210 TeS T TES k2 _1n2
+1In 5 I 5 In 5 . (D36)
The full expression is then
, 1 | 2k1‘k3 223_)\23 i ) - ) 1-A
I4O(kl,k2'k3,ml,m2)_k_%(l|R+ 16772)\23k§‘In( k% ) In Zoat Nos +2i7 +L|2 m —L|2 m
T (el BT +In(1—A—ie)[In(1—B—ie)—In(1—C+ie)—IN(A—B—i
— LIy m Iy m n(l- —|e)[n( - —IG)— n(l-— IG)— n(A— —IG)

+|n(A—C+i6)]—|n(—A—iE)[m(—B—iE)—|n(—c+i6)—|n(A—B—i€)+|n(A—C+i€)]] ),
(D37)
where
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It is worthwhile to consider the special case of two-photon propagators, thdt #sM,=0. In that case the 4-point
functions simplify considerably. We will write

d*t 1
(2m)* [P— pui+iel[(t+ky)2— pa+iel[(t+k+kp)2+iel[(t+ky+ky+kg)2+ie]

) v’ fvt-1 fvt-1 v’
L|2 n —LIZ —L|2 n m

v —Iq U+_r1 v —Iy

|Zo(k1,k2,k3,M1,,U~2):f

_L|2

4

L vt—1 g v’ L vi-1 g v-
2\lot—vt—ie 2ot =0 +ie 2\ot—v +ie 2 vo—ry
v -1 v -1 ) - ] -1
—Li,| — —Li,| — —Lig| — =7 | tLig| ——=—
v —Iq v —Iy v —v —le v —v —le
) v ) v —1
—L'2(~—.)+|—|2 —=—— ] (D39
v —Uv *tle v —v *tle
whereA is the discriminant and = are the roots of the quadratic equation
[k(h+k)—dglv?®+[e(h+k)—djJv—bd=0, (D40)
andv™ are the roots of
gv?+(h+j+k)v+b=0, (D41)
and
ri=(—d—e+ie)k, ro=ie/(h+Kk). (D42
Therefore, wherM ;=M,=0, the five 4-point functions are simply
159 =1 35(P23.Pa, — P, My, My), (D433
159 =114(P3.Pa,— Ps,0m,), (D43b
|E§3’=|Ao(—p34,—pz,ng,ml,mz), (D439
150=14o(P12,P3. — P23, Mz, my), (D43d
159 =11(= P2, — P1.Ps5,0my). (D43e

Also, in this casel,, simplifies somewhat becaugedefined in Eq.(D38) becomes one. The first two dilogarithms in the
second line of Eq(D37), along with the entire third line, vanish in this casg, then becomes

oKy Kz K “1 | N | A< P R N p—
ao(Ke K, 3’m1’m2)_k_§ RT 16728 < n 2 n Zoat Nas telm —LUol g7 THel e 015
+i77[ln(—B—ie)—In(—C+ie)—ln(l—B—ie)+In(1—C+ie)]]), (D44)

whereB andC are still given by Eq(D38).

(b) The 3-point functionThere are ten 3-point functions that are needed, all of which are finite except%ﬂe,lm
defined in Eq(D36). The superscripts used in this section denote the two propagators that have been dropped from the original
5-point function to obtain the particular 3-point function. The finite 3-point functions can be generically written as
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|3o(k17k2uU«1uU«2,M3):f

SEET
16m2(c+2bp) v1—v, —i€

1
D45)
(2m)P [t*— pi+iel[(t+ky)?—pitie][(t+kytko)?—pitie] (
v,—1 v
~Li, i—+)+|_|2 !
UV1—Uq —le€ U1~ vl—l—le

-1 -1
V1—Uq tle Uy~ U, —iE€ Uo— vz—le Up—U, tlE
-1 -1
T B B N Y B L(—
Up— Uy tl€ U3~ U3 —l€ U3~ Uz —l€ Uz—Uz tle
. vs—1
—Lig| ——=——1 1. (D46)
Uz—vg tle
|
where thev; are 1$Y=1 g, (D50f)
2a+d+B(c+e) d+ep 145)
- 7 it a— =1 P5.Mmy,M{,M D50
U1 cT2b3 . Uy (1-B)(c+2bp)’ 3ol —P1,P5,M1,M1,M»), ( 9
d+eB 1557 =130(— P2, Ps— P1,0my;,M»), (D50h)
V3= o (D47)
B(c+2bp) 157=13¢(P3.,P4,0M;,M>), (D500)
and thep;" are roots of the three quadratic equations .
I a a (45)—|30( P2,—pP1,0m;,My). (D50j)
_h72 ~
0=bvit(ctejvit(atd+i), (D483 (c) The 2-point functionAnd finally, the general expres-
~ ~ sion for the 2-point function is
O=(atb+c)vs+(d+ejv,+T, (D48b)
~ loo(Kyspen, 122)
O=avs+dus+f, (D480
dPt 1 (051
and g is either root of the equatiobB?+cgB+a=0. The :f Dri2_ 2., - 2 2., -
lowercase letters are again a combination of the relevant ma- (2m) " [ pitie]l(trky) = pytie]
trix Sj e
B i r A7’ ) ") .
a=Sy+S3— 2S5y, C=2(S;— S5~ Soot Sa), " 4y () % +2=(1-v")In(l-v"—ie)
e=2(S;3— S, (D49 —(1-v)In(1-v +ie)—vTIn(—v ' —ie)
b=S,1+S,,—2S;,, d=2(Sy3— , f=Ss. i
111 Spo 12 (Sz3—S39) Ss3 v In(—v +ie) |, (D52)
The ten 3-point functions that we need can then be ex-
pressed as wherev = are roots to the quadratic equation
152)=1 My, M5, My), D50
30(Pa, —Ps,Mz,M5,My) ( a 2+(M1 Mz k)v+,u2 0. (D53)
(24)_ _
sdP3, ~PstPa0mz, M), (BS0B e v divergent term containing cancels when the
2-point functions are combined to form the tensor integrals
(13)_
130" = 130(P23, P4, M1, Mz, M2), (D309 and can therefore be safely ignored. The ten 2-point func-
(25) tions that we require are then
130" =130(— P12,P5,0M1,M>), (D500
15629= 100 —pa,Ma,my),  1550=1,(—py,m;,My),
15657 =130 P23, — Ps+ P4, M1, M, M), (D508 (D543
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(D54b)

|(2]624):|20(p5_p41M11m2)1

1522=120(ps, M1, M),  15%%=1,0(p3,0M;), (D540

PHYSICAL REVIEW D57, 033008 (2003

| (2%45): l20(—P12,0My),
(D54d

| (2%)34): I 20( P23, My, My),

158'9=150( — p2,0my).
(D548

|(2]635):|20(p5_p11m11M2)1
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