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Type IIA string instanton corrections to the four-fermion correlator in the intersection of Del Pezzo
surfaces
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The Becker-Becker-Strominger formula, describing the string world-sheet instanton corrections to the four-
fermion correlator in the Calabi-Yau compactified type-IIA superstrings, is calculated in the special case of the
Calabi-Yau threefold realized in the intersection of two Del Pezzo surfaces. We also derive the selection rules
in the supersymmetric GUT of the Pati-Salam type associated with our construction.
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I. INTRODUCTION

One of the central problems in modern string and fi
theories is the calculation of strong-coupling effects. A c
culation of the instanton corrections to various physi
quantities is the important part of this problem. A study
the nonperturbative corrections in string theory due to
M-theory branes was pioneered by Becker, Becker
Strominger @1#. The simplest instantons are the so-call
string world-sheet instantons whose contributions are in
pendent of the string coupling. The string world-sheet inst
tons were extensively studied in the past@2# even before Ref.
@1#. In the context of the type-IIA superstring compactific
tion, the existence of the world-sheet string instantons ca
related to the holomorphic curves in the internal Calabi-Y
~CY! space@2#.

In the context of eleven-dimensional M theory@3#, the
ten-dimensional type-IIA superstring theory arises from
M-theory compactification on a circleS1, whereas the type
IIA superstrings themselves can be understood as the do
compactified~in spacetime as well as in world volume! M2-
branes@4#.

The M2-branes can be wrapped about theS1 and a CY
~supersymmetric! 2-cycleC2. They give rise to instantons in
four ~uncompactified! spacetime dimensions, whose effec
can be computed by the standard methods of quantum
theory @5#. The low-energy effective four-dimensional fie
theory of the CY compactified type-IIA superstrings is giv
by theN52 supergravity interacting withh2,1 hypermultip-
lets andh1,1 vectorN52 multiplets, whereh2,1 andh1,1 are
the Hodge numbers of CY@6#. The moduli spaceM of the
compactified theory is given by a direct product of the h
permultiplet moduli spaceMH and theN52 vector multip-
let moduli spaceMV , while theS13C2-wrapped M2-branes
correct the geometry ofMV only. The Bogomol’nyi-Prasad
Sommerfield~BPS! ~or the supersymmetric map! condition
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on these wrapped M2-brane configurations just amount
the holomorphy condition on the world-sheet instantons@2#.
The same conclusion was rederived in Ref.@1# by requiring
the equivalence between a global supersymmetry trans
mation and a kappa transformation of the Green-Schw
superstring action,

]Xm̄50 or ]̄Xm50, ~1.1!

where] is the holomorphic string world-sheet exterior d
rivative, and Xm are the complex coordinates in CY,m
51,2,3.

The topological equation formally describing the strin
world-sheet instanton corrections to the four-point fermi
~gaugino! correlatorFIJKL , where I ,J,K,L51,2, . . . ,h1,1,
was obtained by Becker, Becker and Strominger@1#,

DC2
FIJKL5Ne2*C2

J2 i *C2
BE

C2

bIEC2

bJEC2

bKEC2

bL ,

~1.2!

whereC2 is the homology class of the instanton,$bI% is the
orthonormal basis of harmonic (1,1) forms in CY,J is the
Kähler (1,1) form of CY,B is the ~closed! Neveu-Schwarz
(1,1) form, andN is the normalization factor independe
uponbI .

Like any other (1,1) form, the formJ1 iB can be decom-
posed with respect to the cohomology basis$bI%,

J1 iB5(
I 51

h1,1

zIbI , ~1.3!

where the complex coefficients$zI% are called CY moduli.
Integrating Eq.~1.3! once with respect to the moduluszI

yields the famous topological formula for the world-she
instanton corrections to the Yukawa couplingsFIJK @6#. In
the case of Yukawa couplings, mirror symmetry is known
confirm the topological equation on them@7#. This fact indi-
rectly supports the more general equation~1.2! also @1#.

Like the similar equation on the Yukawa couplings, t
topological Eq.~1.2! is merely a formal equation since on
still has to specify how the integrals on the right-hand side

r-
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the equation are to be calculated. Their calculation for a
neric CY space represents the important technical prob
whose solution is unknown, to the best of our knowled
There are, nevertheless, some explicit calculations of
Yukawa couplings in the literature for the special CY spa
realized as the complete intersections in a product of
projective spaces@7#.

Our main purpose in this paper is to calculate Eq.~1.2! in
the case of the special CY to be defined in the intersectio
Del Pezzo surfaces. The Del Pezzo surface is a manifol
complex dimension 2 with a positive first Chern class@8#.
We use the ‘‘old’’ geometrical methods first developed
Ref. @9# for computing the Yukawa couplings in a superstri
model with three generations of quarks and leptons; see
Ref. @10#. The geometrical approach is based on Poinc´
duality and a knowledge of the homology group basis of C

Our paper is organized as follows: in Sec. II we introdu
into the special CY spaces realized as the complete inter
tions of five quadrics in a product of two projective spac
P 43P 4. The main body of our paper is given by Sec.
m
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where we formulate the mathematical instruments allow
us to calculate the integrals in Eq.~1.2!. Some explicit ex-
amples are given in Sec. IV. We conclude with Sec. V wh
some connections between our work and the recent litera
are outlined.

II. QUADRICS, DEL PEZZO AND CY

Let us consider the compact CY spaces realized as
complete intersections in a product of two projective spac
P 43P 4, with the configuration matrix1

S 4 uu 2 2 0 0 1

4 uu 0 0 2 2 1D . ~2.1!

To decipher this matrix, we introduce two sets of homog
neous coordinates,x andy, in eachP 4, define two Del Pezzo
surfacesKx andKy , and a hypersurfaceS in P 43P 4 by the
following constraints@12#:
Kx5H xPP 4: P1~x!5(
i 50

4

xi
250, P2~x!5(

i 50

4

aixi
250J ,

Ky5H yPP 4: P3~y!5(
i 50

4

yi
250, P4~x!5(

i 50

4

biyi
250J , ~2.2!

S5H ~x,y!PP 43P 4: P5~x,y!5 (
i , j 50

4

ci j xiy j50J .
Y
ler
-

-

The sum of entries in each line of the matrix~2.1! to the
right of uu exceeds exactly by one the dimension of the e
bedding spaceP 4 to the left of uu, so that

K05~Kx3Ky!ùS ~2.3!

appears to be Ka¨hler and of the vanishing first Chern clas
i.e., K0 is a CY space, in agreement with the theorem
Greene, Vafa and Warner@13#. We assume that the real co
efficients of the quadricsP2 , P4, and P5 in Eq. ~2.2! are
chosen to obey the transversality condition for all hypers
faces in the definition~2.3! of K0, i.e.,

dP1`dP2`dP3`dP4`dP5Þ0. ~2.4!

This equation guarantees the smoothness of the simply
nected manifoldK0 @14#.

The first column in Eq.~2.1! thus indicates that we con
sider a CY in the productP 43P 4, whereas the other col
umns denote bipowers of the polynomials ofx andy in Eq.
~2.2!.

The nontrivial Hodge numbers ofK0 are given by

h2,1~K0!528 and h1,1~K0!512, ~2.5!
-

f

r-

n-

so that its Euler characteristicx(K0) is

1

2
x~K0!5h1,12h2,15216. ~2.6!

It is not easy to construct the complete intersection C
spaces with the physically interesting values of the Eu
characteristic,x566,68. However, it easily becomes pos
sible through the so-called ‘orbifoldization’ process@11#. In
our case, we can introduce the quotientK of the manifoldK0

with respect to a discrete symmetry subgroupGF5Z2
2 of G,

which acts freely inK0. This yields the CY spaceK of the
Euler characteristicx(K)528. TheG-group elements gen
eratingGF can be chosen as follows:

g15diag~1,1,1,21,21!, g25diag~1,1,21,1,21!,
~2.7!

so that the action ofg1 reads

1We use the standard notation@11#.
7-2
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g1 : ~x0 ,x1 ,x2 ,x3 ,x4 ;y0 ,y1 ,y2 ,y3 ,y4!

→~x0 ,x1 ,x2 ,2x3 ,2x4 ;y0 ,y1 ,y2 ,2y3 ,2y4!,

~2.8!

and similarly forg2. The manifoldK0 has the hidden dis
crete symmetry groupG isomorphic toZ2

5, whose action is
given by

Z2~A!: A5diag~21,1,1,1,1!,

Z2~B!: B5diag~1,21,1,1,1!,

Z2~C!: C5diag~1,1,21,1,1!, ~2.9!

Z2~D !: D5diag~1,1,1,21,1!,

Z2~S!: S~xi !5yi , S~yj !5xj .

In the embedding spaceP 43P 4 we have

g15ABC and g25ABD. ~2.10!

The CY manifoldK0 is the simply connected covering spa
of the CY spaceK. The latter still possesses some hidd
symmetries that survive after its factorization byGF . These
discrete symmetries are

GH5
Z2~A!3Z2~B!3Z2~C!3Z2~D !3Z2~S!

Z2~g1!3Z2~g2!

5Z2~A!3Z2~B!3Z2~S!. ~2.11!

In the context of the type-IIA superstring compactific
tion, the CY spaceK gives rise to the four-dimensional un
fied model withfour generations of quarks and leptons, a
an E6 gauge group. Further breaking ofE6 by the standard
mechanism of the vacuum Wilson loops yields the P
Salam-like unified model with a gauge groupSU(4)c
3SU(2)L3SU(2)R3U(1). The Yukawa couplings in this
four-generation superstring model were calculated in R
@12#.

III. INSTANTONS IN DEL PEZZO

Equation~1.1! implies that the CY-compactified type-IIA
superstring world-sheet instantons are described by the
lated holomorphic curves in CY. A single instanton corr
sponds to a curve of genus zero. In the case ofK0, there are
256 holomorphic orCP(1) curves. A derivation of this num
ber was given, for example, in Ref.@15# where it appeared a
the leading term in the series expansion of the fundame
period as a solution to the Picard-Fuchs equation for
given CY. A geometrical derivation of the same result
given below in this section. However, first we need mo
information about the geometrical structure of the spaceK0
defined by Eq.~2.3! and the topology of the Del Pezzo su
facesKx andKy .

As is well known in algebraic geometry@16#, a smooth
intersection of two quadrics inP 4 is biholomorphic equiva-
lent to the projective plane with five different blown-u
02600
i-

f.

o-
-

al
e

points. Since the Hodge numberh1,1 of P 2 is equal to one,
after blowing up at five pointsh1,1 is equal to 11556,
while the other Hodge numbers remain unchanged. Next,
Del Pezzo surfaceKx possesses exactly 16 complex lin
$Cx% that can be described by the relations

a42a32a10x22«1a40a30a42x02 i«2a41a31a20x150,

a43a32a10x32«3a40a31a20x02«4a41a30a21x150, ~3.1!

a43a42a10x42«5a41a30a20x02 i«6a40a21a31x150,

where akl5Aak2al , 0< l ,k<4, and « j561, j
51,2, . . . ,6. Thesign coefficients« j and our notation for
the complex lines on the Del Pezzo surfaces are collecte
Table I.

The homology class of the Ka¨hler form on Del PezzoKx
can be represented by the intersection of the hyperplanS
with Kx ,

H5$x050%,Kx . ~3.2!

Under the symmetry groupG the 16 lines on the De
Pezzo surfaceKx are naturally decomposed intothree
classes:~i! the five linesEi , i 51,2,3,4,5, that~pairwise! do
not intersect with each other and thus represent five line
independent homology classes ofH2(Kx ,R); together with
the hyperflat sectionH ~dual to a Kähler form of the Del
Pezzo surfaceKx) they form a basis inH2(Kx ,R), ~ii ! ten
lines Fi j that have intersections only withEi and Ej , and
~iii ! one lineG intersecting with allEi ~see Table I also!. The
256 holomorphic curves are then decomposed with respe
the GF5Z23Z2 discrete symmetry group of order 4 int
four classes that are cyclically symmetric with respect
their interchanging.

Accordingly, we get the following matrix of the intersec
tion indices:

~Ei ,Ej !52d i j , ~Ei ,F jk!5d i j 1d ik ,
~3.3!

~Ei ,G!51, ~Ei ,H !51, ~H,H !54.

Having obtained the holomorphic curves and the hom
ogy basis explicitly, it is not difficult to determine the actio

TABLE I. Complex lines in the Del Pezzo surfaceKx(Ky) and
the sign factors« j .

Line «1 «2 «3 «4 «5 «6 Line «1 «2 «3 «4 «5 «6

E1 1 1 2 1 1 1 F14 2 2 2 1 1 1

E2 2 1 1 1 1 2 F15 1 2 2 2 1 2

E3 1 1 1 2 2 2 F23 2 1 2 2 1 2

E4 2 2 2 1 2 2 F34 2 2 1 2 2 2

E5 1 2 2 2 2 1 F25 2 2 1 2 1 1

G 1 1 2 1 2 2 F34 2 2 1 2 2 2

F12 2 1 1 1 2 1 F35 1 2 1 1 2 1

F13 1 1 1 2 1 1 F45 2 1 2 2 2 1
7-3
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of the discrete symmetry group on the latter. The genera
elements (g1 ,g2 ,A,B) of the groupG act as follows:

g1~E1 ,E2 ,E3 ,E4 ,E5 ,H !5~E3 ,F45,E1 ,F25,F24,H !,

g2~E1 ,E2 ,E3 ,E4 ,E5 ,H !5~E4 ,F35,F25,E1 ,F23,H !,

A~E1 ,E2 ,E3 ,E4 ,E5 ,H !5~F12,G,F23,F24,F25,H !,

B~E1 ,E2 ,E3 ,E4 ,E5 ,H !5~F15,F25,F35,F45,G,H !.
~3.4!

For example, to getg1(E2)5F45, we choose for definitenes
a050, a151, a353 anda454 in Eq. ~3.1! where the co-
efficients« j are given by Table I. We find

g1~E2!5g1$x21A6x02 iA65x32 i4x023x1

5x423x012x150%

5$x21A6x02 iA6x15x31 i4x013x1

5x413x02 i2x150%5F45. ~3.5!

The curve H is invariant under all these symmetrie
whereas each lineEi goes into one of the 16 lines lying i
the intersection of quadrics. The symmetry transformati
act independently on each factorP 4 in a productP 43P 4,
so that it is enough to consider only one projective spaceP 4.
The action of theS symmetry ofG just replaces each (1,1
form on Del PezzoKx by the corresponding (1,1) form o
Ky . We find the following decompositions:

Fi j 5
1

3 S (
i 51

5

Ei1H D 2Ei2Ej , ~3.6!

and

G5
1

3 S 2H2(
i 51

5

Ei D . ~3.7!

For example, to prove Eq.~3.6!, we begin with a decompo
sition

Fi j 5(
i 51

5

ciEi1c6H ~3.8!

whose coefficients (ci ,c6) are to be determined. Let us no
consider the intersections ofFi j with H, Ei , Ej , and M
5( i 51

5 Ei by using the index intersection matrix~3.3!. We
find

~Fi j ,H !5c11c21c31c41c514c651,

~Fi j ,Ei !52ci1c651,
~3.9!

~Fi j ,Ej !52cj1c651,

S Fi j ,(
i 51

5

Ei D 52~c11c21c31c41c5!15c652.
02600
g

s

Hence, the coefficients in Eq.~3.8! are given by

c651/3 and c1 i 5cj522/3. ~3.10!

Equation~3.7! is obtained similarly.
In the grand unification theories of the Pati-Salam typ

based on the gauge groupE6 that is supposed to be broke
by Wilson lines as

E6→SU~4!c3SU~2!L3SU~2!R3U~1!, ~3.11!

the representation27 of E6 is decomposed as follows:

275@~q,l !5~4c,2L,1R!#1@qc,l c5~ 4̄c,1L,2̄R!#

1@H5~1c,2L,2R!#1@g,gc5~6c,1L,1R!#

1@n5~1c,1L,1R!#, ~3.12!

where (qR,L ,l R,L) stand for the quark-lepton families,H are
the new leptons,g are the new quarks andn is the singlet.

As was demonstrated in Ref.@14#, the particle spectrum
corresponding to the (2,1) forms inK is given by

h2,1: 10~n,g,gc!16~ f ,H !, ~3.13!

wheref stands for (q,l ,qc,l c). The antiparticles correspond
ing to the (1,1) forms inK are given by

h1,1: 6~ n̄,ḡ,ḡc!12~ f̄ ,H !. ~3.14!

The transformation properties of the fields, in accordan
with the decomposition~3.12!, are collected in Table II.

Equations~3.4! also allow us to identify the special com
binations of the basic (1,1) homology elements that are
variant under the CY symmetry groupGH of Eq. ~2.11!.
They are

TABLE II. The transformation properties of the (1,1) forms
27 of E6 under the discrete symmetries.

Fields g1 g2 A B S

(n̄,ḡ,ḡc)1
1 1 1 1 1

(n̄,ḡ,ḡc)2
1 1 1 21 1

(n̄,ḡ,ḡc)3
1 1 21 1 1

(n̄,ḡ,ḡc)4
1 1 21 1 21

(n̄,ḡ,ḡ)5
1 1 1 21 21

(n̄,ḡ,ḡc)6
1 1 21 1 21

(ḡ, l̄ )1
21 1 21 21 1

(ḡ, l̄ )2
21 1 21 21 21

(ḡc, l̄ c)1
1 21 21 21 1

(ḡ, l̄ )2
1 21 21 21 21

H̄1
21 21 21 21 1

H̄2
21 21 21 21 21
7-4
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Fi
x,y5Hx,y16Ei

x,y22(
i 51

5

Ei
x,y ,

~3.15!
H65Hx6Hy, Fi

65Fi
x6Fi

y ,

wherei 51,2,3,4,5.
In the context of the CY superstring compactification, t

invariant elements of the (1,1) cohomology basis corresp
to the physical matter fields transforming in27 of E6 @6,11#.
A direct calculation yields the following set of twelve invar
ant combinations in the given homology basis ofH2(Kx,R)
dual to the cohomology groupH1,1 @14#:

~ n̄,ḡ,ḡc!15Hx1Hy,

~ n̄,ḡ,ḡc!25F2
1 , ~ n̄,ḡ,ḡc!35F5

1 ,

~ n̄,ḡ,ḡc!45Hx2Hy[H2,

~ n̄,ḡ,ḡ!55F2
2 , ~ n̄,ḡ,ḡc!65F5

2 , ~3.16!

~ ḡ, l̄ !15F3
1 , ~ ḡ, l̄ !25F3

2 ,

~ ḡc, l̄ c!15F4
1 , ~ ḡc, l̄ c!25F4

2 ,

H̄15F1
1 , H̄25F1

2 ,

where the quark-lepton families (q,l ) and extra leptons~H!
are merely considered here as the formal notation. There
no two different combinations of the cycles that would ha
the same transformation properties under the discrete s
metries. We verified this statement by a straightforward c
culation ~see Table II!. This means that our identification o
cycles is unique.

The instantons in the Del Pezzo intersection have
form Cx3Cy that yields 163165256, as it should. The in
tersection of these 256 surfaces with the hyperplaneS in Eq.
~2.3! yields 128 complex curves of genus zero on one of
Del Pezzo surfaces3 point on the other Del Pezzo surfac
Accordingly, there are two ways of choosing on which D
Pezzo surface we take the line to lie on, while there are f
ways of choosing a point on the other Del Pezzo surfa
This yields in total 2343165128 different instantons o
the typeline3point, and, in addition, 128 different instanton
of the typeline3line. Unlike Ref.@9#, where a similar prob-
lem was solved in the case of thecubic Del Pezzo intersec
tion in P 33P 3, we have a more degenerate~and more sym-
metric! situation.

Each holomorphic curve corresponding to an instanto
thus given by an intersection ofCx3Cy with the hyperplane
S in accordance with Eq.~2.3!, whereCx are 16 lines in the
Del Pezzo surfaceKx and similarly forKy ,

L5~Cx3Cy!ùS. ~3.17!

There are four classes amongst the 256 instantons tha
cyclically connected in our case. To calculate Eq.~1.2! we
have to choose a representativeL from each class. The ho
02600
d
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m-
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lomorphic curveL is the image of the string world sheet i
the CY space under the instanton map.

Now, on the one hand, the integral of any closed formv
of the maximal degree overK05(Kx3Ky)ùS can be repre-
sented by the value of the cohomology class ofv on the
cycle K0. On the other hand, the cycle intersection in t
homologies is dual to the exterior multiplication in the c
homologies. Hence, we have

E
K0

v5~w`H !@Kx3Ky#, ~3.18!

where we have introduced the class of cohomologiesw of v,
and the imageH of the cohomology class of the Ka¨hler form
in P 24 dual to the hyperplaneS. The hyperplaneS represents
the hypersurfaceS after Segre embedding@16# restricted on
Kx3Ky . The Segre embedding in this case means the
bedding of a productP 43P 4 into the projective spaceP 24

by the coordinate identificationwi j 5xiyj wherewi j are the
homogeneous coordinates ofP 24.

It is worth mentioning that only one componentHx(Hy)
remains in what follows fromH5Hx1Hy. Hence, our prob-
lem reduces to a calculation of the intersection indices fr
the homology groupH2(Kx ,Z) only. In general, the Poin-
caréduality establishes the isomorphism between the clo
~DeRham! homologies and compact-dual cohomolo
classes, as well as the isomorphism between compact~DeR-
ham! homologies and cohomologies@17#. In thecompactCY
case we consider, there is no difference between the clo
and compact classes.

Taken together, this allows us to replace the integral of
(1,1) formbI along the curveL in Eq. ~1.2! by the intersec-
tion index of this curveL with the cycleFI that is Poincare´
dual tobI ,

E
L
bI5~FI•L!. ~3.19!

As a result, the instanton correction to the four-fermi
correlator in Eq.~1.2! is proportional to a product

E
L
bIEL

bJEL
bKEL

bL5~FI•L!~FJ•L!~FK•L!~FL•L!,

~3.20!

where the brackets with dots stand for the intersection in
ces of the corresponding cycles, which are to be determi
from the matrix ~3.3! of our basic curves
(Ei

x ,Hx,Ei
y ,Hy)—see Sec. IV for some explicit examples.

We label our 256 curves by the corresponding lines in o
of the following forms: line3line, point3point, and l ine
3 l ine in the coverK0. The validity of the cycle intersection
matrix for both Del Pezzo surfacesKx andKy is justified by
the fundamental commutative diagram:
7-5
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In a more explicit notation we just get

E
L
bI

x[E
L
px* bI

xuL5E
L
p* i * bI

x5E
L
~px+ i !* bI

x5E
(px+ i )

*
L
bI

xx

[E
Lx

bI
x5~Fx ,Lx!, ~3.21!

where the projectionpx lifts the form bI on Kx to Kx3Ky
with its simultaneous restriction on the curveLx . The nota-
tion ~i! in Eq. ~3.21! stands for the embedding ofL into
Kx3Ky .

IV. EXAMPLES

Equations~3.19! and ~3.20! reduce a calculation of Eq
~1.2! to a calculation of the homology intersection indices.
turn, this can be easily done when instantons are labele
lines in the intersection of quadrics. As was demonstrate
Sec. III, there are the 128 holomorphic curves of the ty
point3line and line3point, and the 128 curves of the typ
line3line. The intersection of these curves with our hom
ogy basis is given by Eq.~3.3!, in agreement with Eq.~3.18!.
The 16 lines on Del Pezzo are divided into three classes:
G, five Ei

x that intersect withG, and tenFi j
x ~see Table I!.

Hence, each type of lines receives further classification
cording to its class. It is worth mentioning that the instant
contributions of the typepoint3line and line3point do not
always coincide.

As our first ~simple! example, let us consider the co
relator given by

E H1E H1E H1E H15~H1
•L!4 ~4.1!

over L5Gx3Gy. Let us recall ~Sec. III! that H15Hx

1Hy, while

E
Gx3$point%

H15E
$point%3Gy

H151 ~4.2!

and
02600
by
in
e

-

ne

c-
n

E
Gx3$point%

H251, E
$point%3Gy

H2521,

~4.3!

E
Gx3Gy

H250.

Therefore, we obtain

~H1
•L!45@~Hx1Hy!•~Gx1Gy!#45~Hx

•Gx1Hy
•Gy!4

5~111!4524. ~4.4!

Similarly, we find

E
Gx3Gy

H2E
Gx3Gy

H2E
Gx3Gy

H2E
Gx3Gy

H2

5~H2
•@Gx3Gy# !45@~Hx2Hy!•~Gx3Gy!#4

5~Hx
•Gx2Hy

•Gy!45~121!450. ~4.5!

In fact, any correlator containing the factor*H2 vanishes.
Thus we see that some fermionic correlators are equal to
despite the fact that the discrete symmetries allow nonv
ishing values for them.

As another~less trivial! example, let us consider the facto

E
Fi j 3$point%

H15X@Hx1Hy#•F1

3 S ( Ei1H D2Ei2Ej GxC
5

5

3
1

4

3
2251. ~4.6!

Similarly, we find

E
$point%3Fi j

y
H15E

Fi j
x

3$point%
H151, E

Fi j
x

3Fi j
y
H152,

~4.7!

and

E
Fi j

x
3$point%

H25E
$point%3Fi j

y
H2521, E

Fi j
x

3Fi j
y
H250.

~4.8!

A more complicated example is given by
E
Gx3$point%

F5
1[~F5

1 ,Gx3$point%!5@~F5
x1F5

y!,~Gx3$point%!#5~F5
x
•Gx!5S Hx16E5

x22(
i

Ei
xD •Gx

5S Hx16E5
x22(

i
Ei

xD • 1

3 S 2Hx2(
i

Ei
xD

5
2

3
Hx

•Hx14Hx
•E5

x2
4

3 (
i

Ei
x
•Hx2

1

3
Hx

•(
i

Ei
x22E5

x
•( Ei

x1
2

3 (
i

Ei
x
•(

j
Ej

x

5
8

3
142

20

3
2

5

3
122

10

3
523. ~4.9!

Similarly, we find
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E
$point%3Gy

F5
1523, ~4.10!

and, hence,

S E
Gx3Gy

F5
1D 4

5~2323!4564. ~4.11!

We find, in addition,

E
Gx3$point%

Fi
25E

Gx3$point%
Fi

1523, ~4.12!

and

E
$point%3Gy

Fi
252E

$point%3Gy
Fi

1513. ~4.13!

The similar contributions are given by

E
Gx3Gy

Fi
25E

Fi j
x

3Fi j
y
Fi

250, ~4.14!

E
$point%3Fi j

y
Fi

252E
Fi j

x
3$point%

Fi
252716d i j , ~4.15!

and

E
Fi j

x
3Fi j

y
Fi

1514212d i j . ~4.16!

The rest of the integrals is given by

E
Fi j

x
3Gy

Fi
15E

Gx3Fi j
y
Fi

15426d i j ,

E
$point%3Ei

y
Fi

252E
$point%3Ei

y
Fi

152E
Ei

x
3$point%

Fi
252E

Ei
x
3$point%

Fi
153,

E
Ei

x
3Ei

y
Fi

159, E
Ei

x
3Ei

y
Fi

250, E
Ej

x
3Ei

y
Fi

252616d i j ,

E
Ej

x
3$point%

Fi
152E

$point%3Ej
y
Fi

25326d i j , E
Ej

x
3Ei

y
Fi

25626d i j ,

~4.17!

E
Ei

x
3$point%

H15E
$point%3Ei

y
H15E

Ei
x
3$point%

H252E
$point%3Ej

y
H251,

E
Ei

x
3Ej

y
H15E

Ei
x
3Gy

H15E
Gx3Ei

y
H152,

E
Gx3Fi j

y
H15E

Fi j
x

3Ei
y
H152,

E
Gx3Fi j

y
H25E

Ei
x
3Fi j

y
H25E

Fi j
x

3Ei
y
H250.
026007-7
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The fermionic correlators in Eq.~1.2! are given by vari-
ous products of four factors calculated above.

V. CONCLUSION

It is surprising, from the mathematical viewpoint, that t
fermionic correlators~1.2! are entirely determined by topo
ogy so that they can be explicitly calculated. Their physi
significance is yet to be understood. At the very least, ho
ever, all the fermionic correlators~1.2! vanish in the~classi-
cal! tree approximation by index theorems@5#, so that the
instanton corrections obtained are actually the leading c
tributions to these correlators. This leads to the highly n
trivial selection rules for the physical processes described
the fermionic correlators in the CY compactified type
strings. For example, some correlators exactly vanish~Sec.
IV ! even though the discrete symmetries of CY allow no
vanishing values for them.

Though our geometrical approach is similar to the o
used earlier for other string models in Refs.@2,9#, there are
also some conceptual differences. We find it simpler to c
sider instantons in the simply connected covering space~CY!
manifoldK0 of K, instead of the CY spaceK. Each instanton
in K has four representatives inK0, which are all equivalent
as regards theG-invariant real quantities.

We merely discussed theone-instanton corrections to th
four-fermion correlators. One may expect the existence
the multi-instanton corrections from the maps of higher d
gree ~more than one!. Unfortunately, the status of multi
instantons in the context of type-IIA superstrings is not qu
clear @1# ~see, however, Ref.@18#!.

One might also think that the intersection of Del Pez
surfaces is the very special case of the type-IIA string or
Theory compactification. In fact, as was recently noticed
Ref. @19#, there is a non-trivial duality between toroidal com
pactifications of M theory and Del Pezzo surfaces. Accord
,

.

tt.

d

,

u
,

ic

02600
l
-

n-
-
y

-

e

-

f
-
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n

g

to Ref. @19#, a group of the classical symmetries of D
Pezzo~i.e., the global diffeomorphisms preserving the c
nonical class of Del Pezzo! corresponds to the U-duality
symmetries of the toroidally compactified M theory. The
theory~BPS! branes are mapped under this ‘‘mysterious d
ality’’ to rational curves on Del Pezzo, so that the electr
magnetic duality of M theory receives a nice geometri
description in terms of the Del Pezzo surfaces@19#. In par-
ticular, the bound states of the (1/2)-BPS branes in M the
can be related to the intersections of spheres in Del Pe
@19#. Further developments of this new duality require cou
ing intersections of the holomorphic curves of higher gen
in CY @20#.

In the context of Horava-Witten theory@21#, similar cal-
culations of instanton corrections are needed when one
siders a torus-fibered CY threefoldZ over the Del Pezzo
base, with the nontrivial first homotopy groupp1(Z)5Z2.
When a gauge vacuum on the hidden brane is trivial,
threefoldZ admits three families of the semistable holomo
phic vector bundles associated with anN51 supersymmetric
gauge theory having three~chiral! quark-lepton familes and
the GUT groupSU(5) in the observable brane@20#. Both
five-branes in this Horawa-Witten type construction a
wrapped about holomorphic curves inZ whose homology
classes are exactly calculable.

Our investigation is also relevant for studying the sup
symmetric Pati-Salam-type models from intersecti
D-branes ~see, e.g., Ref.@22#!, and the nonperturbative
flipped SU(5) vacua in heterotic M theory@23,24#.
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