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Approximations to the QED fermion Green’s function in a constant external field
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An exact representation of the causal QED fermion Green’s function, in an arbritrary external electromag-
netic field, derived in Fried, Gabellini, and McKellar, and which naturally allows for nonperturbative approxi-
mations, is here used to calculate nonperturbative approximations to the Green'’s function in the simple case of
a constant external field. Schwinger’'s famous exact result is obtained as the limit as the order of the approxi-

mation approaches infinity.

DOI: 10.1103/PhysRevD.67.033004

PACS nuni®er12.20.Ds, 11.15.Tk

. INTRODUCTION nth approximatiorG{”(x,y|A), wheren=0,1,2 . . ., we re-
tain 2n+ 3 integrations. This means that for# 0, the odd
An exact representation for the causal QED fermionnumberN takes the valuebl=1,3, ... ,2— 1, while for the

Green’s functionG(x,y|A), in an arbitrary external field,

zeroth approximation al dependence is neglected. The ex-

was derived by Fried et gl1] in such a way as to obtain an act result is of course recovered in the limit-<, that is,
exact representation which naturally allows for nonperturbag (x,y|A) = lim,_..G"(x,y|A).

tive approximations. The rather intimidating exact represen-

tation is
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where()(s') is the solution to the “map,”

Q(s’)=gA< g(s')—zf:/ﬂ), (1.2

and{(s’) is given by
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It is well known that there is an exact expression, first
obtained by Schwingdi2], for the fermion Green’s function

in the simple case of a constant, but otherwise arbitrary, ex-
ternal field, which(in an arbitrary gaugereads

1 ~ds —ism
Gc(X,Y|A)=q)(X,y|A)(47)2fO —e

X e(i/4)(><7y)gF cothgFs(x—y)

i
m-— §y~ (gF cotths+gF)(x—y)},

X
(1.4
where the holonomy factab (x,y|A) is
D(X,y|A) = 9 HEALD + (2F (=) (1.5

and carries the complete gauge dependence of the Green’s
function. It is convenient to employ matrix notation, in
which we regard the field strength tensor as a constant, anti-
symmetric 4<4 matrix F.

It is obvious that Schwinger’s result must somehow be
contained as a special case of the exact representatin
(1.3). Furthermore, the Fradkin representati@)4], from
which the above representation was derived, almost trivially
yields Schwinger’s result. This leads us to expect that the
latter may be extracted, analytically, from the above repre-

[I§Z, and= ., represent the product and sum, respectivelysentation, and here we demonstrate that this is indeed the
over all odd natural numbers. It is easy to see that we magase.

approximate the Green’s function nonperturbatively by re-

We proceed by evaluating thath nonperturbative ap-

taining a finite number of integrations, in particular, for the proximation to the Green’s function in a constant field as
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given by Eqgs.(1.1)—(1.3) Schwinger’s result is then recov- is increased, a systematically improving, but nonperturba-
ered in the limit as the order of this approximation ap-tive, method for calculating the Green’s function in an exter-
proaches infinity. That we may carry out this program reliesnal field.

on two things: for the case of constdntthe ordered expo-

nential of Eq.(1.1) becomes an ordinary exponential, and the Il. THE INTEGRATION

2n+ 3 integrations we must perform are all Gaussian. Indeed
a large part of the evaluation of tmth approximation is an
extension of our matrix notation to account for this latter
fact. 2n+3 Gaussian integrals may be expressed as on
Gaussian integral over a (2 3)-dimensional space. The SF 1

integration is then, with the appropriate notation, essentially A (2)==5Fu(z=y),, 2.9
trivial. In Sec. Il we make the change of notation, perform

the integration, and express théh approximation in terms the initial motivation for which is that we may forget about

We must first choose a gauge to work in. It shall be con-
venient to work exclusively in the Schwinger-FocEK)
dgauge

of the two resulting, order 2+ 3, determinants. In Sec. Ill the holonomy factor, which reduces to 1. An immediate con-
we evaluate the determinants and take the limib to  segence is that&(&zM)AﬁF(z)=0, due to the antisymmetry
recover Schwinger’s result. of F; the factor in Eq.(1.1) containing this term in the ex-

We emphasize that the result when stopped at a fmite ponent also reduces to 1. With the above simplifications, the
(exceptn=0) is essentially nonperturbative, in that itnst ~ nth approximation to the fermion Green'’s function in a con-
a polynomial ing. The result of Eqs(1.1)—(1.3) is thus, asn  stant field, in theSF gauge, as given by E@1.1), is thus

2n—1

i (_i)zn ’
f dpdzdP]]’ dPydQy
N=1

(2m)® (27)4n

G(cn)(xyylASF)=f0 dse ismgdss-F

« eip~(x—y)+iP-(z—y)+i(s/4)P2+E’,z\llfll(iIZ)(Pﬁ-kQ,%‘)e—ifgds’[p—Q(”)(s’)]z{m_ iy [p—QM(s)T}, (2.2

whereQ("(s") is the solution to Eqs(1.2), (1.3), but with RG] NP
the sum in Eq.1.3) terminating atN=2n—1, and in the -— 2' 5 —cos( )
spirit of using matrix notation we have uselgp instead of Vs M= 14+ AR S
d*p and so on. In theSF gauge, Eqs(1.2), (1.3 yield a ,
simple integral equation fof("(s’): +Ay sin( )+e9F5'}QN, (2.9
Q(n)(s’)_gFJS'Q(n):_EgF[ z—y+s'(2p+P) where Ay=Nm/gFs. Our choice of gauge allows us to
0 2 make the change of variable—y—z, after which p
o1 , —-0WM(s") is independent ofy, so that the onlyx andy
_ 2_\/5 ' E[ p cos( N7s ) dependence in the exponent of Ef.2) appears in the term
x & NN B ip-(x—y).

If we imagine substituting Eq(2.4) into Eq. (2.2), we
recognize that all of the terms in the exponent of the inte-
grand, save the terip - (x—Yy), are able to be expressed in
the form (/2)X]A{"X;, where theX; are the 2+3
The equivalent differential equation plus boundary condition4-vector variables we must integrate over, Afﬁ) are some
may be solved with only elementary integrals. It is the com-matrix functions ofF, and thei/2 is a convenient normaliza-
binationp—Q(™(s’) which appears in Eq2.2), we find tion factor. This suggests that we extend our matrix notation,

and write this part of the exponent of Eq$2.2) as

1 , 1 , (i/2)XTAMX, whereX is a (2n+3)x1 column vector of
p—Q(s")=e"p+ EgFegFS (z=y)+ E(eng -1)P 4-vector variables, and(" is a (2n+3) X (2n+ 3) symmet-
ric  matrix with matrix elements A{).  Now

[ Ns’
+On sm( S )

] . (2.3

1% 1 Sin(Na-rs’) dpdzdAIZ " dPydQy=d?""3X. Let us define the col-
- umn vectorX such that
Vs N=1 1+A2 s
Ns’ 1 ,
+Ay COS{ +A_eng Py X"™=[p z P P, Q;...Py Qu ... Pan_1 Qpn-1].
N (2.9
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The termip- (x—Yy) is included by introducing

BMT=[(x—y)0 0 ... 0], (2.6)
whence e? V) =gB™™X A construction for the matrix

AWM s obtained by defining

PHYSICAL REVIEW D 67, 033004 (2003

p—QMW(s")=CcMT(s")X, (2.7)
S0 thate—iff)ds’[p—(z(")(s’)]zze—ifogds’(:(”)(s’)c(")T(s')x_ The
elements of the row vectd®(MT(s’) are read straight from
Eq. (2.4). The transpose of the row vector is

- e—ng’ -
1 )
_EgFe_gFS
1 )
5(6_5'” -1)
1 1 s’ s’ ,
— —sin| — | + A, cos| — |+ —e 87
Vs 1+A? 3 3 Ay
Mgy = 1 1 s’ s’ , 2.8
G — cos(—)+Al sin(—)—e_g“ ’
Vs 1+A? s s
1 1 _ [Nms’ Nams' 1 ,
—=——| —sin + Ay cos + —e 8
Vs 1+A2 N
1 1 Nars' Nas' g
TI+A2 cos| — + Ay sin —e 8¢
8 N

where we have usel'=—F (A5=—Ay), and omitted the
last two N=2n—1 elements for brevity. We also write
oiP 2+i(s/)P2+ Y (112) (PR +QF) = o(i2XTDMX ik defines

the matrixD(™:

-0 0 0 0 0 0 0
00100 0 0
01 %0 0 0 0

2

pm=| 0 0 0 1 0 0 0 2.9
0000 1 0 0
00000 -~ 10
L 00 0 0 0 0 1

Our change of notation complete, Eq2.2) and (2.4) be-
come

i (=)
(2m)® (2740

Gé”)(x,y|ASF)= fo dse—ismzeng
XJ g2n+3x e(i/z)xTA(“)x+iB(">Tx

X[m—iy-CMT(s)X], (2.10

where
S
A<“>=—2f ds'CM(s")CcMT(s")+DM, (2.11)
0

All that we have done is to reexpress, in the usual way,
the product of 2+3 Gaussian integrals as one
(2n+3)-dimensional Gaussian integral. After a change of
variableX—X—AM~1B(M  the integration is trivial, we ob-
tain

1 (= .
G(C")(x,y|ASF): 47T2f0 dseflsmzeg&r»F(DetA(n))fllz
w @ (i12)BMTAM 15"
X[m+iy-CMT(s)AM-1BM] (2,12

where DeA("™ is the determinant oA(".

The matrixA(™ is a 4(2h+3)x 4(2n+3) matrix which
is naturally partitioned into the (2+3)X(2n+3) 4X4 ma-
trices A= —2[3ds'C("(s")C{"T(s") +D{". The A",
as (matrix) functions of F only, commute, and are thus re-
ferred to as the “elements” oA(™. SinceA(" is symmetric,
we have the relation&{”=A{"T and A{V=A{"T . If we
form a determinant using the elemet§” , the result will
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be a 4<x 4 matrix, also some function &, which we denote

PHYSICAL REVIEW D67, 033004 (2003

this relation holds for all values of. Thus deA(™ and

detA(". Itis easy to convince oneself that the determinant oﬂetA_(ln) are yet to be determinedith, nonperturbative ap-
A(M which may be partitioned in this way, is the determi- Proximations to Eqs(2.16) and(2.17) respectively. The quo-

nant of the matrix we have called d&{”, that is, DeA(™
=det(detA().

Recalling thaBi(”)= (x—y) &;1, and with the notation dis-
cussed above, we may write

()
CcMT(5)AM-1BM = detAs
detA™

(x—y), (2.13

whereA{" is the matrix obtained by replacing the first row

of AM by C(MT(s). Similarly,

detA(M
detA(™

BTAM 1M = (x—y) (x-y), (214

where deA(" is the (1,1) cofactor oA(™, that is, A(" is the

matrix obtained by deleting the first row and the first column
of A, In fact it will be shown in the next section that

detA(M/detA(™ is the part of deAl"/detA(™ symmetric

with respect to the interchange of space-time indices, for al

n, and denoted by a superscriptThe nth approximation to

tient detA(ln)/detA(”) provides a nonperturbative approxima-
tion to — 3(gF cothgFs+gF), the symmetric part of the
former a nonperturbative approximation to the symmetric
part of the latter. In the next section we calculate exact ex-
pressions for these non-perturbative approximations, and
show that we can obtain Eq§2.16 and (2.17), and thus
Schwinger’s result, in the limih—oe,

Ill. THE DETERMINANTS

An obvious but important fact is that we only need to find
the determinants of the matrica$™ andA{", not the ma-
trices themselves. This means that we can sim@#)(s’),
its transpose, anB (™, with any row and column operations
which do not alter the determinant, before using 917 to
find A(M. We now find the reduced form &, from this it
will be easy to obtain the reduced form Af" and of A(™,

We perform the following sets of row operations on the col-
umn vectorC("(s'): use the first element to remove those
terms proportional te~ 9% from all other elements, noting
that the second element requires the row operation, row
—row,+ 3 gFrow;; then row, z— rowy,s— AnNfOWy . 4;
lhen FOW.4 4— 10Wy 1 4+ ([An— (LA N) 1/ (1+AR))rowy. 3;

the Green’s function, in terms of the two determinants

detA(™ and deA("V, is then

1 (= I
(n) SF) — —ism* . gso-F (n)y—1/2
G (x,y|ASF) 4772[0 dse s eI F(DetAM)
e~ (112)(x=y)(detA1detA™M) S(x—y)

detA{"

X .
detA(™

m—+iy (x—y)|. (2.19

Comparing Eq(2.195 with Schwinger’s resulf1.4), and
letting detA=lim,_..detA™ and de®;=lim, ..detA{"
it is necessary that

detA—2 sinhgFs 1
etA= Sw, ( . 6)

so that (DeR\) ~ 2= (1/4s?) (det(sinhgFggFs)~ Y2, and
detA, = —e9s, (2.17

so that the quotient dét; /detA= —1(gF cothgFs+gF).
Note that the symmetric part of d&t{/detA is

he last two sets for all rowdl=1,3,...,2—1. C("(s')
becomes
- e—ng’ =
0
1
2

C(s")~ — co!
Vs 1+A?

(3.

The row operations are performed 64V (s’) andD(™. To
keep things symmetric we perform the transposed operations
on CMT(s") andD™. The integrals required by E¢.17)
are elementary and we easily obtain the reduced form of the

(detA, /detA)S= — IgF cothgFs we mentioned above that matrix A(™:
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- 1 -
—2s 0 —g_F(e—ng—U x7 0 Xk 0
0 0 1 0 0 0 0
ey 1 0 0 0 e 0 0
gF(e 1)
3A
X 0 0 A - — 0 0
1+A?
3A 5—A?
AW~ 0 0 0 1 1 0 0 s 3.2
1+A7 (1+A3})? '
3A
Xy 0 0 0 0 -AZ =T
1+A%
3Ay  5—A%
0 0 0 0 0
1+A% (1+A )2

where xy=(2/VS)[An/1+AZ]1(1/gF)(1+e979) and we

have further used the (2,3) and (3,2) elements of the reduced coshx= H
A to eliminate those elements to the right of the former 1+
and below the latter. After trivially expanding the determi-

4x% | x -, 1
R

4x2

nant along the second row and down the second column we 3.9

are left with the determinant of a (2-1)X(2n+1) bor-

dered matrix. The first set of row and column operations andvhence
the orthogonality of the sine and cosine functions have en-

sured the matrix is block diagonal, the other sets of opera- =
tions that every second element of the border is zero. Ex-[[" ay= ,
panding along the first row and down the first column we N=1 cosﬁ(i)

obtain the following expression for theth nonperturbative
approximation to Eq(2.16):

2n—1 ) A 2n—1
detA(”)=25( IT an||1+ — cosR —)( > ﬂN”,
N=1 A 2/\ N=1
(3.3
where
4\2 N272
1\ T
aN= N2 |2 Bn= NZ72 NZ72\2°
1+W) a2 )(1+ A2)
(3.9

and we have written the approximation in terms »f
=gFs, (Ay=Na/)\). That Eq.(3.3) is an approximation to
Eqg. (2.16 can be seen with the help of the relatidhg

coshn - \? A
E N== tanh)\ Ssecl"r(E).

(3.6

The nature of the approximation is now evident. The func-
tion sinhA/A is rewritten as [coshh/cosH(\/2)]{1

+ (8/\2)costt(\2)[ (A /8)tanhn—(\%8)secB(A/2)]},  the
foremost factor is expressed exactly as the infinite product of
the ays, and the expression in the square brackets as the
infinite sum of theBys. Thenth approximation is then de-
fined by including the firsh terms in the product and in the
sum.

Note that deA(™ is an even function ok (of F), and
hence symmetric, for alh. This is desirable since the exact
Eq. (2.16) is symmetric. The zeroth approximation, in which
Eq. (2.16 is approximated by de&t(?)=2s, is the only per-
turbative result, of ordergFs)°. Every approximation order
greater than zero contains dhatural number powers of
gFs.

The matrix (3.2) shall be our starting point for finding
detA{"V . Before replacing the first row of E¢3.2) with the
column-reduced form oE(M7(s) [the transpose of Eq¢3.1)
with s’ =s], we must reinstate the second row via gow
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—row,— 2gFrow;. This procedure is valid since the second thus reinstating the second row and replacing the first row

element ofC("(s") in Eq. (2.8) is proportional to the first

with the column-reducedM7(s), we obtain the reduced

element, and we could have used the second element form of the (neither symmetric nor antisymmetrienatrix
eliminate thee 975" terms instead of the first element. After A{":

|

We may now expand the determinant to obtain the following

nth approximation to Eq(2.17):

2n—-1
s Y1 e

2\ N=
2n-1
X Z, YN) ’
where
2N?72
-—0
YNT NZ 72 NZ72\2
47 )( ' k2)

Using the second relation of E(.5), we find

i, R N A A A? 2
& yN—gtan gtan 5 1—6580

The function 2" is thus rewritten exactly as

16 A
1+N+er+ ~ cosﬁ(—)

2

_ oFs 0 1 0 1 1 0 1 1
€ — — — — — LY — — —
2 Js 1+A7 Js 1+A;
1 1
gFs 0 —(e 8F+1) —Eng{ 0 —Eng,{, 0
Loesrsony 1 0 0 0 0 0
gF(€ 1)
3A
X 0 0 —A2 - 0 0
1+A3
3A, 5—A%
0 0 0 - 0 0
1+A? (1+A3)?
3A
Xy 0 0 0 0 —A2 - =
2
1+A2
0 0 0 0 0 3Aw 5=Ay
1+A% (14+A3)?

(3.7

coshh
A

2

cosif

X

8

A A A
— tanh\ — 3 tanf(—)

16
1+N+er — cosif

N

2

2
_)1\_6 secﬁ()\)

3

|

2

the first factor again expressed as the infinite product of the

ayS, the expression in the square brackets as the infinite sum
of the yys, and approximated by taking the firsterms in
the product and in the sum. Note that the zeroth approxima-
tion detA(¥=—1(1+gFs+e%9) to Eq.(2.17 is nonper-

approximation to

—1(gF cothgFs+gF) is the ratio of Eqs.(3.8) and (3.3

(note that the product over thegs cancel is the object that
appears in thenth approximation to the Green’s function
(2.15. It is not obvious from the reduced form of the matrix
A(l") that the symmetric part of the determinant of the same is
the determinant of the matriA(™. That is no problem, we
find detA(™ in much the same manner as we foundAfgt :
take the reduced form o&{", reinstate the second column

(3.9
turbative.
The nth nonperturbative
(3.9
A
z .
(3.10

with the operation cgl-col,+ 3gFcol;, and discard the

first row and column to obtain the symmetric, reduced form

of AM:
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AW~

Expanding the determinant yields

Upon comparison of Eqg3.12 and (3.8), noting thata,
Bn. and yy are all even functions of (F), and using

1(1+ cosh\)=cosH(\/2), our earlier statement that df”

N=1

is the symmetric part of dét{" is apparent.
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