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The Becker-Becker-Strominger formula, describing the string world-sheet instanton corrections to the four-
fermion correlator in the Calabi-Yau compactified type-ll1A superstrings, is calculated in the special case of the
Calabi-Yau threefold realized in the intersection of two Del Pezzo surfaces. We also derive the selection rules
in the supersymmetric GUT of the Pati-Salam type associated with our construction.
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[. INTRODUCTION on these wrapped M2-brane configurations just amounts to

the holomorphy condition on the world-sheet instantdis

One of the central problems in modern string and fieldThe same conclusion was rederived in Réf. by requiring
theories is the calculation of strong-coupling effects. A cal-the equivalence between a global supersymmetry transfor-
culation of the instanton corrections to various physicalmation and a kappa transformation of the Green-Schwarz

quantities is the important part of this problem. A study of SUp€rstring action,

the nonperturbative corrections in string theory due to the
M-theory branes was pioneered by Becker, Becker and

Strominger[1]. The simplest instantons are the So'ca"edwhere& is the holomorphic string world-sheet exterior de-

string world-sheet instantons whose contributions are 'nder'ivative, and X™ are the complex coordinates in C¥f

pendent of the string coupling. The string world-sheet instan-_ 123

tons were extensively studied in the pgteven before Ref. The topological equation formally describing the string
[1]. In the context of the type-IIA superstring compactifica-\yord-sheet instanton corrections to the four-point fermion
tion, the existence of the .vvorld-she.et strlng instantons can ngauginO correlator 75, , wherel,J,K,L.=1,2,...h;,,
related to the holomorphic curves in the internal Calabi-Yauyas obtained by Becker, Becker and Stromindér
(CY) spaceg2].
In the context of eleven-dimensional M thedd], the o
ten-dimensional type-lIA superstring theory arises from the Ac,Fruk=Ne e IICZBL b'Jc bjfc bKL o
M-theory compactification on a circl8!, whereas the type- ? ? ? ? (1.2
[IA superstrings themselves can be understood as the double
compactified(in spacetime as well as in world volumgi2- ~ WhereC, is the homology class of the instantdty} is the
braned4]. orthonormal basis of harmonic (1,1) forms in CX¥js the
The M2-branes can be Wrapped about B:i-eand a CY Kahler (l,l) form of CY,B is the (closed Neveu-Schwarz
(supersymmetric2-cycleC,. They give rise to instantons in (1,1) form, andN is the normalization factor independent
four (uncompactifiel spacetime dimensions, whose effectsuponb; .
can be computed by the standard methods of quantum field Like any other (1,1) form, the ford+iB can be decom-
theory [5]. The low-energy effective four-dimensional field posed with respect to the cohomology basig,
theory of the CY compactified type-IIA superstrings is given
by theN=2 supergravity interacting with, ; hypermultip-
lets andh, ; vectorN=2 multiplets, wheréeh,; andh, ; are
the Hodge numbers of C¥6]. The moduli spaceV of the
compactified theory is given by a direct product of the hy-where the complex coefficien{g'} are called CY moduli.
permultiplet moduli spacé1,; and theN=2 vector multip- Integrating Eq.(1.3) once with respect to the modulus
let moduli spaceM,,, while theS! x C,-wrapped M2-branes vyields the famous topological formula for the world-sheet
correct the geometry ai1y, only. The Bogomol'nyi-Prasad- instanton corrections to the Yukawa couplinggy [6]. In
Sommerfield(BPS (or the supersymmetric magondition  the case of Yukawa couplings, mirror symmetry is known to
confirm the topological equation on thdm)]. This fact indi-
rectly supports the more general equati@r?) also[1].
*On leave from Department of Physics, Krasnojarsk State Univer- Like the similar equation on the Yukawa couplings, the
sity, 660028 Russia. Email address: cheshel@physik.uni-kl.de  topological Eq.(1.2) is merely a formal equation since one
"Email address: ketov@comp.metro-u.ac.jp still has to specify how the integrals on the right-hand side of

IXM=0 or ax™=0, (1.1)

hi1

J+iB=|Zl Z'b,, (1.3
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the equation are to be calculated. Their calculation for a gewhere we formulate the mathematical instruments allowing
neric CY space represents the important technical probleras to calculate the integrals in E(L.2). Some explicit ex-
whose solution is unknown, to the best of our knowledgeamples are given in Sec. IV. We conclude with Sec. V where
There are, nevertheless, some explicit calculations of theome connections between our work and the recent literature
Yukawa couplings in the literature for the special CY spacesre outlined.
realized as the complete intersections in a product of the
projective spacefr].

Our main purpose in this paper is to calculate &g2) in
the case of the special CY to be defined in the intersection of Let us consider the compact CY spaces realized as the
Del Pezzo surfaces. The Del Pezzo surface is a manifold afomplete intersections in a product of two projective spaces,
complex dimension 2 with a positive first Chern cl48% P4x P4, with the configuration matrix
We use the “old” geometrical methods first developed in

II. QUADRICS, DEL PEZZO AND CY

Ref.[9] for computing the Yukawa couplings in a superstring 41 2 200 1
model with three generations of quarks and leptons; see also . 2.1
Ref. [10]. The geometrical approach is based on Poincare 4 00221

duality and a knowledge of the homology group basis of CY.

Our paper is organized as follows: in Sec. Il we introduceTo decipher this matrix, we introduce two sets of homoge-
into the special CY spaces realized as the complete interseneous coordinates,andy, in eachP*, define two Del Pezzo
tions of five quadrics in a product of two projective spacessurface, andK,, and a hypersurfacgin P4x P* by the
P4x P4 The main body of our paper is given by Sec. Ill following constraintd12]:

 ¥i=0, Pi0=2 biy?=0]. 22

4
S= [ (X,y) e P4x P4 P5(X,y)=_20 Cij Y| =0] )
1,]=

The sum of entries in each line of the matfx1) to the  so that its Euler characteristig(Kg) is
right of || exceeds exactly by one the dimension of the em-
bedding spacé* to the left of||, so that

1
EX(KO) =hy;—h,,=—16. (2.6
Ko=(KxxK,)NS 2.3

appears to be Kder and of the vanishing first Chern class, It is not easy to construct the complete intersection CY
i.e., Ko is a CY space, in agreement with the theorem ofspaces with the physically interesting values of the Euler
Greene, Vafa and Warn¢3]. We assume that the real co- characteristicy =+ 6,- 8. However, it easily becomes pos-
efficients of the quadric®,, P,, andPs in Eq. (2.2) are  sible through the so-called ‘orbifoldization’ procddd]. In
chosen to obey the transversality condition for all hypersurour case, we can introduce the quotignof the manifoldKk ,
faces in the definitiori2.3) of K, i.e., with respect to a discrete symmetry subgrdsp=_Z25 of G,
which acts freely inKy. This yields the CY spacK of the
dP1/AdP/\dPs/\dP,/\dPs#0. 2.4 Euler characteristig(K) = —8. TheG-group elements gen-

. . . eratingGg can be chosen as follows:
This equation guarantees the smoothness of the simply con- 9%F

nected manifold, [14]. ) _

The first column in Eq(2.1) thus indicates that we con- 9,=diag1,1,1-1,-1), g,=diag1,1-1,1-1),
sider a CY in the producP*x P*, whereas the other col- 2.7
umns denote bipowers of the polynomialsxéndy in Eq.

(2.2. so that the action ofj; reads

The nontrivial Hodge numbers &, are given by

h,1(Ko)=28 and hy (Ko =12, (2.5 We use the standard notatifhd].
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010 (X0.X1,X2,X3,X4:Y0,Y1,Y2.Y3,Ya) TABLE I. Complex lines in the Del Pezzo surfaég(K,) and
the sign factors; .

—(X0,X1,X2, X3, = X4;Y0,Y1,Y2, ~ Y3, ~ Ya),

(28) L|ne €1 &2 €3 €4 E5 &g L|ne €1 E&p €3 €4 €5 E&p
. . . B 4+ 4+ — 4+ 4+ + Fyy - — - 4+ + +
and similarly forg,. The manifoldK, has the hidden dis- - _ . .  _ 2 . _ _ _ | _
crete symmetry groufs isomorphic toZ3, whose action is E2 e 4 - R4
: 3 23
given by E, - — — 4+ — — Fa - — 4 — - -
Z5(A): A=diag —1,1,1,1,, Es + - - - — + Fp - - + - + +
G + + — + — — Fg - — + - — -
ZZ(B): B=diaq1,—1,1,1,1), Fio -+ + + - + Fgp + - + + - +
Fls + + + — 4+ + Fg — + — — — +
Z,(C): C=diag1,1-1,1,1), (2.9
Z,(D): D=diag1,1,1-1,1), points. Since the Hodge numbkey ; of P2 is equal to one,
_ _ _ after blowing up at five point$ ; is equal to H*5=6,
Z(S): S(xi)=Yi,  S(yj)=X;. while the other Hodge numbers remain unchanged. Next, the

In th beddi 4y 4 h Del Pezzo surfac&, possesses exactl_y 16 complex lines
n the embedding space™x 7" we have {C,} that can be described by the relations
g;=ABC and g,=ABD. (2.10 )
Q4233221 0X2 — €1840930242X0 ~ | £2841831820X1= 0,
The CY manifoldKj, is the simply connected covering space
of the CY spaceK. The latter still possesses some hidden  a,5a3,8,0X3— £3840831820%0 — €48418303821X1=0, (3.1

symmetries that survive after its factorization 8y . These

discrete symmetries are 43842810%4 — £58418330820X0 ~ | £6840A21831X1 =0,
GH:ZZ(A)XZ2(B)XZZ(C)XZZ(D)XZZ(S) where ag=vac—a, O0<I<k<4, and g=*1, |
Z5(91) X Z5(92) =1,2,...,6. Thesign coefficientse; and our notation for
the complex lines on the Del Pezzo surfaces are collected in
=Z,(A)XZ5(B)XZx(S). @1y o) P

In the context of the type-IIA superstring compactifica- 1he homology class of the Kiger form on Del Pezz&,
tion, the CY space gives rise to the four-dimensional uni- ¢@n be represented by the intersection of the hyperpane
fied model withfour generations of quarks and leptons, andWith Ky,
an Eg gauge group. Further breaking Bf by the standard
mechanism of the vacuum Wilson loops yields the Pati- H={xo=0}CKj. (3.2
Salam-like unified model with a gauge groupu(4). )

X SU(2), X SU(2)xx U(1). The Ykawa couplings in this Under the symmetry grouf the 16 lines on the Del

four-generation superstring model were calculated in Ref€2Z0 surfaceK, are naturally decomposed intthree
[12]. classes(i) the five linesg;, i=1,2,3,4,5, thatpairwise do

not intersect with each other and thus represent five linearly

independent homology classes lé§(K, ,R); together with

the hyperflat sectiomrd (dual to a Kéler form of the Del
Equation(1.1) implies that the CY-compactified type-llIA Pezzo surfac&,) they form a basis iH,(K,,R), (i) ten

superstring world-sheet instantons are described by the isdines F;; that have intersections only with; and E;, and

lated holomorphic curves in CY. A single instanton corre-(iii) one lineG intersecting with alE; (see Table | also The

sponds to a curve of genus zero. In the cask pfthere are 256 holomorphic curves are then decomposed with respect to

256 holomorphic o€ P(1) curves. A derivation of this num- the Gg=Z,XZ, discrete symmetry group of order 4 into

ber was given, for example, in R¢fL5] where it appeared as four classes that are cyclically symmetric with respect to

the leading term in the series expansion of the fundamentaheir interchanging.

period as a solution to the Picard-Fuchs equation for the Accordingly, we get the following matrix of the intersec-

given CY. A geometrical derivation of the same result istion indices:

given below in this section. However, first we need more

III. INSTANTONS IN DEL PEZZO

information about the geometrical structure of the spége (Ei . Ep)=—36ij, (Ei,Fy)=6j+ di,
defined by Eq(2.3) and the topology of the Del Pezzo sur- (3.3
facesk, andK, . (E;,G)=1, (E;,H)=1, (H,H)=4.
As is well known in algebraic geometify16], a smooth
intersection of two quadrics i®* is biholomorphic equiva- Having obtained the holomorphic curves and the homol-

lent to the projective plane with five different blown-up ogy basis explicitly, it is not difficult to determine the action
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of the discrete symmetry group on the latter. The generating TABLE II. The transformation properties of the (1,1) forms in

elements ¢,,9,,A,B) of the groupG act as follows: 27 of E¢ under the discrete symmetries.
01(E1,Ez,E3,E4,E5,H) = (E3,F45,E1,F25,F24,H), Fields 01 92 A B S
02(E1 Ep,Es,E4,Es H) = (B4 Fas,Fo5,E1,Fas,H), (7,9, L L ! ! !
(n,9,9; 1 1 1 -1 1
A(E1,Ez,E3,E4,E5,H)=(F12,G,F33,F24,F25,H), (n9,9%s 1 1 -1 1 1
n.a.qg¢ 1 1 -1 1 -1
B(E;,Ey,Es,Eq,Es,H)=(F15,Fas,Fas,Fas,G,H). (09,94 . . . . .
(34) (nlg!g)S - -
(n,9,9%s 1 1 -1 1 -1
For example, to gad4(E,) = F4s, we choose for definiteness @), -1 1 -1 -1 1
ap,=0, a;=1, az=3 anda,=4 in Eq. (3.1) where the co- o 1 1 1 1 1
efficientse; are given by Table I. We find (% lZ
(9,19, 1 -1 -1 -1 1
91(E2) =g1{Xo+ \6xo— i V6=x3— 4%~ 3%, (9.1)2 1 ot S S S S
:X4_3XO+2X]_:O} El -1 -1 -1 -1 !
H, -1 -1 -1 -1 -1
={X2+ \/EXO_i \/6X1=X3+i4X0+ 3X1
= X4+ 3X— 12X, =0} =F 5. (39 Hence, the coefficients in E¢3.8) are given by
The curveH is invariant under all these symmetries, )
whereas each ling; goes into one of the 16 lines lying in Ce=1/3 and cti=c;=-2/3. (3.10

the intersection of quadrics. The symmetry transformations
act independently on each fact®* in a productP*x P*, ~ Equation(3.7) is obtained similarly.
so that it is enough to consider only one projective spate In the grand unification theories of the Pati-Salam type,
The action of theS symmetry ofG just replaces each (1,1) based on the gauge grotf that is supposed to be broken
form on Del PezzK, by the corresponding (1,1) form on by Wilson lines as
K. We find the following decompositions:

Eg—SU(4) X SU(2) X SU(2)rxU(1), (3.1

5
1
Fi=3 .21 Bi+H|-E~F, G ihe representatioB7 of E4 is decomposed as follows:
and 27=[(a,1) = (4c,2L IR ]+ [, 1°= (4,1L,2R)]
5
1 +[H=(1c,2L,2R)]+[9g,9°=(6c,1L,1IR
G=§(2H—E Ei)- 3.7 [H=(1c )1+[9,9°=(6c )]
- +[n=(1c1L,1R)], (3.12

For example, to prove Eq3.6), we begin with a decompo- -
sition where Qg ,lgr ) stand for the quark-lepton familieb, are

the new leptonsg are the new quarks andis the singlet.

5 As was demonstrated in Rdfl4], the particle spectrum
Fij= > ¢E;+cgH (3.8 corresponding to the (2,1) forms Kis given by
=1
whose coefficientsq ,c¢) are to be determined. Let us now hayt 10(n,9,9%+6(f,H), (3.13

consider the intersections &f; with H, E;, E;, and M

:EiszlEi by using the index intersection matrig.3). We wheref stands for ¢,1,9%,1¢). The antiparticles correspond-
find ing to the (1,1) forms irK are given by

(Fij ,H)=C1+C2+C3+C4+C5+4C6=1, hl,l: G(REE:)_’_Z“:_'H) (314)

(Fij B)=—citce=1, The transformation properties of the fields, in accordance

(Fi E)=—ci+ce=1 (39 with the decompositioni3.12), are collected in Table II.
el IheT Equations(3.4) also allow us to identify the special com-
5 binations of the basic (1,1) homology elements that are in-
Fi > Ei) = —(Cq+Cy+C3+Cy+Cs)+5Ce=2. variant under the CY symmetry grouy of Eq. (2.11).
i=1 They are
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5 lomorphic curvel is the image of the string world sheet in

FY=H"Y+6EY—22 EMY, the CY space under the instanton map.
=1 Now, on the one hand, the integral of any closed fasm
H*=H*+HY E*=pX+gY (3.19 of the maximal degree ové¢,= (K, XK,)NS can be repre-
! e sented by the value of the cohomology classeofon the
wherei=1,2,3,4,5. cycle K,. On the other hand, the cycle intersection in the

In the context of the CY superstring compactification, thehomolog?es is dual to the exterior multiplication in the co-
invariant elements of the (1,1) cohomology basis corresponfgomologies. Hence, we have
to the physical matter fields transforming2i of Eg [6,11].

A direct calculation yields the following set of twelve invari- J o=(WAH)[KXK,], (3.18
ant combinations in the given homology basisHf( K*,R) Ko
dual to the cohomology groui™* [14]: where we have introduced the class of cohomologie$ o,
— . and the imagéd of the cohomology class of the Kker form
(n,9,9%),=H*+H, in P24 dual to the hyperplang The hyperplané& represents
. . the hypersurfac& after Segre embeddifd.6] restricted on
(n,9.0%,=F;, (n,9,9%;=F5, K«XK,. The Segre embedding in this case means the em-
L bedding of a producP*x P* into the projective spac®?*
(n,9,9%,=H*—HY=H", by the coordinate identificatiow;; =x;y; wherew;; are the
homogeneous coordinates Bf*.
(n,0,0)s=F,, (n,0,0%=F5;, (3.16 It is worth mentioning that only one componet(HY)
remains in what follows frontd = H*+HY. Hence, our prob-
PR PR lem reduces to a calculation of the intersection indices from
(9,1)1=F3, (g9,1)2=F3,

the homology grouH,(K,,Z) only. In general, the Poin-
careduality establishes the isomorphism between the closed
(DeRham homologies and compact-dual cohomology
— + = _ classes, as well as the isomorphism between confpsedR-
Hi=F;, Hy=Fg, ham homologies and cohomologigs7]. In thecompactCY

. case we consider, there is no difference between the closed
where the quark-lepton familieg|(l) and extra leptongH) and compact classes

are mere]y considereq he're as the formal notation. There are Taken together, this allows us to replace the integral of the
'?ho two dlff?rentfcomtil_natlons Ofche Cy((:jles ttff:atdv_voulo{ have 1,1) formb, along the curveC in Eq. (1.2) by the intersec-

€ same transiormation properties under he CISCrele Symi, , inqay of this curver with the cycleF, that is Poincare
metries. We verified this statement by a straightforward cal—du al tob
culation (see Table ). This means that our identification of b

(0%19,=F,, (0°19,=F,,

cycles is unigue.

The instantons in the Del Pezzo intersection have the Lb|=(F|'ﬁ)- (3.19
form C, X C, that yields 16<16= 256, as it should. The in-
tersection of these 256 surfaces with the hyperpfireEq. As a result, the instanton correction to the four-fermion

(2.3 yields 128 complex curves of genus zero on one of thesorrelator in Eq/(1.2) is proportional to a product
Del Pezzo surfaceXx point on the other Del Pezzo surface.

Accordingly, there are two ways of choosing on which Del _
Pezzo surface we take the line to lie on, while there are four Lb' LbJJEbKLbL_(F"E)(FJ'E)(FK'E)(F'-'E)'
ways of choosing a point on the other Del Pezzo surface. (3.20
This yields in total 2<4X16=128 different instantons of . ) o
the typelinexpoint, and, in addition, 128 different instantons where the brackets W|.th dots stand _for the intersection |nd|—
of the typelinexline. Unlike Ref.[9], where a similar prob- C€S of the correspc_)ndmg cycles, which are to be determined
lem was solved in the case of teabic Del Pezzo intersec- from the matrix (3.3 of our basic curves
tion in P3X P3, we have a more degenerdgnd more sym- (E,H*,EY ,HY)—see Sec. IV for some explicit examples.
metric) situation. We label our 256 curves by the corresponding lines in one
Each holomorphic curve corresponding to an instanton i®f the following forms:linexline, point<point, and line
thus given by an intersection @, x C, with the hyperplane X I|n_e in the coverK,. The validity of the cyt_:le_lntersectlon
Sin accordance with E¢(2.3), whereC, are 16 lines in the Mmatrix for both Del Pezzo surfacés, andK is justified by

Del Pezzo surfac&, and similarly forK,, the fundamental comr;wtative di%gram:
X ¥y
L=(CyXCy)NS. (3.17 K, ~—K.XK,—K,

There are four classes amongst the 256 instantons that are
cyclically connected in our case. To calculate Ef2) we POl
have to choose a representatiGrom each class. The ho-
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In a more explicit notation we just get
f H =1, f H =-1,
G*x{point} {pointtxGY

| bi= | ivite= [ prirbi= [ peirbi= | bix @3
L L L L (Pyei) % £ f H-
G*xGY

=0.

- bei(:(':x x)s (3.2 Therefore, we obtain

(H"-L)*=[(H*+HY) - (G*+ GY) |*=(H*.G*+ HY-GY)*
where the projectiom, lifts the form b, on K, to K, XK,

with its simultaneous restriction on the cunge. The nota- =(1+1)*=2" (4.4
tion (i) in Eq. (3.2) stands for the embedding & into o )
Similarly, we find
K XKy .
IV. EXAMPLES fGXxGYH JGXXGVH J'GXXGVH fGXxGyH
Equations(3.19 and (3.20 reduce a calculation of Eq. =(H - [G*XGYD*=[(H*—HY)- (G*xXGY)]*
(1.2 to a calculation of the homology intersection indices. In X ~X_ Y. A4 4
turn, this can be easily done when instantons are labeled by =(H*G—-H".G")"=(1-1)"=0. (4.5

lines in the intersection of quadrics. As was demonstrated in
Sec. lll, there are the 128 holomorphic curves of the type_l_h
pointxline and lineXpoint, and the 128 curves of the type
lineXxline. The intersection of these curves with our homol-
ogy basis is given by Ed3.3), in agreement with E(3.18).
The 16 lines on Del Pezzo are divided into three classes: one
G, five Ef that intersect withG, and tenFj (see Table )l

fF,] x{point}

In fact, any correlator containing the factfil ~ vanishes.

us we see that some fermionic correlators are equal to zero
despite the fact that the discrete symmetries allow nonvan-
ishing values for them.

As anothef(less trivia) example, let us consider the factor
X

Hence, each type of lines receives further classification ac- )

cording to its class. It is worth mentioning that the instanton

contributions of the typgointxline and linexpoint do not

always coincide. :§+ 5—2:1. (4.6

As our first (simple example, let us consider the cor-
relator given by

*= [HX+HY]-E(Z Ei+H)—Ei—Ej

Similarly, we find

f H+JH+JH+JH+=(H+-£)4 (4.1) f H+=f H* =1, f HT=2,
{point}><Fiyj F;(jx{point} FiijFiyj
(4.7)
over £L=G*XGY. Let us recall(Sec. Il that H"=H*
+HY, while and
f H‘=J H =-1, f H™ =
f H+=f HT=1 4.2 Ffjx{point} {|ooint}><Fiyj FijFiyj
G*x{point} {pointt xGY (4.8
and A more complicated example is given by
|
f Fa=(F2 .G*x{point}) =[ (FX+FY),(G*x{point)]= (F§-G*) =| H*+6E{—2>, E?() -GX
G*x{point} i
HX+ 6EX 22 EX) 2H*— E EX>
2 4 1 2
=§HX.HX+4HX-E§—§Z EiX-HX—gHX.Z EX—2EX- >, Eix+§2_ Ef > Ef
i i ! ]
8 20 5 10
+4— ——-+2—-—=-3. (4.9

"3 3 3 3

Similarly, we find
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f Fi=—3,
{pointtx GY

and, hence,

4
( JGXXGYF;) =(-3-3)'=6"

We find, in addition,

f Fi_:J Fi+: -3,
G*x{point} G*x{point}

and

J F;:—J Fr=+3.
{point} xGY {pointtx GY

The similar contributions are given by
oo
G*xGY

f Ff=—J. Fi=-7+68;,
{point}><Fiyj F?(J-X{point}

I
—
=X
X
x
it S
-
!
I
o

and

f Fi'=14-125; .
FXxFY,

ij ij

The rest of the integrals is given by

f Fﬁzf F'=4-65;,
Fixjxey GXXF%}
it L™ = Jettpont™ = S ™ -
{point} xEY {point}x EY Ex{point} Ex{point}
fx F'=9, JX F, =0, fx Fi=-6+66;,
E{'xE/ EfxE/ E[xE/

i {point} {p0|nt}><EJ- E; ¥E;

31

f H+=f H+=f H*:_f H =1,
Efx{point} {point xEY Ex{point} {point}><EJy

f H+=f H+=f Ht=2,
EiXxEjy E‘xGY G*xE/
J H+=J HT=2,
Gx><Fiyj Fixijiy
o Lo
GXXFiyj EixxFi’}
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The fermionic correlators in Eq1.2) are given by vari- to Ref. [19], a group of the classical symmetries of Del

ous products of four factors calculated above. Pezzo(i.e., the global diffeomorphisms preserving the ca-
nonical class of Del Pezzocorresponds to the U-duality
V. CONCLUSION symmetries of the toroidally compactified M theory. The M

) o ) . ] theory (BPS branes are mapped under this “mysterious du-
It is surprising, from the mathematical viewpoint, that the 3jity" to rational curves on Del Pezzo, so that the electric-

fermionic correlator¢1.2) are entirely determined by topol- magnetic duality of M theory receives a nice geometrical
ogy so that they can be explicitly calculated. Their physicalyescription in terms of the Del Pezzo surfa¢g§]. In par-
significance is yet to be understood. At the very least, Nowrjcylar, the bound states of the (1/2)-BPS branes in M theory
ever, all the fermionic correlatord..2) vanish in the(classi-  can pe related to the intersections of spheres in Del Pezzo
ca) tree approximation by index theorerf], so that the [1g) Further developments of this new duality require count-
instanton corrections obtained are actually the leading conng intersections of the holomorphic curves of higher genus
tributions to these correlators. This leads to the highly non, cy [20].

trivial selection rules for the physical processes described by | the context of Horava-Witten theof21], similar cal-

the fermionic correlators in the CY compactified type-Il ¢yjations of instanton corrections are needed when one con-
strings. For example, some correlators exactly vat&#r.  siders a torus-fibered CY threefolél over the Del Pezzo
IV) even though the discrete symmetries of CY allow NON-hase, with the nontrivial first homotopy group,(2)=Z,.

vanishing values for them. L When a gauge vacuum on the hidden brane is trivial, the
Though our geometrical approach is similar to the on&peefoldz admits three families of the semistable holomor-
used earlier for other string models in Refi2,9], there are  ppic vector bundles associated with s 1 supersymmetric

a]so some conceptual djfferences. We find it eimpler to CONyauge theory having threehiral) quark-lepton familes and
sider instantons in the simply connected covering sp@d® o GUT groupSU(5) in the observable bran0]. Both

manifoldK, of K, instead of the CY spad¢. Each instanton  fiye_pranes in this Horawa-Witten type construction are

in K has four representatives iy, Which are all equivalent wrapped about holomorphic curves & whose homology
as regards th&-invariant real quantities. classes are exactly calculable.

We merely discussed theneinstanton corrections to the oy investigation is also relevant for studying the super-
four-ferm_lon correlators. (_)ne may expect the existence Ogymmetric Pati-Salam-type models from intersecting
the multi-instanton corrections from the maps of higher de-p_pranes (see, e.g., Ref[22]), and the nonperturbative

gree (more than ong Unfortunately, the status of multi- flipped SU(5) vacua in heterotic M theorf23,24.
instantons in the context of type-ll1A superstrings is not quite '

clear[1] (see, however, Ref18]).

One might also think that the intersection of Del Pezzo
surfaces is the very special case of the type-IIA string or M The authors would like to thank R. Manvelyan, A. S.
Theory compactification. In fact, as was recently noticed inTichomirov and A. K. Tsikh for useful discussions and sug-
Ref.[19], there is a non-trivial duality between toroidal com- gestions. This work was supported in part by the “Deutsche
pactifications of M theory and Del Pezzo surfaces. According-orschungsgemeinschaft” and the “Volkswagen Stiftung.”
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