
PHYSICAL REVIEW D 67, 033004 ~2003!
Approximations to the QED fermion Green’s function in a constant external field
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An exact representation of the causal QED fermion Green’s function, in an arbritrary external electromag-
netic field, derived in Fried, Gabellini, and McKellar, and which naturally allows for nonperturbative approxi-
mations, is here used to calculate nonperturbative approximations to the Green’s function in the simple case of
a constant external field. Schwinger’s famous exact result is obtained as the limit as the order of the approxi-
mation approaches infinity.
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I. INTRODUCTION

An exact representation for the causal QED ferm
Green’s function,Gc(x,yuA), in an arbitrary external field
was derived by Fried et al.@1# in such a way as to obtain a
exact representation which naturally allows for nonpertur
tive approximations. The rather intimidating exact repres
tation is

Gc~x,yuA!5 i E
0

`

dse2 ism2E d4p

~2p!4
eip•(x2y)

3E d4zd4P

~2p!4
eiP•(z2y)1 i (s/4)P2
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N51

`

8
~2 i !2

~2p!4

3E d4PNd4QNe( i /2)(PN
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sds8s•F(z(s8)22*0

s8V)!1 , ~1.1!

whereV(s8) is the solution to the ‘‘map,’’

V~s8!5gAS z~s8!22E
0

s8
V D , ~1.2!

andz(s8) is given by

z~s8!5z1s8~2p1P!2
2As

p (
N51

`

8
1

N FPN cosS Nps8

s D
1QN sinS Nps8

s D G . ~1.3!

)N51
`8 and(N51

`8 represent the product and sum, respective
over all odd natural numbers. It is easy to see that we m
approximate the Green’s function nonperturbatively by
taining a finite number of integrations, in particular, for t
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nth approximationGc
(n)(x,yuA), wheren50,1,2, . . . , we re-

tain 2n13 integrations. This means that fornÞ0, the odd
numberN takes the valuesN51,3, . . . ,2n21, while for the
zeroth approximation allN dependence is neglected. The e
act result is of course recovered in the limitn→`, that is,
Gc(x,yuA)5 limn→`Gc

(n)(x,yuA).
It is well known that there is an exact expression, fi

obtained by Schwinger@2#, for the fermion Green’s function
in the simple case of a constant, but otherwise arbitrary,
ternal field, which~in an arbitrary gauge! reads

Gc~x,yuA!5F~x,yuA!
1

~4p!2E
0

`ds

s2 e2 ism2

3egss•FS det
sinhgFs

gFs D 21/2

3e( i /4)(x2y)gF cothgFs(x2y)

3Fm2
i

2
g•~gF cothgFs1gF!~x2y!G ,

~1.4!

where the holonomy factorF(x,yuA) is

F~x,yuA!5eig*y
xdjm[Am(j)1(1/2)F(j2y)] , ~1.5!

and carries the complete gauge dependence of the Gre
function. It is convenient to employ matrix notation,
which we regard the field strength tensor as a constant, a
symmetric 434 matrix F.

It is obvious that Schwinger’s result must somehow
contained as a special case of the exact representation~1.1!–
~1.3!. Furthermore, the Fradkin representation@3,4#, from
which the above representation was derived, almost trivia
yields Schwinger’s result. This leads us to expect that
latter may be extracted, analytically, from the above rep
sentation, and here we demonstrate that this is indeed
case.

We proceed by evaluating thatnth nonperturbative ap-
proximation to the Green’s function in a constant field
©2003 The American Physical Society04-1
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given by Eqs.~1.1!–~1.3! Schwinger’s result is then recov
ered in the limit as the order of this approximation a
proaches infinity. That we may carry out this program rel
on two things: for the case of constantF the ordered expo-
nential of Eq.~1.1! becomes an ordinary exponential, and t
2n13 integrations we must perform are all Gaussian. Ind
a large part of the evaluation of thenth approximation is an
extension of our matrix notation to account for this lat
fact. 2n13 Gaussian integrals may be expressed as
Gaussian integral over a (2n13)-dimensional space. Th
integration is then, with the appropriate notation, essenti
trivial. In Sec. II we make the change of notation, perfo
the integration, and express thenth approximation in terms
of the two resulting, order 2n13, determinants. In Sec. II
we evaluate the determinants and take the limitn→` to
recover Schwinger’s result.

We emphasize that the result when stopped at a finin
~exceptn50) is essentially nonperturbative, in that it isnot
a polynomial ing. The result of Eqs.~1.1!–~1.3! is thus, asn
io
m

03300
-
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is increased, a systematically improving, but nonpertur
tive, method for calculating the Green’s function in an ext
nal field.

II. THE INTEGRATION

We must first choose a gauge to work in. It shall be co
venient to work exclusively in the Schwinger-Fock (SF)
gauge

Am
SF~z!52

1

2
Fmn~z2y!n , ~2.1!

the initial motivation for which is that we may forget abo
the holonomy factor, which reduces to 1. An immediate co
seqence is that (]/]zm)Am

SF(z)50, due to the antisymmetry
of F; the factor in Eq.~1.1! containing this term in the ex
ponent also reduces to 1. With the above simplifications,
nth approximation to the fermion Green’s function in a co
stant field, in theSF gauge, as given by Eq.~1.1!, is thus
Gc
(n)~x,yuASF!5E

0
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dse2 ism2
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~2p!8
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~2p!4nE dpdzdP)
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2 )e2 i *0
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o

te-
in

-
on,
whereV (n)(s8) is the solution to Eqs.~1.2!, ~1.3!, but with
the sum in Eq.~1.3! terminating atN52n21, and in the
spirit of using matrix notation we have useddp instead of
d4p and so on. In theSF gauge, Eqs.~1.2!, ~1.3! yield a
simple integral equation forV (n)(s8):

V (n)~s8!2gFE
0

s8
V (n)52

1

2
gFH z2y1s8~2p1P!

2
2As

p (
N51

2n21

8
1

N FPN cosS Nps8

s D
1QN sinS Nps8

s D G J . ~2.3!

The equivalent differential equation plus boundary condit
may be solved with only elementary integrals. It is the co
binationp2V (n)(s8) which appears in Eq.~2.2!, we find

p2V (n)~s8!5egFs8p1
1

2
gFegFs8~z2y!1

1

2
~egFs821!P

2
1

As
(
N51

2n21

8
1

11LN
2 FsinS Nps8

s D
1LN cosS Nps8

s D1
1

LN
egFs8GPN
n
-

2
1

As
(
N51

2n21

8
1

11LN
2 F2cosS Nps8

s D
1LN sinS Nps8

s D1egFs8GQN , ~2.4!

where LN5Np/gFs. Our choice of gauge allows us t
make the change of variablez2y→z, after which p
2V (n)(s8) is independent ofy, so that the onlyx and y
dependence in the exponent of Eq.~2.2! appears in the term
ip•(x2y).

If we imagine substituting Eq.~2.4! into Eq. ~2.2!, we
recognize that all of the terms in the exponent of the in
grand, save the termip•(x2y), are able to be expressed
the form (i /2)Xi

TAi j
(n)Xj , where the Xi are the 2n13

4-vector variables we must integrate over, theAi j
(n) are some

matrix functions ofF, and thei /2 is a convenient normaliza
tion factor. This suggests that we extend our matrix notati
and write this part of the exponent of Eqs.~2.2! as
( i /2)XTA(n)X, whereX is a (2n13)31 column vector of
4-vector variables, andA(n) is a (2n13)3(2n13) symmet-
ric matrix with matrix elements Ai j

(n) . Now
dpdzdP)N51

2n218dPNdQN5d2n13X. Let us define the col-
umn vectorX such that

XT5@p z P P1 Q1 . . . PN QN . . . P2n21 Q2n21#.
~2.5!
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The termip•(x2y) is included by introducing

B(n)T5@~x2y!0 0 . . . 0#, ~2.6!

whence eip•(x2y)5eiB(n)TX. A construction for the matrix
A(n) is obtained by defining
e

03300
p2V (n)~s8!5C(n)T~s8!X, ~2.7!

so thate2 i *0
sds8[ p2V(n)(s8)] 2

5e2 iXT*0
sds8C(n)(s8)C(n)T(s8)X. The

elements of the row vectorC(n)T(s8) are read straight from
Eq. ~2.4!. The transpose of the row vector is
~2.8!
ay,
e
of

-

where we have usedFT52F (LN
T52LN), and omitted the

last two N52n21 elements for brevity. We also writ

eiP•z1 i (s/4)P21(N51
2n218( i /2)(PN

2
1QN

2 )5e( i /2)XTD(n)X, which defines
the matrixD (n):

~2.9!

Our change of notation complete, Eqs.~2.2! and ~2.4! be-
come

Gc
(n)~x,yuASF!5E

0

`

dse2 ism2
egss•F

i

~2p!8

~2 i !2n

~2p!4n

3E d2n13X e( i /2)XTA(n)X1 iB(n)TX

3@m2 ig•C(n)T~s!X#, ~2.10!
where

A(n)522E
0

s

ds8C(n)~s8!C(n)T~s8!1D (n). ~2.11!

All that we have done is to reexpress, in the usual w
the product of 2n13 Gaussian integrals as on
(2n13)-dimensional Gaussian integral. After a change
variableX→X2A(n)21B(n), the integration is trivial, we ob-
tain

Gc
(n)~x,yuASF!5

1

4p2E
0

`

dse2 ism2
egss•F~DetA(n)!21/2

3e2( i /2)B(n)TA(n)21B(n)

3@m1 ig•C(n)T~s!A(n)21B(n)#, ~2.12!

where DetA(n) is the determinant ofA(n).
The matrixA(n) is a 4(2n13)34(2n13) matrix which

is naturally partitioned into the (2n13)3(2n13) 434 ma-
trices Ai j

(n)522*0
sds8Ci

(n)(s8)Cj
(n)T(s8)1Di j

(n) . The Ai j
(n) ,

as ~matrix! functions ofF only, commute, and are thus re
ferred to as the ‘‘elements’’ ofA(n). SinceA(n) is symmetric,
we have the relationsAii

(n)5Aii
(n)T and Aji

(n)5Ai j
(n)T . If we

form a determinant using the elementsAi j
(n) , the result will
4-3
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be a 434 matrix, also some function ofF, which we denote
detA(n). It is easy to convince oneself that the determinan
A(n), which may be partitioned in this way, is the determ
nant of the matrix we have called detA(n), that is, DetA(n)

5det(detA(n)).
Recalling thatBi

(n)5(x2y)d i1, and with the notation dis-
cussed above, we may write

C(n)T~s!A(n)21B(n)5
detA1

(n)

detA(n)
~x2y!, ~2.13!

whereA1
(n) is the matrix obtained by replacing the first ro

of A(n) by C(n)T(s). Similarly,

B(n)TA(n)21B(n)5~x2y!
detÃ(n)

detA(n)
~x2y!, ~2.14!

where detÃ(n) is the (1,1) cofactor ofA(n), that is,Ã(n) is the
matrix obtained by deleting the first row and the first colum
of A(n). In fact it will be shown in the next section tha
detÃ(n)/detA(n) is the part of detA1

(n)/detA(n) symmetric
with respect to the interchange of space-time indices, for
n, and denoted by a superscriptS. Thenth approximation to
the Green’s function, in terms of the two determinan
detA(n) and detA1

(n) , is then

Gc
(n)~x,yuASF!5

1

4p2E
0

`

dse2 ism2
egss•F~DetA(n)!21/2

3e2( i /2)(x2y)(detA1
(n)/detA(n))S(x2y)

3Fm1 ig•
detA1

(n)

detA(n)
~x2y!G . ~2.15!

Comparing Eq.~2.15! with Schwinger’s result~1.4!, and
letting detA5 limn→`detA(n) and detA15 limn→`detA1

(n) ,
it is necessary that

detA52s
sinhgFs

gFs
, ~2.16!

so that (DetA)21/25(1/4s2)„det(sinhgFs/gFs)…21/2, and

detA152egFs, ~2.17!

so that the quotient detA1 /detA52 1
2 (gF cothgFs1gF).

Note that the symmetric part of detA1 /detA is
(detA1 /detA)S52 1

2 gF cothgFs, we mentioned above tha
03300
f

ll

s

this relation holds for all values ofn. Thus detA(n) and
detA1

(n) are yet to be determined,nth, nonperturbative ap-
proximations to Eqs.~2.16! and~2.17! respectively. The quo-
tient detA1

(n)/detA(n) provides a nonperturbative approxim
tion to 2 1

2 (gF cothgFs1gF), the symmetric part of the
former a nonperturbative approximation to the symme
part of the latter. In the next section we calculate exact
pressions for these non-perturbative approximations,
show that we can obtain Eqs.~2.16! and ~2.17!, and thus
Schwinger’s result, in the limitn→`.

III. THE DETERMINANTS

An obvious but important fact is that we only need to fin
the determinants of the matricesA(n) andA1

(n) , not the ma-
trices themselves. This means that we can simplifyC(n)(s8),
its transpose, andD (n), with any row and column operation
which do not alter the determinant, before using Eq.~2.17! to
find A(n). We now find the reduced form ofA(n), from this it
will be easy to obtain the reduced form ofA1

(n) and of Ã(n).
We perform the following sets of row operations on the c
umn vectorC(n)(s8): use the first element to remove tho
terms proportional toe2gFs8 from all other elements, noting
that the second element requires the row operation r2

→row21 1
2 gFrow1; then rowN13→rowN132LNrowN14;

then rowN14→rowN141„@LN2(1/LN)#/(11LN
2 )…rowN13;

the last two sets for all rowsN51,3, . . . ,2n21. C(n)(s8)
becomes

~3.1!

The row operations are performed onC(n)(s8) andD (n). To
keep things symmetric we perform the transposed operat
on C(n)T(s8) andD (n). The integrals required by Eq.~2.17!
are elementary and we easily obtain the reduced form of
matrix A(n):
4-4
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where xN5(2/As)@LN/11LN
2 #(1/gF)(11egFs) and we

have further used the (2,3) and (3,2) elements of the redu
A(n) to eliminate those elements to the right of the form
and below the latter. After trivially expanding the determ
nant along the second row and down the second column
are left with the determinant of a (2n11)3(2n11) bor-
dered matrix. The first set of row and column operations a
the orthogonality of the sine and cosine functions have
sured the matrix is block diagonal, the other sets of ope
tions that every second element of the border is zero.
panding along the first row and down the first column
obtain the following expression for thenth nonperturbative
approximation to Eq.~2.16!:

detA(n)52sS )
N51

2n21

8 aND F11
8

l2 cosh2S l

2D S (
N51

2n21

8 bND G ,

~3.3!

where

aN5

11
4l2

N2p2

S 11
l2

N2p2D 2 , bN5

52
N2p2

l2

S 41
N2p2

l2 D S 11
N2p2

l2 D 2 ,

~3.4!

and we have written the approximation in terms ofl
5gFs, (LN5Np/l). That Eq.~3.3! is an approximation to
Eq. ~2.16! can be seen with the help of the relations@5#
03300
ed
r

e

d
-

a-
x-

coshx5 )
N51

`

8 S 11
4x2

N2p2D ,
x

2
tanhx5 (

N51

`

8
1

11
N2p2

4x2

,

~3.5!

whence

)
N51

`

8 aN5
coshl

cosh2S l

2D , (
N51

`

8 bN5
l

8
tanhl2

l2

8
sech2S l

2D .

~3.6!

The nature of the approximation is now evident. The fun
tion sinhl/l is rewritten as @coshl/cosh2(l/2)#$1
1(8/l2)cosh2(l/2)@(l/8)tanhl2(l2/8)sech2(l/2)#%, the
foremost factor is expressed exactly as the infinite produc
the aNs, and the expression in the square brackets as
infinite sum of thebNs. Thenth approximation is then de
fined by including the firstn terms in the product and in th
sum.

Note that detA(n) is an even function ofl ~of F), and
hence symmetric, for alln. This is desirable since the exa
Eq. ~2.16! is symmetric. The zeroth approximation, in whic
Eq. ~2.16! is approximated by detA(0)52s, is the only per-
turbative result, of order (gFs)0. Every approximation order
greater than zero contains all~natural number! powers of
gFs.

The matrix ~3.2! shall be our starting point for finding
detA1

(n) . Before replacing the first row of Eq.~3.2! with the
column-reduced form ofC(n)T(s) @the transpose of Eq.~3.1!
with s85s], we must reinstate the second row via row2
4-5
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→row22 1
2 gFrow1. This procedure is valid since the seco

element ofC(n)(s8) in Eq. ~2.8! is proportional to the first
element, and we could have used the second elemen
eliminate thee2gFs8 terms instead of the first element. Afte
in

03300
to

thus reinstating the second row and replacing the first r
with the column-reducedC(n)T(s), we obtain the reduced
form of the ~neither symmetric nor antisymmetric! matrix
A1

(n) :
~3.7!
the
sum

a-

o

n
ix
e is

n

rm
We may now expand the determinant to obtain the follow
nth approximation to Eq.~2.17!:

detA1
(n)52

1

2S )
N51

2n21

8 aND F11l1el1
16

l
cosh2S l

2D
3S (

N51

2n21

8 gND G , ~3.8!

where

gN5

12
2N2p2

l2

S 41
N2p2

l2 D S 11
N2p2

l2 D 2 . ~3.9!

Using the second relation of Eq.~3.5!, we find

(
N51

`

8 gN5
l

8
tanhl2

l

8
tanhS l

2D2
l2

16
sech2S l

2D .

~3.10!

The function 2el is thus rewritten exactly as
g coshl

cosh2S l

2D H 11l1el1
16

l
cosh2S l

2D
3Fl8 tanhl2

l

8
tanhS l

2D2
l2

16
sech2S l

2D G J ,

the first factor again expressed as the infinite product of
aNs, the expression in the square brackets as the infinite
of the gNs, and approximated by taking the firstn terms in
the product and in the sum. Note that the zeroth approxim
tion detA1

(0)52 1
2 (11gFs1egFs) to Eq. ~2.17! is nonper-

turbative.
The nth nonperturbative approximation t

2 1
2 (gF cothgFs1gF) is the ratio of Eqs.~3.8! and ~3.3!

~note that the product over theaNs cancel! is the object that
appears in thenth approximation to the Green’s functio
~2.15!. It is not obvious from the reduced form of the matr
A1

(n) that the symmetric part of the determinant of the sam

the determinant of the matrixÃ(n). That is no problem, we
find detÃ(n) in much the same manner as we found detA1

(n) :
take the reduced form ofA1

(n) , reinstate the second colum
with the operation col2→col21 1

2 gFcol1, and discard the
first row and column to obtain the symmetric, reduced fo
of Ã(n):
4-6
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~3.11!
,
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sult
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Expanding the determinant yields

detÃ(n)52cosh2S l

2D S )
N51

2n21

8 aND . ~3.12!

Upon comparison of Eqs.~3.12! and ~3.8!, noting thataN ,
bN , and gN are all even functions ofl (F), and using
1
2 (11coshl)5cosh2(l/2), our earlier statement that detÃ(n)

is the symmetric part of detA1
(n) is apparent.
v.

s

03300
Finally then, Eq. ~3.8!, the symmetric part thereof
Eq. ~3.12!, and Eq. ~3.3! substituted into Eq.~2.15! give
the nth approximation to the fermion Green’s function
a constant external field, in the Schwinger-Fock gau
as defined through the exact representation~1.1!–~1.3!.
The approximation easily leads to Schwinger’s exact re
~1.4! in the limit n→`, and we repeat and emphasize th
only the zeroth approximation corresponds to a perturba
result.
l
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