
PHYSICAL REVIEW D 67, 033008 ~2003!
Radiative corrections to double Dalitz decays: Effects on invariant mass distributions
and angular correlations
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We review the theory of meson decays to two lepton pairs, including the cases of identical as well as
nonidentical leptons, as well asCP-conserving andCP-violating couplings. A complete lowest-order calcula-
tion of QED radiative corrections to these decays is discussed, and comparisons of predicted rates and kine-
matic distributions between tree-level and one-loop-corrected calculations are presented for bothp0 and K0

decays.
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I. BACKGROUND

Meson decays to two photons should exhibit interest
correlations between the photon polarizations@1#. Although
existing particle detectors cannot measure photon polar
tions directly, it has long been known that the polarizati
correlations can be measured indirectly by studying ang
correlations in the related double Dalitz decays@2# in which
both photons undergo internal conversion to a lepton p
More recently, it has been pointed out@3# that a detailed
study of these correlations can be used to determine the
tive amount of two possible meson-gg couplings~one CP-
conserving and oneCP-violating for mesons that areCP
eigenstates! that can contribute to this process.

Dalitz and double Dalitz decays are also of interest
cause they can be exploited to perform a measurement o
electromagnetic form factor of the decaying meson—tha
how the meson couples to one real and one virtual pho
~Dalitz decay! or two virtual photons~double Dalitz! de-
pends on theq2 values of the photon~s!. An accurate knowl-
edge of this form factor is essential, for example, to calcu
the so-called long-distance contribution to the rare de
KL→m1m2. The short-distance contribution to this proce
mediated by loops involving heavy quarks and massive v
tor bosons, is sensitive to the Cabibbo-Kobayashi-Maska
~CKM! matrix elementVtd , but this contribution cannot be
extracted from the accurate experimental measurement o
partial width unless the long-distance amplitude is precis
known.

The tree-level rates for several double Dalitz proces
have been published in various forms@2–5#. The first experi-
mental observation of a double Dalitz decay was publis
in 1962 @6,7#. A total of 206 examples of the decayp0

→e1e2e1e2 were observed by Samios in a sample of so
800,000 bubble chamber photographs. Based on the
served angular correlations, Samios was able to exclude
possibility that thep0 was a scalar particle~with a CP-
conserving decay! at the 3.3s confidence level. His measure
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ment of the branching ratio for that process remains the o
one published to date.

Experimental observations of the much rarer kaon dou
Dalitz decays began to appear in the 1990s. Several mea
ments have been made of the decayKL→e1e2e1e2

@8–14#, the most recent of which are based on several h
dred observed events. The still rarer double Dalitz mo
KL→e1e2m1m2 is particularly interesting because it is fre
of complications arising when there are two identical lept
pairs in the final state, and because it probes only the k
matic region in which one of the virtual photons hasq2

.4mm
2 . The first example of this decay was reported in 19

@15#. In 2001 the KTeV experiment published a branchi
ratio based on a sample of 43 events@16#; most recently,
KTeV has reported results from a combined sample of 1
events, including the earlier 43@17#.

Further experimental results on bothp0→e1e2e1e2 and
the two kaon decays are expected in the near future from
NA48 and KTeV experiments. As the statistics available
the experimenters increase, it will be necessary to hav
more accurate theoretical description of these decays, in
porating the significant effects of QED radiative correction
These corrections, discussed in this paper, have a signifi
impact on the extraction of both form factors and angu
correlations from high-statistics data.

II. TREE-LEVEL AMPLITUDES

The most generalCPT invariant interaction governing the
transition of a spin-zero meson to two photons is

L5
2 i

4M
@FPemnrs1FS~gmrgns2gmsgnr!#FmnFrsf,

~1!

whereFP andFS are dimensionless form factors for a pse
doscalar and scalar coupling which may be momentum
pendent,Fmn is the electromagnetic field tensor, andf is the
field of a meson of massM. The factor of2 i defines a phase
convention in which the form factors will be real ifCPT
invariance holds and there are no absorptive decay am
tudes. It will be convenient to decompose the couplings i
n-
©2003 The American Physical Society08-1
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real and imaginary parts, and define them~up to an arbitrary
overall phaseC) in terms of a mixing anglez, and a phase
differenced,

FP5gPf P~k1
2 ,k2

2!eiC5g̃ f P~k1
2 ,k2

2!coszeiC, ~2a!

FS5gSf S~k1
2 ,k2

2!eiF5g̃ f S~k1
2 ,k2

2!sinzeideiC, ~2b!

where g̃25gP
2 1gS

2 and d5F2C. f P and f S are functions
of the k2 values of the two virtual photons and are norm
ized such thatf (0,0)51 for both couplings. In principle it is
also possible ford to depend onk1

2 andk2
2.

A. Two-photon decay

The two-photon partial width provides information abo
the coupling constantg̃ along with some constraints on th
mixing anglez and phase differenced. The matrix element
for the decay to two real photons with helicitiesl1 andl2 is

Ml1l2
5

2

M
@FPemnrs1FS~gmrgns2gmsgnr!#k1

mel1
* nk2

rel2
* s ,

~3!

wherekm and em are the momentum and polarization of
photon. The calculation of the two-photon couplings for ph
tons of arbitrary mass is carried out in Appendix B. For re
photons, the kinematic factors in the couplings reduce tl
5z51 andw50, and the momentum-dependent functio
f P and f S reduce to unity. Therefore, one has the followi
two contributions:

M1152Mg̃~sinzeid2 i cosz!, ~4a!

M2252Mg̃~sinzeid1 i cosz!. ~4b!

The partial width is obtained by integrating 1/(2M ) times
the squared matrix element over the available phase sp
The matrix element is a constant, so the integration result
a factor of 1/(16p). The partial widths for the two allowed
helicity states are then

G115
Mg̃2

32p
~122 sinz cosz sind!, ~5a!

G225
Mg̃2

32p
~112 sinz cosz sind!. ~5b!

The decay rates to the two final states will be identica
either the phase difference between the two couplings is
or one of the form factors is zero. In any case, the total r
is equal toGgg5Mg̃2/(16p). An experimental measure o
the two-photon width then gives a value ofg̃:

g̃5A16pGgg /M . ~6!
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B. Application to neutral pion and kaon decays

One can computeg̃ for the p0→gg, KL→gg, and KS
→gg decays using the current experimental values@18# of
the two-photon branching ratios along with the meson li
times and masses, with the results

g̃05~1.7060.06!31023, ~7a!

g̃L5~8.7560.12!310210, ~7b!

g̃S5~1.3660.11!31029. ~7c!

It will be useful to defineCP-even andCP-odd gg states:

u~gg!6&5~ u11&6u22&)/A2. ~8!

The matrix elements forp0→gg are then given by

^~gg!1uTup0&52 iA2Mpg̃0sinz0eiF0, ~9a!

^~gg!2uTup0&52A2Mpg̃0cosz0eiC0. ~9b!

Similar expressions can be given for theK1 and K2 decay
matrix elements with the 0 subscripts changed to 1 or
respectively, andMp replaced byMK . These expression
may be compared to those in Ref.@19# in which CP-violation
observables for theK→gg decays were calculated. In tha
article Sehgal defines

^~gg!1uTuK1&5cee
ire, ~10a!

^~gg!2uTuK1&5 icoeiro, ~10b!

^~gg!1uTuK2&52 idee
ime, ~10c!

^~gg!2uTuK2&5doeimo. ~10d!

In our notation we have

ce5A2MKg̃1sinz1 , ~11a!

co52A2MKg̃1cosz1 , ~11b!

de5A2MKg̃2sinz2 , ~11c!

do52A2MKg̃2cosz2 . ~11d!

The observable phase differences are given byd15re2ro
andd25me2mo .

The phasesd i are observable only ifCP is violated ingg
decays. As Sehgal noted in Ref.@19#, the phased0 in p0

decays should be very close to zero ifCPT is conserved
because the relevant absorptive amplitudes are of ordera2.
In the case of kaon decays, on-shell intermediate states
aspp couple strongly so that the phasesd1 andd2 may be
large even ifCPT is conserved.
8-2
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C. Four-lepton decay

While the total two-photon decay rate provides inform
tion about the constant part of the form factors, the fo
lepton rate can be utilized to probe both the momentum
pendence of the form factors and the mixing of t
couplings. The decay to four leptons may contain either t
pairs of identical particles~e.g.,KL→e1e2e1e2) or pairs of
non-identical particles~e.g., KL→e1e2m1m2). The tree-
level Feynman diagram for the decay is depicted in Fig. 1
the final state does contain identical particles, then ther
also an exchange diagram, as shown in Fig. 2. The ma
element is then the sum of the two diagramsM5M1
1M2 and its square is uMu25uM1u21uM2u2

12 Re(M1* M2). The analysis presented in the rest of th
section applies only to the direct contribution to the dou
Dalitz process. Appendix C gives an explicit expression
the interference term.

The matrix element for the direct contribution to th
double Dalitz process can be written as

M15Hmnrsk1
mPnaGak2

rPsbGb , ~12!

whereH is a two-photon coupling given by Eq.~B2!, k is a
photon momentum,P is the propagator for a photon of mo
mentumk

Pmn~k!5
i

k2 S (
l

el*
mel

n2 k̂mk̂nD , ~13!

FIG. 1. Double Dalitz tree-level diagram.

FIG. 2. Double Dalitz exchange diagram.
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andG is the fermion current for an electron of momentumq
and spinr and positron of momentump and spins

Gm~q,p;r ,s!52 ieūr~q!gmvs~p!. ~14!

The sum in the propagator extends over the three heli
states and the term proportional tokmkn vanishes when con
tracted with the current. The matrix element can then be c
as

M15 (
l1l2

Hl1l2
Ll1

Ll2
, ~15!

whereH is one of the two-photon couplings given in Eq
~B4!,~B5!. The quantityL contains all the lepton information
and is equal toLl5 i el

mGm /k2.
The squared matrix element, summed over final state

licities can be expressed in terms of the five phase sp
variablesx12, x34, y12, y34, andf ~defined in Appendix A!.
Focusing on thef dependence, the squared amplitude is

( uM1u25
28p2a2g̃2

M2w4
~A sin2f1B cos2f1C sinf cosf

1D sinf1E cosf1F !, ~16!

where

A5w2$ f P
2cos2zl2@11~12l12

2 1y12
2 !~12l34

2 1y34
2 !#

1 f S
2sin2zz2@22l12

2 2l34
2 1y12

2 1y34
2 #%, ~17a!

B5w2$ f S
2sin2zz2@11~12l12

2 1y12
2 !~12l34

2 1y34
2 !#

1 f P
2cos2zl2@22l12

2 2l34
2 1y12

2 1y34
2 #%, ~17b!

C52 f Pf Ssinz cosz cosdlzw2~l12
2 2y12

2 !~l34
2 2y34

2 !, ~17c!

D52 f Pf Ssinz cosz cosdlw3y1y2A~l12
2 2y12

2 !~l34
2 2y34

2 !,

~17d!

E52 f S
2sin2zzw3y12y34A~l12

2 2y12
2 !~l34

2 2y34
2 !, ~17e!

F5 f S
2sin2zw4~12y12

2 !~12y34
2 !, ~17f!

where the kinematic variablesw, z, and l are defined in
Appendix A. TermsA andB arise from the diagonal pieces o
the transverse part of the pseudoscalar and scalar coup
while termF is due to the diagonal piece of the longitudin
part of the scalar coupling. TermC is the interference be
tween the transverse parts of the pseudoscalar and s
couplings while termsD and E are due to interference be
tween the longitudinal part of the scalar and the transve
parts of the pseudoscalar and scalar couplings, respectiv

The partial width is obtained by integrating 1/(2M ) times
the square of the matrix element over the eight dimensio
phase space~given in Appendix A!. The integrals overyi j
extend from2l i j to 1l i j and can be done analytically. Th
differential partial width, normalized to the two-photo
width and integrated overy12 andy34, is
8-3
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TABLE I. Results of numerical integrations overx12 andx34 assumingf P5 f S51.

Integral KL→eemm KL→mmmm KL→eeee p0→eeee

I 1 0.10627 2.97731026 14.146 7.2287
I 2 0.11147 1.14931025 14.201 7.2838
I 3 0.21713 1.12031025 28.343 14.509
I 4 0.74203 5.49931024 27.725 15.600
I 5 0.76948 1.59531023 27.809 15.684
I 6 0.01503 5.24631024 0.0556 0.0555
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Ggg

dG1

df
5

Sa2

3p3
@ I 1cos2zsin2f1I 2sin2z cos2f

1I 3sinz cosz cosd sinf cosf

1I 4cos2z1~ I 51I 6!sin2z#, ~18!

whereS is a symmetry factor which is 1/4 for modes wi
identical particles and 1 otherwise. TheI i factors represen
the integrals overx12 andx34 given below. The factorsI 1 and
I 4 correspond to the pseudoscalar coupling,I 2 andI 5 are the
analogous terms for the scalar coupling,I 6 is the additional
longitudinal term in the scalar coupling, andI 3 is the inter-
ference term,

I 15
2

3E E dx12dx34 f P
2
l12

3 l34
3 l3

w2
, ~19a!

I 25
2

3E E dx12dx34 f S
2
l12

3 l34
3 lz2

w2
, ~19b!

I 35
4

3E E dx12dx34 f Pf S

l12
3 l34

3 l2z

w2
, ~19c!

I 45E E dx12dx34 f P
2l12l34l

3

w2
~32l12

2 2l34
2 !, ~19d!

I 55E E dx12dx34 f S
2l12l34lz2

w2
~32l12

2 2l34
2 !, ~19e!

I 65
1

6E E dx12dx34 f S
2l12l34l~32l12

2 !~32l34
2 !. ~19f!

The double integral is performed by first integrating overx34

from x34
0 to (12Ax12)

2 and then overx12 from x12
0 to (1

2Ax34
0 )2, wherexi j

0 5(mi1mj )
2/M2. In order to obtain val-

ues for these integrals,f P and f S must first be specified an
then the integrals can be done numerically. Table I sum
rizes the values for the different double Dalitz modes ass
ing that f P5 f S51.

The numerical value ofI 51I 6 was found to be severa
orders of magnitude larger in Ref.@3#. Extracting I 6 from
that result yields a value of 3578.0, compared with our va
of 0.01503. This discrepancy has been traced to the us
03300
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Ref. @3# of a scalar couplinggmrgns , rather than the cor-
rectly antisymmetrized tensorgmrgns2gmsgnr . One conse-
quence of the much smaller value we find forI 6 is that the
total width for the double Dalitz decay is almost complete
insensitive to the mix of scalar and pseudoscalar coupli
~except for theKL→m1m2m1m2 decay!, in contradistinc-
tion to the conclusion of Ref.@3# but in agreement with the
comments near the end of Ref.@2#.

The differential rate can also be expressed in a comp
form, suitable for experimental fits to thef distribution, in-
volving a constant term, aCP-conserving cos 2f term, and a
CP-violating sin 2f term

1

Ggg

dG1

df
5

a2

3p3
R~11k1cos 2f1k2sin 2f!, ~20!

where

R5S@~ I 1/21I 4!cos2z1~ I 2/21I 51I 6!sin2z#, ~21a!

k15S~ I 2sin2z2I 1cos2z!/~2R!, ~21b!

k25SI 3sinz cosz cosd/~2R!. ~21c!

The values ofR andk1 at z50 andz5p/2, along with the
maximum value ofk2 and the anglez0 at which it takes on
that value, are listed in Table II. As expected, for a pu
pseudoscalar decay, the amplitude of the cos 2f term will be
negative while the amplitude of the sin 2f vanishes. For a
pure scalar decay, the amplitude of the cos 2f term is nearly
the same magnitude as in the pseudoscalar decay but
tive, and the amplitude of sin 2f again vanishes. Dependin
on the mode, the amplitude for theCP-violating sin 2f term
is maximal for values of the mixing angle betweenp/8 and
p/4.

Alternatively, we could have integrated overf beforex12
andx34, in which case we would have

1

Ggg

d2G1

dx12dx34
5

2Sa2

9p2

l12l34l

w2
~32l12

2 !~32l34
2 !

3@ f P
2cos2zl21 f S

2sin2z~l213w2/2!#, ~22!

where we have usedz25l21w2. The interference term in-
tegrates to zero and what remains clearly shows the k
matic differences between the contributions of the two c
plings.
8-4
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TABLE II. Coefficients off dependencies for various values of the mixing angle (d50).

KL→eemm KL→mmmm KL→eeee p0→eeee

R(0) 0.7952 1.37931024 8.6995 4.8037
R(p/2) 0.8402 5.31331024 8.7412 4.8453
k1(0) 20.0668 20.0027 20.2033 20.1881
k1(p/2) 10.0663 10.0027 10.2031 10.1879
z0 44.32° 26.98° 44.94° 44.89°
k2(z0) 10.0664 10.0026 10.2031 10.1880
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Going back to Eq.~20!, the final integral overf from 0 to
2p can be performed to get the direct contribution to t
four-lepton decay rate relative to the two-photon rate

G1

Ggg
5

2a2

3p2
R. ~23!

The total tree-level rate can now be computed for ar
trary form factors for modes without identical particles in t
final state. For the other modes, there is the interference
tween the direct and exchange graphs that must be inclu
The decay rate has the form

G5G11G21G12, ~24!

where, for modes without identical particlesG25G1250,
and for modes with identical particlesG25G1. The expres-
sion given in Appendix C for the interference term could
principle be integrated numerically. We choose instead to
a Monte Carlo~MC! simulation to integrate the rate an
make histograms of the relevant phase space variables.
decay rates for the various modes, broken into diagonal
interference terms, are listed in Table III.

Reference@5# included a similar table of values, some
which are in disagreement with our results. The most sign
cant discrepancy involves the size of the interference t
for the decaysKL→e1e2e1e2 and p0→e1e2e1e2. We
find that the interference inKL→e1e2e1e2 is roughly 9
times smaller than Ref.@5# reports, and that the interferenc
in p0→e1e2e1e2 is about 4 times smaller. We also diffe
in the total rate forKL→e1e2m1m2, but the factor of 2
difference is likely due to a typographical error in the pre
ous publication.

The assumption that the form factor is flat contradi
current experimental findings. The two models that ha
been used to parametrize the kaon form factor are
Bergström-Masso´-Singer ~BMS! model @20# and the
D’Ambrosio-Isidori-Portole´s ~DIP! model @21#. The BMS
03300
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model was originally proposed to describe the coupling
the single Dalitz decayKL→e1e2g and was therefore writ-
ten as a function of onek2 only

f ~x,0!5
1

12r rx
1

CaK*

12r K* x
F4

3
2

1

12r rx

2
1

9 S 1

12r vx
1

2

12r fxD G . ~25!

The quantitiesr i5M2/Mi
2 for Mi equal to ther, K* , v, or

f meson masses. To apply this model to the double Da
decay, it is assumed that the coupling factors so t
f (x1 ,x2)5 f (x1,0)• f (x2,0). In this paper we will use a sim
plified form of the DIP form factor, which involves only th
r meson and two parameters,

f ~x1 ,x2!511aDIPS x1

x12M r
2/M2

1
x2

x22M r
2/M2D

1bDIP

x1x2

~x12M r
2/M2!~x22M r

2/M2!
. ~26!

As will be seen in Appendix D, the BMS model can b
expressed as a generalized DIP model involving ther, v,
andf vector mesons.

Experimentally, the form factor has traditionally been li
earized in the case of the pion with just a slope param
measured, while for the kaon, the BMS model has been u
and values ofaK* quoted. The conversion to the DIP param
eters is easily done, using the world average@18# for the
kaon we will use aDIP521.5 and for the pion,aDIP
521.0. There is as yet no experimental sensitivity tobDIP
and so we will usebDIP50. The effect of using the DIP
model with these values ofa is that thep0→e1e2e1e2

rate increases by less than 0.4%, theKL→e1e2e1e2 rate
increases by 6.5%, theKL→e1e2m1m2 rate increases by
TABLE III. The decay rate for pseudoscalar couplings (z50) assumingf P5 f S51.

Mode G112 /Ggg G12/Ggg G/Ggg

KL→eemm 2.85931026 0 2.85931026

KL→mmmm 9.914310210 20.512310210 9.402310210

KL→eeee 6.25631025 20.03631025 6.22031025

p0→eeee 3.45631025 20.03631025 3.42031025
8-5
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56%, and theKL→m1m2m1m2 rate increases by 68%. It i
clear that the assumption of a flat form factor is complet
invalid for modes containing muons.

III. HIGHER ORDER PROCESSES

The tree-level double Dalitz process isO(a2) since it
contains two electromagnetic vertices. Higher order con
butions to the double Dalitz rate contain one or more inter
loops. There are three types of graphs that contribute
O(e4): the vacuum polarization, the vertex correction, a
the 5-point diagram. A representative diagram from each
these processes is displayed in Figs. 3, 4, and 5, respect
There are two graphs for both the vacuum polarization
the vertex correction, one for each pair, plus four graphs
the 5-point function. If there are identical particles in t
final state, there are exchange diagrams and the numb
graphs doubles. The interference between the tree-level
gram and the one-loop diagrams isO(a3) and therefore con-
tributes to the first order radiative correction to the dou
Dalitz rate.

Both the vertex correction and the 5-point graph cont
IR divergences, that is, divergences in the limit that the
changed photon energy goes to zero. In order to handle
singular behavior, one must also consider the radia
double Dalitz decayX→ l 1

1l 1
2l 2

1l 2
2g, in which one of the

leptons internally radiates a photon. There are two contri
tions to this process, shown in Figs. 6 and 7. The radia
process diverges in the opposite manner from the one-
graphs making the combined decay rate finite.

FIG. 3. Vacuum polarization diagram.

FIG. 4. Vertex correction diagram.
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The combined process will be indicated byX
→ l 1

1l 1
2l 2

1l 2
2(g), where the radiated photon may or may n

be detectable. The distinction between the non-radiative
radiative decays is an experimental issue and ultimately
lated to the hardware. We will use the energy of the radia
photon in the c.m. frame to differentiate between events w
a hard photon,Eg.Ecut, and events without,Eg,Ecut. The
cutoff is chosen such that photons with energies below
cutoff can have no significant effect on the 4-lepton acc
tance. The rate for radiative events with soft photons will
added to the rate for non-radiative decays. This contribut
is alsoO(a3) and therefore must be considered along w
the one-loop corrections.

The double Dalitz differential rate to second order c
therefore be expressed as

d5G rad5d5G tree~11dbrem1dvirt!, ~27!

wheredbrem is the bremsstrahlung contribution due to rad
tive decays with photons below the photon energy cutoff a
dvirt is the virtual correction due to the interference betwe
the tree-level and one-loop diagrams. The virtual correct
can be further decomposed into the contributions from
three one-loop diagrams

dvirt5dvp1dvc1d5p , ~28!

where dvp is the correction from the vacuum polarizatio
diagrams,dvc is the correction from the vertex correctio
diagrams, andd5p is the correction from the 5-point dia
grams.

FIG. 5. 5-point diagram.

FIG. 6. Radiative diagram 1.
8-6



ed
n
a
xis
f o
e.
ar
ch
an
e

to

-
o
fo

lls
th
a
ig

the
n

ond
hat
e
.

ri-
if-
ly

m-
ing
to
he
p-
ix,

ll
ed

a
ted

is-
uch
n-

ically
ate

y
cay

ft
o-

th

RADIATIVE CORRECTIONS TO DOUBLE DALITZ . . . PHYSICAL REVIEW D 67, 033008 ~2003!
IV. RADIATIVE DECAYS

The radiative double Dalitz decay will only be consider
at tree level. It is straightforward but tedious to write dow
the expression for the rate. The two contributions to the r
are shown in Figs. 6 and 7. For each process there e
three additional diagrams where the photon is radiated of
the other leptons, plus four exchange graphs if applicabl

Our results for the radiative decay rates use a Monte C
simulation in which we calculate the amplitudes for ea
helicity state using explicit representations of the spinors
polarization vector. A photon energy cutoff of 400 keV in th
c.m. frame is used for kaon decays while for pions, a cu
of 100 keV is used. It is useful to define the quantityx4e

5m4e
2 /M2, where m4e is the reconstructed four-lepton in

variant mass, to distinguish between the radiative and n
radiative processes. In terms of this variable, the cutoff
both kaon and pion decays is atx4e

cut'0.9985. Figure 8 shows
the distribution of x4e for KL→e1e2e1e2 and KL
→e1e2e1e2g events. The large peak atx4e51 is due to
non-radiative events. The part of the distribution which fa
away from the peak at 1 is due to radiated photons from
process of Fig. 6. The rising part of the distribution ne
x4e50 is due to hard Dalitz photons from the process of F
7. Lost due to bin size is the low energy cutoff atEg

5400 keV and the high energy cutoff atx4e516me
2/M2.

FIG. 7. Radiative diagram 2.

FIG. 8. x4e for KL→e1e2e1e2 andKL→e1e2e1e2g events.
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Table IV shows the tree-level radiative decay rates for
four modes, with no form factor. The rates in the first colum
include photons of all energies, while the rates in the sec
column include only photons with energies large enough t
x4e,0.95. This value ofx4e is chosen to closely match th
resolution on the four-lepton mass in current experiments

V. RADIATIVE CORRECTIONS

The next four sections will describe the different cont
butions to the radiative corrections to the double Dalitz d
ferential rate. The first three contributions are relative
straightforward to determine and we will therefore only su
marize the relevant formulas. The last contribution, com
from the 5-point diagram, is considerably more difficult
calculate. In particular, numerical instabilities plague t
evaluation of the tensor 5-point integrals involving light le
tons. The fourth section, along with much of the Append
will outline our procedure for obtaining this~usually! small
but non-negligible contribution. We will present the fu
5-point diagram corrections to the differential rate in clos
form. In Ref. @22#, van Neerven and Vermaseren reported
numerical integral of the radiative corrections to the rela
two-photon processe1e2→e1e2p0 but did not present the
corrections to the differential cross section. As we will d
cuss in Sec. VI, the effects of radiative corrections are m
more important compared to form factor effects when co
sidering double Dalitz decays, because theq2 values in the
accessible phase space are much smaller than those typ
probed in two-photon resonance formation with final st
lepton tags.

A. Bremsstrahlung correction

The contribution to the double Dalitz differential deca
rate due to the soft bremsstrahlung part of the radiative de
is defined as

dbrem~x12,x34,y12,y34,f!5
d5Gbrem/d5F

d5G tree/d
5F

, ~29!

whered5Gbrem/d5F is the differential decay rate for the so
part of the radiative decay integrated over the photon m
mentum with the constraintEg,Ecut. The full differential
rate is

TABLE IV. Tree-level rates for radiative decays including bo
all radiation and only hard radiation such thatx4e,0.95, with f P

5 f S51.

Mode G4lg(x4e,x4e
cut)/Ggg G4lg(x4e,0.95)/Ggg

p0→eeeeg 6.614(1)31026 2.055(1)31026

KL→eeeeg 1.540(1)31025 0.504(1)31025

KL→eemmg 3.279(3)31027 0.873(1)31027

KL→mmmmg 5.634(3)310212 0.346(1)310212
8-7
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d8Gbrem5
1

2M ( uMbremu2d5F
d3k

~2p!32Ek

, ~30!

where d5F is the four-body phase space differential a
Mbrem is the matrix element for the soft bremsstrahlung co
tribution. If the photon energy cutoff is taken small enoug
the matrix element can be approximated as

Mbrem5eS p2•e

p2•k
1

p4•e

p4•k
2

p1•e

p1•k
2

p3•e

p3•kDMtree, ~31!

where e and k are the radiated photon’s polarization a
momentum 4-vectors, respectively. There is one contribu
from each of the radiative diagrams represented by Fig
The other type of radiative process~Fig. 7! does not contrib-
ute in this limit. If the cutoff is small enough, the lepto
momenta can be held fixed while the photon momentum
integrated out, with the result

dbrem54paE
0

Ecut d3k

~2p!32Ek

B, ~32!

where

B5(
e

US p2
m

p2•k
1

p4
m

p4•k
2

p1
m

p1•k
2

p3
m

p3•kD emU2

5
2p1•p2

~p1•k!~p2•k!
1

2p3•p4

~p3•k!~p4•k!
1

2p1•p4

~p1•k!~p4•k!

1
2p2•p3

~p2•k!~p3•k!
2

2p2•p4

~p2•k!~p4•k!

2
2p1•p3

~p1•k!~p3•k!
2

p1
2

~p1•k!2
2

p2
2

~p2•k!2

2
p3

2

~p3•k!2
2

p4
2

~p4•k!2
. ~33!

The correction can be expressed in terms of a sum of
integrals which can be done in closed form

dbrem54pa@2I ~p1 ,p2!12I ~p3 ,p4!12I ~p1 ,p4!

12I ~p2 ,p3!22I ~p2 ,p4!22I ~p1 ,p3!2I ~p1 ,p1!

2I ~p2 ,p2!2I ~p3 ,p3!2I ~p4 ,p4!#, ~34!

where

I ~ki ,kj !5E
0

Ecut d3k

~2p!32Ek

ki•kj

~ki•k!~kj•k!
. ~35!

Each integral yields both a finite part and an IR diverg
part which goes as ln(2Ecut/L) whereL is the photon mass
which will be taken to zero after the divergent terms a
canceled against each other. The first two divergent te
will be seen to cancel the divergent parts of the vertex c
03300
-
,

n
6.

is

n

t

s
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rection, the next four cancel divergences in the 5-point fu
tions, and the last four cancel the electron self-energy div
gences ~which are included in the renormalized verte
function!. For kiÞkj

I ~ki ,kj !5
zi j

8p2l i j
H lnS zi j 1l i j

zi j 2l i j
D lnS 2Ecut

L D1
1

4
ln2S V i

2

V i
1D

2
1

4
ln2S V j

2

V j
1D 1Li2S 12

Y i j V i
1

xi j l i j
D

1Li2S 12
Y i j V i

2

xi j l i j
D 2Li2S 12

Y i j V j
1

xi j l i j
D

2Li2S 12
Y i j V j

2

xi j l i j
D J , ~36!

where

V i
65~11d i , jkl6l i , jkl !/2, ~37a!

V j
65~11d j ,ikl6l j ,ikl !/~2s i j !, ~37b!

Y i j 5s i j ~11d i , jkl !2~11d j ,ikl !, ~37c!

s i j 5~zi j 1l i j !/~12zi j 1d i j !, ~37d!

and the variousd, z, andl symbols are defined in Appendi
A. For ki5kj

I ~ki ,ki !5
1

4p2 F lnS 2Ecut

L D2
1

2l i i
lnS 11l i i

12l i i
D G , ~38!

wherel i i is again defined in Appendix A.
It will be enlightening to extract the IR divergent part o

the soft bremsstrahlung contribution and express it in a w
that will make the cancellation obvious. Collecting term
one has

dbrem
IR 5 ln LH 2a

p F12
z12

2l12
lnS z121l12

z122l12
D G

1
2a

p F12
z34

2l34
lnS z341l34

z342l34
D G1

a

p

z13

l13

3 lnS z131l13

z132l13
D2

a

p

z14

l14
lnS z141l14

z142l14
D2

a

p

z23

l23

3 lnS z231l23

z232l23
D1

a

p

z24

l24
lnS z241l24

z242l24
D J . ~39!

As will be seen shortly, the first two terms cancel the div
gent part of the vertex correction while the last four can
the divergent part of the 5-point correction.
8-8
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B. Virtual correction

As mentioned above, the virtual correction arises from
interference between the tree-level and one-loop diagram
the full matrix element is

M5Mtree1Mvirt1O~e6!, ~40!

then the squared matrix element toO(a3) is

uMradu25uMtreeu2F11
2 Re~Mtree* Mvirt!

uMtreeu2
G ~41!

5uMtreeu2~11dvirt!. ~42!

This definesdvirt ,

dvirt5
2 Re~Mtree* Mvirt!

uMtreeu2
. ~43!

Therefore, we must compute the matrix element for each
the one-loop contributions.

1. Vacuum polarization

The vacuum polarization process involves higher or
corrections to the photon propagator and is a function of
square of the photon momentum, or thex of that pair. There
is one contribution for each photon propagator. One con
bution is shown in Fig. 3. The vacuum polarization diagra
is IR finite but UV divergent. The divergence can be hand
by renormalization of the photon wave function. The vacu
polarization matrix element can be written as the tree-le
matrix element times the renormalized polarization insert

Mvp5Mtree(
l

P l~xi j !, ~44!

where the sum is over lepton species in the loop and
renormalized polarization insertion is

P l~xi j !5
2a

p E
0

1

dzz~12z!ln@12z~12z!xi j M
2/ml

22 i e#,

~45!

whereml is the mass of the lepton in the loop. The integ
tion depends on the size ofxi j compared toml

2/M2, such that

P l~xi j !52
a

3p H 8

3
2b i j

2 1
b i j

2
~32b i j

2 !F lnS 12b i j

11b i j
D1 ipG J ,

~46!

for xi j .4ml
2/M2, while

P l~xi j !52
a

3p H 8

3
1r i j

2 2
r i j

2
~31r i j

2 !@p22 tan21r i j #J ,

~47!

for xi j ,4ml
2/M2. The functionsr andb are related tol as

defined in Appendix A but are functions of the loop mass
03300
e
If

of

r
e
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l
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b i j 5A124ml
2/~xi j M

2!, ~48a!

r i j 5A4ml
2/~xi j M

2!21. ~48b!

The correction then is

dvp52(
g

F(
l g

ReP l g
~xi j !G , ~49!

where the first sum is over the number of vacuum polari
tion graphs and the second sum is over the possible le
species in the loop.

2. Vertex function

The vertex function involves higher order corrections
the QED vertex and is a function of the momenta of the p
One contribution is shown in Fig. 4. The vertex correcti
contains both UV and IR divergences. We will also inclu
the self-energy correction to the lepton lines which also
UV and IR divergent. Both UV divergences will be handle
simultaneously by renormalization of the electromagne
coupling and the lepton wave function while the IR diverge
part will cancel the IR divergence in the soft bremsstrahlu
correction. The matrix element corresponding to one of
diagrams is

Mvc5MtreeV~xi j ,yi j !, ~50!

where

V~xi j ,yi j !5F1~xi j !1F2~xi j !F 2

22l i j
2 1yi j

2 G . ~51!

F1 andF2 are vertex form factors defined by

F1~xi j !5
a

p S H 12
zi j

2l i j
F lnS zi j 1l i j

zi j 2l i j
D22ipG J ln

mi

L
21

1
112l i j

2

8l i j
F lnS zi j 1l i j

zi j 2l i j
D22ipG

2
zi j

l i j
FLi2S 2l i j

11l i j
D1

1

16
ln2S zi j 1l i j

zi j 2l i j
D2

p2

2 G
1

ip

2

zi j

l i j
lnS 2l i j

2

12zi j
D D , ~52!

F2~xi j !52
a

p

12zi j

4l i j
F lnS zi j 1l i j

zi j 2l i j
D22ipG , ~53!

wherezi j and l i j are defined in Appendix A andL is the
photon mass.

The correction is then just

dvc52(
g

ReV~xi j ,yi j !, ~54!

where the sum overg is over the number of vertex functio
graphs.
8-9
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The IR divergent part is contained withinF1. Twice the
real part of the lnL term is exactly what is necessary
cancel the first two divergent terms~one for each vertex cor
rection graph! in the soft bremsstrahlung contribution. Th
final four divergent soft bremsstrahlung terms will have
wait for the last piece of the virtual correction, the 5-po
diagram.

3. 5-point diagram

There are four distinct 5-point diagrams that contribute
the direct process, plus four more if there is an excha
process. The diagram shown in Fig. 5 contains a photon
changed betweenl 1

2 and l 2
1 . The matrix element for tha

graph is

M5p
1 5E d4t

~2p!4

2

M
@FPemnrs1FS~gmrgns2gmsgnr!#

3~p121t !m~p342t !rF 2 igdh

t22L21 i e
G

3F 2 igan

~p121t !22L21 i e
GF 2 igbs

~p342t !22L21 i e
G

3ū~p2!~2 iegd!S i

t”1p” 22m11 i e
D

3~2 iega!v~p1!ū~p4!~2 iegb!S i

t”2p” 32m21 i e
D

3~2 iegh!v~p3!, ~55!

wheret is the loop momentum andp1 , p2 , p3, andp4 are
the momenta ofl 1

1 , l 1
2 , l 2

1 , and l 2
2 , respectively. This can

be reexpressed as

M5p
1 52

2ie4

M
„FPemrns$2p12

m p34
r @ I 50A

ns1I 51
a Ba

ns

1I 52
abCab

ns #1p5
m@ I 51

r Ans1I 52
raBa

ns1I 53
rabCab

ns #%

1FS$@~p12•p34!g
mn2p5

mp5
n#@ I 50Amn1I 51

a Bmna

1I 52
abCmnab#1~p342p12!rgmn@ I 51

r Amn1I 52
raBa

mn

1I 53
rabCab

mn#2gmn@~ I 52!r
rAmn1~ I 53!ar

r Bamn

1~ I 54!abr
r Cabmn#%…, ~56!

whereA, B, andC are combinations of spinors and gamm
matrices andp55p11p21p31p4. The factors ofI i are in-
tegrals over the loop momentum. There are three basic i
gral forms from which all the others may be obtained. T
notation for the integrals has the following meaning: the fi
digit in the subscript refers to the number of denominat
and the second refers the number of powers of the loop
mentum appearing in the integral. The 5-point integrals
defined in Appendix D as a function of four 4-vector arg
mentsk1 ,k2 ,k3 ,k4.
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For the diagram shown in Fig. 5, the arguments of
5-point integral functions should take on the values

k152p2 , k252p1 , ~57a!

k35p5 , k452p4 , ~57b!

so we can write

I 505I 50~2p2 ,2p1 ,p5 ,2p4! ~58!

for the scalar integral, and analogous expressions for
higher-rank tensor integrals. The spinor terms for this d
gram are

Amn524~p2•p3!ū~p2!gmv~p1!ū~p4!gnv~p3!, ~59a!

Bmnr52@ ū~p2!gnv~p1!ū~p4!grgmp” 2v~p3!

2ū~p2!p” 3gmgnv~p1!ū~p4!grv~p3!#, ~59b!

Cmnrs5ū~p2!ghgmgrv~p1!ū~p4!gsgnghv~p3!. ~59c!

The spinor terms for the diagram containing a photon
changed betweenl 1

2 and l 2
2 are

Amn54~p2•p4!ū~p2!gmv~p1!ū~p4!gnv~p3!, ~60a!

Bmnr52@ ū~p2!p” 4gmgnv~p1!ū~p4!grv~p3!

2ū~p2!gnv~p1!ū~p4!p” 2gmgrv~p3!#, ~60b!

Cmnrs52ū~p2!ghgmgrv~p1!ū~p4!ghgngsv~p3!,
~60c!

and the scalar integral for this diagram is

I 505I 50~2p2 ,2p1 ,p5 ,2p3!. ~61!

The spinor terms for the diagram containing a photon
changed betweenl 1

1 and l 2
1 are

Amn54~p1•p3!ū~p2!gmv~p1!ū~p4!gnv~p3!, ~62a!

Bmnr52@ ū~p2!gngmp” 3v~p1!ū~p4!grv~p3!

2ū~p2!gnv~p1!ū~p4!grgmp” 1v~p3!#, ~62b!

Cmnrs52ū~p2!grgmghv~p1!ū~p4!gsgnghv~p3!,
~62c!

and the scalar integral for this diagram is

I 505I 50~2p1 ,2p2 ,p5 ,2p4!. ~63!

The spinor terms for the diagram containing a photon
changed betweenl 1

1 and l 2
2 are

Amn524~p1•p4!ū~p2!gmv~p1!ū~p4!gnv~p3!, ~64a!
8-10
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Bmnr52@ ū~p2!gnv~p1!ū~p4!p” 1gmgrv~p3!

2ū~p2!gngmp” 4v~p1!ū~p4!grv~p3!#, ~64b!

Cmnrs5ū~p2!grgmghv~p1!ū~p4!ghgngsv~p3!, ~64c!

and the scalar integral for this diagram is

I 505I 50~2p1 ,2p2 ,p5 ,2p3!. ~65!

The tensorsA, B, andC are computed for a given helicit
combination and combined with the integrals to yield t
matrix element for that helicity state. The correction th
involves a sum over the sixteen possible final states

d5p5

(
l51

16

2 Re@Mtree* ~l!M5p~l!#

(
l51

16

uMtree~l!u2
, ~66!

wherel here refers to the helicity state and

Mtree~l!5(
g

Mtree
g ~l!, ~67!

M5p~l!5(
g

M5p
g ~l!. ~68!

The sums here are over the number of graphs for each
cess.

The IR divergent part of the 5-point correction is mo
easily isolated by looking at the 5-point matrix element
the IR limit. All terms involving tensor integrals vanish lea
ing only theI 50 term. The divergent part ofI 50 is due to the
two divergent box integrals,I 40

(3) andI 40
(4) . The relevant terms

in the scalar 5-point function for Fig. 5, in terms of the d
vergent 3-point function, are

I 50
IR52

1

2
S (

j
S3 j

21

p34
2 2M2

2
1

(
j

S4 j
21

p12
2 2M1

2
D I IR

5I IR /@~p12
2 2M1

2!~p34
2 2M2

2!#. ~69!

Extracting the lnL piece ofI IR , I 50
IR can be written as

I 50
IR5

2 i

16p2l23p23
2 ~p12

2 2M1
2!~p34

2 2M2
2!

3F lnS z231l23

z232l23
D22ipG ln L

m
, ~70!

where m is a kinematic function with dimensions of ma
which is independent ofL. The divergent part of the 5-poin
matrix element, dropping the finite term involvingm, is pro-
portional to the tree-level matrix element
03300
o-

t

M5p
IR5Mtree

a

2p

z23

l23
F lnS z231l23

z232l23
D22ipG ln L. ~71!

The IR divergent part of the 5-point correction coming fro
all four diagrams is

d5p
IR5(

g
2si j

a

p

zi j

l i j
lnS zi j 1l i j

zi j 2l i j
D ln L, ~72!

wheresi j is the product of the sign of the charges ofpi and
pj and the sum is over the four diagrams. Again, it can
seen that this is the necessary form to cancel the remai
four divergent bremsstrahlung terms.

VI. MC SIMULATION RESULTS

The inclusion of the radiative corrections impacts both
differential rate and the total rate. The total correction to
differential p0→e1e2e1e2 rate is shown in Fig. 9. The
average size of the correction factor for the four differe
modes is shown in Table V. The total rate for the combin
4-lepton plus photon process is independent of IR cut
Table VI summarizes the tree-level rate and the rate for
combined, cutoff independent process, divided into the r
including all radiation and the rate including only soft radi
tion (x4e.0.95), all with f P5 f S51. It is the last column
which should most accurately predict the observed n
radiative 4-lepton rate. It is seen that the non-radiative rat
smaller than the tree-level rate for both 4-electron mo
while it is larger for the modes with muons.

The probability of radiation can now be computed as
ratio of the radiative rate to the combined rate. Table VII lis
the probability of radiating a photon (x4e,0.9985) along
with the probability of radiating a hard photon (x4e,0.95)
for each of the four modes. The probability is highest f
KL→e1e2e1e2(g) where thex values can be the smalles
The probabilities forKL→e1e2m1m2(g) are slightly less

FIG. 9. Distribution of the total radiative correction forp0

→eeee events with an IR cutoff ofx4e
cut50.9985, with f P5 f S

51.
8-11
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than half of what they are for the four electron mode, and
KL→m1m2m1m2(g) there is very little radiation.

The effect of the radiative corrections on the different
rate can be observed in the distributions of the five ph
space variables. The statistics in the following plots refl
the amount of CPU time dedicated to each mode. While
calculation of the radiative corrections is CPU intensive, i
actually the generation of the radiative decays that takes
most time.

For the modes with identical leptons, it is useful to ado
a method of pairing the electrons with the positrons in or
to study the dilepton mass distributions. We choose to use
pairing for which the product ofx’s is minimized. It is this
pairing that will contribute the most to the matrix element
general. Therefore,xa and xb are thex’s belonging to this
pairing, with the additional requirement thatxa,xb . In ad-
dition, ya is they variable defined in thea-pair c.m., andyb
is the same quantity in theb-pair c.m. And lastly,fab is the
angle between the planes of thea pair and b pair in the
overall c.m.

The first variable that we will look at isx which is modi-
fied by both the existence of a form factor and the inclus
of the radiative corrections. In all cases we setb50 in the
DIP form factor model. Figures 10 and 11 show the distrib
tion of xa andxb , respectively, forp0→e1e2e1e2 events.
The plot on the left compares the distribution using the tr
level matrix element with no form factor (a50) to that us-
ing the same matrix element but witha521.0. The plot on
the right compares the distribution using the tree-level ma
element with no form factor to that using the radiative
corrected matrix element also with no form factor. We ha
provided a linear fit to the ratio over some reasonable ra
on a scale appropriate for comparing the two effects. For
form factor comparisons, the dependence should be pri
rily linear. This is not the case for the radiative corrections
general. Thex2 per degree of freedom is included as a me
sure of the linearity. It can be seen that the form factor ha
much smaller effect on thex distribution than the radiative
corrections do. This is not too surprising since the range

TABLE V. Average size of the radiative correction to the diffe
ential rate with an IR cutoff ofx4e

cut50.9985 with f P5 f S51.

p0→eeee KL→eeee KL→eemm KL→mmmm

d̄ 20.1948 20.2618 20.0788 10.0805
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accessibleq2 values for thep0 decay is relatively small in
addition to being far from our assumedr pole.

For the kaon modes, we observe that the form factor ha
much larger effect on thex distribution than the radiative
corrections do. Figures 12 and 13 show the distribution ofxa
and xb , respectively, forKL→e1e2e1e2 events. The plot
on the left compares the distribution using the tree-level m
trix element with no form factor (a50) to that using the
same matrix element but witha521.5. The plot on the
right compares the distribution using the tree-level mat
element with no form factor to that using the radiativel
corrected matrix element also with no form factor. The r
off at high x in plot ~c! of Fig. 13 is due to presence of th
exchange diagram in this mode. Figures 14 and 15 show
same distributions forKL→e1e2m1m2 events. Here there
are no pairing ambiguities and we plotxee andxmm . It can be
seen that there is no roll off in plot~c! of Fig. 15, and fur-
thermore, a small quadratic dependence is observable. W
the x of the ee pair is slightly modified by the radiative
corrections, thex of themm pair does not change at all. Thi
is as expected for the massive muons.

Figure 16 shows the distribution ofya and yb for the
tree-level differential rate and the radiatively-corrected d
ferential rate forKL→e1e2e1e2 events. The effect here i
quite small. Sincey is a measure of the energy asymmetry
the lepton pair, it is seen that the radiative corrections ten
make the pairs slightly more asymmetric on average.

The effect on thef distribution is due entirely to the
5-point diagram. Figure 17 shows a comparison of the d
tribution of fab generated with the tree-level matrix eleme
to the same distribution generated with the radiative corr
tions, for KL→m1m2m1m2 events. The enhancement
fab5p and the corresponding depletion atfab5052p can
be understood in terms of Coulomb interaction between
final state particles. The configuration atf50 has all leptons
in a plane with the same sign particles near each other.
effect is only observable in theKL→m1m2m1m2 decay
where the leptons in each pair are usually well separated

VII. CONCLUSIONS

The main conclusion that can be drawn from these dis
butions is that the radiative corrections are extremely imp
tant for extracting a form factor in thep0→e1e2e1e2

mode. For the kaon modes, the form factor has a larger
pact on thex distribution and the modification of the distr
for all
TABLE VI. Summary of tree-level 4-lepton rate and combined radiatively corrected 4-lepton plus photon rate, including the rate
x4e and the rate forx4e.0.95, usingf P5 f S51.

G4l (g) /Ggg

Mode G4l
tree/Ggg all x4e x4e.0.95

p0→eeee 3.421(4)31025 3.536(4)31025 3.331(4)31025

KL→eeee 6.222(5)31025 6.406(4)31025 5.903(4)31025

KL→eemm 2.858(1)31026 2.996(3)31026 2.909(3)31026

KL→mmmm 0.941(1)31029 1.026(1)31029 1.025(1)31029
8-12
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bution due to the radiative corrections is less important. T
only published result for theKL→e1e2e1e2 mode @14#
quotesaDIP521.160.6(stat). Figure 13 shows that at mo
the radiative corrections would change the slope by 0
which, while significant, is smaller than the current expe
mental error. Likewise, for theKL→e1e2m1m2 mode, the
latest result@17# based on the invariant mass shape isaDIP

524.5322.70
11.81. The present experimental error is again larg

than the impact of the radiative corrections on the mass
tribution. As for the extraction of the mixing anglez from
the observedf distribution, the radiative corrections can b
safely neglected at present.

The two publications above quote an integrated rate~nor-
malized to the two-photon rate! of (6.2460.34)31025 for
KL→e1e2e1e2 and (4.5160.42)31026 for KL

→e1e2m1m2, where the errors are purely statistical. The
results are in good agreement with our predictions when b
the radiative corrections and a form factor witha521.5 are
included. ForKL→e1e2e1e2, the two effects offset and
the net result is an increase of just less than 2% over
tree-level rate with no form factor. InKL→e1e2m1m2, the
form factor is the dominant effect.

TABLE VII. Probability of radiation (x4e,0.9985) and prob-
ability of hard radiation (x4e,0.95), defined asP5G4lg /G4l (g) .

Mode P(x4e,0.9985) P(x4e,0.95)

p0→eeee(g) 0.187 0.058
KL→eeee(g) 0.240 0.079
KL→eemm(g) 0.109 0.029
KL→mmmm(g) 0.006 0.0003

FIG. 10. ~a! xa in p0→eeeeevents using the tree-level differ
ential rate witha50 ~dots! and witha521.0 ~histogram!. ~b! xa

in p0→eeeeevents using the tree-level differential rate witha
50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases are shown in~c! and ~d!.
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APPENDIX A: KINEMATICS

The four particle final state can be kinematically d
scribed by considering subsystems containing only two p

FIG. 11. ~a! xb in p0→eeeeevents using the tree-level differ
ential rate witha50 ~dots! and witha521.0 ~histogram!. ~b! xb

in p0→eeeeevents using the tree-level differential rate witha
50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases are shown in~c! and ~d!.

FIG. 12. ~a! xa in KL→eeeeevents using the tree-level differ
ential rate witha50 ~dots! and witha521.5 ~histogram!. ~b! xa

in KL→eeeeevents using the tree-level differential rate witha
50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases is shown in~c! and ~d!.
8-13
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ticles. Consider the system composed of two particles w
momentapi and pj and total momentumpi j 5pi1pj and
mass squaredmi j

2 5pi j
2 . We will define a dimensionless do

product of any two vectorspi andpj as

zi j 52~pi•pj !/pi j
2 512xi2xj , ~A1!

where

xi5pi
2/pi j

2 , xj5pj
2/pi j

2 . ~A2!

FIG. 13. ~a! xb in KL→eeeeevents using the tree-level differ
ential rate witha50 ~dots! and witha521.5 ~histogram!. ~b! xb

in KL→eeeeevents using the tree-level differential rate witha
50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases is shown in~c! and ~d!.

FIG. 14. ~a! xee in KL→eemm events using the tree-level dif
ferential rate witha50 ~dots! and witha521.5 ~histogram!. ~b!
xee in KL→eemm events using the tree-level differential rate wi
a50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases is shown in~c! and ~d!.
03300
hThe energy and momentum of each particle in the tw
particle c.m. frame are

Ei* 5mi j ~11d i j !/2, Ej* 5mi j ~12d i j !/2, ~A3!

p* 5mi j l i j /2, ~A4!

where

d i j 5xi2xj , ~A5!

l i j 5Azi j
2 2wi j

2 , ~A6!

FIG. 15. ~a! xmm in KL→eemm events using the tree-level dif
ferential rate witha50 ~dots! and witha521.5 ~histogram!. ~b!
xmm in KL→eemm events using the tree-level differential rate wi
a50 ~dots! and the corrected rate for events withx4e.0.95, also
with a50 ~histogram!. The ratio of the dots to the histogram i
both cases is shown in~c! and ~d!.

FIG. 16. ~a! ya in KL→eeeeevents using the tree-level differ
ential rate~dots! and the corrected rate for events withx4e.0.95
~histogram!. ~b! yb for the same events. The ratio of the correct
distributions to the tree-level distributions is shown in~c! and ~d!.
8-14
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wi j 52Axixj . ~A7!

Occasionally we will use symbols likezi , jk whose meaning
is interpreted asz(pi ,pj1pk).

Now consider a three-body system composed of mome
pi , pj , andpk . There are two phase space variables nee
to describe the system. The first one will bexi j 5pi j

2 /pi jk
2 .

The other one is defined in theij c.m. frame as the cosine o
the angle between the direction of particlei and particlek,

cosu i j ,k5
2pk•~pi2pj !2pi jk

2 d i j zi j ,k

pi jk
2 l i j l i j ,k

. ~A8!

A more convenient variable that will be used in place
cosuij ,k is

yi j 5l i j cosu i j ,k , ~A9!

wherek will always refer to the total momentum minus theij
momentum.

Finally, the four-body final state requires five phase sp
variables to uniquely describe it. We will use thex and y
values for the two lepton pairs plus the angle between
normals of the planes defined by each pair in the overall c
frame. The first four variables are

x125p12
2 /M2, ~A10!

x345p34
2 /M2, ~A11!

y125
2p34•~p12p2!

M2l
, ~A12!

FIG. 17. ~a! The distribution offab in KL→mmmm events us-
ing the tree-level differential rate~dots! and the corrected rate fo
events withx4e.0.95 ~histogram!. ~b! The ratio of the corrected
distribution to the tree-level distribution.
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y345
2p12•~p32p4!

M2l
, ~A13!

where the second term in the numerator of they’s vanishes
sinced125d3450. Any use ofz, w, or l without subscripts
will refer to the functions ofx12 and x34, so l5l12,34 for
instance. The last phase space variable is defined as

f5tan21~sinf/cosf!, ~A14!

where

sinf5
16emnrsp1

mp2
np3

rp4
s

M4lwA~l12
2 2y12

2 !~l34
2 2y34

2 !
, ~A15!

cosf5
M2zy12y3422~p12p2!•~p32p4!

M2wA~l12
2 2y12

2 !~l34
2 2y34

2 !
. ~A16!

The anglef is defined so that atf50 the two pairs lie in a
plane with the like-sign particles adjacent to each other. T
orientation off5p again has both pairs in a plane, but wi
the opposite signed particles adjacent.

The general expression for the phase space integral i

d8F5
1

~2p!8

d3p1d3p2d3p3d3p4

16Ep1
Ep2

Ep3
Ep4

d4~P2p12p22p32p4!.

~A17!

Upon integrating out thed functions, integrating over the
Euler angles, and changing variables to those listed ab
the phase space reduces to

d5F5S M4

214p6
ldx12dx34dy12dy34df, ~A18!

where the factorS is a symmetry factor which is required fo
modes containing identical particles in the final state. T
double Dalitz modes with identical particles contain two se
thus requiring two factors of 1/2. SoS51/4 if the final state
contains identical particles, andS51 otherwise.

When there are identical leptons in the final state,
amplitudes for the exchange diagrams have the same a
braic form as for the non-exchange diagrams except that
kinematic variablesx12, x34, y12, y34, andf are replaced
by x14, x23, y14, y23, andf14,23. These exchange variable
will in general be functions of all five of the non-exchang
variables. As is turns out, we only need explicit represen
tions for x14 andx23. These are given by

x145@12l12
2 x122l34

2 x342l~y122y34!2zy12y34

1wA~l12
2 2y12

2 !~l34
2 2y34

2 !cosf#/4, ~A19!

x235@12l12
2 x122l34

2 x341l~y122y34!2zy12y34

1wA~l12
2 2y12

2 !~l34
2 2y34

2 !cosf#/4. ~A20!
8-15
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APPENDIX B: MESON –gg COUPLINGS

In this section we will work out the explicit form of the
two-photon couplings, allowing for photons of arbitra
mass, using the polarization vectors in the helicity basis.
general form of the coupling is

Hl1l2
5Hmnrsk1

mel1
* nk2

rel2
* s , ~B1!

whereH is either

Hmnrs
P 5

2

M
FPemnrs , ~B2a!

Hmnrs
S 5

2

M
FS~gmrgns2gmsgnr!. ~B2b!

The three polarization vectors for a massive photon in
helicity basis are chosen to be

e1~6 ẑ!5~0,1,6 i ,0!/A2, ~B3a!

e2~6 ẑ!5~0,1,7 i ,0!/A2, ~B3b!

e0~6 ẑ!5~k,0,0,6E!/Ak2, ~B3c!

for a photon traveling in the6 ẑ direction. With these polar-
ization vectors, one finds three couplings for the scalar c

Hl1l2

S 5H 2MFSz, l15l251,

2MFSz, l15l252,

1MFSw, l15l250,

~B4!

wherez andw are defined in Appendix A. The longitudina
contribution vanishes for the pseudoscalar case, and
finds only two couplings

Hl1l2

P 5H 1 iM FPl, l15l251,

2 iM FPl, l15l252,

0, l15l250,

~B5!

wherel is also defined in Appendix A. There are three i
teresting differences between the scalar and the pseudos
couplings. First, assuming thatd50, there is a relative phas
between them. Additionally, the transverse couplings dif
in the kinematic factor. And lastly, there is the addition
scalar coupling due to the contribution from longitudina
polarized photons. Where as the transverse couplings go
l or z, both of which areO(1) on average, the longitudina
coupling goes likew, which isO(x), making its contribution
less significant.

APPENDIX C: DOUBLE DALITZ INTERFERENCE

The interference between the tree-level direct and
change contributions for modes with identical leptons is
sum of three terms
03300
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2 Re~M1* M2!5
23p2a2g̃2

M2x12x34x14x23

$A fP~x12,x34!

3 f P~x14,x23!cos2z

1B@ f P~x12,x34! f S~x14,x23!

1 f P~x14,x23! f S~x12,x34!#sinz cosz

1C fS~x12,x34! f S~x14,x23!sin2z%, ~C1!

where

A5l2$2J218h41J@8h22z~y121y34!
2#

2w2~11y12y34!~22y12
2 2y34

2 !

14h2~y121y34!~x12y121x34y34!%, ~C2!

B522l@h2~x121x342x142x23!

14~x12x342x14x23!#J tanf, ~C3!

C52J3z2J2@6h2z2w22~2z21w2!y12y34#

2J@z~z222w2!1z~z212w2!y12
2 y34

2 12z3y12y34

22h2~z21w2!~113y12y34!18h4z#1w2z2y12
3 y34

3

2w2z2y12y341w2~3z222w2!y12
2 y34

2 22w2~z22w2!

3~y12
2 1y34

2 !1w2~z222w2!22h2@3w2zy12
2 y34

2

22~z22z32w2!y12y3412z~z223w2/2!22~z21w2!#

28h4@~z2z2!2w2y12y34#, ~C4!

where J5wA(l12
2 2y12

2 )(l34
2 2y34

2 )cosf and h2

54m2/M2. The exchange variablesx14 andx23 are defined
in Appendix A in terms of the five non-exchange phase sp
variables. The term proportional to cos2z results from inter-
ference between a pseudoscalar coupling in both the d
and exchange graphs, while the one proportional to sin2z is
due to scalar couplings in both graphs, and the one pro
tional to sinz cosz is due to a pseudoscalar coupling in o
graph and a scalar coupling in the other.

APPENDIX D: 5-POINT FUNCTION

The matrix element for the 5-point diagram is compos
of tensor integrals with five propagators in the denomina
One can express tensor integrals in terms of lower rank
sor integrals with the same number of propagators and lo
rank tensors with fewer propagators@23#. In the end, every
tensor integral can be decomposed into scalar 2-, 3-, 4-,
5-point functions. The scalar 5-point function is not indepe
dent and can itself be expressed in terms of scalar 4-p
functions.

This appendix will outline our procedure for first reducin
the tensor integrals to scalar integrals, and then compu
the scalar integrals in closed form.
8-16
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1. Tensor integrals

Begin by defining

I 50~k1 ,k2 ,k3 ,k4!5E d4t

~2p!4

1

N1N2N3N4N5
, ~D1a!

I 51
m ~k1 ,k2 ,k3 ,k4!5E d4t

~2p!4

tm

N1N2N3N4N5
, ~D1b!

I 52
mn~k1 ,k2 ,k3 ,k4!5E d4t

~2p!4

tmtn

N1N2N3N4N5
, ~D1c!

I 53
mnr~k1 ,k2 ,k3 ,k4!5E d4t

~2p!4

tmtntr

N1N2N3N4N5
, ~D1d!

where

N15t22m1
2 , N25~ t1k1!22m2

2 ,

N35~ t1k11k2!22m3
2 ,

~D2!
N45~ t1k11k21k3!22m4

2 ,

N55~ t1k11k21k31k4!22m5
2 ,

where m i is an internal mass and theki are external mo-
menta.

The original reduction scheme of Ref.@24#, while theo-
retically sound, suffers from uncontrollable numerical ina
curacies. To avoid this problem, we follow the procedu
suggested in Ref.@23#, and use a reduction scheme based
the Schouten identity which utilizes Gram determinants
express any tensor integral as a sum of integrals, one with
same number of propagators and the rest with one less pr
gator, and all with the power of the loop momentum reduc
by one. The identity has the following form:

tmek1k2k3k45~ t•k1!emk2k3k41~ t•k2!ek1mk3k41~ t•k3!ek1k2mk4

1~ t•k4!ek1k2k3m, ~D3!

5vm2
1

2
~N1emk2k3k42N2em(k11k2)k3k4

1N3emk1(k21k3)k42N4emk1k2(k31k4)

1N5emk1k2k3!, ~D4!

where

vm5~s•k1!emk2k3k42~s•k2!emk1k3k41~s•k3!emk1k2k4

2~s•k4!emk1k2k3, ~D5!

andsm is defined in terms of its dot products
03300
-

n
o
he
a-

d

s•k15
1

2
@m2

22m1
22k1

2#, ~D6a!

s•k25
1

2
@m3

22m1
22~k11k2!2#2s•k1 , ~D6b!

s•k35
1

2
@m4

22m1
22~k11k21k3!2#2s•k12s•k2 , ~D6c!

s•k45
1

2
@m5

22m1
22~k11k21k31k4!2#

2s•k12s•k22s•k3 . ~D6d!

The notationek1k2k3k4 is shorthand foremnrsk1mk2nk3rk4s .
The reduction then proceeds as follows:

I 51
m 5

1

ek1k2k3k4
H vmI 502

1

2
@emk2k3k4I 40

(1)2em(k11k2)k3k4I 40
(2)

1emk1(k21k3)k4I 40
(3)2emk1k2(k31k4)I 40

(4)1emk1k2k3I 40
(5)#J ,

~D7!

I 52
mn5

1

ek1k2k3k4
H vmI 51

n 2
1

2
@emk2k3k4~ I 41

(1)n2k1
nI 40

(1)!

2em(k11k2)k3k4I 41
(2)n1emk1(k21k3)k4I 41

(3)n

2emk1k2(k31k4)I 41
(4)n1emk1k2k3I 41

(5)n#J , ~D8!

I 53
mnr5

1

ek1k2k3k4
H vmI 52

nr2
1

2
@emk2k3k4~ I 42

(1)nr2k1
nI 41

(1)r2k1
rI 41

(1)n

1k1
nk1

rI 40
(1)!2em(k11k2)k3k4I 42

(2)nr1emk1(k21k3)k4I 42
(3)nr

2emk1k2(k31k4)I 42
(4)nr1emk1k2k3I 42

(5)nr#J , ~D9!

where for anyI 405*@d4t/(2p)4#(1/N1N2N3N4),

I 41
m 5

1

2dk1k2k3

k1k2k3
$dk1k2k3

sab dk1k2k3

mab I 402@dk1k2k3

mk2k3 I 30
(1)

2dk1k2k3

m(k11k2)k3I 30
(2)1dk1k2k3

mk1(k21k3)I 30
(3)2dk1k2k3

mk1k2 I 30
(4)#%,

~D10!
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I 42
mn5

1

2dk1k2k3

k1k2k3 H dk1k2k3

sab dk1k2k3

mab I 41
n 2@dk1k2k3

mk2k3 ~ I 31
n 2k1

nI 30
(1)!

2dk1k2k3

m(k11k2)k3I 31
(2)n1dk1k2k3

mk1(k21k3)I 31
(3)n2dk1k2k3

mk1k2 I 31
(4)n#

1
2ek1k2k3mek1k2k3n

dk1k2k3

k1k2k3
Fdsk1k2k3

sk1k2k3I 401
1

2
~dk1k2k3

(s1k1)k2k3I 30
(1)

2dk1k2k3

s(k11k2)k3I 30
(2)1dk1k2k3

sk1(k21k3)I 30
(3)2dk1k2k3

sk1k2 I 30
(4)!G J ,

~D11!

and for anyI 305*@d4t/(2p)4#(1/N1N2N3)

I 31
m 5

1

dk1k2

k1k2
H dk1k2

sa dk1k2

ma I 302
1

2
@dk1k2

mk2 I 20
(1)2dk1k2

m(k11k2)I 20
(2)

1dk1k2

mk1 I 20
(3)#J . ~D12!

The reduction notation has the following meaning:I 40
( i ) is the

4-point function obtained fromI 50 by dropping thei th propa-
gator, I 30

( j ) is the 3-point function obtained from its corre
sponding 4-point function by dropping thej th propagator,
and so on. The Gram determinants that appear in the re
tion are kinematic functions which are defined as

dq1q2

k1k25Uq1•k1 q1•k2

q2•k1 q2•k2
U,

dq1q2q3

k1k2k3 5Uq1•k1 q1•k2 q1•k3

q2•k1 q2•k2 q2•k3

q3•k1 q3•k2 q3•k3

U , ~D13!

dq1q2q3q4

k1k2k3k4 5Uq1•k1 q1•k2 q1•k3 q1•k4

q2•k1 q2•k2 q2•k3 q2•k4

q3•k1 q3•k2 q3•k3 q3•k4

q4•k1 q4•k2 q4•k3 q4•k4

U .

The traces that appear in Eq.~56! can also be reduced

~ I 52!m
m5I 40

(1) , ~D14a!
03300
c-

~ I 53!m
am5I 41

(1)a2k1
aI 40

(1) , ~D14b!

~ I 54!m
abm5I 42

(1)ab2k1
aI 41

(1)b2k1
bI 41

(1)a1k1
ak1

bI 40
(1) . ~D14c!

While this procedure is generally much more reliable th
that of Ref.@24#, there are still problems that occur whenvm

as defined in Eq.~D5! is not an independent combination o
the final state momenta. This happens when all the mom
in the parent particle’s rest frame lie in a plane. Even thou
these configurations form a subspace of zero measure in
final state phase space, finite numerical precision dicta
that they will be generated with non-zero probability by t
MC program. In this case, we use the identity

tmdk1k2k3

k1k2k35um~u•t !1
1

2
@dk1k2k3

sab dk1k2k3

mab 2N1dk1k2k3

mk2k3

1N2dk1k2k3

mk3k4 2N3dk1k2k3

mk4k1 1N4dk1k2k3

mk1k2 #,

~D15!

where um5ek1k2k3m. The first term on the right vanishe
upon integration, allowingI 51

m to be written as

I 51
m 5

1

2dk1k2k3

k1k2k3
$dk1k2k3

sab dk1k2k3

mab I 502@dk1k2k3

mk2k3 I 40
(1)2dk1k2k3

mk3k4 I 40
(2)

1dk1k2k3

mk4k1 I 40
(3)2dk1k2k3

mk1k2 I 40
(4)#%. ~D16!

The other tensor integrals can be expanded in a similar m
ner. The same problem can arise in the reduction of
4-point tensor integrals if the three momentak1 , k2, andk3
are linearly dependent, in which case this same procedu
reproduced at one lower rank.

In these degenerate cases we have a choice betwee
merical inaccuracies resulting from antisymmetric invarian
such asek1k2k3k4 being very small, or inaccuracies resultin
from assuming exact linear dependence. To decide wh
approximation is better, we do the calculation of the ten
integrals both ways and check whether identities such
those in Eqs.~D14! are satisfied. More than 99% of the tim
one of the two methods yields good agreement for all th
‘‘trace checks.’’

2. Scalar integrals

The most general 5-point function we will need to co
sider is
I 505m2eE dDt

~2p!D H 1

@ t22m1
21 i e#@~ t1k1!22m2

21 i e#@~ t1k11k2!22m3
21 i e#

3
1

@~ t1k11k21k3!22m4
21 i e#@~ t1k11k21k31k4!22m5

21 i e#
J . ~D17!
8-18
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In the case at handm150, m25m1 , m35M1 , m45M2, and
m55m2 where them’s are lepton masses and theM ’s are
boson masses. In addition,k152p2 , k252p1 , k35p5, and
k452p4, where the external momenta satisfy the relat
p11p21p31p45p5. The diagram representing this integr
is shown in Fig. 18.

We have allowed the boson propagators to have arbit
massesM1 and M2 in order to include a form factor in the
calculation of the 5-point function. This is necessary sin
the form factor becomes a function of the loop momentu
We will use a generalized DIP form factor which, with th
appropriate choice of coefficients, can reproduce both
DIP and the BMS form factor models. The generalized D
form factor is

f ~x1 ,x2!511(
i

a iS x1

x12Mi
2/M2

1
x2

x22Mi
2/M2D

1(
i j

b i j

x1x2

~x12Mi
2/M2!~x22M j

2/M2!
,

~D18!

whereM is the total mass and the sum is over propaga
massesMi . The diagram containing two photon propagato
and a form factor is then replaced by a sum ofn2 diagrams
of four different types, one containing two photon propag
tors, two containing one photon and one massive bo
propagator, and one containing two massive boson prop
tors,

f ~x1 ,x2!

x1x2
5

1

x1x2
1(

i
a iS 1

x1~x22Mi
2/M2!

1
1

x2~x12Mi
2/M2!

D
1(

i j
b i j

1

~x12Mi
2/M2!~x22M j

2/M2!
.

~D19!

The general form of Eq.~D17! permits the evaluation of al
four of these contributions. To use a specific model, the

FIG. 18. Scalar 5-point function.
03300
n

ry

e
.

e

r
s

-
n
a-

-

rametersa i and b i j must be adjusted. For the simple DI
model, only ar meson term is included witha15aDIP and
b115bDIP . The DIP model requires the inclusion of fou
5-point diagrams involving all combinations of photons a
r mesons. The BMS model is more complicated, requir
25 different diagrams. To simplify this we have letMv

5M r , which reduces the number of diagrams to 16. T
values of the generalized parameters, in terms ofaK* are

a15211
10CaK* MK*

2

9~MK*
2

2M r
2!

, ~D20a!

a252
4CaK*

3 S 11
5M r

2

6~MK*
2

2M r
2!

2
Mf

2

6~Mf
2 2MK*

2
!
D ,

~D20b!

a352
2CaK* MK*

2

9~Mf
2 2MK*

2
!
, ~D20c!

andb i j 5a ia j . A flat form factor is obtained by setting all o
the a i50 andb i j 50.

We will write the 5-point function in Eq.~D17! as a sum
of 4-point functions using the following relationship betwe
n-point functions and (n21)-point functions@25#,

I n5
1

2 F2(
i 51

n

ci I n21
( i ) 1~n2512e!c0I n

D5622eG , ~D21!

where

ci5(
j 51

n

S i j
21 , c05(

i 51

n

ci5 (
i , j 51

n

S i j
21 ,

Si j 5~m i
21m j

22ki j
2 !/2, ~D22!

and

kii 50, ki j 5ki1ki 111¯1kj 21 , for i , j .
~D23!

We will use m to refer to the propagator mass when t
distinction between vector bosons and leptons is irrelev
In the case at handn55 so the second term in Eq.~D21! is
O(e), and since the 5-point function inD5622e dimen-
sions is finite in the limite→0, the scalar 5-point function
can be written as a sum of five scalar 4-point functions

I 5052
1

2 (
i 51

5 S (
j 51

5

Si j
21D I 40

( i )1O~e!. ~D24!

~a! The 4-point function. Two of the five 4-point functions
contain IR divergences due to the presence of the 3-p
functions where both of the vector boson propagators h
been removed. Therefore, there are two distinct 4-point fu
tions that we will need. The first has one zero mass pro
gator
8-19
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I 40~k1 ,k2 ,k3 ,m1 ,m2 ,m3!

5m2eE dDt

~2p!D

1

@ t21 i e#@~ t1k1!22m1
21 i e#@~ t1k11k2!22m2

21 i e#@~ t1k11k21k3!22m3
21 i e#

, ~D25!

and the other has two zero mass propagators and two lepton propagators

I 408 ~k1 ,k2 ,k3 ,m1 ,m2!5m2eE dDt

~2p!D

1

@ t21 i e#@~ t1k1!21 i e#@~ t1k11k2!22m1
21 i e#@~ t1k11k21k3!22m2

21 i e#
,

~D26!

where inI 408 , (k11k2)25m1
2 and (k11k21k3)25m2

2.
In order to use Eq.~D25! for I 40

(1) where all four propagators have non-zero masses, and to extract the divergent partI 40
(3)

and I 40
(4) , we make use of the following propagator identity:

1

@~q1p!22m1
2#@~q1p1k!22m2

2#
5

a

@~q1p!22m1
2#~q1p1ak!2

1
12a

@~q1p1k!22m2
2#~q1p1ak!2

, ~D27!
as

We

rs
s of

In
wherea is chosen to be the positive root of the equation

a~12a!k22~12a!m1
22am2

250. ~D28!

This identity allows us to write the five 4-point functions

I 40
(1)5a1I 40~2a1p23,2p1 ,p5 ,m1 ,M1 ,M2!1~12a1!I 40

3„~12a1!p23,p42p5 ,p5 ,m2 ,M1 ,M2…, ~D29a!

I 40
(2)5I 40~2p12,p5 ,2p4 ,M1 ,M2 ,m2!, ~D29b!

I 40
(3)5a3I 408 ~2a3p34,2p2 ,p23,m1 ,m2!1~12a3!I 40

3„~12a3!p34,p12p5 ,p23,M2 ,m1 ,m2…, ~D29c!

I 40
(4)5a4I 408 ~a4p12,p3 ,2p23,m2 ,m1!

1~12a4!I 40„2~12a4!p12,p1 ,p23,M1 ,m1 ,m2…,

~D29d!

I 40
(5)5I 40~2p2 ,2p1 ,p5 ,m1 ,M1 ,M2!, ~D29e!

where
03300
a15~11d231l23!/2, a3512M2
2/p34

2 ,

a4512M1
2/p12

2 . ~D30!

The finite 4-point functionI 40 defined in Eq.~D25! can be
expressed in closed form as a sum of 36 dilogarithms.
will define it in terms of the function

J~A,B!5E
0

1 dz

z2A
@ ln~z2B6 i e!2 ln~A2B6 i e!#

5Li2S A

A2B6 i e D2Li2S A21

A2B6 i e D .

~D31!

For arbitrary complex arguments,A and B, the integration
would also produce additional logarithms with prefacto
which depend on the relative difference between the sign
the imaginary parts ofA and B @26#; however, if A is real
these additional terms vanish. In the case at hand,A will
always be real and we will only need the dilogarithms.
terms of these new functions,
I 40~k1 ,k2 ,k3 ,m1 ,m2 ,m3!5
i

16p2g~h12h2!
FJS b1h1,

2e2d1 i e

k D2JS b1h2,
2e2d1 i e

k D2JS h1

12b
,
2d1 i e

e1k D
1JS h2

12b
,
2d1 i e

e1k D1JS 2h1

b
,
2d1 i e

e D2JS 2h2

b
,
2d1 i e

e D2J~b1h1,z1
11 i e!

2J~b1h1,z1
22 i e!1J~b1h2,z1

11 i e!1J~b1h2,z1
22 i e!1JS h1

12b
,z2

11 i e D
1JS h1

12b
,z2

22 i e D2JS h2

12b
,z2

11 i e D2JS h2

12b
,z2

22 i e D2JS 2h1

b
,z3

11 i e D
2JS 2h1

b
,z3

22 i e D1JS 2h2

b
,z3

11 i e D1JS 2h2

b
,z3

22 i e D G , ~D32!
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whereb is either root of the equationgb21 j b1b50, h6 are the roots of the equation

@eg2 jk2bgk#h21@eh2ck2d j22bdg#h1@ae2cd1b~ak2dh!#50, ~D33!

andg5eg2 jk2bgk. The quantitieszi
6 are the roots of the following equations:

05gz1
21~h1 j 1k!z11~a1b1c1d1e!, ~D34a!

05~b1g1 j !z2
21~c1e1h1k!z21~a1d!, ~D34b!

05bz3
21~c1e!z31~a1d!. ~D34c!

The lower case variables are combinations of the elements of the relevant 434 matrix Si j defined in Eq.~D22!,

a5S331S4422S34, f 5S44,

b5S221S3322S23, g5S111S2222S12,

c52~S232S242S331S34!, h52~S132S142S231S24!, ~D35!

d52~S342S44!, j 52~S122S132S221S23!,

e52~S242S34!, k52~S142S24!.

The divergent 4-point functionI 408 defined in Eq.~D26! can also be written in closed from. The divergent part is just
divergent 3-point function

I IR5E d4t

~2p!4

1

@ t22L21 i e#@~ t2p2!22m1
21 i e#@~ t1p3!22m2

21 i e#

5
i

32p2p23
2 l23

H F lnS z231l23

z232l23
D22ipG ln p23

2

L2
22p212 Li2S 2l23

11d231l23
D

12 Li2S 2l23

12d231l23
D24ip ln l232 lnS 11d232l23

2l23
D lnS 11d231l23

2 D
2 lnS 12d232l23

2l23
D lnS 12d231l23

2 D1 ln2S 12d231l23

2l23
D1 ln2S 11d231l23

2l23
D

1 ln l23lnS 12d231l23

2l23
D1 ln l23lnS 11d231l23

2l23
D1

1

2 F ln2S 11d231l23

2 D
1 ln2S 12d231l23

2 D2 ln2S 11d232l23

2 D2 ln2S 12d232l23

2 D G J . ~D36!

The full expression is then

I 408 ~k1 ,k2 ,k3 ,m1 ,m2!5
1

k1
2 XI IR1

i

16p2l23k3
2 H lnS 2k1•k3

k1
2 D F lnS z232l23

z231l23
D12ipG1Li2S 12A

B2A1 i e D2Li2S 12A

C2A2 i e D
2Li2S 2A

B2A1 i e D1Li2S 2A

C2A2 i e D1 ln~12A2 i e!@ ln~12B2 i e!2 ln~12C1 i e!2 ln~A2B2 i e!

1 ln~A2C1 i e!#2 ln~2A2 i e!@ ln~2B2 i e!2 ln~2C1 i e!2 ln~A2B2 i e!1 ln~A2C1 i e!#J C,
~D37!

where
033008-21
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A52~k1
2/21k1•k2!/~k1•k3!, B5~11d231l23!/2, C5~11d232l23!/2. ~D38!

It is worthwhile to consider the special case of two-photon propagators, that isM15M250. In that case the 4-poin
functions simplify considerably. We will write

I 40
† ~k1 ,k2 ,k3 ,m1 ,m2!5E d4t

~2p!4

1

@ t22m1
21 i e#@~ t1k1!22m2

21 i e#@~ t1k11k2!21 i e#@~ t1k11k21k3!21 i e#

5
i

AD
H FLi2S v1

v12r 1
D 2Li2S v121

v12r 1
D 2Li2S v121

v12r 2
D 2Li2S v1

v12 ṽ12 i e
D

1Li2S v121

v12 ṽ12 i e
D 2Li2S v1

v12 ṽ21 i e
D 1Li2S v121

v12 ṽ21 i e
D G2FLi2S v2

v22r 1
D

2Li2S v221

v22r 1
D 2Li2S v221

v22r 2
D 2Li2S v2

v22 ṽ12 i e
D 1Li2S v221

v22 ṽ12 i e
D

2Li2S v2

v22 ṽ21 i e
D 1Li2S v221

v22 ṽ21 i e
D G J , ~D39!

whereD is the discriminant andv6 are the roots of the quadratic equation

@k~h1k!2dg#v21@e~h1k!2d j #v2bd50, ~D40!

and ṽ6 are the roots of

gṽ21~h1 j 1k!ṽ1b50, ~D41!

and

r 15~2d2e1 i e!/k, r 25 i e/~h1k!. ~D42!

Therefore, whenM15M250, the five 4-point functions are simply

I 40
(1)5I 40

† ~p23,p4 ,2p5 ,m1 ,m2!, ~D43a!

I 40
(2)5I 40

† ~p3 ,p4 ,2p5,0,m2!, ~D43b!

I 40
(3)5I 408 ~2p34,2p2 ,p23,m1 ,m2!, ~D43c!

I 40
(4)5I 408 ~p12,p3 ,2p23,m2 ,m1!, ~D43d!

I 40
(5)5I 40

† ~2p2 ,2p1 ,p5,0,m1!. ~D43e!

Also, in this case,I 408 simplifies somewhat becauseA defined in Eq.~D38! becomes one. The first two dilogarithms in th
second line of Eq.~D37!, along with the entire third line, vanish in this case.I 408 then becomes

I 408 ~k1 ,k2 ,k3 ,m1 ,m2!5
1

k1
2 XI IR1

i

16p2l23k3
2 H lnS 2k1•k3

k1
2 D F lnS z232l23

z231l23
D12ipG2Li2S 21

B211 i e D1Li2S 21

C212 i e D
1 ip@ ln~2B2 i e!2 ln~2C1 i e!2 ln~12B2 i e!1 ln~12C1 i e!#J C, ~D44!

whereB andC are still given by Eq.~D38!.
~b! The 3-point function. There are ten 3-point functions that are needed, all of which are finite except one,I 30

(34)5I IR

defined in Eq.~D36!. The superscripts used in this section denote the two propagators that have been dropped from the
5-point function to obtain the particular 3-point function. The finite 3-point functions can be generically written as
033008-22
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I 30~k1 ,k2 ,m1 ,m2 ,m3!5E dDt

~2p!D

1

@ t22m1
21 i e#@~ t1k1!22m2

21 i e#@~ t1k11k2!22m3
31 i e#

~D45!

5
2 i

16p2~c12bb!
H FLi2S v1

v12 ṽ1
12 i e

D 2Li2S v121

v12 ṽ1
12 i e

D 1Li2S v1

v12 ṽ1
21 i e

D
2Li2S v121

v12 ṽ1
21 i e

D 2Li2S v2

v22 ṽ2
12 i e

D 1Li2S v221

v22 ṽ2
12 i e

D 2Li2S v2

v22 ṽ2
21 i e

D
1Li2S v221

v22 ṽ2
21 i e

D 1Li2S v3

v32 ṽ3
12 i e

D 2Li2S v321

v32 ṽ3
12 i e

D 1Li2S v3

v32 ṽ3
21 i e

D
2Li2S v321

v32 ṽ3
21 i e

D G J , ~D46!
m

ex

-

als
nc-
where thev i are

v152
2a1d1b~c1e!

c12bb
, v252

d1eb

~12b!~c12bb!
,

v35
d1eb

b~c12bb!
, ~D47!

and theṽ i
6 are roots of the three quadratic equations

05bṽ1
21~c1e!ṽ11~a1d1 f !, ~D48a!

05~a1b1c!ṽ2
21~d1e!ṽ21 f , ~D48b!

05aṽ3
21dṽ31 f , ~D48c!

and b is either root of the equationbb21cb1a50. The
lowercase letters are again a combination of the relevant
trix Si j

a5S221S3322S23, c52~S122S132S221S23!,

e52~S132S23!, ~D49!

b5S111S2222S12, d52~S232S33!, f 5S33.

The ten 3-point functions that we need can then be
pressed as

I 30
(12)5I 30~p4 ,2p5 ,m2 ,M2 ,M1!, ~D50a!

I 30
(24)5I 30~p3 ,2p51p4,0,m2 ,M1!, ~D50b!

I 30
(13)5I 30~p23,p4 ,m1 ,m2 ,M2!, ~D50c!

I 30
(25)5I 30~2p12,p5,0,M1 ,M2!, ~D50d!

I 30
(14)5I 30~p23,2p51p4 ,m1 ,m2 ,M1!, ~D50e!
03300
a-

-

I 30
(34)5I IR , ~D50f!

I 30
(15)5I 30~2p1 ,p5 ,m1 ,M1 ,M2!, ~D50g!

I 30
(35)5I 30~2p2 ,p52p1,0,m1 ,M2!, ~D50h!

I 30
(23)5I 30~p3 ,p4,0,m2 ,M2!, ~D50i!

I 30
(45)5I 30~2p2 ,2p1,0,m1 ,M1!. ~D50j!

~c! The 2-point function. And finally, the general expres
sion for the 2-point function is

I 20~k1 ,m1 ,m2!

5E dDt

~2p!D

1

@ t22m1
21 i e#@~ t1k1!22m2

21 i e#
~D51!

5
i

~4p!2 FG~«!S 4pm2

k1
2 D «

122~12v1!ln~12v12 i e!

2~12v2!ln~12v21 i e!2v1ln~2v12 i e!

2v2ln~2v21 i e!G , ~D52!

wherev6 are roots to the quadratic equation

k1
2v21~m1

22m2
22k1

2!v1m2
250. ~D53!

The UV divergent term containing« cancels when the
2-point functions are combined to form the tensor integr
and can therefore be safely ignored. The ten 2-point fu
tions that we require are then

I 20
(123)5I 20~2p4 ,M2 ,m2!, I 20

(145)5I 20~2p1 ,m1 ,M1!,
~D54a!
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I 20
(124)5I 20~p52p4 ,M1 ,m2!, I 20

(234)5I 20~p3,0,m2!,
~D54b!

I 20
(125)5I 20~p5 ,M1 ,M2!, I 20

(235)5I 20~p34,0,M2!, ~D54c!
in

in

03300
I 20
(134)5I 20~p23,m1 ,m2!, I 20

(245)5I 20~2p12,0,M1!,
~D54d!

I 20
(135)5I 20~p52p1 ,m1 ,M2!, I 20

(345)5I 20~2p2,0,m1!.
~D54e!
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