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Polarization of F1 strings into D2 branes
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We give matrix and supergravity descriptions of type FAstrings polarizing into cylindrical D2 branes.
When a RR four-form field strengtR, is turned on in a supersymmetric fashiomith 4 superchargesa
complete analysis of the solutions reveals the existence of a moduli sp&de-eD2 polarizations for some
fractional strengths of the perturbation, and of no polarization whatsoever for all other strengths of the pertur-
bation. This is a very intriguing phenomenon, whose physical implications we can only speculate about. In the
matrix description of the polarization we use the non-Abelian Born-Infeld action in an extreme regime, where
the commutators of the fields are much larger than 1. The validity of the results we obtain provides a direct
confirmation of this action, although it does not confirm or disprove the symmetrized trace prescription.
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[. INTRODUCTION from the spectrum when a tinlf, is present. We got this
puzzling result because the back reactioir pbn the dilaton
Recently, several papers have appeared describing statesd graviton was not taken into account. This back reaction
where strings and branes are polarized into higher dimengives a term in Eq(2) of the form
sional branes, following the ideas |itt]. Usually the higher
brane is supported against collapse by the presence of the Vback reactiof R)
field with which it couples. Nevertheless, only rarely is the L -
back reaction of this field on the other supergravity fields
taken into account. This is because taking back reaction intwhich usually prevents the decay of the strings. Finding the
account does not usually affect the existence of a polarizaexact coefficient of this term is crucial if one wants to un-
tion ground state in the case of polarization into objects twalerstand the physics of this system. A very large coefficient
or more dimensions highémevertheless, when one studies may prohibit polarization entirely, while a very small one
the polarization of a string or brane into a brane one dimenteaves the puzzle about the strings disappearing at infinity
sion higher[such asF1—D2 or D4 — Neveu-Schwarz unresolved.
5-brane(NS5)] the effect of this back reaction on the physics  There are several ways to find this coefficient. The hard
is crucial. and straightforward way is to compute the back reaction ex-
The polarization oiN long fundamental strings into a tu- plicitly using the supergravity equations of motion. This has
bular D2 brane in the presence of a four-form backgrounceen done for other polarization cases[#5]. A slicker
Foxy.= M was first studied ih2]. Ignoring back reaction, the approach is to use supersymme{B~8| and to find this

Nm2R?, 3)

potential was found to be of the form coefficient by completing the square in the less naive version
of Eqg. (2). One can ascertain how much supersymmetry is

V(R) 1 = M_, preserved by thi$, background either by doing a super-

L~ 2mg. REHGN"—5 R, @ gravity computatiod9,10] or by relating this background to

a boundary field theory via an AdS-CHEonformal field
whereR is the radius of the tube. This naive potential seemsheory) type correspondendé1,12. Since the latter method
to imply that for anyF,,, the potential is unbounded below only involves examining the supersymmetry of a two dimen-
at largeR, and the strings have a finite life time as they cansional field theory, we will be using it here. Section. 1l will
tunnel into a D2 brane. Furthermore, if one expands thée devoted to this subject.
square root fogsN>R, Another aspect which makes the studyrdf— D2 polar-
izations transparent is the existence of a matrix description
for the resulting state. This is the subject of Sec. Il. As shown
in [1] and expanded if6], Dp— D(p+2) polarizations can
be understood in terms of the matrices describing the posi-
one can also see that fi,,,> 1/g¢N this potential implies tion of the Dp branes becoming noncommutative. This de-
that the strings are not stable classically. Thus, a large nunscription lacks however in other polarization cases.
ber of coincident=1 strings could spontaneously disappear At first glance, to give a matrix description f1— D2
polarizations involves using matrix string thedig].? Nev-

V(R) 1 N R? mRz )
L 2mg 9" " 2g.N 2 @
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Email address: iosif@physics.ucla.edu 2Matrix string theory descriptions of thE1 string polarization
Although it affects the decay into this state as showf6i/3]. into D2 branes were also considered irb,14].

0556-2821/2003/62)/0260048)/$20.00 67 026004-1 ©2003 The American Physical Society



IOSIF BENA PHYSICAL REVIEW D 67, 026004 (2003

ertheless, a much simpler way to describe these polarizatiorisbular D2 brane with string and DO charge has a nonzero
is to add a small number of DO branes to the configurationangular momentum.
and to use the DO brane noncommutative coordinates to de- Let us assume to hawé DO branes uniformly distributed
scribe it. Our system can be recovered by taking the D@long thez direction. An ansatz for thBl X N matrices which
brane density to zerd. gives the right charges (20,25

This configuration of strings blowing up into a tubular D2
brane in the presence of DO brane charge was considered
recently by Mateos and Townseft?]. In a following paper
[20], a matrix model description for the supertubes was
found. Nevertheless, this matrix model description does not
work in the limit we are interested itwhen the DO contri-
bution to the energy vanishesTo describe this limit one
must use the full non-Abelian Born-Infeld action of the DO
braneqd21,1,22,23 We should note that in this limit the field
strengthF is much larger than one.

It is interesting to ask whether the validity of the result we |n the infinite volume limit, the matriceX,Y andZ are in-

get(which agrees exactly with the supergravity result and theinite, and obey several useful identities:
one in[19]) confirms the validity of the symmetrized trace

prescription. The answer is probably negative, because our

F’s are very simple, and their commutators vanish. Thus the _ ) )

computation is probably insensitive to the inability of the —iF,=[Z,X]=—ilY,  —iF,=[ZY]=ilX
symmetrized trace prescription to produce the right terms
when commutators df's are involved[24].

Anticipating, we will find that the polarization oF1
strings into a tubular brane is impossible except for values of
F, proportional to fractions whose denominator is smaller F.o=X=o0Y F.=Y=—oX (5)
thanN. For these values a number of strings polarizes into v '
one or more tubular D2 branes. The radius of these polariza-
tion configuration is a modulus.

The polarization ofF1 strings into D2 branes has also Note that we work in the normalization where the matrices
been studied recently in Melvin-type backgrounds[16] are dimensionless. To obtain the physical quantities corre-
and[17] exact solutions ofF1-D2 spherical configurations sponding to dimensionless symb@sich asR, | andw) one
were found, and the energy of these configurations was conhas to multiply by the appropriate powers lf= 27a’.
puted. For small radii, the polarization potential hasrdn Sincel is the separation between the individual DO branes,
behavior, as in our case. For largethe potential is un- [N is the size of thez direction, which we take to be very
bounded below, most likely because of the instability of thelarge. The local DO charge density @,=1/1. For weak
Melvm background. If one tries to set the coefficient of thefields the F string charge density along thedirection is
r? term to zero(to reproduce the moduli space we obtain in given by[22]
the supersymmetric cas@ne reaches the “Melvin limit” of
the F, flux [18]. It would be interesting to explore if this

Z;=168;j, X=R(a+a"), Y=iR(a'-a),

o b
aj=e 'y, =€y, (4)

Fyy=[X,Y]=0

phenomenon is responsible for the moduli space of polariza- Q.= | 7])= 4Tl wR?, )
tion vacua in our case as well. o's
Il. MATRIX DESCRIPTION and is quantized. As we will see shortly, this quantization

proceeds differently for large string charge.

It is possible to describE strings with DO charge blown The D2 dipole charge is proportional to

up into a tubular D2 brane using the DO brane matrix degrees
of freedom. This description is valid both with and without 1
anF, flux turned on[20,25. In order to give an ensemble of i XY 21 YLZ X+ Z[X Y ]) = 4R (7)
DO branes a D2 charge, one has to take an ansatz where three
of the DO brane coordinates are not commutiRd. charge
can be given as well, by having the honcommuting coordi-The first two terms in the left-hand side are nonzero, while
nates be time dependent. This is expected both from the forrtime third is zero. This means there is local D2 charge in the
of the non-Abelian coupling witlB,, which contains a time xzandyz planes, but not in thgy plane, exactly as it should
derivative of the coordinates, and also by notididg] thata  be for a cylindrical D2 brane.

As the matricesX, Y, andZ are infinite in the large vol-

ume limit, the cyclicity of the trace is not respected. Without
3We thank W. Taylor for this suggestion. any F, turned on, the action is givei21] by
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_1 th Fty 0

S g —Fix 1 0 Fys g

Lngi=—To ST - :

NBI 0 r € —Fy 0 1 Fys (8)
0 —F, —F, 1

One can plug in thé;; defined in Eq.(5), and evaluate the not imply anything about the validity of the symmetrized
determinant above. By using the fact that the determinant dfrace prescription because the only matrix whose trace we
a matrix with noncommuting entriésakes all orderings into had to take waq.

account, or alternatively the fact thdtandY commute, we The presence df , modifies the action by the addition of
notice that the terms proportional ¥7Y? and their permu-

tations cancel. The only comblnatlgn o_f matn_ces Wh|_ch ap- LF4=T05Tf(ConFZX+ CozyFay)= FOxy22|NTOR2-

pears under the square rootX¥8+ Y?2. Since this combina- (14)

tion is proportional tal, the Lagrangian simply becomes

__ T APR_40°R2. The tgrms in Eqs(lZ} and (14) correspond to the terms
- ToNVI+H4IR*~40"R ©) found in the naive actiof2) . Unfortunately, the back reac-
In order to obtain a Hamiltonian from this Lagrangian, onetion term cannot be found in the matrix description because
has to find the conjugate momentum corresponding to th&he (F4)? couplings in the non-Abelian D brane action are
string charge: not known.

2
_lsdb  A4TolswR (10 Ill. THE SUPERGRAVITY ANALYSIS
YN o  1+41°RP—4w?R?’

Let us for the beginning explore the supergravity back-

where the normalization of the string charge with respect t@round created by a large number of coinciderstrings. By
5L/ 8w was found by comparing the small string charge limit & generalization of the AdS-CFT correspondence in the spirit

of Eq. (10) with Eq. (6). The Hamiltonian is therefore of [12], the two-dimensional field theory living on the world
' o volume of these coinciderit strings is dual to string theory

5L Qg2 living in the near-horizon background of these strings. As
H=w——L=ToN\/1+ s—5V1+4I°R?>, (11) explained in[26], turning on an operator in the boundary
S 87R theory Hamiltonian corresponds to turning on a non-
normalizable mode in the bulk. One can study the effect of
the operator on the boundary theory by examining the super-
gravity dual which the corresponding non-normalizable
mode creates. Nevertheless the study of this theory, although
straightforward once all the computations are done, is not
our primary interest. Rather, we are looking for a supergrav-
H Q, 4mR? ity background with a nonzerb, which preserves 4 of the
NI |—2+ IQ—2 (12 original 16 supercharges, and we are using this correspon-
s s s910s dence only as a tool to keep control on the supersymmetry.

- : oo : - As the fermions of the type IIA string in static gauge
The first term is the energy @@, coincident static strings, .
and the second one reproduces exactly the Born-Infeld Corjf'[ansform in the8s of the SA8) R symmetry group, a fer-

tribution to the action(27) when one identifies the param- mion t_)?linear_ transforms in th85,. or the 28 of this group.
eters in the matrix and supergravity descriptions: The bilinear in the35, corresponds to a self dual Ramond-

Ramond(RR) 4-form field strength on the space transverse
STHX2+Y?) ) - to the strings. This 4-form polarizes the strings into D4
T|s=4R 5. (13)  branes, creating the dimensional reduction of the-M25
setup in[7]. The fermion bilinear in th&8 corresponds to a
This exact agreement provides a confirmation of the nonPUlk RR 2 form and 6 form field strengths on the transverse
Abelian Born-Infeld action, as well as of the non-Abelian SPace. The 6 form on the transverse space is equivalent by

coupling with theB field found in[22]. Nevertheless, it does Hodge duality & a 4 form with 2 legs along the strings,
which is what we need foF1— D2 polarization.

the same as the one found[ib9]. This formula is valid for
all values of the DOF1 and D2 charges. We can take the
limit when the DO charge vanishebl{- 0 keeping the length
of the tubelN fixed) and the string charge dominates to
obtain

r2=x2+y?=

“The determinant is defined as A. The background

'al...a’ The string frame supergravity background Mffunda-
detM = ™% Fneha®2 Mg o Masa, - Ma g mental strings is
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transformation properties as the fermion bilinear it is conve-
nient to group the 8 transverse coordinates and the fermions
into 4 complex pairs:

d?=Z"Y—dx3+dxé)+dx

e?=gzz" %2 (15

B=Z"1dx°Adx}, . .

2r=x2+ix3, Z2=x*+ix5,
where Z is a harmonic function on the transverse space
which becomes

Z2=x8+ix’, z*=x8+ix?,
0 (19
Z=1+—, R®=327°Ngia’?, (16)
r AT=NTHINZ, AZ=N3+i0Y
when the strings are coincident. ¢§>1, the supergravity
solution is everywhere valid and it is not dual to anything. AB=25+in6  A4=\T+i\8

However, for the beginning we are interested in a regime
where we could use the AdS-CFT type of duality discussed
above, and thus we will focus for now dgs>1. Forr®  Under the rotationg' —e'#iz' the fermions transform as
>g§N the dilaton becomes large, and physics starts being
described by the supergravity solution Mfcoincident M2
branes. For &rf< gﬁN supergravity in the backgroun(d5)
gives a weakly coupled description of the physics, and the 1
in the harmonic function can be ignored. We will work in
this regime. For even smaller radii<1, the theory has a
weakly coupled description in terms of an orbifold CFT, ana-
lyzed in[13].

Al gl(d1=dotdatda)l2p 1

A2 @l(d1t dot d3—dg)l2p 2
(20
A3 gl(d1=da—d3—ha)/2p 3

B. The perturbation A4 gi(d1+da—datdg)l2p 4

We are interested in perturbing the above background
with the RR fields which could cause polarization. As ex- o
plained above, these fields &fe andFg on the space trans- Thus a fermion bilinear of the form Ra¢A?) has the same
verse to the strings. If one defiféSs=+(F,—C1/\H3), the  5O(8) transformation properties &= Re(d22dZ"), V, (de-
type IIA equations of motion become fined in the Appendixand their Hodge dualsT and V.

The most straightforward way to examine the supersym-
metry preserved by a specific fermion bilinear is to examine
the free 2-dimensional boundary theory which has 8 bosons
X, in 8, of SO(8) and both the left and right moving fermi-
ons\, and\, in 8. The original supersymmetry transfor-
mations are

d*FZ_ H3/\F6=O

dFG_H3/\F4:0

17
_d*FGZd(F4_C1/\H3): - F2/\H3

szIO

Combining Eq.(15) with Eq. (17) and expressing the ten SXH=— eI Na—€el'% X,
dimensional Hodge duat in terms of the 8 dimensional

transverse space Hodge dugl, the equations satisfied by

the first order perturbations become 5}\a:axﬂrgéfé+|:ﬂr':ézé
d[Z"(*gF2~F)]=0, dFs=0, (21)

(18 N — 9 I AN Mmoo

d[zil(*SFG_Fz)]:Oy dF,=0. 2 axﬂraafa F,uraafa

We should note that acting on even formg=1, while *2

—1. To find the perturbations with the sarResymmetry SF!=— e} 0N at €l 0Na,

® i i i i i -
5Once we establish the form of the supersymmetric supergravit;‘/VhereFaa are _8X8 matrices given "129]' Itis a_Stra'g_ht
perturbation' we can also use it fgg<1 (as |0ng as the 1 in the forward exercise to show that add|ng a fermion b|l|near,

harmonic function can be ignoredince the supersymmetry of the
background does not depend gx.

5This is not the canonical definition &, but it is the most con-
venient to work with.

"The standard properties of these tensors are reviewed in the
Appendix.
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Re(A1A?), together with its bosonic partner preserves 4 ofbranes frome. Anticipating, we will find that similarly to
the original 16 superchardes; ande; other Polchinski-Strassler type problerf6-8,27,28, the
Thus a 2 form and a duaéi 6 forr%. corresponding to theprobe potential will be independent of the distribution of the

fermion bilinear can be written as combinations Tof and strings; thus the self-interaction potential of a tubular D2
V,, and respectively, and Vg multiplied by powers of . brane containing a!l thd§l strings will be the same as the
Plugging this ansatz in E¢18), we find 4 solutions. Two of proAt\)e ?ra:jng ploltjezntt;al with re%lacgddit_:])il\l. h by turni
them correspond to a mode which is not a chiral primary, and cylindrica rane can be giv charge by turning

the other two, one nor-malizable and the other non normal®", & nontrivialFo, on its world volume. The quantizefdl

izable correspond to the fermion bilinear we are interested inStiNg charge in a nontriviek ,,, ® andB,,, is
Adding the fermion bilinear to the boundary theory Hamil- SL
tonian correspond£6] to adding to the background5) the =—
non-normalizable solution: 6F o1
m B 2r
F2: \/?Z(2T2_6V2)1 \/Z(Zﬂal)glzgs
. (22 o 7102 27a’ (Bo+2ma'Fop)
Fez_ﬁz(6T6_6V6)a VGl G11— (Boi+ 27’ Foy)?
=n. (24
where m is proportional to the coefficient of the fermion
bilinear added to the boundary Lagrangian. If we call
A tubular D2 brane in this geometry couples wiGy

+B,/\C;. In our background, this combination can be Boi+2ma'Fo,
found using A=

VIGod G11— (Bos+2ma’ Fgp)?

d(C3+C1/\Bz)=F4_C1/\H3+BZ/\F2 \/E(Zwa/)l/an
S

= _Z*l(*SFe_ Fz)/\dXO/\Xm (23 = o712 ) (25
=2mT,Adx°/Adx. the Hamiltonian density per unit string length will be
SinceZ Y(*gF¢—F,) is a harmonic form, it only depends 2z Y271
on its value at infinity, which is given by the boundary B|——3,2(‘/A2+ 1-A). (26)
theory. Therefore the expression above remains true when V27 (2ma’) Ys

the F1 strings are coincident or when they are distributed. ) ) ] ) )

This implies that the WZ term in the action of a cylindrical We are interested in probes with dominant string chafge,

D2 brane is independent of where tR@ strings are. >1, which is easily realized fan> /N in the regime where
supergravity is valid. In this regime the square root can be
expanded, and the main contributions to the Hamiltonian
cancel, as they represent the interaction energy between par-

In order to find the self-interaction potential of a cylindri- glle] F1 strings. After this cancellation, the subleading term
cal D2 brane with larg€& 1 charge, one has to find first the of the Born-Infeld action is

potential felt by a D2 brane probe with smalleéd charge
1<n<N, and then to build the D2 brane by bringing test D2 2
V=

C. Probing the perturbed solution

(27)

(27a’)?n ggl
80n can also examine the supersymmetry preserved by a certaiAn . din th . ) hi .
fermion bilinear by doing a 9-11 flip. A bilinear of the for!A2 s we mentioned in the previous section, this supergravity

becomes a vector bilinear on the M2 brane when liftindyittheory. rebsull_t re%mdulcefslgxaa.ly th_e or?e l(.)btamed us_lnr?_ theDgon-
Reducing along a different direction, this becomes a vector biIineafA‘ elian Born-Infeld action ml the limit o _vanls |_ng .
— o . charge. For a D2 brane & X S' geometry, this contribution
on the D2 brane, of the form~y*\“ which uponT duality alongu . . . ;
becomes again a scalar fermion bilinear on the D1 brahg®)\? to the action depends neither on the orientation ohenor
9 . ! NEA onz ltis straightforward to generalize this action for the
Reexpressing the complex fermions in real ones, this bilinear is

AIA3— A2\%, which can be expressed as coming from a Superpo5:|rcle replaced by an ellipse. This can be easily done in a

tential of the formW= ¢*¢p>— ¢p2¢*. Thus after changing the sign similar way to[6-8,27,28. If one turns on the bilinear

of a field this superpotential becomes the dimensional reduction oR€(A"A?) which corresponds t@,= R_e(dzzd Z‘_l)’ itis natu-
a hyper bilinear in the 2D SYM on the D2 branes. Since that sufal to expect the probe to have a minimum if the two semi-
perpotential preserves 4 superchargs&=@ in 2+1 dimensions  axes of the ellipse lie in the two planes spanned by compo-
this is the supersymmetry preserved by our operator. nents of Z2=x*+ix% and z*=x8+ix®. If the lengths and
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orientations of the semiaxes are given by the modulus and o
phase o, andZ,, the result is obtained by just replacing Vimany tubes > —— —lZy-Z;m ng>
by |Z4|%/2+|Z,|?/2 in Eq. (27). T 2(2ma’) nigg

One can also find the interaction potential coming from
the Wess-Zumino action. Using E@3) and integrating over

the ellipsoid one finds after a few straightforward steps  \\herezi parametrize the semiaxes of ttta D2 tube, which
containsn; F1 strings. This potential is very interesting. It
T — implies that for a generic strength of the perturbation, there is
VWZ:_(ZWT)sze(Z‘lZZ)' (28 only one minimum atZ,=Z,=0. Contrary to what one
might expect, increasing the strength of the four-form does
not make the polarization to a D2 brane more likely. This is
because a large, causes a large backreaction on the gravi-
ton, dilaton and 2 form, which do not favor the polarization.
5 5 Even more remarkable, for the particular values=
™ |Z4*+12,] —4mRe(Z.Z,) +1/n;g2, the zero energy solution is given &= +Z}, for
2(2ma’)? ng§ ac2/) theith tube, andZ,=Z,=0 for the others. Thus, for these
(29)  values of the perturbation a moduli space of possible polar-
ization vacua opens upy; of the originalN strings can be
As we said in the Introduction, in addition to these two termspolarized. The lowest absolute value rafwhich allows the
there is another one coming from the back reaction ofthe polarization to occur isn=1/NgZ. In this case alN strings
andF¢ perturbations on the metric, dilaton and 2-form. Onepolarize. Formzl/pg§ ,N/2<p<N, p of the N strings po-
can see from the equations of motion that this term should bfarize into one D2 brane. Fqu=N/2 it suddenly becomes
proportional to ngﬁnrz. Supersymmetry allows us to find possible for half the strings to polarize into one D2 brane,
this term exactly by simply completing the square in Eg.and the other half to polarize into another D2 brane. Both D2

| 2

+]Z5-Z,mng?|?], (3

which is also independent of the harmonic functinrhus,
the first two terms of the action of the probe are

Ve +Vwz=

(29). Thus tubes can be at any radius. In general, ff(k—1)<p
<N/k, the ground state will consist df concentric D2
- 1Z,]2+|Z,/2 o branes at different radii, witkf1 chargep each.
Viotal= 2 2ma)? noP —4mRe(Z,Z,)
(2ma’) s E. Consistency checks

Before we continue, we should address two small but po-
tentially dangerous issues. First, we have to make sure that
the supergravity perturbation fields are weaker than the back-
ground fields. The energy of the background and perturbation
fields are respectively

+m2n9§(|24|2+|22|2)}

a
=[]z~ Z,mnd?
S

2(2mwa')?’ng .
~26 B GG LG Na'
+1Z,=Zmng]?]. (30) & THeHor GTET G~ — 5
. (32
. 2N\|2 15
D. The full potential FOE@G Gl — m2z2- M°N“gsa .
The last term of Eq(30) is also independent &. There- v ri2

fore, the potential of the probe tube does not depend on the

position of theF1 strings sourcing the geometry. One canThe condition for validity of the perturbation expansion is

now find the self-interaction potential of a D2 brane tubethusr*>m2Ngia’2. For the smallest value af which al-

containingall F1 strings, in its own geometry, by bringing lows for a moduli space this is equivalent t6>a'?/N

from infinity small probes and using them to construct thewhich is trivially satisfied. However, for larger values of

final configuration. Since the potential of each of these smalivhich allow n strings to polarize into a D2 brane, this con-

probes is independent of where the rest of the probes are, thiition is satisfied only for*s>a’2N/n?.

final potential will be the sum of the probe potentials, which  The second issue has to do with the attraction between the

gives the same result as E80) with n replaced byN. The  opposite sides of a tube, or between concentric tubes. Be-

most general configuration will consist of several D2 tubescause the larg& 1-string tension and the D2 brane tension

with F1 chargesy; . The potential will be the sum of terms, add in quadratures, the interaction coming from the gravita-

each of them equal to E¢30) with n replaced byn; : tional D2-D2 attraction has a negligible effect on the energy.
What could spoil the interaction is the electric attraction be-
tween the opposite sides of the tube.

®The factorm?g? comes from the square of the first order pertur- ~ The issue of this possible interaction is usually not ad-
bation, n comes from the dominarf-string charge of the probe, dressed in most of the polarization papers. In principle this
and the proportionality withi2 is not hard to derive. can give an energy contribution which may affect the polar-
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ization ground state. In our context, since the balance of thalong some direction. Understanding the effect of this other
energies is so delicate, such a contribution could in principleiece in the potential can be easily done in our framework
easily lift the moduli space. One could probably argue thafsee[8] or [31] for an examplg Such a piece makes the
supersymmetry prevents this contribution from affecting thestrings cease to be a classical ground state, and seems to
potential, but nevertheless it is instructive to see how it hapleave the puzzle ifi2] unsolved. The only consolation is that
pens. only a very special combination of 4-form and graviton will
As we can see from Ed23), our D2 brane tube couples create this instability. In general however, turning onFgh
with a field combination which is proportional to the har- will not affect the stability of the strings.
monic form Z 1(*»gFs—F,). The presence of extra D2 It is intriguing to see what is the fate of this configurations
brane charge affects the Bianchi identity fog only. Never-  when one lifts them to M theory. A D2 brane with large
theless,Z 1(*gF¢—F,) remains harmonic. Therefore the string charge lifts to an M2 brane helix which winds around
presence of D2 chargérom the opposite side of the tupe the eleventh dimension many times while circulating once
does not affect the Wess-Zumino term of the potential. Thusaround ars!. The radius of the large circle is a modulus, so
as we expected, the attraction between the opposite sides tiifere is no potential for the helix to be stretched in a radially
the tube or between different tubes does not have any effesymmetric fashion. Even more puzzling to our intuition is
on the energy of the system. The lack of interaction betweethe fact that a state of many such helices, nonconcentric and
tubes placed at different radii is characteristic to Polchinskipossibly intertwined preserves 4 supercharges. When one
Strassler type setups, and is also present for the supertubtekes the size of the 11'th dimension to infinity these helices
with DO charge 30]. should naturally dissolve into the “Coulomb branch” of the
Usually the appearance of a moduli space of vacua signakheory on parallel M2 branes.
some symmetry enhancement. It is interesting to ask what The F1—D2 configuration falls in the general category
this symmetry might be. One certain thing is that supersymef objects polarizing into objects one dimension higher.
metry is not enhanced, since both the field strengths whiclimilar situations can occur in the case of D4 branes polar-
allow polarization and those which do not allow it preserve 4izing to NS5 branes. We expect a similar potential, which
supercharges. Thus, this is probably a symmetry which apallows a moduli space to open up for a very specific value of
pears in the UV of the mysterious orbifold CFT living on the the perturbation, and does not allow polarization for any
strings. other value. On general grounds one expects the-DiE5
polarization to happen fal/=1 supersymmetry in 41 di-
mensions(8 superchargesand therefore the moduli space
not to be lifted up by quantum corrections. Again, the lift of

We have given matrix and supergravity descriptions to théhe configuration in M theory would give a spiral-shaped M5
polarization of type IIA fundamental strings in tubular D2 brane. o o
branes. For the matrix description we have used the matrix The appearance of flat directions is a very intriguing phe-

degrees of freedom of DO branes and their non-Abeliaflomenon, whose origin would be exciting to find. One pos-
Born-Infeld action to describe afl— D2 tubular configu- sible hint to the direction one should search in is the recent

ration in a nontrivialF , background. investigation by Brecher, Saffin and Empafd6—1§ of the

In order to give a supergravity description while maintain-F1— D2 polarization in a Melvin background. The polariza-
ing control over the Supersymmetry we have turned on éion pOtential they obtain becomes flat Only for the critical
fermion bilinear in the theory ||V|ng o\ coincident funda- value of the Melvin field. Since in our case this field is very
mental strings. We have then related this bilinear to a supegmall, and it appears in combination with other fields, the
gra\/ity nonnormalizable mode via an AdS-CFT like corre- Only way to ascertain if the flat direction has a similar Origin
spondence, and showed that the nonnormalizable modé to lift our perturbed solution to M theory.
inducesF1— D2 polarization. We have found that polariza- ~We have studied a very intriguing system, and found
tion occurs only when the value of the bulk fields is propor-many phenomena which challenge our intuition, such as the
tional to fractions whose denominator is smaller thdn  Presence of a moduli space of polarization vacua or the fact
moreover, in these cases the polarization radius is a moduluff}at M2 brane spherical helices in M theory at firfitg, can
For any other values of the bulk fields there is no polarizaPe supersymmetric. We cannot but hope that in time a more
tion. fundamental explanation of these phenomena and other less

For the supergravity description we have used the setugnderstood aspects of M theory will be given.
and technology developed by Polchinski and Strad€ér
Although this technology is sometimes heavy, it has certain
advantagessuch as the control on the supersymmetry and on
the back reaction of the fields, or the lack of attraction be- | would like to thank Wati Taylor for many useful com-
tween the opposite sides of the polarized objedhich in  ments and help in understanding the matrix description of
our opinion make it the only correct setup for the study ofthis polarization. | would like to thank Joe Polchinski, R.
polarization into objects one dimension higher. Emparan, K. S. Narain, S. Sinha, B. de Wit, R. Roiban and

One interesting question which one might ask is whatA. Buchel for useful discussions. This work was supported
happens if one turns on a nonsupersymmetric traceless scalay the University of California and by NSF grant PHY97-
bilinear in the potential, which might create an instability 22022.
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APPENDIX

We list several properties of the transverse space antisym-

PHYSICAL REVIEW D 67, 026004 (2003

metric 2- and 6-tensors which form a basis for the forms with

the R-symmetry transformation properties of a fermion bilin-

ear:
Te=*gT>
1 [ xixm
VG:a r—szpqu+5 more| dx"/AdXx"AdxPAdxIAdX
Adx®,

1 [ x9 i .
szz r_Zqu+l more| dx' Adx!, (A3)
Ty=V,o=%gVg, Tg—Ve=*gVy, (A4)
d(Inr)/AVg=0, d(Inr)/\V,=0, (A5)

d(rP(6Tg+pVe))=0, d(rP(2T,+pV,))=0. (A6)
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