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Polarization of F1 strings into D2 branes

Iosif Bena*
Department of Physics, University of California, Santa Barbara, California 93106

~Received 9 August 2002; published 17 January 2003!

We give matrix and supergravity descriptions of type IIAF strings polarizing into cylindrical D2 branes.
When a RR four-form field strengthF4 is turned on in a supersymmetric fashion~with 4 supercharges!, a
complete analysis of the solutions reveals the existence of a moduli space ofF1→D2 polarizations for some
fractional strengths of the perturbation, and of no polarization whatsoever for all other strengths of the pertur-
bation. This is a very intriguing phenomenon, whose physical implications we can only speculate about. In the
matrix description of the polarization we use the non-Abelian Born-Infeld action in an extreme regime, where
the commutators of the fields are much larger than 1. The validity of the results we obtain provides a direct
confirmation of this action, although it does not confirm or disprove the symmetrized trace prescription.
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I. INTRODUCTION

Recently, several papers have appeared describing s
where strings and branes are polarized into higher dim
sional branes, following the ideas in@1#. Usually the higher
brane is supported against collapse by the presence o
field with which it couples. Nevertheless, only rarely is t
back reaction of this field on the other supergravity fie
taken into account. This is because taking back reaction
account does not usually affect the existence of a polar
tion ground state in the case of polarization into objects t
or more dimensions higher.1 Nevertheless, when one studie
the polarization of a string or brane into a brane one dim
sion higher @such asF1→D2 or D4 → Neveu-Schwarz
5-brane~NS5!# the effect of this back reaction on the physi
is crucial.

The polarization ofN long fundamental strings into a tu
bular D2 brane in the presence of a four-form backgrou
F0xyz5m was first studied in@2#. Ignoring back reaction, the
potential was found to be of the form

V~R!

L
5

1

2pgs
SAR21gs

2N22
m

2
R2D , ~1!

whereR is the radius of the tube. This naive potential see
to imply that for anyF0xyz the potential is unbounded belo
at largeR, and the strings have a finite life time as they c
tunnel into a D2 brane. Furthermore, if one expands
square root forgsN.R,

V~R!

L
'

1

2pgs
S gsN1

R2

2gsN
2

m

2
R2D ~2!

one can also see that forF0xyz.1/gsN this potential implies
that the strings are not stable classically. Thus, a large n
ber of coincidentF1 strings could spontaneously disappe

*Present address: Dept. of Physics, UCLA, L.A., CA 9009
Email address: iosif@physics.ucla.edu

1Although it affects the decay into this state as shown in@6,3#.
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from the spectrum when a tinyF4 is present. We got this
puzzling result because the back reaction ofF4 on the dilaton
and graviton was not taken into account. This back reac
gives a term in Eq.~2! of the form

Vback reaction~R!

L
;Nm2R2, ~3!

which usually prevents the decay of the strings. Finding
exact coefficient of this term is crucial if one wants to u
derstand the physics of this system. A very large coeffici
may prohibit polarization entirely, while a very small on
leaves the puzzle about the strings disappearing at infi
unresolved.

There are several ways to find this coefficient. The h
and straightforward way is to compute the back reaction
plicitly using the supergravity equations of motion. This h
been done for other polarization cases in@4,5#. A slicker
approach is to use supersymmetry@6–8# and to find this
coefficient by completing the square in the less naive vers
of Eq. ~2!. One can ascertain how much supersymmetry
preserved by thisF4 background either by doing a supe
gravity computation@9,10# or by relating this background to
a boundary field theory via an AdS-CFT~conformal field
theory! type correspondence@11,12#. Since the latter method
only involves examining the supersymmetry of a two dime
sional field theory, we will be using it here. Section. III wi
be devoted to this subject.

Another aspect which makes the study ofF1→D2 polar-
izations transparent is the existence of a matrix descrip
for the resulting state. This is the subject of Sec. II. As sho
in @1# and expanded in@6#, Dp→D(p12) polarizations can
be understood in terms of the matrices describing the p
tion of the Dp branes becoming noncommutative. This d
scription lacks however in other polarization cases.

At first glance, to give a matrix description toF1→D2
polarizations involves using matrix string theory@13#.2 Nev-

;
2Matrix string theory descriptions of theF1 string polarization

into D2 branes were also considered in@15,14#.
©2003 The American Physical Society04-1
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ertheless, a much simpler way to describe these polarizat
is to add a small number of D0 branes to the configurati
and to use the D0 brane noncommutative coordinates to
scribe it. Our system can be recovered by taking the
brane density to zero.3

This configuration of strings blowing up into a tubular D
brane in the presence of D0 brane charge was consid
recently by Mateos and Townsend@19#. In a following paper
@20#, a matrix model description for the supertubes w
found. Nevertheless, this matrix model description does
work in the limit we are interested in~when the D0 contri-
bution to the energy vanishes!. To describe this limit one
must use the full non-Abelian Born-Infeld action of the D
branes@21,1,22,23#. We should note that in this limit the field
strengthF is much larger than one.

It is interesting to ask whether the validity of the result w
get~which agrees exactly with the supergravity result and
one in @19#! confirms the validity of the symmetrized trac
prescription. The answer is probably negative, because
F ’s are very simple, and their commutators vanish. Thus
computation is probably insensitive to the inability of th
symmetrized trace prescription to produce the right ter
when commutators ofF ’s are involved@24#.

Anticipating, we will find that the polarization ofF1
strings into a tubular brane is impossible except for value
F4 proportional to fractions whose denominator is sma
than N. For these values a number of strings polarizes i
one or more tubular D2 branes. The radius of these polar
tion configuration is a modulus.

The polarization ofF1 strings into D2 branes has als
been studied recently in Melvin-type backgrounds. In@16#
and @17# exact solutions ofF1-D2 spherical configuration
were found, and the energy of these configurations was c
puted. For small radii, the polarization potential has anr 2

behavior, as in our case. For larger the potential is un-
bounded below, most likely because of the instability of t
Melvin background. If one tries to set the coefficient of t
r 2 term to zero~to reproduce the moduli space we obtain
the supersymmetric case!, one reaches the ‘‘Melvin limit’’ of
the F2 flux @18#. It would be interesting to explore if this
phenomenon is responsible for the moduli space of polar
tion vacua in our case as well.

II. MATRIX DESCRIPTION

It is possible to describeF strings with D0 charge blown
up into a tubular D2 brane using the D0 brane matrix degr
of freedom. This description is valid both with and witho
anF4 flux turned on@20,25#. In order to give an ensemble o
D0 branes a D2 charge, one has to take an ansatz where
of the D0 brane coordinates are not commuting.F1 charge
can be given as well, by having the noncommuting coor
nates be time dependent. This is expected both from the f
of the non-Abelian coupling withB2, which contains a time
derivative of the coordinates, and also by noticing@19# that a

3We thank W. Taylor for this suggestion.
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tubular D2 brane with string and D0 charge has a nonz
angular momentum.

Let us assume to haveN D0 branes uniformly distributed
along thez direction. An ansatz for theN3N matrices which
gives the right charges is@20,25#

Zi j 5 ld i j j , X5R~a1a†!, Y5 iR~a†2a!,

ai j 5e2 ivtd i 21,j , ai j
† 5eivtd i 11,j . ~4!

In the infinite volume limit, the matricesX,Y andZ are in-
finite, and obey several useful identities:

2 iF zx[@Z,X#52 i lY , 2 iF zy[@Z,Y#5 i lX ,

iF xy[@X,Y#50

Ftx[Ẋ5vY, Fty[Ẏ52vX. ~5!

Note that we work in the normalization where the matric
are dimensionless. To obtain the physical quantities co
sponding to dimensionless symbols~such asR, l andv) one
has to multiply by the appropriate powers ofl s5A2pa8.
Since l is the separation between the individual D0 bran
lN is the size of thez direction, which we take to be very
large. The local D0 charge density isQ051/l . For weak
fields theF string charge density along thez direction is
given by @22#

Q15
T0l s

i lN
STr~Ẋi@Xi ,Z# !54T0l svR2, ~6!

and is quantized. As we will see shortly, this quantizati
proceeds differently for large string charge.

The D2 dipole charge is proportional to

1

2 i lN
Tr~X@Y,Z#1Y@Z,X#1Z@X,Y# !54R2. ~7!

The first two terms in the left-hand side are nonzero, wh
the third is zero. This means there is local D2 charge in
xz andyz planes, but not in thexy plane, exactly as it should
be for a cylindrical D2 brane.

As the matricesX, Y, andZ are infinite in the large vol-
ume limit, the cyclicity of the trace is not respected. Witho
any F4 turned on, the action is given@21# by
4-2



LNBI52T0 STr 2det

21 Ftx Fty 0

2Ftx 1 0 Fxz
. ~8!
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S ! S 2Fty 0 1 Fyz
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One can plug in theFi j defined in Eq.~5!, and evaluate the
determinant above. By using the fact that the determinan
a matrix with noncommuting entries4 takes all orderings into
account, or alternatively the fact thatX andY commute, we
notice that the terms proportional toX2Y2 and their permu-
tations cancel. The only combination of matrices which a
pears under the square root isX21Y2. Since this combina-
tion is proportional to1, the Lagrangian simply becomes

L52T0NA114l 2R224v2R2. ~9!

In order to obtain a Hamiltonian from this Lagrangian, o
has to find the conjugate momentum corresponding to
string charge:

Q15
l s

N

dL

dv
5

4T0l svR2

A114l 2R224v2R2
, ~10!

where the normalization of the string charge with respec
dL/dv was found by comparing the small string charge lim
of Eq. ~10! with Eq. ~6!. The Hamiltonian is therefore

H5v
dL

dv
2L5T0NA11

Q1
2gs

2

8pR2A114l 2R2, ~11!

the same as the one found in@19#. This formula is valid for
all values of the D0,F1 and D2 charges. We can take th
limit when the D0 charge vanishes (N→0 keeping the length
of the tube lN fixed! and the string charge dominates
obtain

H

Nll s
5

Q1

l s
2 1

4pR2

l sQ1gs
2 . ~12!

The first term is the energy ofQ1 coincident static strings
and the second one reproduces exactly the Born-Infeld c
tribution to the action~27! when one identifies the param
eters in the matrix and supergravity descriptions:

r 25x21y25
STr~X21Y2!

N
l s
254R2l s

2 . ~13!

This exact agreement provides a confirmation of the n
Abelian Born-Infeld action, as well as of the non-Abelia
coupling with theB field found in@22#. Nevertheless, it doe

4The determinant is defined as

detM5ea1a2•••anea18a28•••an8Ma1a
18
Ma2a

28
•••Mana

n8
.
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not imply anything about the validity of the symmetrize
trace prescription because the only matrix whose trace
had to take was1.

The presence ofF4 modifies the action by the addition o

LF4
5T0STr~C0zxFzx1C0zyFzy!5F0xyz2lNT0R2.

~14!

The terms in Eqs.~12! and ~14! correspond to the term
found in the naive action~2! . Unfortunately, the back reac
tion term cannot be found in the matrix description beca
the (F4)2 couplings in the non-Abelian D brane action a
not known.

III. THE SUPERGRAVITY ANALYSIS

Let us for the beginning explore the supergravity bac
ground created by a large number of coincidentF strings. By
a generalization of the AdS-CFT correspondence in the s
of @12#, the two-dimensional field theory living on the worl
volume of these coincidentF strings is dual to string theory
living in the near-horizon background of these strings.
explained in@26#, turning on an operator in the bounda
theory Hamiltonian corresponds to turning on a no
normalizable mode in the bulk. One can study the effect
the operator on the boundary theory by examining the su
gravity dual which the corresponding non-normalizab
mode creates. Nevertheless the study of this theory, altho
straightforward once all the computations are done, is
our primary interest. Rather, we are looking for a supergr
ity background with a nonzeroF4 which preserves 4 of the
original 16 supercharges, and we are using this corresp
dence only as a tool to keep control on the supersymme

As the fermions of the type IIAF string in static gauge
transform in the8s of the SO~8! R symmetry group, a fer-
mion bilinear transforms in the351 or the28 of this group.
The bilinear in the351 corresponds to a self dual Ramon
Ramond~RR! 4-form field strength on the space transver
to the strings. This 4-form polarizes the strings into D
branes, creating the dimensional reduction of the M2→M5
setup in@7#. The fermion bilinear in the28 corresponds to a
bulk RR 2 form and 6 form field strengths on the transve
space. The 6 form on the transverse space is equivalen
Hodge duality to a 4 form with 2 legs along the strings
which is what we need forF1→D2 polarization.

A. The background

The string frame supergravity background ofN funda-
mental strings is
4-3
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ds25Z21~2dx0
21dx1

2!1dx'
2

eF5gsZ
21/2 ~15!

B5Z21dx0`dx1,

where Z is a harmonic function on the transverse spa
which becomes

Z511
R6

r 6 , R6532p2Ngs
2a83, ~16!

when the strings are coincident. Ifgs.1, the supergravity
solution is everywhere valid and it is not dual to anythin
However, for the beginning we are interested in a regi
where we could use the AdS-CFT type of duality discus
above, and thus we will focus for now on5 gs.1. For r 6

.gs
2N the dilaton becomes large, and physics starts be

described by the supergravity solution ofN coincident M2
branes. For 1,r 6,gs

2N supergravity in the background~15!
gives a weakly coupled description of the physics, and th
in the harmonic function can be ignored. We will work
this regime. For even smaller radii,r ,1, the theory has a
weakly coupled description in terms of an orbifold CFT, an
lyzed in @13#.

B. The perturbation

We are interested in perturbing the above backgro
with the RR fields which could cause polarization. As e
plained above, these fields areF2 andF6 on the space trans
verse to the strings. If one defines6 F6[* (F42C1`H3), the
type IIA equations of motion become

d* F22H3`F650

dF62H3`F450
~17!

2d* F65d~F42C1`H3!52F2`H3

dF250.

Combining Eq.~15! with Eq. ~17! and expressing the te
dimensional Hodge dual* in terms of the 8 dimensiona
transverse space Hodge dual* 8, the equations satisfied b
the first order perturbations become

d@Z21~* 8F22F6!#50, dF650,
~18!

d@Z21~* 8F62F2!#50, dF250.

We should note that acting on even forms* 8
251, while * 2

521. To find the perturbations with the sameR-symmetry

5Once we establish the form of the supersymmetric supergra
perturbation, we can also use it forgs,1 ~as long as the 1 in the
harmonic function can be ignored! since the supersymmetry of th
background does not depend ongs .

6This is not the canonical definition ofF6 but it is the most con-
venient to work with.
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transformation properties as the fermion bilinear it is con
nient to group the 8 transverse coordinates and the ferm
into 4 complex pairs:

z15x21 ix3, z25x41 ix5,

z35x61 ix7, z45x81 ix9,
~19!

L15l11 il2, L25l31 il4,

L35l51 il6, L45l71 il8.

Under the rotationszi→eif izi the fermions transform as

L1→ei (f12f21f31f4)/2L1

L2→ei (f11f21f32f4)/2L2

~20!

L3→ei (f12f22f32f4)/2L3

L4→ei (f11f22f31f4)/2L4.

Thus a fermion bilinear of the form Re(L̄1L2) has the same
SO~8! transformation properties asT25Re(dz2dz̄4), V2 ~de-
fined in the Appendix! and their Hodge duals7 T6 andV6.

The most straightforward way to examine the supersy
metry preserved by a specific fermion bilinear is to exam
the free 2-dimensional boundary theory which has 8 bos
Xm in 8v of SO~8! and both the left and right moving fermi
ons la and l̃a in 8s. The original supersymmetry transfo
mations are

dXm52e ȧG ȧa
m

la2 ẽ ȧG ȧa
m

l̃a

dla5]XmGaȧ
m

e ȧ1FmGaȧ
m

ẽ ȧ

~21!

dl̃a5 ]̄XmGaȧ
m

ẽ ȧ2FmGaȧ
m

e ȧ

dFm52 ẽ ȧG ȧa
m

]̄la1e ȧG ȧa
m

]l̃a ,

whereG ȧa
m are 838 matrices given in@29#. It is a straight-

forward exercise to show that adding a fermion biline
ty

7The standard properties of these tensors are reviewed in
Appendix.
4-4
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Re(L̄1L2), together with its bosonic partner preserves 4
the original 16 supercharges8 e ȧ and ẽ ȧ .

Thus, a 2 form and a dual 6 form corresponding to t
fermion bilinear can be written as combinations ofT2 and
V2, and respectivelyT6 andV6 multiplied by powers ofr .
Plugging this ansatz in Eq.~18!, we find 4 solutions. Two of
them correspond to a mode which is not a chiral primary, a
the other two, one nor-malizable and the other non norm
izable correspond to the fermion bilinear we are interested
Adding the fermion bilinear to the boundary theory Ham
tonian corresponds@26# to adding to the background~15! the
non-normalizable solution:

F25
m

Aa8
Z~2T226V2!,

~22!

F652
m

Aa8
Z~6T626V6!,

where m is proportional to the coefficient of the fermio
bilinear added to the boundary Lagrangian.

A tubular D2 brane in this geometry couples withC3
1B2`C1. In our background, this combination can b
found using

d~C31C1`B2!5F42C1`H31B2`F2

52Z21~* 8F62F2!`dx0`dx1 ~23!

52mT2`dx0`dx1.

SinceZ21(* 8F62F2) is a harmonic form, it only depend
on its value at infinity, which is given by the bounda
theory. Therefore the expression above remains true w
the F1 strings are coincident or when they are distribut
This implies that the WZ term in the action of a cylindric
D2 brane is independent of where theF1 strings are.

C. Probing the perturbed solution

In order to find the self-interaction potential of a cylindr
cal D2 brane with largeF1 chargeN, one has to find first the
potential felt by a D2 brane probe with smallerF1 charge
1!n!N, and then to build the D2 brane by bringing test D

8On can also examine the supersymmetry preserved by a ce

fermion bilinear by doing a 9-11 flip. A bilinear of the formL̄1L2

becomes a vector bilinear on the M2 brane when lifting toM theory.
Reducing along a different direction, this becomes a vector bilin

on the D2 brane, of the forml̄1gml2 which uponT duality alongm

becomes again a scalar fermion bilinear on the D1 brane:l̄1g5l2.
Reexpressing the complex fermions in real ones, this bilinea
l1l32l2l4, which can be expressed as coming from a super
tential of the formW5f1f32f2f4. Thus after changing the sig
of a field this superpotential becomes the dimensional reductio
a hyper bilinear in the 2D SYM on the D2 branes. Since that
perpotential preserves 4 supercharges (N52 in 211 dimensions!,
this is the supersymmetry preserved by our operator.
02600
f

d
l-
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en
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branes from`. Anticipating, we will find that similarly to
other Polchinski-Strassler type problems@6–8,27,28#, the
probe potential will be independent of the distribution of t
strings; thus the self-interaction potential of a tubular D
brane containing all theN strings will be the same as th
probe brane potential withn replaced byN.

A cylindrical D2 brane can be givenF1 charge by turning
on a nontrivialF01 on its world volume. The quantizedF1
string charge in a nontrivialGmn , F andBmn is

P5
dL

dF01

5
2pr

A2p~2pa8!3/2gs

3Z1/2
2pa8~B0112pa8F01!

AuG00uG112~B0112pa8F01!
2

5n. ~24!

If we call

A[
B0112pa8F01

AuG00uG112~B0112pa8F01!
2

5
A2p~2pa8!1/2ngs

2prZ1/2
, ~25!

the Hamiltonian density per unit string length will be

HBI5
2prZ1/2Z21

A2p~2pa8!3/2gs

~AA2112A!. ~26!

We are interested in probes with dominant string chargeA
@1, which is easily realized forn.AN in the regime where
supergravity is valid. In this regime the square root can
expanded, and the main contributions to the Hamilton
cancel, as they represent the interaction energy between
allel F1 strings. After this cancellation, the subleading te
of the Born-Infeld action is

VBI5
pr 2

~2pa8!2ngs
2

. ~27!

As we mentioned in the previous section, this supergrav
result reproduces exactly the one obtained using the n
Abelian Born-Infeld action in the limit of vanishing D0
charge. For a D2 brane ofR23S1 geometry, this contribution
to the action depends neither on the orientation of theS1, nor
on Z. It is straightforward to generalize this action for th
circle replaced by an ellipse. This can be easily done i
similar way to @6–8,27,28#. If one turns on the bilinear
Re(L̄1L2) which corresponds toT25Re(dz2dz̄4), it is natu-
ral to expect the probe to have a minimum if the two sem
axes of the ellipse lie in the two planes spanned by com
nents of z25x41 ix5 and z45x81 ix9. If the lengths and

ain

r
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orientations of the semiaxes are given by the modulus
phase ofZ4 andZ2, the result is obtained by just replacingr 2

by uZ4u2/21uZ2u2/2 in Eq. ~27!.
One can also find the interaction potential coming fro

the Wess-Zumino action. Using Eq.~23! and integrating over
the ellipsoid one finds after a few straightforward steps

VWZ52
2p

~2pa8!2
mRe~Z4Z̄2!, ~28!

which is also independent of the harmonic functionZ. Thus,
the first two terms of the action of the probe are

VBI1VWZ5
p

2~2pa8!2 F uZ4u21uZ2u2

ngs
2 24m Re~Z4Z̄2!G .

~29!

As we said in the Introduction, in addition to these two ter
there is another one coming from the back reaction of theF2
andF6 perturbations on the metric, dilaton and 2-form. O
can see from the equations of motion that this term should
proportional9 to m2gs

2nr2. Supersymmetry allows us to fin
this term exactly by simply completing the square in E
~29!. Thus

Vtotal5
p

2~2pa8!2 F uZ4u21uZ2u2

ngs
2 24m Re~Z4Z̄2!

1m2ngs
2~ uZ4u21uZ2u2!G

5
p

2~2pa8!2ngs
2 @ uZ42Z2mngs

2u2

1uZ22Z4mngs
2u2#. ~30!

D. The full potential

The last term of Eq.~30! is also independent ofZ. There-
fore, the potential of the probe tube does not depend on
position of theF1 strings sourcing the geometry. One c
now find the self-interaction potential of a D2 brane tu
containingall F1 strings, in its own geometry, by bringin
from infinity small probes and using them to construct t
final configuration. Since the potential of each of these sm
probes is independent of where the rest of the probes are
final potential will be the sum of the probe potentials, whi
gives the same result as Eq.~30! with n replaced byN. The
most general configuration will consist of several D2 tub
with F1 chargesni . The potential will be the sum of terms
each of them equal to Eq.~30! with n replaced byni :

9The factorm2gs
2 comes from the square of the first order pertu

bation, n comes from the dominantF-string charge of the probe
and the proportionality withr 2 is not hard to derive.
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i

p

2~2pa8!2nigs
2 @ uZ4

i 2Z2
i mnigs

2u2

1uZ2
i 2Z4

i mnigs
2u2#, ~31!

whereZi parametrize the semiaxes of thei th D2 tube, which
containsni F1 strings. This potential is very interesting.
implies that for a generic strength of the perturbation, ther
only one minimum atZ45Z250. Contrary to what one
might expect, increasing the strength of the four-form do
not make the polarization to a D2 brane more likely. This
because a largeF4 causes a large backreaction on the gra
ton, dilaton and 2 form, which do not favor the polarizatio

Even more remarkable, for the particular valuesm5
61/nigs

2 , the zero energy solution is given byZ4
i 56Z2

i for
the i th tube, andZ45Z250 for the others. Thus, for thes
values of the perturbation a moduli space of possible po
ization vacua opens up;ni of the originalN strings can be
polarized. The lowest absolute value ofm which allows the
polarization to occur ism51/Ngs

2 . In this case allN strings
polarize. Form51/pgs

2 ,N/2,p,N, p of the N strings po-
larize into one D2 brane. Forp5N/2 it suddenly becomes
possible for half the strings to polarize into one D2 bran
and the other half to polarize into another D2 brane. Both
tubes can be at any radius. In general, forN/(k21),p
,N/k, the ground state will consist ofk concentric D2
branes at different radii, withF1 chargep each.

E. Consistency checks

Before we continue, we should address two small but
tentially dangerous issues. First, we have to make sure
the supergravity perturbation fields are weaker than the ba
ground fields. The energy of the background and perturba
fields are respectively

e22fH01r
(3)H01r

(3)G00G11Grr ;
Na83

r 8
,

~32!

Fi j
(2)Fi j

(2)Gii Gj j ;m2Z2;
m2N2gs

4a85

r 12
.

The condition for validity of the perturbation expansion
thus r 4@m2Ngs

4a82. For the smallest value ofm which al-
lows for a moduli space this is equivalent tor 4@a82/N
which is trivially satisfied. However, for larger values ofm
which allow n strings to polarize into a D2 brane, this co
dition is satisfied only forr 4@a82N/n2.

The second issue has to do with the attraction between
opposite sides of a tube, or between concentric tubes.
cause the largeF1-string tension and the D2 brane tensi
add in quadratures, the interaction coming from the grav
tional D2-D2 attraction has a negligible effect on the ener
What could spoil the interaction is the electric attraction b
tween the opposite sides of the tube.

The issue of this possible interaction is usually not a
dressed in most of the polarization papers. In principle t
can give an energy contribution which may affect the pol
4-6
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POLARIZATION OF F1 STRINGS INTO D2 BRANES PHYSICAL REVIEW D67, 026004 ~2003!
ization ground state. In our context, since the balance of
energies is so delicate, such a contribution could in princ
easily lift the moduli space. One could probably argue t
supersymmetry prevents this contribution from affecting
potential, but nevertheless it is instructive to see how it h
pens.

As we can see from Eq.~23!, our D2 brane tube couple
with a field combination which is proportional to the ha
monic form Z21(* 8F62F2). The presence of extra D
brane charge affects the Bianchi identity forF6 only. Never-
theless,Z21(* 8F62F2) remains harmonic. Therefore th
presence of D2 charge~from the opposite side of the tube!
does not affect the Wess-Zumino term of the potential. Th
as we expected, the attraction between the opposite side
the tube or between different tubes does not have any e
on the energy of the system. The lack of interaction betw
tubes placed at different radii is characteristic to Polchins
Strassler type setups, and is also present for the supert
with D0 charge@30#.

Usually the appearance of a moduli space of vacua sig
some symmetry enhancement. It is interesting to ask w
this symmetry might be. One certain thing is that supersy
metry is not enhanced, since both the field strengths wh
allow polarization and those which do not allow it preserve
supercharges. Thus, this is probably a symmetry which
pears in the UV of the mysterious orbifold CFT living on th
strings.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We have given matrix and supergravity descriptions to
polarization of type IIA fundamental strings in tubular D
branes. For the matrix description we have used the ma
degrees of freedom of D0 branes and their non-Abe
Born-Infeld action to describe anF1→D2 tubular configu-
ration in a nontrivialF4 background.

In order to give a supergravity description while mainta
ing control over the supersymmetry we have turned o
fermion bilinear in the theory living onN coincident funda-
mental strings. We have then related this bilinear to a su
gravity nonnormalizable mode via an AdS-CFT like corr
spondence, and showed that the nonnormalizable m
inducesF1→D2 polarization. We have found that polariz
tion occurs only when the value of the bulk fields is prop
tional to fractions whose denominator is smaller thanN;
moreover, in these cases the polarization radius is a mod
For any other values of the bulk fields there is no polari
tion.

For the supergravity description we have used the se
and technology developed by Polchinski and Strassler@6#.
Although this technology is sometimes heavy, it has cert
advantages~such as the control on the supersymmetry and
the back reaction of the fields, or the lack of attraction b
tween the opposite sides of the polarized object! which in
our opinion make it the only correct setup for the study
polarization into objects one dimension higher.

One interesting question which one might ask is w
happens if one turns on a nonsupersymmetric traceless s
bilinear in the potential, which might create an instabil
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along some direction. Understanding the effect of this ot
piece in the potential can be easily done in our framew
~see @8# or @31# for an example!. Such a piece makes th
strings cease to be a classical ground state, and seem
leave the puzzle in@2# unsolved. The only consolation is tha
only a very special combination of 4-form and graviton w
create this instability. In general however, turning on anF4

will not affect the stability of the strings.
It is intriguing to see what is the fate of this configuratio

when one lifts them to M theory. A D2 brane with largeF
string charge lifts to an M2 brane helix which winds arou
the eleventh dimension many times while circulating on
around anS1. The radius of the large circle is a modulus,
there is no potential for the helix to be stretched in a radia
symmetric fashion. Even more puzzling to our intuition
the fact that a state of many such helices, nonconcentric
possibly intertwined preserves 4 supercharges. When
takes the size of the 11’th dimension to infinity these helic
should naturally dissolve into the ‘‘Coulomb branch’’ of th
theory on parallel M2 branes.

The F1→D2 configuration falls in the general catego
of objects polarizing into objects one dimension high
Similar situations can occur in the case of D4 branes po
izing to NS5 branes. We expect a similar potential, wh
allows a moduli space to open up for a very specific value
the perturbation, and does not allow polarization for a
other value. On general grounds one expects the D4→NS5
polarization to happen forN51 supersymmetry in 411 di-
mensions~8 supercharges!, and therefore the moduli spac
not to be lifted up by quantum corrections. Again, the lift
the configuration in M theory would give a spiral-shaped M
brane.

The appearance of flat directions is a very intriguing ph
nomenon, whose origin would be exciting to find. One po
sible hint to the direction one should search in is the rec
investigation by Brecher, Saffin and Emparan@16–18# of the
F1→D2 polarization in a Melvin background. The polariz
tion potential they obtain becomes flat only for the critic
value of the Melvin field. Since in our case this field is ve
small, and it appears in combination with other fields, t
only way to ascertain if the flat direction has a similar orig
is to lift our perturbed solution to M theory.

We have studied a very intriguing system, and fou
many phenomena which challenge our intuition, such as
presence of a moduli space of polarization vacua or the
that M2 brane spherical helices in M theory at finiteR11 can
be supersymmetric. We cannot but hope that in time a m
fundamental explanation of these phenomena and other
understood aspects of M theory will be given.
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APPENDIX

We list several properties of the transverse space antis
metric 2- and 6-tensors which form a basis for the forms w
theR-symmetry transformation properties of a fermion bili
ear:

T65* 8T2 ~A1!

V65
1

6! S xtxm

r 2
Ttnpqrs15 moreD dxm`dxn`dxp`dxq`dxr

`dxs, ~A2!
ys

ow

02600
-
h

V25
1

2! S xqxi

r 2
Tq j11 moreD dxi`dxj , ~A3!

T22V25* 8V6 , T62V65* 8V2 , ~A4!

d~ ln r !`V650, d~ ln r !`V250, ~A5!

d„r p~6T61pV6!…50, d„r p~2T21pV2!…50. ~A6!
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