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Tachyon dynamics and the effective action approximation
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Recently effective actions have been extensively used to describe tachyon condensation in string theory.
While the various effective actions which have appeared in the literature have very similar properties for static
configurations, they differ for time-dependent tachyons. In this paper we discuss general properties of nonlin-
ear effective Lagrangians which are first order in derivatives. In particular we show that some observed
properties, such as asymptotically vanishing pressure, are rather generic features, although the quantative
features differ. On the other hand we argue that certain features of marginal tachyon profiles are beyond the
reach of any first order Lagrangian description. We also point out that an effective action, proposed earlier,
captures the dynamics of tachyons well.
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[. INTRODUCTION ever, first derivative truncations of the tachyon effective ac-
tion have been rather sucessful for describing D-branes as

The decay of unstable D-branes is an important and chaktatic tachyonic soliton®©—15]. One may therefore hope that
lenging problem in string theory. In order to understand sucla truncated action could also be useful to describe the dy-
processes it is important to obtain a reliable description ohamics of tachyon condensation.
the dynamics of the tachyons which arise from open strings In [7] Sen argued that some qualitative features of full
on unstable D-branes. In the last few years considerabltree-level string theory, such as the asymptotic vanishing of
progress has been made starting with Sen’s proposal to idethe pressure, are indeed reproduced by a Born-InfBldl
tify the closed string vacuum with the tachyon vacuum ontype action[16]. Unlike the case of massless gauge fields,
unstable D-branes in superstring the¢ge[1] for a review  the Bl-type action has not been inferred from on-shell string
and referencés Furthermore, a class of time independenttheory and marginal tachyon profiles do not solve the equa-
kink solutions corresponding to lower dimensional D-branegions of motion. On the other hand there is a well defined
was identified with marginal boundary deformations of theprescription to extract the tachyon effective action from
open string sigma modgl]. More recently Sen has obtained boundary string field theory8SFT) [17-19, [11-15. Un-

a family of time dependent tachyon solutions as marginafortunately this action is known explictly only for constant
deformations of the open string sigma mo@2] (see also and linear tachyon profiles and the marginal tachyon profiles
[3]). An analysis of the stress tensor obtained from theare also not solutions of the BSFT effective action. Never-
boundary state for a decaying D-braf@ shows that the theless, BSFT has been quite sucessful in describing some
decay of an unstable D-brane results in a gas with finit@spects of tachyon condensation to lower dimensional
energy density but vanishing pressure. D-branes[11,12,14. Furthermore, it was shown if20,21]

An interesting question is then to what extent these feathat some qualitative features of the tachyon dynamics ob-
tures can be obtained from a first derivative effective actiorfained from the BSFT action are consistent with conformal
for the tachyon[5-7]. Typically a tachyon effective action field theory results. However, while the various effective ac-
contains an infinite number of higher derivative terms which/tions that have appeared in the literature are remarkably
unlike the case for massless string modes, cannot be simp§milar for static profiles, they could hardly differ more for
neglected. Therefore no truncation to first derivatives can b&me dependent ones. This is illustrated in Fig. 1 where the
expected to capture all of the dynamics of the tachyon. Furkinetic part of the effective action is plotted as a function of
thermore, even if the full effective action were known, with- 4, To*T for three different proposalkthe details will be ex-
out some kind of simplifying structure it would be near im- plained below.
possible to obtain concrete results) addition it is not clear Given this state of affairs, it is of interest establish to what
whether an initial value problem can be formulated. How-extent these properties are generic in non-linear, first deriva-

tive effective actions for the tachyon. In addition we would
like to determine the most appropriate behavior of the effec-
*Email address: n|ambert@physicslrutgersledu tiVe aCtion fOI’ t|me dependent Conﬁgurations. The purpose Of
TEmail address: ivo@maths.tcd.ie this paper is establish general properties of suitable first de-
Iwe note thaf8] recently presented a very interesting analysis ofrivative taChyon actions derived under a minimal set of rea-
tachyon dynamics in p-adic string theory, where the effective actiorsonable theoretical assumptions. We find that some observed
is known to all orders in derivatives and is amenable to numericafjualitative phenomena in tachyon condensation are rather
analysis. generic and are reproduced by a large class of effective ac-
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cifically, as is well known25-30,
T(xP)=y sin(xP/\2a'), T(xP)=ycogxP/y2a') (1)
are exactly marginal deformations of the open string Polya-

kov action on a non-BPS [pbrane. The physical properties
of this open string background are encoded in the corre-
sponding boundary stat8,+)—|B,—) [31,4], wheré

©wF P,

6_

1
i
1}
1
1}
!
|
|
|
!
1
‘
0
:
!
{

e==. (2)

<N
W
.

4
K
2
% |B’€>:|Bve>xp,l/lp®|B’€>xﬂ,z//#®|BvE>ghostsa

Here|B)yxu ,» and|B)ghosisare the same as forma— 1 brane,
while |B)» 40 describes the dependence of the marginal
deformation. In particular, the energy momentum tensor for a
marginal kink profile can be obtained by evaluating the ma-
trix element of the boundary stafB) with the closed string
graviton statgg W|. Concretely we have

To(0= = 2[AL0+B(X)7,,]. ®

Legend ~ ] ] )
FT Here 7,= \/frp is the tension of a non-BPS D-brane while
________________ Eﬂ (4.29) A,, andB parametrize the levely(3) part of the boundary
state[4],

FIG. 1. K(y) from various effective actions.
B =2 (ALK 4 " 1o+ BKp) (B 127~
tions, although the exact quantitative predictions differ sig- By kEp [Aur(Ko) 0= 120~ 10+ Blkp) (B-127 112
nificantly. On the other hand we find that some global prop- _
erties of marginal tachyon profiles are beyond the scope of = B-127-1211Q,K), (4)
first derivative effective actions. )
In this context we also analyze a tachyon action propose%:’l‘”th

earlier[22] which closely resembles the other effective ac- — - -
: - . . . = —¢(0)a—¢(0)
tions for time independent configurations, but has the advan- |Q,k)=(cotco)cscie” “ e *Pk) (5
et bt i he closed siing Fock acuum vih mamenta

' ' P 9 sing similar arguments as if¥] we then find, for a

tachyon profiles if2] are also exact classical solutions for 0l 57 Li
this action. We find that the equation of state obtained fromcosé(/ 2a’) kink,

this action is in good quantitative agreement with the exact A — —f(xP +
results of conformal field theory. Finally the potential cos- pr(X) O s V%P,
mological relevance of scalar field actions with non-standard App(X)=—g(xP), B(X)=—f(x), (6)

kinetic terms has been pointed out [i83]. It is therefore
interesting to analyze tachyon effective actions from thisypere

point of view. This was done ifi24] for the Bl-type action

and in[20] for the BSFT action. We will see that cosmologi- o >

cal implications of our tachyon action are qualitatively simi- f(xP)=1+2> [—sim(ym)]"cod n\/—xP
n=1 a'

lar to these results, although the details are again different.

1—sin*(xm)
o @)

II. TACHYONS AS MARGINAL DEFORMATIONS

- Lo . 2
Finding the general tachyon solution in string theory 1+25inz(xw)coﬁ< \ﬁﬂj) +sirf(x )
would require detailed knowledge of open superstring field o’
theory. However, using the fact that these solutions corre-

spond to conformally invariant backgrounds for the openand

string sigma model, a subset of open string tachyon solutions

on a non-Bogomol'nyi-Prasad-Sommerfidl@PS D-brane —

in type Il string theory can be obtained as exactly marginal 2Our metic convention is<¢,+, ...,+) andu,»=0, ... p la-

deformations of the boundary conformal field theory. Spe-bel the non-BPS p-brane world volume.
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g(xP)=2—-2 sirf(my)—f(xP). (8) 1+ sir?(y )

7\,0
~—E g™ V2l )X, 12
P sir?(y ) 12

In particularT,, is independent ok” as it should be. Foy
close to 1/2 the energy density is peaked abodit
=\Ja'(2n+1)7/\2.

We note that the boundary state and,

If we consider marginal deformations of the form
in particular alX sinh%\/2a"), then we find similar expressions but with

components of the stress tensor are periodig ith period ~ Sir’(x) replaced by- sintf(xm) ande* "7« replaced by

1. This periodicity can also bee seen by analyzing the spec- e*(V2/a')x° [4].

trum [32] or by analyzing the cylinder diagram on an

orbifold [33] The Origin of this perIOdICIty can be traced to IIl. TACHYON EEEECTIVE ACTIONS

the fact that the vertex operators exf(y2a'), . _ S _
exp(—ixP/\2a’) andidxP form anso(3) current alegbra. In the previous section we saw that in principle the physi-

Herei dxP generates translations along ttedirection. Since €@l observables of a marginal tachyon profile are encoded in
the exponential of these operators appears in the path inté)® boundary state. An interesting question is then to what
gral, the resulting correlation functions gain a periodic de-extent can these properties be reproduced by an effective
pendence on the coefficient due to the compactness of field theory for the tachyon. A reliable effective action for-
so(3). mulation would facilitate more complicated calculations,
Time dependent boundary perturbations can be obtainegch as the dynamics in the presence of evolving closed
by analytic continuation of the above profjé]. Concretely, ~String modes. For example [i7] Sen showed that for time
by performing the double Wick rotatiorP—ix?,x%— —ixP dependent tachyon solutions in a Bl-type action the pressure
: Yy 7 _ ’ 7 does indeed vanish asymptotically. However, as we remarked
we find thatT= y sinh/\2a') and T= y cosh&"/\/2« ) : : : ' )
are. at the treeX |eve(|xo exact%y margin)a(ll timééo depe)nden'l” the Introduction, this particular form for the effective ac-
tacfylyon profiles Note that in the sinfi( ’_,Za') case we ton is not derived from string theory and one might there-
must also Wick. rotatey— —iy to obtain a real profile fore question the predictions obtained from it. In view of this
Therefore we expect that the geridocity observedyfdn the " we consider in this section the predictions of a rather general
space-like case is now broken. Indeed for space-like mal;_:lass c.)f effective actions. . . .
ginal deformations we saw that the perodicity yncame Typically, the .fg” tachyon effective action wil b_e non-
from anso(3) current alegbra of theP free boson confor- local and thus difficult to handle. In what follows will con-

mal field theory(CFT). If we Wick rotate to a time-like free sider effectlv_e actions which |nvoI\_/e O’?'V first de_nvatlv_es of
. . the tachyon field. This class of actions includes, in particular,
boson, this becomes a0(2,1) current algebra, which has

only one compact direction. This must correspond to the dez_all suggestions which have appeared in the literature so far.

. — . For a non-BPS brane it is known that the action and in par-
formatpns gent_erated by COShé(?/ 2“_) since these ans€ ticular the potentialV must be an even function of the
from Wick rotating y cos§P/2«') which does not require

i L tachyon fieldT. Therefore the most general form for the
t.hatX be als_o Wick FOtated- In additiorsx _Now generates  effective action of a redr in p+ 1 dimensions that depends
time translations which are no longer periodic.

X _ on at most first order derivatives and is everTiis given by
The stress tensor for the time-likecosh&’/\2a') pro-

files is again given by Eq3) with [4] o0
s=f dp”xﬁzj dPFIx D CopT2%(9,To T)P.
. 0 —
Agy(X)=2—2 sirf(my)— f(x°), @,B=0
(13
— 0y o — 0
Ai(x)==1(x)d;,  B(x)=—1(x7), ©) From Noether’s theorem it follows that for any static,
and codimension-1 solution of the equations of motion of an ac-
tion of the type(13) will have the integral of motion
o 1—sint(y) SC
f(x%) = : Top=— T —L=V,, (14)
2 ST’
1+2 sinz(XTr)cos}‘( \/:,xo) +sirf(x)
@ (10) whereV, is a constant andl depends only o®P. In addition

the energy densitffoo= L is trivially conserved. For a time

For time dependent marginal deformations the conserved er?_ependent but spatially h_o_mogeneous solution one again
inds two conserved quantities but now the conservation of

ergyE="Too s energy leads to a non-trivial condition
E=\27[1-sir(xm)], (11) sr
, _ Too=— —T+L=—E,, (15)
while the pressurgp=—T; vanishes as the tachyon ap- ST
proaches the vacuum configuration. More specificallyx®s
— 0, whereE, is a constant.
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The simplest condition one may want to impose is that theral flow. Therefore to see this periodicity the infinite tower
effective action reproduce the correct perturbative tachyomwf massive strings modes has to be taken into account. Gen-
mass nearT=0, that is £~—(JT)?+(1/2a")T?+-- .. erally we then expect that while effective actions capture the
However this also illustrates one problem of trunctating tophysics near a given string theory vacuum, global properties
first derivative actions since integration by parts allows us taare typically beyond such approximations. In particular we
write the kinetic term asTd°T and it could therefore be then expect that the effective actitit6) will only be reliable
modified by higher derivative terms. Indeed several proposfor y<1.
als for the effective action do not reproduce the correct In superstring theory all of the tachyon effective actions

tachyon mass. proposed to date take the specific fdrm
The next issue that we want to discuss is whether the
marginal deformations in the last section can be solutions of L=—=V(T)K(3,TI*T). (20

a first derivative effective action. As shown [i82], the re-
quirement thafl = ysin(x"/\/2a') solves the field equations
completely determines the general act{@8) in terms of an
arbitrary potentiaV(T)=f(T?/2a"), i.e.

Certainly without some kind of simplifying structure even an
action which has been truncated to be only first order in
derivatives becomes intractable. Therefore in what follows
we restrict our attention to these forms f6r We note here
o1 1 dr(b) that an effective action of this form is compatible with
L= To—1 W(aMTa"T)V, (16 T-duality if the transverse scalars and world volume vector
y=0 7Y ¥ fields are included ag=—V(T)\—detG,,,+ F,,)K(G
+F*3,T9,T) or in the Bl form L=

where t=T?/2a'. Evaluating the resulting kink equation

(14) one then finds ~V(T)J-detG,,+F,,+ «pd,Td,T) [34,35.
Sen’s conjectures state that the potential is nowhere nega-
oL _ “1 dE(t) o tive, vanishes in the true open string vacuum and has a maxi-
VO:ET - :z«o Y dtY LT mum value ofy27, at T=0. Furthermore, there should be
no perturbative open string excitations about the true
T2 vacuum. Although one might think that action of the form
—f(—+(T’)2> (17  (20) would ensure this condition, this is not true in general.
2a’ Assuming that for smaly, K(y)~1+«.;y+--- we check

the perturbative excitations arount=0 by introducing a

Thus, assuming that is nowhere constant, we see that theneW tachyon variable

only regular static solutions are

xP—x de=yV(T)dT. (21)
T=ysin ——|, (18) , _ ,
J2a' The effective action now looks like
for arbitraryx, and x. In addition it is easy to see that, by V(oK d,00"¢ 09
taking the limit y—0, this condition also ensures that the L=-V(¢) v | (22)

correct perturbative mass for the tacyhon is reproduced.
Let us now look at the periodicity properties of the physi- Note that this change of variable relates the Bl acfitfl to
cal observables on marginal profiles. As discussed in Sec. the proposal of36]. Expanding Eq(22) for (9¢)2<V [i.e.
the stress tensor for marginal deformations is periodig.in  (dT)?<1] leads to
For a space-like kinkr = ysin(x’/y/2a"), periodicity of the
conserved energ¥o, in y implies thatZ is periodic iny for L=—k1d,0*0—V(p). (23
all values inxP. This implies thatZ(T,T')=F(T?/2a’ L
+T'2), whereF is a periodic function. On the other hand The mass squar_ed of e_Iementary excitations around the
periodicity of the conserved momentufy, implies that tachyon vacuum is then given by

21 2 [V (24
o K1N dT? '

V= V=0

2
5L dF(z) _, , 2 dV(e)
T = T2 Mé=—
ST,T L=2——T"?-F(2) (19 K1 dg?

is periodic iny. These two conditions are, however, incom- The absence of perturbative excitations implies that this
patible. Similar comments apply to the case of time-mass is infinite. It is not hard to convince oneself thfavill
dependent solutions. Thus, we conclude that while marginabe infinite provided thaV vanishes faster thax~e ™27 if
deformations can be solutions of first derivative effective acthe minimum is at infiniteT, or faster tharV~ (T—T,)? if
tions, the periodicity iny of the all observables cannot be the minimum is at a finite value of. Note thatV~e 2T
reproduced by any first derivative effective action. This prob-

lem, which was also observed B3], originates in the fact

that the string ground state =0 is not the same as the 3Although we note that for the bosonic string the action does not
string ground state in the new vacuumyat 1/2 due to spec- factorize[11,12,22.
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appears in the effective action of a D-branébwsonicstring K, the first term in Eq(26) will dominate and the second
theory. However, the effective actions of bosonic BSFTterm will vanish. Therefor@ must also approach zero at this
[11,12,22 do not have the forni20) and hence Eq24) does  point. If the singular point oK or K’ is at infinity, thenp

not apply. Indeed one can check that the resulting mass imanishes unlesgK’(y) andK(y) have the same asymptotic
these cases is infinite. Nevertheless, even if the f@@is  pehavior—that is, ifK(y)~y" asy=—T2——c. In this
assumed, plane-wave excitations goare absent due to non- |atter case, as/—0, p— —E/(2n+1) is non-vanishing.
linearities in the kinetic terrfi7]. It has also been pointed out Thys, unlessk(y) has a power law behavior for rapidly
that the Hamiltonian formalism is in fact better suited foryarying time dependent tachyons, the pressure vanishes as
analyzing the dynamics in the true vacuyiv]. However, the'tachyon condenses, although whether or not this happens

this cannot be done here without choosing a specific form fogyponentially quickly or not will depend on the choicekaf
K

Another requirement that the effective action should sat-
isfy is that it should reproduce the correct tension for kink
solutions which are identified with a BPS P{ 1)-brane. In the previous section we outlined various properties that
More generally ifT=uf(xP) is an off-shell profile, theu  the effective action for the tachyonic mode of a non-BPS
—oo in the infra-red limit. The world sheet theory is ex- D-brane is expected to have. In particular, if we require that
pected to run to that oN BPS D({p—1)-branes and anti- the marginal deformation€l) be solutions to the equations
D(p—1)-branes. Herd is the number of timed interpo-  of motion, then the effective action is uniquely determined
lates between the vacua as-=. Since this should be true by a choice of potentiaV(T). As proposed ifi22], to fix this
for all profiles, this suggest that at larggi.e. at larged, T, ambiguity we take the exact potential found in boundary
the action becomes topological. This will be the cas& if string field theory[13—-15,
= Kk\(dT)? as (@T)?°—+w. Recall that we normalize

IV. TACHYON DYNAMICS

_T2 ’
K(0)=1 andV(0)= 27, so thatx., is not arbitrary. In this V(T)=\21,e T2, (28
case the energy for the profile=uf(xP) is, in the limitu ) ) )
o where 7, is the tension of a BPS [pbrane. The resulting
' Lagrangian that we construct then takes the fO2®]
E=k. fﬁdepV(uf(Xp))u| f'(xP)|= NKWJ dT V(T). L=— \/ETpe—TZ/Za'[e—ﬂMTﬁﬂT+ \/m?MTa"Terf( \/aMTaﬂT)]_

(25 (29

It is not hard to see that this property is indeed shared by all ) ) o )
non-linear, first derivative superstring tachyon actions proOne can then check that this action satisfies all the properties
posed thus faf13—16,22. It was also pointed out if6] that d'lsc.ussed in the previous sectiomith the exception of pe-
a square-root form for time independent configurations igiodicity which we argued could not be captured by any first
needed to ensure that the fluctuations about a kink baciderivative effective action _ o
ground have finite masses. A square-root form also ensures FOr static configurations this action is in remarkable
that the effective action for the relative center of mass coor@dreement with the BSFT actiga3-15
dinates of the Dg—1)-branes has a Bl forf22]. In addi-
tion, to agree with the interpretation a¢ seperate BPS 1 —T220" 4(4T)2 T((aT)%)?
’ : . L=—re TPl (GT)>————. (30
D(p—1)-branes and anti-[p(— 1)-branes this energy should NP ['(2(dT)?)
be E=2m+/a’N. Hence we find a constraint on the area of
the potential between two minima and the largd)? be-  This is somewhat surprising since the BSFT action is derived
havior of K. This condition is indeed satisfied by the propos-by simply assuming a linear tachyon profile. This good
als of[13-15,22. agreement can be viewed as a test of the BSFT action for
Last, we consider the asymptotic form of the pressure fonon-trivial space-like kinks, since these are solutions to the
homogenous, time-dependent tachyon approaching the minggquations of motion of Eq29). However, for time-like so-
mum of the potential. We then have, for the conserved enlutions the two actions differ considerably. In particular,
ergy, while Eq. (29) is smooth for all ¢T)? the BSFT action has
poles at negative integer values @fT)2. However, there is
E=—Too=2V(T)K' T2+ V(T)K((T)?), (26)  no reason to believe that these poles are physically important
since the BSFT action is derived for linear profiles but these

while the pressure is given by are not solutions to the equations of motion. Furthermore, the
5 fact that the actiori29) and the BSFT action differ substan-
p=—Tii=—V(T)K((IT)). (27)  tially for time dependent solutions suggests that, in contrast

. ) o . to space-like marginal profiles, the BSFT effective action
Because/(T) vanishes at its minimum, energy conservationgannot pe trusted. The actigB9) also agrees well with the

implies thatT? necessarily approaches a singular poinKo6f  BJ form [16]
or K asT condenses t&=0. Now, if this singularity is at

some finite value oT, then, sincek’ will diverge faster than L=\27ye TP 1+ kg (3T)7, (3D
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for (dT)?>0 if we takekg,= 7. However, again they differ H
substantially for time dependent profiles wher@T)?<0
and therefore similar comments apply. In particular the Bl
form imposes a maximum value 6T|. These three forms 0.8
for the functionK are plotted in Fig. 1.
From the construction of the effective action in the last
section it is clear that
0.6
T(x°)=Asin X +Bcos X (32
x°)=Asi —
J2a' V2a' 0.4-
is an exact solution of the equation of motion. In fact we can
say more by analyzing the energy momentum tensor for the
action (29): 0.2
2 ’ \/;
T,=—\2re T2 —0,Td,Ter (dT)?
_ 2
= nufe” U m(aT) Perf(aT) L. (33 2]

Let us now consider a homogenous, but otherwise arbitrary,
time dependent tachyon configuration. Then the energy takes FIG. 2. expt-y?)[exp§?)+iymyerf(iy)].
the simple form
o This exponential fall off agrees exactly with the string theory
E=—Too=27,e 772", (34)  result from the boundary staftd]. Note that this prediction is
different from that obtained using the BSFT effective action
Conservation of energy then implies that E8p) is the only  [20], where the square o’ appears in the exponential. One
regular solution of the equation of motion. Of course, thecan also see that the Bl fori=/1+ KBI((?T)Z with the
same result can be obtained by analytic continuatioq fronpotential (28) predicts that X°)? appears in the exponential.
Eq. (17). In particular, as the tachyon rolls to the minimdm In addition fory<1 we find the same dependencepandE
diverges in agreement with the conformal field theory ap-on y as predicted from the boundary st&l®). On the other
proach. This is in contrast with the Bl-type and BSFT actionshand, in the boundary state approach, the pressure is always
whereT approaches a constat, 20,21. negative, whereas here we find that the pressure approaches
Let us now consideT;; . From Eq.(33) we have zero from aboye(see Fig. 2 The same phenomenon was
also observed i120,21] for the BSFT effective action. In-
T, = \/Eéijrpe’Tz’z‘*'[e-Teri T2erf(i \/ﬁ)]' (35) deed i.t is clear from Eql2 that the sigr21 of thg pr.essure as
V—0 is the opposite of the sign &f(—T-), which is nega-
Now, for largey, tive in BSFT and Eq(29), but positive for a Bl-type action.
There one of the speculations was that this difference could
s 1 be due to the fact that the solution of the BSFT differ from
\/;erf(iy):i ey —5) , (36)  the exact marginal deformations. This possibility can be ex-
y cluded here as the solutions to our action are precisely the
marginal deformations, although higher derivative terms
so that could lead to corrections in our action as well.
Finally we make some comments on the interpretation of

1 1
2440
y 2y3

Too : these solutions. For the static solutiofis: y cos§®/\2a")
Tij = —0 5” for T—oo, (37) : : . H
272 the energy density is not spatially homogeneous but is

peaked abouxP=+/a'/27w(2n+ 1) for integern, becoming

Thus, the actiorf29) predicts that at large times the tachyon more sharply peaked gs— <. However, by construction the
condensation produces a gas with non-vanishing energy arftion(16) is independent of and therefore the total energy,

vanishing pressure. In particular for larg€, where T~ evaluated over a single periodr2/2a’, is 477_\/?% for all
2X9Xo/V/W/2 x- For x=1/2 this represents a configuration of BPSpD(

’ —1)-branes at each oddand anti-Df—1) branes at each
oE o evenn. The interpretation of other values gfis less clear;
p=——e (2a'), (38)  however, these are no longer marginal deformations once
X2 string loop corrections are considerf@B]. Of course, the
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solutions involving the marginal deformationT d = .
— ysin(P/\2a") can be obtained from the previous ones by gilV( VT2=2a'T?%)]=—(d=DH[V(T)K(-T?)
translation along®.

For time dependent solutions the energy density,s +V(NT2=2a'T?)]. (42)
spatially  homogeneous. In particular ~ for T .
= xcosh&%\2a') we have e= \/ETpe*levW, which is  In particular at late timesT>1 and we can approximate
less than the false vacuum energy density, while Tor VK=—V(\T2—2a'T?)/2T2 ) that VK<
=xsinh%\/2a’) the energy densitye= \/Erpexz/"w is  —V(VT2—2a’'T?). Hence we see tha¥/(\T2—2a’'T?)
greater than the false vacuum energy density. These solutionsC2al~¢ for a constanC and therefore
are no longer related by temporal or spatial translation. In-
deed while both solutions start and end in the vacuurh as a(t)~t2/@-1), (43

-+ N ! i -
— = the cosf’/y2a’) solutions never pass over the en Thus the outcome of this analysis is identical with that ob-

ergy barrier atT=0 whereas the smh‘(/VZa') SO'U“OPS tained in[24] for the BI action and describes matter domi-
travel from one vacuum to the other. As we discussed in Sechated expansion

11, in the full string theory there is a periodic dependence on For intermediate times it is convenient to consider the
x for the ycosh&’/\2a') solutions but not for the master equation

xsinh%\/2a") solutions.
. \/d—\l
V. COUPLING TO GRAVITY €=~k \ gz 2\/E(eJr p). (44

The relevance of scalar field action with higher than quaym Fig. 2 we then see that the evolution starts off with an
dratic derivative terms for cosmology has been recognized ﬁ1flationary phase= — e and then transforming smoothly

while ago[23], where it was argued that scalar field actionsimO a matter dominated expansio#) for late times. This

— 2 H H
of the formS=V(T)K((4T)*) can produce inflationary sce- ¢, ajitative behavior is the same as found[R0] for the
narios (-inflation) as well as late stage cosmological accel-ggeT action.

eration -essencg It is therefore interesting to analyze our
tachyon action from this point of view. Related analyses
were carried out ih20,24,38—41for the Bl-type and BSFT
effective actions. We consider a general first derivative effec- In this paper we have discussed the general properties of
tive action of the form20) minimally coupled to gravity: first derivative tachyon effective actions. For example we
showed that the asymptotic vanishing of the pressure for
time-dependent tachyon profiles is relatively generic, al-
. (39 though the details vary. On the other hand we argued that the
periodicity of the stress tensor under marginal deformations
cannot be reproduced by any first derivative effective action.
e also studied in detail the first derivative effective action
that we proposed if22] and showed that it reproduces many
of the expected features of tachyon dynamics, including sev-
ds?= —di2+a(t)2ds_,, (40)  eral correct quantitative features. However, it seems appro-
priate to mention the more pessimistic note that one could
whereds;_, is a spatial manifold with constant curvatuee  interpret the large discrepancies among the various proposed
For simplicity we consider the spatially flat cake=0. A~ €ffective actions for time dependent tachyons, compared
convenient set of evolution equations is then simpicall ~ With their striking similarity for static profiles, as an indica-

VI. CONCLUSION

1
L=+—¢g —2 > R—=V(T)K(d,Td*T)
K

In d=p+1 dimensions and witfl assumed to be spatially
homogeneous and time dependent the metric then takes t
usual FRW form

that one of Einstein’s equations is not indepengent tion that the effective action approach will not be as success-
ful in the time dependent case. Indeed it has recently been

5 K? . observed from the boundary state that time dependent tachy-

H “d-D-2° €~ (d=1)H(e+p), (4D  ons also couple to massive closed string fields with an expo-

nentially increasing strengtf#2], so that the truncation to

whereH=a/a is the Hubble constant ane and p are the low level string modes is potentially artificial.

energy density and pressure, respectively. If we now substi-

tute our tachyon action, these general formulas become ACKNOWLEDGMENTS
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