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Space-time orbifold: A toy model for a cosmological singularity
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We explore bosonic strings and type II superstrings in the simplest time dependent backgrounds, namely
orbifolds of Minkowski space by time reversal and some spatial reflections. We show that there are no negative
norm physical excitations. However, the contributions of negative norm virtual states to quantum loops do not
cancel, showing that a ghost-free gauge cannot be chosen. The spectrum includes a twisted sector, with strings
confined to a ‘‘conical’’ singularity which is localized in time. Since these localized strings are not visible to
asymptotic observers, interesting issues arise regarding unitarity of theS matrix for scattering of propagating
states. The partition function of our model is modular invariant, and for the superstring, the zero momentum
dilaton tadpole vanishes. Many of the issues we study will be generic to time-dependent cosmological back-
grounds with singularities localized in time, and we derive some general lessons about quantizing strings on
such spaces.
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I. INTRODUCTION

Time-dependent space-times are difficult to study, b
classically and quantum mechanically. For example, n
static solutions are harder to find in general relativity, wh
the notion of a particle is difficult to define clearly in fiel
theory on time-dependent backgrounds. Quantum mech
cal strings propagating on time-dependent spaces can
velop many subtle problems including difficulties with un
tarity and ghosts in the physical spectrum. Nevertheless,
apparent observation of a cosmological constant from su
novae measurements@1#, and an attendant expansion of th
universe, requires us to understand clearly how time dep
dence of cosmological backgrounds is incorporated i
string theory. In related theoretical developments, rec
work has explored the physics of de Sitter space@2#, as well
as new pictures of the early universe in which a collision
branes forms the observable cosmic structures@3#. In the
latter models, and in the pre-big-bang scenarios@4#, a stringy
resolution of an initial singularity is proposed to permit
extension of space-time to an era before the big bang
view of all this it is worthwhile to investigate perturbativ
string theory in singular cosmological backgrounds.

Perturbative string theory is most easily studied in fl
translationally invariant space. The simplest nonhomo
neous spaces in which it is well defined are orbifolds of
space in which some Euclidean directions are quotiented
a discrete subgroup of the isometry group@5#. When the
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action of the discrete group has fixed points, the orbifold h
conical singularities, as well as new light states~the so-called
twisted sectors! which are confined to these defects. Co
densing twisted sector states can resolve the conical si
larities in many cases such as the classic exampleR4/Z2

where four Euclidean directions are identified under refl
tions.

Can we find consistent backgrounds in string theory
identifying points in space-time rather than just in spac
One simple example is the Ban˜ados-Teitelboim-Zanelli
~BTZ! black hole of three dimensional gravity which is o
tained by quotienting AdS3 by a boost@6#.1 Such orbifolds
bear a relation to the kinds of identifications discussed in
context of resolving singularities separating contracting a
expanding phases of some cosmological models@3#. Like-
wise, some coset Wess-Zumino-Witten~WZW! models are
consistent time-dependent string backgrounds@9#. Also,
string theory on orbifolds with time identified undert→t
11 ~i.e., circular time! has been studied in@10# and the
resulting timelikeT duality has been studied in@11#. Space-
time singularities in string theory were studied in@12#. In this
paper, we will seek simple models of time-dependent spa
and of cosmological singularities by constructing space-ti
orbifolds in which we identify space-time under both tim
reversal and reflections in some directions. Generally spe
ing, string theories defined on such spaces are threatene
a number of pathologies including potential ghosts in
physical spectrum and problems with unitarity. In fact,
known proofs of the no-ghost theorem explicitly requi

1The consistency of string theory on AdS3 itself is nontrivial, e.g.
for the no-ghost theorem and modular invariance see@7#. For work
on string theory in BTZ black holes, see e.g.@8#.
©2003 The American Physical Society03-1
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time-independent backgrounds@13#. Also, supersymmetry is
generally broken and so there may be a danger of tadpol
one loop and instabilities like tachyons could occur.2 Part of
our goal is to explore the many subtleties that beset s
constructions in string theory.

We study bosonic and type II superstrings onR1,d/Z2, in
which we have identified space-time by time reversal a
reflections. Whend50, only time is identified and the spac
has an initial singularity att50. Whend>1 the background
geometry is a space-time cone with a ‘‘conical’’ singularity
t5x15•••5xd50. String theory on such spaces is defin
by projecting onto the sector of the Hilbert space that
invariant under these discrete transformations, and includ
possible twisted sectors localized at the orbifold fixed po
at t5x15•••5xd50, and which therefore do not propa
gate. After this projection, quantum mechanics is consis
with closed time-like loops in the geometry. We find that t
physical states are ghost-free whend11>9 for the bosonic
string and that there is no restriction ond for the super-
strings. In type II superstrings, whend1154, there is a
‘‘massless’’ twisted sector in which physical states satisfy
on-shell conditionupW u250.3 It is possible that condensin
these states would resolve the conical singularity, and so
focus on thed1154 case.

We compute the partition function whend1154 and
find that it is zero. Likewise the one loop zero-momentu
tadpoles vanish suggesting that we have a consistent s
background at this order in string perturbation theory. Ho
ever, negative norm states~although not present in the on
shell physical spectrum! make a contribution to the partitio
function—their virtual effects do not cancel between t
matter and ghost sectors as they do in the standardR4/Z2
orbifold. This shows that it is not possible to choose a gho
free gauge in which all computations are carried out in ter
of positive norm states. We expect that this will be genera
true for string theory in time-dependent backgrounds.4

We conclude the paper by discussing several novel sub
ties introduced by the localization in time of a sector
physical states, and by summarizing lessons learned from
work about time-dependent backgrounds and cosmolog
singularities in string theory.

II. SPACE-TIME ORBIFOLDS

We study space-time orbifolds constructed by identifyi
Minkowski space under time reversal and reflections in so
spatial directions. As we will see below, the resulting geo
etry can be interpreted as a space-time cone. After the id
tifications the covering space has some closed time-

2Of course, string theorists have learned over the past few y
that the dynamics of tachyons in some cases may be under co
and may even be of cosmological interest.

3Actually, this implies thatpW 50 since the twisted sector states a
localized in time and so only carry momenta in the unorbifold
Euclidean directions.

4This is reminiscent of mixing between the matter and ghost s
tor conformal field theories~CFTs! discussed in@14#.
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loops. However, because the orbifold prescription proje
onto states in Hilbert space that are symmetric under
identifications, quantum mechanical evolution remains c
sistent.

A. Conical space-time geometries

Consider identifying time (X0) and d spatial directions
under reflections:

Xa→2Xa ~a50, . . . ,d!, ~1!

leaving all other directions unaffected. Figure 1 shows
resulting space-time cone whend51. Points in opposite
quadrants of theX2T plane are identified as in Fig. 1
Therefore the quadrants II and IV~or I and II! may be taken
as ‘‘fundamental’’ regions with independent physics. Iden
fying these regions along the T~or X! axis produces the con
in Fig. 1~b! with a singular point atT5X50.

The proper distance on the covering space betwee
point (T,X) and its image (2T,2X) is ds254(X22T2).
This is time-like in the region inside the light cone eman
ing from the pointT5X50 on the covering space. As
result there are closed time-like curves in this geometry, s
as the one in Fig. 1~a!. In the orbifold construction which we
will describe below, it is not immediately obvious that su
loops pose a fundamental problem since we are instructe
project to states in the Hilbert space that are invari
under the space-time identifications, i.e., we project o
quantum mechanical wave functions that satisfyc(x,t)
5c(2x,2t). As a result, the classic paradoxes of ‘‘killin
one’s own grandmother’’ are avoided. However, other sub
ties could arise. For example, the precise definition of
servables andS matrices on such spaces remains to be
derstood. Likewise in the presence of closed null curv
there is a potential danger of a divergent stress tensor
second quantized field theory. However, this is usually m
gated by supersymmetry which we will have in the bulk
spacetime. This paper is intended as a preliminary explo
tion of space-time cones, and so we will not address
second quantization of theories in such spaces. Rather
will study the quantum mechanics of free strings which
well defined for the reasons described above. We hope
return to a general study of closed timelike curves in str
theory in a later publication.

A picture of time evolution on the cone is provided in Fi
2~a! where we have folded regions II and IV along theX axis
and identified the negative and positive directions along

rs
rol

c-

FIG. 1. A space-time cone.
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time axis, to make a cone. It is natural then to describe
evolution of states on the cone with respect to the time
rection inherited from the positive time direction in qua
rants II and IV of the parent manifold. The linex50 appears
to have time ‘‘running both ways,’’ but this is simply becau
we have projected onto states that are time reversal inva
on theX50 axis.

Constructing the cone by gluing the X axis of quadran
and II yields a similar picture with two ‘‘sheets’’ glued to
gether on the T and X axis. At first sight the time inherit
from the covering space gives evolution moving ‘‘up’’ o
both sheets in Fig. 2~b!, with the boundary condition that th
wave-functions on both sheets approach the same value
big-bang-like surface atT50. However, on the X axis of the
covering space the orbifold identifications also imply th
]c(x,t)/]tu t5052]c(2x,t)/]tu t50. Therefore, on the
cone, with time evolving ‘‘up’’ on both sheets, althoug
wave functions on both sheets agree on the initial surfa
their time derivatives are opposites of each other. There
it seems more natural once again to describe the evolutio
states with respect to a continuous time as in Fig. 2~a!.

B. Euclidean world sheets and Lorentzian backgrounds

As we have discussed, we will construct string theory
our space-time orbifold by projecting onto states of strings
Minkowski space that are invariant under the discrete id
tifications. In Lorentzian space-times the signature of
string worldsheet must be (21,1) in order for classical string
propagation to exist.~The 2D equations of motion are solve
by equating the world sheet metric with the metric induc
from space-time.! Nevertheless, the standard techniques
string theory involve analytically continuing the world she
to Euclidean signature in order to exploit the techniques
two-dimensional conformal field theory and complex geo
etry. In static backgrounds we might imagine continuing
space-time to Euclidean signature at the same time, but
is not possible in time-dependent backgrounds such as o
Our analysis in this paper is done with a Lorentzian signat
world sheet except our discussion of modular invarian
where we formally continue the world sheet to Euclide
signature. The resulting path integral~with a Euclidean
world sheet and Lorentzian target space! is not strictly speak-
ing well-defined because the action is not bounded from
low. Nevertheless, it appears to be finite in our case, and
use it formally to discuss modular invariance. Subtleties
defining the Polyakov path integral in Lorentzian signatu
have been discussed by Mathur in@15#.

FIG. 2. Time evolution on the cone.
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III. BOSONIC STRING THEORY ON THE LORENTZIAN
ORBIFOLD

Before studying superstrings on space-time orbifolds
examine the 26-dimensional bosonic string propagating
R1,d/Z2. This already contains the distinctive features of t
Lorentzian orbifold. In particular, we show that it is possib
to obtain a ghost-free physical spectrum and a modular
variant partition function, but that virtual negative nor
states make un-cancelled contributions to quantum loo
This is a reflection of the time dependence of the str
theory background.

Consider flat 26-dimensional Minkowski space wi
points identified under theZ2 action,

Xa→2Xa ~a50•••d!;

Xi→Xi ~ i 5d11•••25!. ~2!

This action has a fixed (252d)-dimensional hyper-plane
given byXa50. To get consistent string propagation on th
space-time, we project the conventional bosonic string H
bert space onto itsZ2 invariant subspace. This gives the u
twisted sector of the orbifold theory. In addition, there is
twisted sector corresponding to strings that are closed o
under the identifications made by the orbifold group. Aga
we project out twisted sector states that are not invar
under the orbifold action. The twisted strings are trapp
around the tip of the cone in Fig. 1~b!, which is a
(252d)-dimensional hyper-plane localized at an instant
time. The untwisted strings can propagate in the bulk.

The orbifold above has the novel feature that it include
reflection in the time direction, destroying the global tim
like isometry of flat space-time. This means that we can
perform quantization by going to light-cone gauge. The
ternative is to use the covariant BRST formalism. Howev
in the absence of a light-cone gauge choice, the absenc
negative-norm states in the physical spectrum is no lon
evident, especially in view of the nonapplicability of th
known proofs of no-ghost theorem@13#. In the following, we
will mostly be concerned with this issue. In the covaria
formalism, we work with world-sheet fieldsXm (m
50, . . .,25) and the reparametrization ghostsb andc. In the
untwisted sectorXm(s12p,t)5Xm(s,t), and the mode ex-
pansion is5

Xm5xm1pmt1 i (
nÞ0

an
m

n
e2 in(t2s)1 i (

nÞ0

ãn
m

n
e2 in(t1s).

~3!

The ~tachyonic! ground stateupa,pi& carries momentum in
both orbifolded and unorbifolded directions and the Hilb
space of states is constructed by acting with creation op
tors on the ground state. Half of the states with nonzeropa

are projected out of the spectrum. For example, of the st
a21

a ã21
i upa,pi& anda21

a ã21
i u2pa,pi&, only the linear com-

5We will work in a852 units in this paper.
3-3
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bination a21
a ã21

i (upa,pi&2u2pa,pi&) is retained. Whenpa

50, only the Z2 invariant combinations of the oscillator
acting on the vacuum are kept. Hence,a21

a ã21
i u0,pi& is pro-

jected out buta21
a ã21

b u0,pi& is retained.
In the twisted sector, the fieldsXa satisfy the antiperiodic

boundary conditionXa(s12p)52Xa(s), with the mode
expansion given by

Xa5 i(
r

a r
a

r
e2 ir (t2s)1 i(

r

ã r
a

r
e2 ir (t1s), ~4!

wherer is half odd-integral. The twisted sector is localized
the orbifold fixed plane atXa50. In particular, for any value
of the parametert, the twisted string world sheet does n
propagate too far out in timeX0. This is similar to an instan-
ton. The mode expansion forXi in directions transverse to
the orbifold is the same as in the untwisted sector. Con
quently, the ground state in the twisted sector carries a
mentum pi only in the transverse directions. The Hilbe
space is built by acting with creation operators on the gro
state and projecting onto theZ2 invariant subspace.

The ghostsb and c are not affected by the orbifold an
have the same mode expansions in both sectors:

b~s,t!5(
n

bne2 in(t2s), c~s,t!5(
n

cne2 in(t2s); ~5!

and similarly for right-moversb̃ and c̃.

A. Physical states

The BRST operatorQB is given by

QB5(
n

~cnL2n
m 1 c̃nL̃2n

m !1(
m,n

~m2n!

2
:~cmcnb2m2n

1 c̃mc̃nb̃2m2n!:1a~c01 c̃0!, ~6!

whereLm are the Virasoro generators in the matter sector
a is the zero point energy. Physical states are elements o
Becchi-Roaet-Stora-Tyutin~BRST! cohomology, i.e., they
obey QBuc&50 subject to the equivalence relationuc&
;uc&1QBuf&, whereuf& is an arbitrary state.

It is now easy to see that the physical spectrum does
contain negative norm states. In the untwisted sector, a
the orbifold projection, the states form a subspace of
Fock space of the parent theory. Furthermore, the orbi
action~2! commutes with the BRST operator~6!. This means
that the space of physical states of the orbifold theory i
subspace of the space of physical states of the parent th
and hence is free of negative norm states. More explicitly,
paÞ0, one can easily establish a correspondence betw
states in the parent theory and those of the orbifold theory
appropriately choosing symmetrized or antisymmetrized m
mentum wave functions.

To see that the twisted sector physical states do not h
negative norms, recall that the BRST conditionQBuc&50,
along withb0uc&50, implies~see, for example,@16#!
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m1L0

gh2a!uc&50, ~7!

whereL0
gh is the ghost Virasoro generator. In terms of t

twisted sector number operators, we have

L0
m1L0

gh5
1

2
pipi1 (

n51

`

nS Nbn1Ncn1 (
i 5d11

25

NinD
1 (

r 51/2

`

(
a50

d

rNar , ~8!

and the twisted sector zero-point energy isa5@262(d11)
22#/242(d11)/485(152d)/16. Then for a physical state
uc,pi&, with momentumpi in the unorbifolded directions
this implies

1

2
pipi1 (

n51

`

nS Nbn1Ncn1 (
i 5d11

25

NinD 1 (
r 51/2

`

(
a50

d

rNar

5~152d!/16 . ~9!

Since the left-hand side is always positive,d is restricted
to d<15 in order to allow for any physical states in th
twisted sector. Furthermore, since (152d)/16,1, a twisted
sector physical state will not containc, b andXi excitations.
For 1<d<7, the physical spectrum will always contain
negative norm state corresponding toa21/2

0 . However, for
d>8 there are no negative norm states in the twisted se
physical spectrum which, for 15>d>8, contains only the
ground stateu0,pi&. In particular,pi50 for d515.6

B. Partition function and virtual ghosts

Although there are no negative norm physical states~for
the right range ofd), the orbifold theory may still contain
negative norm virtual states running in loops. This can
studied by looking at the one-loop partition function. Befo
considering the orbifold case, we recall the partition functi
of the closed bosonic string in 26-dimensional Minkows
space,7

6For d515, the state in the twisted sector is physical only wh
pi50. If this state atpiÞ0 were BRST exact, it would be orthogo
nal to all other physical states. Amplitudes involving such a st
would then have to be proportional tod (92d)(pi). As argued in
@16#, since amplitudes in field theory and string theory never ha
this kind of a behavior, such a state withpi50 should not be part of
the physical spectrum. However, this isnot true for the twisted
sector state on the Lorentzian orbifold. This is because the s
with nonzeropi is not BRST exact since it is not even BRST clos
(QBupiÞ0&Þ0), as it does not satisfy the Virasoro constraint.
the above argument does not apply and the zero-momentum p
cal twisted state should be retained.

7More precisely, the definition ofZ(t,t̄) is

Z~t,t̄!5Tr~21!Fc0b0c̃0b̃0qHLq̄HR ~10!

where (21)F anticommutes with all the ghost fields. In the follow
ing, we implicitly assume that the trace is taken wi

(21)Fc0b0c̃0b̃0 inserted.
3-4
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t2 S uq1/24)
m

~12qm!u2D m t2 S uq1/24)
m

~12qm!u2D
whereHL5L02a, HR5L̃02a, a is the zero point energy, andq5e2p i t. V26 is a space-time volume factor related to t
continuum normalization of the momentum integral and)m is a short hand for)m51

` . Here, the contributions from the
negative and positive norm ghost states cancel the contributions from the time-like and one space-like oscillators, res
giving the same result as we would get in the light-cone gauge. To verify that this really is how the cancellations wo
can compute the following closely related quantity:

S~t,t̄ !5Tr~21!sqHLq̄HR;
V26

t2
12

Uq1/24)
m

~12qm!U2Uq1/24)
m

~11qm!U2

S Uq1/24)
m

~12qm!U2D 25S Uq1/24)
m

~11qm!U2D 5
V26

t2
12 S 1

uq1/24)
m

~12qm!u2D 24

.

The insertion (21)s ensures that negative norm states contribute with a negative sign in the trace. The equalityZ(t,t̄)
5S(t,t̄) then reflects the fact that the negative norm ghost contribution really did cancel that of the time-like oscilla8

We now proceed to the partition function of the orbifoldR1,d/Z2. In general, in the absence of a timelike isometry care
necessary in defining string amplitudes by analytic continuation. Indeed, very little of a general nature is known
perturbative string theory in time-dependent backgrounds. Here we take the approach of naively continuing the torus a
to Euclidean signature on the string world sheet. The resulting formal object is analyzed below and seems to be well
A partition function, being a vacuum amplitude, is a space-time scalar. Therefore, the trace in it extends to the space-ti
of the states, i.e., the conjugate toa2n

m up& appears aŝpuam,n . The commutators then involvedn
m rather thanhmn and time-like

oscillators contribute in the same way as space-like ones. The partition function then has the same form as th
Euclidean orbifoldR11d/Z2, and is given by

Z~t,t̄ !5TrU

11ĝ

2
qHLq̄HR1TrT

11ĝ

2
qHLq̄HR ~11!

5
V252d

2 S 1

At2Uq1/24)
m

~12qm!U2D 242(d11)F Vd11

SAt2Uq1/24)
m

~12qm!U2D d11 1
1

2d11Uq1/24)
m

~11qm!U2(d11)

1
1

Uq21/48)
m

~12qm21/2!U2(d11) 1
1

Uq21/48)
m

~11qm2
1
2 !U2(d11)G , ~12!
at

d
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n

e
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where ĝ is the Z2 action on the Hilbert space and TrU and
TrT denote traces over untwisted and twisted sector st
respectively. The first term contains aVd11 from the mo-
menta of the untwisted sector states. Only the zero mo
contribute to the second term leading to a factor of 1/2d11.
Since the last two terms arise from the twisted sectors, th
is no contribution from momentum in thed11 orbifolded
directions. The first terms is modular invariant by itself, a
the last three transform into each other under modular tra
formations as is standard in noncompact orbifolds.

Although the expression for the partition function of th
Lorentzian orbifoldR1,d/Z2 is the same as that of the Euclid
ean orbifoldRd11/Z2, they embody very different physics

8We thank C. Vafa for this argument.
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In the Euclidean orbifold, the negative norm ghost contrib
tion always cancels against time-like oscillators, indicati
the possibility of choosing a gauge~the light-cone gauge!, in
which there are no negative norm states. However, in
Lorentzian orbifold R1,d/Z2, virtual negative norm state
make uncancelled contributions to the partition function.
a check of this, one can again look at

S~t,t̄ !5TrU~21!s
11ĝ

2
qHLq̄HR1TrT~21!s

11ĝ

2
qHLq̄HR.

~13!

The difference, if any, betweenS(t,t̄) andZ(t,t̄) can only
arise because of differing contributions from the negat
norm states and therefore, we concentrate on these par
3-5
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Z(t,t̄) and S(t,t̄). The contribution from negative norm
states in the left moving sector to various terms in E
~11!,~13! is given by

TrU~61!sqL0;)
n

~17qn!

~17qn!
,

TrU~61!sĝqL0;)
n

~17qn!

~16qn!
,

TrT~61!sqL0;)
n

~17qn!

~17qn11/2!
,

TrT~61!sĝqL0;)
n

~17qn!

~16qn11/2!
. ~14!

The upper signs in the four expressions correspond to c
tributions of negative norms states toZ(t,t̄) and the lower
signs correspond to their contributions toS(t,t̄). The factor
(17qn) in the numerator is the contribution from the neg
tive norm ghost states and the factor in the denominato
the contribution from the time-like oscillators.9 From these
expressions, it is clear that the contributions of the nega
norm states toZ(t,t̄) and S(t,t̄) are not the same. Henc
S(t,t̄)ÞZ(t,t̄), which explicitly shows that the contribu
tions of virtual negative norm states in the partition functi
do not cancel on the Lorentzian orbifold. This implies tha
ghost-free gauge for string theory in such a background d
not exist. This is perhaps not surprising: we cannot cho
the light cone gauge because our orbifold involves a refl
tion in the time direction. One might have thought that the
is some other gauge in which all calculations can be don
terms of positive norm states, but the analysis above sh
that such a gauge does not exist. Nevertheless, as we
shown, there are no negative norm physical states on
orbifold. We expect that these features are generic for th
ries in time dependent backgrounds.

Sinceb and c are reparametrization ghosts, their perio
icities on the world-sheet torus are fixed by the theory. Ho
ever, suppose that we regard theXm as describing simply a
free field theory on the orbifold. Then, in principle, we ca
introduce a (b,c) system, not as reparametrization ghos
but with the sole purpose of removing the negative no
states. Then, by assigning appropriate periodicities to
ghosts, depending on theXm boundary conditions, it is pos
sible to fully cancel the contributions of negative norm sta
in all sectors of the theory. However, this will not be a stri
theory.

Summary. We have found that there are no negative no
physical states in the bosonic string theory on the Lorentz
orbifold R1,d/Z2 whend11>9, and the partition function is

9Note that for the Euclidean orbifold, the contributions from t
time-like oscillator is always 1/(17qn) which cancels the contribu
tion from the negative norm ghost oscillators resulting in the equ

ity Z(t,t̄)5S(t,t̄) for the Euclidean orbifold.
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modular invariant. However, negative norm virtual sta
make uncancelled contributions to quantum loops. This
plies that it is not possible to choose a gauge in which
computations are done in terms of positive norm states.
9<d11<16, the ground state in the twisted sectorupi& car-
rying momentum in the unorbifolded directions is physic
with upW u25(152d)/8. For d11.16, there are no physica
states in the twisted sector.

IV. TYPE II SUPERSTRINGS ON THE LORENTZIAN
ORBIFOLD

We will next move on to type II superstrings. Because t
orbifold involves time, we will work in the covarian
Ramond-Neveu-Schwarz~RNS! formulation. Now the orbi-
fold action is

Xa→2Xa, Xi→Xi , ca→2ca, c i→c i , ~15!

where,a50, . . . ,d and i 5d11, . . . ,9. Fortechnical rea-
sons, we will always considerd odd.

We first look at the untwisted sector. Here, the fermio
have the standard mode expansions:cm(s2)
5( rc r

m e2 ir (t2s), with similar expressions for left-mover

c̃m(s1). The sum is overr PZ1 1
2 in the NS sector andr

PZ in the R sector. The bosons have the mode expans
~3!. The zero point energya5aB1aF is a5 1

2 in the NS
sector anda50 in the R sector. The NS sector ground sta
is a tachyonic scalarupa,pi&NS, whereas the R ground stat
is a massless spinorupa,pi&R . The orbifold operation acts on
the R vacuum as

upa,pi&R→~G11!
d11G0G1

•••Gdu2pa,pi&R . ~16!

After the orbifold projection, the invariant states have m
mentum wave functions of definite symmetry,upa,pi&
6u2pa,pi&, depending on the (d11)-dimensional chirality
of the R ground state and the oscillator numbers.

As in the bosonic orbifold of the previous section, th
physical untwisted orbifold states form a subspace in
space of physical states of the parent type II theory. Con
quently, the untwisted sector is free of physical negat
norm states.

The supersymmetry of the physical untwisted spectr
~for oddd) can be illustrated as follows. LetS (1,9) denote an
SO(1,9) spin-field of definite chirality that relates the N
and R ground states in type II theory,up&R;S (1,9)up&NS.
Then the space-time supersymmetry current in the uno
folded theory has the formJ;e2f/2S (1,9), wheree2f/2 is
the spin-field for theb, g ghost system. Suppose thatS (1,9)

has positive chirality and we denoteSO(n) spinors of61
chirality by S 6

(n) . As the orbifold breaksSO(1,9) to
SO(1,d)3SO(92d), the positive chirality spin-field de-
composes as

S 1
(1,9)5S 1

(1,d)
^ S 1

(92d)1S 2
(1,d)

^ S 2
(92d) .

Then, under the orbifold projection~16!, the piece with posi-
tive SO(1,d) chirality survives and the orbifold inherits

l-
3-6
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supercurrent Jorb;e2f/2S 1
(1,d)

^ S 1
(92d) from the parent

theory. This proves the supersymmetry of the untwisted s
tor, while showing that the amount of supersymmetry h
been reduced.

We now turn to the twisted sector. The twisted boso
have the mode expansion~4!. Fermions in the twisted secto
satisfy boundary conditions:

NS: ca~s12p!5ca~s!, c i~s12p!52c i~s!;
~17!

R: ca~s12p!52ca~s!, c i~s12p!5c i~s!.
~18!

These lead to the mode expansions:

NS:ca~s2!5 (
nPZ

cn
a e2 in(t2s),

c i~s2!5 (
r PZ11/2

c r
i e2 ir (t2s); ~19!

R: ca~s2!5 (
r PZ11/2

c r
a e2 ir (t2s),

c i~s2!5 (
nPZ

cn
i e2 in(t2s). ~20!

The periodicities and mode expansions are reversed a
the orbifolded directions compared to the unorbifolded on
The twisted NS sector has fermion zero modes along
orbifold and the corresponding ground stateupi&NS

T is a
SO(1,d) spinor and aSO(92d) scalar. The twisted R secto
ground stateupi&R

T is a spinor underSO(92d) and a scalar
underSO(1,d). Some more details can be found in Appe
dix B.

Using the mode expansions, the Virasoro generatorsLm
and the world sheet supercurrentsGr andFn can be worked
out. These are summarized in Appendix A. To identify t
physical spectrum, one also needs the zero point ener
a5aB1aF . In the NS sector, the world sheet bosonic a
fermionic sectors contribute as

aB52
d11

48
1

92d

24
2

2

24
,

aF52
d11

24
1

92d

48
2

2

48
. ~21!

Here, 22/24 is the contribution from theb,c ghosts and
22/48 is the contribution from the NS sectorb,g ghosts. In
the twisted Ramond sector,aB is as above and the fermion
give,

aF52
~92d!

24
1

d11

48
1

2

24
, ~22!

where 2/24 is from the Ramond sectorb,g ghosts. In total
then,
02600
c-
s

s

ng
s.
e

-

es,

a5aB1aF5
32d

8
~ twisted, NS!, ~23!

a5aB1aF50 ~ twisted, R!. ~24!

The zero point energy vanishes for any value ofd in the
twisted Ramond sector.

A. Twisted sector physical states

The content of the twisted sector physical spectrum
determined by the super-Virasoro constraints,

~Lm2a dm!uphys&50 ~m>0!,

Gr uphys&50 ~r> 1
2 ,NS!,

Fnuphys&50 ~n>0,R!, ~25!

with the generators given in Appendix A. As in the boson
case, theL0 constraint gives

pipi1(
l

lNl5
32d

8
~NS sector!, ~26!

50 ~R sector!. ~27!

Herepi is the momentum carried by the twisted sector st
in the unorbifolded direction, and( l lNl schematically rep-
resents the combined sum over the bosonic, fermionic
ghost number operators in the twisted sector. Note that
minimum nonzero value of this sum is12 , while the right-
hand side is always less than1

2 . Therefore, physical twisted
states cannot have any oscillator excitations. In particu
they will be free of negative norms. In the twisted NS sect
there are no physical states ford.3. For d<3, the twisted
NS ground stateupi&NS

T is physical withpipi5(32d)/8. In
particular, for the case ofd53, this ground state haspi

50.
This state also trivially satisfies all the other physical st

constraints in Eq.~25!. In the R sector, the only physica
state, for anyd, is the Ramond ground state at zero mome
tum, upi50&R

T . This also satisfies the remaining constrain
in Eq. ~25!. In particular, theF0 constraint givespiG

i upi&R
T

50, which is normally the Dirac equation reducing the nu
ber of spinor components by half. In our case, sincepi50, it
does not impose a constraint. Thus, e.g. ind53 the twisted
R sector vacuum has twice as many components as
twisted sector NS vacuum~see Appendix B!.

The Gliozzi-Scherk-Olive~GSO! projection results in the
NS sector ground state,upi&NS

T , having the sameSO(1,d)
chirality in the left and right moving sectors.10 In the twisted
R sector, the ground stateupi&R

T , has the same~opposite!
SO(92d) chirality in the left and right moving sector fo
type IIB ~type IIA! string theory.

10Recall we consider oddd so chirality is well defined.
3-7



o
o

r o
r o

a
tru

se
lik
he
e
t
y
e

e
over
rs.

c-
e
c-

BALASUBRAMANIAN et al. PHYSICAL REVIEW D 67, 026003 ~2003!
In general, the bosonic and fermionic degrees of freed
in the twisted sector will not match. For the special case
d53, the twisted sector NS ground state is a chiral spino
SO(1,3) and the R sector ground state is a chiral spino
SO(6). These spinors have different dimensionalities and
a result Bose-Fermi degeneracy of the space-time spec
is broken in the twisted sector.11

B. Partition function and tadpoles

The one-loop partition function, as in the bosonic ca
does not distinguish between space-like and time-
oscillators.12 Therefore, the result for superstrings on t
Lorentzian orbifoldR1,d/Z2 will be the same as that for th
Euclidean orbifoldRd11/Z2. This is in spite of the fact tha
the spectra in the two cases are very different, especiall
the twisted sector. For definiteness, we look at the cas
d53.
r
rs

ha

fi
o
n-
th
el
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The torus partition function for the orbifold is given by

Z~t,t̄ !5Tr U

~11ĝ!

2
qHLq̄HR1Tr T

~11ĝ!

2
qHLq̄HR,

whereĝ is the representation of theZ2 orbifold action on the
Fock space, and TrU and TrT represent traces taken over th
untwisted and the twisted sectors. We also need to sum
the four different spin structures of the torus in both secto
The contributions from theb,c and b,g ghosts will cancel
the contributions from two unorbifolded Euclidean dire
tions. Then, for thed53 case, the result after the relativ
sign factors for the contributions from different spin stru
tures have been chosen, is
Z5
V6

2t2
2h4h̄4 (

h,g50

1
~V4!~12h!~12g!Zb

(h,g)

~16!(12h)g
3 (

a,b50

1

~21!(a1b1ab)

u2Fa

bGuFa1h

b1gGuFa2h

b2gG
2h4

3 (
ā,b̄50

1

~21!(ā1b̄1lāb̄)

ū2F ā

b̄
G ūF ā1h

b̄1g
G ūF ā2h

b̄2g
G

2h̄4
, ~28!

wherel50,1 for type IIA, IIB superstring. This is the same as the Euclidean case~see, for example,@17#!. Theu functions
are defined as

uFa

bG[uFa

bG~0ut!5 (
nPZ

q(1/2)(n2a/2)2e2p ib(n2a/2),

andZb is the contribution from the bosonic sector,

Zb
(0,0)5

1

t2
2h4h̄4

, Zb
(h,g)5

h2h̄2

u2F12h

12gG ū2F12h

12gG , ~h,g!Þ~0,0!.
-
s
en

nic
the
V6 and V4 are volume factors entering the continuum no
malization of the momentum integrals parallel and transve
to the orbifold. h50 for the twisted sector andg50 for
terms without the operatorĝ. The contributions from the

11In the case of the Euclidean orbifoldR4/Z2, the Dirac equation
in the Ramond sector reduced the fermionic components by
resulting in a Bose-Fermi degenerate spectrum.

12As in the bosonic case, care is necessary in general to de
string amplitudes in time-dependent backgrounds via analytic c
tinuation. Here we will not analyze this in detail. We naively co
tinue world sheet time to Euclidean signature while evaluating
torus diagram. The resulting formal object appears to be w
defined.
-
e
world sheet fermions vanish in each one of the four (h,g)
sectors separately, due to the Jacobi identity,

1

2 (
a,b50

1

~21!a1b1ab)
i 51

4

uFa1hi

b1gi
G52)

i 51

4

uF12hi

12gi
G ,

coupled withu@1
1#50. HenceZ(t,t̄)50, without having to

fix the relative factorV4. The vanishing of the partition func
tion in particular implies its modular invariance. All thi
looks rather surprising considering the difference betwe
the Euclidean and Lorentzian orbifolds. As in the boso
case, the difference can be made manifest by inserting, in

lf

ne
n-

e
l-
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partition function, an operator (21)s that changes the sign o
all negative norm states. Once again one finds that altho
the physical spectrum is free of negative norm states, n
physical negative norm states do not decouple in the loo

The vanishing of the partition function implies that the
is no dilaton tadpole, at zero energy momentum@18#. In the
absence of the orbifold, a non-zero momentum tadpole v
ishes simply by momentum conservation. However, in
space-time orbifold, because of energy-momentum nonc
servation at the ‘‘conical’’ singularity, kinematics can allo
inserting, on the torus, a dilaton vertex operator carry
nonzero energy and momentum. The vanishing of such
poles is not obvious and requires further investigation.

Summary. For type II superstring, we have found th
there are no negative normphysicalstates on the Lorentzia
orbifold R1,d/Z2. The ground state in the twisted NS sect
transforms as a spinor ofSO(1,d) and a scalar ofSO(9
2d). It is only physical whend<3 and the momentum i
carries in the unorbifolded directions has to satisfyupW u2

5(32d)/8. In the twisted Ramond sector, the ground st
is a SO(1,d) scalar andSO(92d) spinor. It is physical for
any value ofd and its momentum in the unorbifolded dire
tions has to vanish:pi50. The partition function is modula
invariant and the zero momentum dilaton tadpole vanishe
one loop.

V. DISCUSSION

In this article we studied two basic issues in string the
about which very little is known—time-dependent bac
grounds and cosmological singularities. We chose the s
plest possible spaces exhibiting these phenomena, space
orbifolds of Minkowski space, and showed how simple qu
tients by time reversal and spatial reflections evade som
the obvious potential pitfalls~tachyons and ghosts in th
physical spectrum, zero-momentum tadpoles at one lo
lack of modular invariance etc.!.13 Although there are closed
time-like loops in the construction, quantum mechanical e
lution is consistent because the orbifold prescription proje
onto states that are invariant under the discrete identificat

How is anSmatrix defined when a class of physical sta
is localized in time? An asymptotic observer in models su
as ours only observes transition amplitudes between
propagating untwisted sector states. Any such amplit
could involve the emission of arbitrarily many twisted sec
states which cannot be observed at late or early times. Th
fore it appears that the rules for computing transition am
tudes in space-time orbifolds will require tracing over em
sions of states that are localized in time. If so, pure sta
scattering off a space-time orbifold singularity could eme
as mixed states due to entanglement with an unobserv
twisted sector. Perhaps such a mechanism is responsibl

13Of course, even if tachyons appear in the physical spectr
recent experience has taught us that the condensation of the tac
may be under control and could even perhaps be cosmologic
interesting.
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creating the observed large entropy of the universe in a c
mological context.

One might wonder whether a loss of unitarity is also im
plied by the uncanceled contributions of negative norm v
tual states in the partition function of our space-time or
folds. Certainly, this result implies that it is not possible
choose a ghost-free gauge in which all computations are
ried out in terms of positive-norm states. We expect that t
will be true in many time-dependent backgrounds of str
theory—it is at least clear that the ghost-free light-co
gauge cannot be chosen in time-dependent backgrou
This is in sharp contrast to usual string theories and fi
theories in static backgrounds. Nevertheless, it is not c
that a loss of unitarity in transition amplitudes is implied.
particular, since our models do not have anyphysicalnega-
tive norm states, cutting the one loop diagram will not give
transition amplitude to a ghostlike state. In the absence
general argument connecting negative norm virtual contri
tions to the partition function andS-matrix unitarity, we re-
quire detailed study of amplitudes for propagating untwis
sector states scattering from the orbifold singularity.

There are very interesting subtleties in the computation
correlation functions and transition amplitudes on space-t
orbifolds such as ours in which the twisted sectors are lo
ized in time. Because of the localization, we do not exp
energy~or momentum in any of the orbifolded directions! to
be conserved in interactions between the untwisted
twisted sectors. One important consequence is that~unlike
usual spatial orbifolds! kinematics does not forbid a finite
momentum tadpole appearing at one loop. We can exp
that this issue of finite-momentum tadpoles will persist
time-dependent string backgrounds in general.

One reason for our focus on theR1,3/Z2 orbifold of the
superstring is that this orbifold had ‘‘massless’’ twisted se
tor states with Euclidean momenta satisfyingpW 250. In the
classicR4/Z2 orbifold the massless twisted sector states~for
which LorentzianpW 250) correspond to geometric blowu
modes which can resolve the singularity. Some condens
of the twisted sector states correspond to parameters o
Eguchi-Hanson Ricci-flat metric on the smooth manifold o
tained by replacing the tip of theR4/Z2 cone by a sphere. We
might hope that some conical space-time singularities can
resolved by similar condensates of ‘‘massless’’ twisted sec
states. When the twisted sector states are tachyonic,
might similarly hope that tachyon condensation would
solve the orbifold singularity. Unfortunately, much of th
geometric technology of deforming singular manifolds in
smooth spaces relies on complex geometry and cannot
commodate a manifold with signature (1,d). For example,
the Eguchi-Hanson metric@19# has signature (4,0) and whil
one can easily obtain a (2,2) signature Ricci-flat metric
analytic continuation from it, a~1,3! signature Ricci-flat met-
ric cannot be obtained in this way.14 In order to understand

,
yon
lly

14A simple generalization of the Eguchi-Hanson metric can
work because the curvature two form for an Eguchi-Hanson sp
is self-dual, but in (1,3) signature, the self-duality condition has
extra factor of ‘‘i . ’’
3-9
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cosmological singularities in string theory it is urgent that
develop the mathematics of resolution of singularities
Lorentzian manifolds.15

In string theory, the quantum mechanics of a relativis
string is used to compute transition amplitudes and anSma-
trix for the scattering of conventional multigraviton states.
view of this we have studied the quantum mechanics
strings on space-time orbifolds. Field theories on such spa
raise several new issues. For example, new singularities
potentially arise in correlation functions of operators
space-like separations if the space-time interval betw
some operators and the orbifold images of others is time-
or null. The rules for defining field theories in such bac
grounds remain to be worked out.16

We conclude here by summarizing some perspect
from this work about time-dependent backgrounds and c
mological singularities in string theory:

String theories defined on time dependent backgrou
run the risk of having ghosts and tachyons in the phys
spectrum.

Even when there are no ghosts in the physical spectr
negative norm states can make uncancelled contribution
the partition function. In such cases it is not possible
choose a ghost-free gauge like light-cone gauge. This m
lead to loss of unitarity, but a more detailed analysis
needed.

The quantum mechanics of strings on space-time o
folds can be consistently defined even if there are clo
time-like loops by projecting onto states invariant under
orbifold group. It would be interesting to consider space-ti
orbifolds without closed time-like curves, but we expect t
issues raised here to persist~see@20#!.

The resulting orbifolds can be tachyon and ghost-free
typically contain a twisted sector at a fixed plane localized
time.

Scattering from such an asymptotically unobserva
twisted sector could cause transitions from a pure state
mixed state, generating entropy.

Since energy need not be conserved in a time-depen
background, kinematics does not forbid the production
tadpoles with finite momentum. Hence, the vanishing
these amplitudes must be checked to confirm the existenc
a valid solution to string theory.

We expect to return to many of the issues laid out ab
in a future publication.
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APPENDIX A: TWISTED SECTOR SUPERCONFORMAL
GENERATORS

Here we list the superconformal generators in the twis
sector of theR1,d/Z2 orbifold theory. The Virasoro generator
are given by

Lm
NS5Lm

B1Lm
F,NS, Lm

R5Lm
B1Lm

F,R ~A1!

where, in the twisted sector,

Lm
B5

1

2 (
nPZ

:~a2n21/2
a am1n11/2

b hab1a2n
i am1n

i !:

~A2!

and

Lm
F,NS5

1

2 (
nPZ

S n1
m

2 D :c2n
a cm1n

b hab :

1
1

2 (
r PZ11/2

S r 1
m

2 D :c2r
i cm1r

i : ~A3!

Lm
F,R5

1

2 (
r PZ11/2

S r 1
m

2 D :c2r
a cm1r

b hab :

1
1

2 (
nPZ

S n1
m

2 D :c2n
i cm1n

i :. ~A4!

The supercurrent components in the twisted sector are

Gr5(
m

:~c2m
a a r 1m

b hab1c r 1m
i a2m

i !: ~A5!

Fn5(
m

:~c2m11/2
a an1m21/2

b hab1cn1m
i a2m

i !:.

~A6!

There are similar expressions for the left movers.

APPENDIX B: TWISTED SECTOR VACUA AS SPINORS

Consider 2n world sheet fermion zero modesc0
a satisfy-

ing $c0
a ,c0

b%5dab and commuting with the mass operato
The theory then has anSO(2n) spinor as its degenerat
vacuum, which can be constructed as follows. DefineGa

5A2c0
a . These then satisfy the Dirac algebra$Ga,Gb%

52dab. The ground state is a representation of this alge
and can be constructed using the standard procedure: Fk
51, . . .n, define

ek5
1

2
~Gk1 iGn1k!, ek

†5
1

2
~Gk2 iGn1k!.

These satisfy the fermionic algebra,$ek
† ,el%5dkl , with other

anticommutators vanishing. Start from a stateu0& annihilated
by the lowering operators. Other components of the grou

s
ot

s.
3-10
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state spinor are obtained by using the raising operators
this lowest state;u0&,ek

†u0&,ek
†el

†u0&,•••,e1
†e2

†
•••n

†u0&. The
degeneracy of a state withp raising operators is the comb
natoric factor,nCp and the total number of states is 2n; that
tte

.

ys
.

ys
,

,’’

o,

s.

02600
onof a spinor. The chirality operator isG2n115G1•••G2n .
States with even~odd! number of oscillators form a positive
~negative! chirality spinor. In the twisted NS sector, 2n5d
11 and in the twisted R sector 2n592d.
.J.

o

e
n-
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