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Space-time orbifold: A toy model for a cosmological singularity
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We explore bosonic strings and type Il superstrings in the simplest time dependent backgrounds, namely
orbifolds of Minkowski space by time reversal and some spatial reflections. We show that there are no negative
norm physical excitations. However, the contributions of negative norm virtual states to quantum loops do not
cancel, showing that a ghost-free gauge cannot be chosen. The spectrum includes a twisted sector, with strings
confined to a “conical” singularity which is localized in time. Since these localized strings are not visible to
asymptotic observers, interesting issues arise regarding unitarity & riegtrix for scattering of propagating
states. The partition function of our model is modular invariant, and for the superstring, the zero momentum
dilaton tadpole vanishes. Many of the issues we study will be generic to time-dependent cosmological back-
grounds with singularities localized in time, and we derive some general lessons about quantizing strings on
such spaces.
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[. INTRODUCTION action of the discrete group has fixed points, the orbifold has
conical singularities, as well as new light statd® so-called
Time-dependent space-times are difficult to study, bothwisted sectorswhich are confined to these defects. Con-
classically and quantum mechanically. For example, nonédensing twisted sector states can resolve the conical singu-
static solutions are harder to find in general relativity, whilelarities in many cases such as the classic exarRil&Z,
the notion of a particle is difficult to define clearly in field where four Euclidean directions are identified under reflec-
theory on time-dependent backgrounds. Quantum mechaniions.
cal strings propagating on time-dependent spaces can de- Can we find consistent backgrounds in string theory by
velop many subtle problems including difficulties with uni- identifying points in space-time rather than just in space?
tarity and ghosts in the physical spectrum. Nevertheless, th@ne simple example is the Baos-Teitelboim-Zanelli
apparent observation of a cosmological constant from supefBTZ) black hole of three dimensional gravity which is ob-
novae measuremenfs], and an attendant expansion of the tained by quotienting AdSby a boos{{6].! Such orbifolds
universe, requires us to understand clearly how time deperbear a relation to the kinds of identifications discussed in the
dence of cosmological backgrounds is incorporated int@ontext of resolving singularities separating contracting and
string theory. In related theoretical developments, recenéxpanding phases of some cosmological mog@]s Like-
work has explored the physics of de Sitter spedeas well  wise, some coset Wess-Zumino-WittéWwZW) models are
as new pictures of the early universe in which a collision ofconsistent time-dependent string backgrour8$ Also,
branes forms the observable cosmic structyfds In the  string theory on orbifolds with time identified under-t
latter models, and in the pre-big-bang scendridsa stringy  +1 (i.e., circular tim¢ has been studied ifi10] and the
resolution of an initial singularity is proposed to permit anresulting timelikeT duality has been studied [11]. Space-
extension of space-time to an era before the big bang. ltime singularities in string theory were studied ir2]. In this
view of all this it is worthwhile to investigate perturbative paper, we will seek simple models of time-dependent spaces
string theory in singular cosmological backgrounds. and of cosmological singularities by constructing space-time
Perturbative string theory is most easily studied in flat,orbifolds in which we identify space-time under both time
translationally invariant space. The simplest nonhomogereversal and reflections in some directions. Generally speak-
neous spaces in which it is well defined are orbifolds of flating, string theories defined on such spaces are threatened by
space in which some Euclidean directions are quotiented byt number of pathologies including potential ghosts in the
a discrete subgroup of the isometry grolfd. When the  physical spectrum and problems with unitarity. In fact, all
known proofs of the no-ghost theorem explicitly require
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time-independent backgrounfik3]. Also, supersymmetry is t
generally broken and so there may be a danger of tadpoles ¢
one loop and instabilities like tachyons could octart of
our goal is to explore the many subtleties that beset suct
constructions in string theory. ° \
We study bosonic and type Il superstringsRH/Z,, in e =
which we have identified space-time by time reversal and )
reflections. Whenl= 0, only time is identified and the space
has an initial singularity at=0. Whend=1 the background
geometry is a space-time cone with a “conical” singularity at
t=x,=---=X4=0. String theory on such spaces is defined
by projecting onto the sector of the Hilbert space that is FIG. 1. A space-time cone.
invariant under these discrete transformations, and includinﬂg

possible twisted sectors localized at the orbifold fixed pointoOPS- However, because the orbifold prescription projects
onto states in Hilbert space that are symmetric under the

nifientifications, quantum mechanical evolution remains con-
sistent.

1 v X

@ )

at t=x,=---=x4=0, and which therefore do not propa-
gate. After this projection, quantum mechanics is consiste
with closed time-like loops in the geometry. We find that the
physical states are ghost-free whett 1=9 for the bosonic
string and that there is no restriction @hfor the super-
strings. In type |l superstrings, whei+1=4, there is a Consider identifying time X°) and d spatial directions
“massless” twisted sector in which physical states satisfy theinder reflections:
on-shell condition|p|?=0.% It is possible that condensing X3, —Xa (a=0 d) 1)
these states would resolve the conical singularity, and so we Ty
focus on thed+1=4 case. leaving all other directions unaffected. Figure 1 shows the
We compute the partition function wheth+1=4 and resulting space-time cone wheah=1. Points in opposite
find that it is zero. Likewise the one loop zero-momentumquadrants of theX—T plane are identified as in Fig. 1.
tadpoles vanish suggesting that we have a consistent strintherefore the quadrants Il and I@r | and 1l) may be taken
background at this order in string perturbation theory. How-as “fundamental” regions with independent physics. Identi-
ever, negative norm statéalthough not present in the on- fying these regions along the(dr X) axis produces the cone
shell physical spectrupmake a contribution to the partition in Fig. 1(b) with a singular point af =X=0.
function—their virtual effects do not cancel between the The proper distance on the covering space between a
matter and ghost sectors as they do in the stanB4fd, point (T,X) and its image ¢ T,—X) is ds>=4(X?—T?).
orbifold. This shows that it is not possible to choose a ghostThis is time-like in the region inside the light cone emanat-
free gauge in which all computations are carried out in termsng from the pointT=X=0 on the covering space. As a
of positive norm states. We expect that this will be generallyresult there are closed time-like curves in this geometry, such
true for string theory in time-dependent backgrouhds. as the one in Fig.(®). In the orbifold construction which we
We conclude the paper by discussing several novel subtlewill describe below, it is not immediately obvious that such
ties introduced by the localization in time of a sector ofloops pose a fundamental problem since we are instructed to
physical states, and by summarizing lessons learned from ogroject to states in the Hilbert space that are invariant
work about time-dependent backgrounds and cosmologicalnder the space-time identifications, i.e., we project onto
singularities in string theory. quantum mechanical wave functions that satigfyx,t)
=y(—x,—1t). As a result, the classic paradoxes of “killing
one’s own grandmother” are avoided. However, other subtle-
ties could arise. For example, the precise definition of ob-
We study space-time orbifolds constructed by identifyingservables an matrices on such spaces remains to be un-
Minkowski space under time reversal and reflections in somelerstood. Likewise in the presence of closed null curves
spatial directions. As we will see below, the resulting geom-there is a potential danger of a divergent stress tensor in a
etry can be interpreted as a space-time cone. After the ideisecond quantized field theory. However, this is usually miti-
tifications the covering space has some closed time-likgated by supersymmetry which we will have in the bulk of
spacetime. This paper is intended as a preliminary explora-
tion of space-time cones, and so we will not address the
20f course, string theorists have learned over the past few yeasecond quantization of theories in such spaces. Rather we
that the dynamics of tachyons in some cases may be under contrglill study the quantum mechanics of free strings which is
and may even be of cosmological interest. well defined for the reasons described above. We hope to
3actually, this implies thap=0 since the twisted sector states are '€turn to a general study of closed timelike curves in string
localized in time and so only carry momenta in the unorbifoldedtheory in a later publication.

A. Conical space-time geometries

II. SPACE-TIME ORBIFOLDS

Euclidean directions. A picture of time evolution on the cone is provided in Fig.
“This is reminiscent of mixing between the matter and ghost sec2(a) where we have folded regions Il and IV along thaxis
tor conformal field theorie¢CFT9 discussed if14]. and identified the negative and positive directions along the
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IIl. BOSONIC STRING THEORY ON THE LORENTZIAN
ORBIFOLD

Before studying superstrings on space-time orbifolds we
examine the 26-dimensional bosonic string propagating on
R9/Z,. This already contains the distinctive features of the
Lorentzian orbifold. In particular, we show that it is possible
to obtain a ghost-free physical spectrum and a modular in-
variant partition function, but that virtual negative norm
states make un-cancelled contributions to quantum loops.

FIG. 2. Time evolution on the cone. This is a reflection of the time dependence of the string
theory background.
time axis, to make a cone. It is natural then to describe the Consider flat 26-dimensional Minkowski space with
evolution of states on the cone with respect to the time dipoints identified under th&, action,
rection inherited from the positive time direction in quad-

(a) (b)

rants Il and IV of the parent manifold. The like=0 appears X8——=X* (a=0---d),
to have time “running both ways,” but this is simply because _ _
we have projected onto states that are time reversal invariant X'—=X" (i=d+1---25). 2

on theX=0 axis.

Constructing the cone by gluing the X axis of quadrants IThis action has a fixed (25d)-dimensional hyper-plane,
and Il yields a similar picture with two “sheets” glued to- given byX®=0. To get consistent string propagation on this
gether on the T and X axis. At first sight the time inheritedSpace-time, we project the conventional bosonic string Hil-
from the covering space gives evolution moving “up” on bert space onto it, invariant subspace. This gives the un-
both sheets in Fig.(®), with the boundary condition that the twisted sector of the orbifold theory. In addition, there is a
wave-functions on both sheets approach the same value ortwisted sector corresponding to strings that are closed only
big-bang-like surface & =0. However, on the X axis of the under the identifications made by the orbifold group. Again,
covering space the orbifold identifications also imply thatwe project out twisted sector states that are not invariant
AY(X, )/ dt)—o=— d(—x,t)/t|—o. Therefore, on the under the orbifold action. The twisted strings are trapped
cone, with time evolving “up” on both sheets, although around the tip of the cone in Fig.(d), which is a
wave functions on both sheets agree on the initial surface25—d)-dimensional hyper-plane localized at an instant in
their time derivatives are opposites of each other. Thereforéime. The untwisted strings can propagate in the bulk.
it seems more natural once again to describe the evolution of The orbifold above has the novel feature that it includes a

states with respect to a continuous time as in Fig).2 reflection in the time direction, destroying the global time-
like isometry of flat space-time. This means that we cannot
B. Euclidean world sheets and Lorentzian backgrounds perform quantization by going to light-cone gauge. The al-

) ) i ternative is to use the covariant BRST formalism. However,
As we have discussed, we will construct string theory oy the absence of a light-cone gauge choice, the absence of
our space-time orbifold by projecting onto states of strings IMegative-norm states in the physical spectrum is no longer
Minkowski space that are invariant under the discrete idengyigent, especially in view of the nonapplicability of the
tifications. In Lorentzian space-times the signature of thgnown proofs of no-ghost theorefi3]. In the following, we
string worldsheet must be{(1,1) in order for classical string il mostly be concerned with this issue. In the covariant
propagation to exis{The 2D equations of motion are solved tormalism, we work with world-sheet fieldsx* (1
by equating the world sheet metric with the metric induced—q 25) and the reparametrization ghostandc. In the

from space-timg. Nevertheless, the standard techniques ofniwisted sectoK*(o + 21, 7) = X*(o, 7), and the mode ex-
string theory involve analytically continuing the world SheetPansion i&

to Euclidean signature in order to exploit the techniques o

two-dimensional conformal field theory and complex geom- P ~u
. . . . S ) oy . ay
etry. In static backgrounds we might imagine continuing the  x#=x~+ p#7+j 2 N amin(r=0) 1 E N gmin(rto)
space-time to Euclidean signature at the same time, but this n#0 N nzo N
is not possible in time-dependent backgrounds such as ours. (©)

Our analysis in this paper is done with a Lorentzian signature . . ) )
world sheet except our discussion of modular invariancel Ne (tachyonig ground stqtel p%,p") carries momentum in
where we formally continue the world sheet to Euclideanboth orbifolded gnd unorbifolded dlre_ct|0n§ and th_e Hilbert
signature. The resulting path integrélvith a Euclidean SPace of states is constructed by acting with preat|on opera-
world sheet and Lorentzian target spaisenot strictly speak-  {Ors on_the ground state. Half of the states with nonzEro

ing well-defined because the action is not bounded from be@® Projected out of the spectrum. For example, of the states
low. Nevertheless, it appears to be finite in our case, and we? ;&' 1|p?,p') anda? ;a' ;| —p?,p'), only the linear com-
use it formally to discuss modular invariance. Subtleties in

defining the Polyakov path integral in Lorentzian signature

have been discussed by Mathur|[ib]. SWe will work in a’ =2 units in this paper.
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bination o ;2" ;(|p?,p')—|—p?,p')) is retained. Wherp? (LP+LI"—a)|y)=0, 7
=0, only theZ, invariant combinations of the oscillators
acting on the vacuum are kept. Heneé,,a' ,|0,p') is pro-
jected out buta® ;a”,|0,p') is retained.

In the twisted sector, the field$? satisfy the antiperiodic * 25

where Lgh is the ghost Virasoro generator. In terms of the
twisted sector number operators, we have

1.
boundary conditionX®(o+27)=—X%(o), with the mode L'+ L8h=ip'pi+2 n| Np,+ Ncn+‘72 Nin
expansion given by n=1 i=d+1
© d
a ~a
Xa:iz %efir(rﬂr)_“z %e*ir(ﬁro’), (4) +r:21/2 ago Nar, (8)
r r

and the twisted sector zero-point energyais[ 26— (d+ 1)
wherer is half odd-integral. The twisted sector is localized at— 2]/24— (d+1)/48=(15—d)/16. Then for a physical state

the orbifold fixed plane ax®=0. In particular, for any value |y,p'), with momentump' in the unorbifolded directions,
of the parameter, the twisted string world sheet does not this implies

propagate too far out in tim¥°. This is similar to an instan-

ton. The mode expansion fof' in directions transverse to 1 i -

the orbifold is the same as in the untwisted sector. Conse- 5 P pi*'nz1 n| Nont Ncn*'izg+1 Nin +r21 20 Nar

quently, the ground state in the twisted sector carries a mo-

mentump' only in the transverse directions. The Hilbert =(15—-d)/16. 9)

space is built by acting with creation operators on the ground

state and projecting onto tt#® invariant subspace. Since the left-hand side is always positieis restricted

The ghosts and ¢ are not affected by the orbifold and t0 d<15 in order to allow for any physical states in the

have the same mode expansions in both sectors: twisted sector. Furthermore, since (18)/16<1, a twisted
sector physical state will not conta@ b and X' excitations.

_ _ For 1=d<7, the physical spectrum will always contain a
b(‘T'T):g bye™ "), C(‘TaT):; ce "9 (5 negative norm state correspondingd8 ,,,. However, for
d=8 there are no negative norm states in the twisted sector
physical spectrum which, for 25d=8, contains only the
ground statd0,p'). In particular,p'=0 for d=15°

25 0 d

and similarly for right-mover® andc.

A. Physical states B. Partition function and virtual ghosts
The BRST operatoQg is given by Although there are no negative norm physical stafes
. (m—n) the right range ofd), the orbifold theory may still contain
QB=2 (anTn+anTn)+2 T:(cmcnb,m,n negative norm virtual states running in loops. This can be
n m,n

studied by looking at the one-loop partition function. Before
considering the orbifold case, we recall the partition function
of the closed bosonic string in 26-dimensional Minkowski

gpace,

+CnCab_m_n): +a(Co+Co), (6)

whereL™ are the Virasoro generators in the matter sector an
ais the zero point energy. Physical states are elements of the
Becchi-Roaet-Stora-TyutifBRST) cohomology, i.e., they

obey Qg|y/)=0 subject to the equivalence relatidw) p'=0. If this state ap'# 0 were BRST exact, it would be orthogo-

~|¢>.+QB|¢>’ Where|¢) IS an arbltrar.y state. r}al to all other physical states. Amplitudes involving such a state
It is now easy to see that the physical spectrum does NQLouId then have to be proportional @°~9(p'). As argued in

contaln.negatlvg nqrm states. In the untwisted sector, afteﬁG], since amplitudes in field theory and string theory never have
the orbifold projection, the states form a subspace Of_ th‘?his kind of a behavior, such a state wjih=0 should not be part of
Fock space of the parent theory. Furthermore, the orbifolghe physical spectrum. However, this st true for the twisted
action(2) commutes with the BRST operat(). This means  sector state on the Lorentzian orbifold. This is because the state
that the space of physical states of the orbifold theory is &yith nonzerap' is not BRST exact since it is not even BRST closed
subspace of the space of physical states of the parent theogyy,|pi+0)+0), as it does not satisfy the Virasoro constraint. So
and hence is free of negative norm states. More explicitly, fothe above argument does not apply and the zero-momentum physi-
p2#0, one can easily establish a correspondence betweesl twisted state should be retained.
states in the parent theory and those of the orbifold theory by “more precisely, the definition aZ(r,7) is
?npproprlately choos[ng symmetrized or antisymmetrized mo- Z(rm)=Tr( — 1)FcobgSoBoa g (10
entum wave functions.
To see that the twisted sector physical states do not hauwehere (- 1)F anticommutes with all the ghost fields. In the follow-
negative norms, recall that the BRST conditiQg|)=0, ing, we implicity assume that the trace is taken with
along withbg|)=0, implies(see, for exampld,16]) (—1)FcoboCoby inserted.

SFor d=15, the state in the twisted sector is physical only when
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26 24
— .V 1
Z(7,7)=Tr qHLqHR~—12§ X

T2 |q1/241r_n[ (1_qm)|2

4 Ve 1
Y]

a1 (1-q™
; 2\ a1 (a-am?
m

whereH, =Lo—a, Hg=Ly—a, a is the zero point energy, amgi=e2™". V¢ is a space-time volume factor related to the
continuum normalization of the momentum integral dig is a short hand foil,_,. Here, the contributions from the
negative and positive norm ghost states cancel the contributions from the time-like and one space-like oscillators, respectively,
giving the same result as we would get in the light-cone gauge. To verify that this really is how the cancellations work, one
can compute the following closely related quantity:

2 2

24

q1/241r_n[ (1_qm) ql/241;[ (1+qm)
2) 25(
The insertion 1)° ensures that negative norm states contribute with a negative sign in the trace. The efjualiy

=S(r,7) then reflects the fact that the negative norm ghost contribution really did cancel that of the time-like os€illators.

We now proceed to the partition function of the orbif@®d9/Z,. In general, in the absence of a timelike isometry care is
necessary in defining string amplitudes by analytic continuation. Indeed, very little of a general nature is known about
perturbative string theory in time-dependent backgrounds. Here we take the approach of naively continuing the torus amplitude
to Euclidean signature on the string world sheet. The resulting formal object is analyzed below and seems to be well-defined.
A partition function, being a vacuum amplitude, is a space-time scalar. Therefore, the trace in it extends to the space-time index
of the states, i.e., the conjugatedd,|p) appears a$p|aﬂyn. The commutators then invoh@ rather thany,,, and time-like

oscillators contribute in the same way as space-like ones. The partition function then has the same form as that of the
Euclidean orbifoldR'*%/Z,, and is given by

Ve 1

2y T 12
) Ty |q1/241;[ (1_qm)|2

S(r,7)=Tr(— 1)*qHqfe~ -2

7'%2 <q1/24H (1_qm)
m

ql/241_[ (1+ qm)
m

— 1+g . — 1+9 . —
20 )= Try = qPge Try = 2 g an
24— (d+1
Va5 g 1 @ Vi1 1
2 2 ANCESa PIGESY)
\/7_—2 q1/24];]-[ (l_qm) (\/7'—2 q1/24]-;[ (1_qm) 2d+1 q1/241r_nI (1+qm)
1 1
+ @D T 2@rD) | - (12

1

qfl/481r_n[ (1_qm71/2) qfl/48];n[ (1+qm7§)

whereg is the Z, action on the Hilbert space and rand  In the Euclidean orbifold, the negative norm ghost contribu-
Try denote traces over untwisted and twisted sector statdion always cancels against time-like oscillators, indicating
respectively. The first term contains\&, , from the mo-  the possibility of choosing a gaugtne light-cone gaugein
menta of the untwisted sector states. Only the zero mode&hich there are no negative norm states. However, in the
contribute to the second term leading to a factor of 172 ~ Lorentzian orbifoldR*%/Z,, virtual negative norm states
Since the last two terms arise from the twisted sectors, ther@iake uncanqelled contrlbuthns fo the partition function. As
is no contribution from momentum in the+1 orbifolded @ check of this, one can again look at
directions. The first terms is modular invariant by itself, and
the last three transform into each other under modular trans- 149 . — 149 ., —
formations as is standard in noncompact orbifolds. S(7,7)=Try(— 1)STqHLqHR+ Tre(— 1)STqHLqHR.
Although the expression for the partition function of the (13)
Lorentzian orbifoldR*“/Z, is the same as that of the Euclid-
ean orbifoldRY"/Z,, they embody very different physics. o o
The difference, if any, betwee®(r,7) andZ(r,7) can only
arise because of differing contributions from the negative
8We thank C. Vafa for this argument. norm states and therefore, we concentrate on these parts of
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Z(7,7) and S(r,7). The contribution from negative norm modular invariant. However, negative norm virtual states
states in the left moving sector to various terms in EgsMake uncancelled contributions to quantum loops. This im-

(11),(13) is given by plies that_ it is not possiple to choose a gauge in which all
computations are done in terms of positive norm states. For
oL (19" 9<d-+1=<16, the ground state in the twisted sedi} car-
Try(£1)%q ONI;I (1% q")’ rying momentum in the unorbifolded directions is physical
with |p|?=(15—d)/8. Ford+1>16, there are no physical
. (1¥qgM states in the twisted sector.
Try(=1)°ggto~]] ——=,
U( ) agq 1;[ (1iqn)
IV. TYPE Il SUPERSTRINGS ON THE LORENTZIAN
(1% q") ORBIFOLD
Trr(x1)5qto~ || ——17, . .
n (1Fg"t?) We will next move on to type Il superstrings. Because the
orbifold involves time, we will work in the covariant
<L (1xg") Ramond-Neveu-Schwai2NS) formulation. Now the orbi-
Tr(=1rgam~ 11 Fi ey (14 fold action is

a __wya i i a _a i i
The upper signs in the four expressions correspond to con- Ko =X X=X =i g =y, (15

tributions of negative norms states Z§7,7) and the lower where,a=0,...d andi=d+1,...,9. Fortechnical rea-

signs correspond to their contributions36r, 7). The factor  sons, we will always considet odd.

(159" in the numerator is the contribution from the nega- We first look at the untwisted sector. Here, the fermions
tive norm ghost states and the factor in the denominator ifhave the standard mode expansionsy“(o_)

the contribution from the time-like oscillato?sErom these =3yt e "7 with similar expressions for left-movers
expressions, it is clear that the contributions of the negatlv%,;((n). The sum is over e Z+ 1 in the NS sector and

norm states t&(7,7) and S(r,7) are not the same. Hence <z in the R sector. The bosons have the mode expansions
S(7,7)#Z(7,7), which explicitly shows that the contribu- (3). The zero point energa=ag+ag is a=3 in the NS
tions of virtual negative norm states in the partition functionsector anca=0 in the R sector. The NS sector ground state
do not cancel on the Lorentzian orbifold. This implies that ais a tachyonic scaldp?,p')ys, whereas the R ground state
ghost-free gauge for string theory in such a background doeg a massless spindp?,p')r. The orbifold operation acts on
not exist. This is perhaps not surprising: we cannot chooSghe R vacuum as
the light cone gauge because our orbifold involves a reflec-
tion in the time direction. One might have thought that there Ip?,p)r— (IO .. T9 —p2 p'Yg.  (16)
is some other gauge in which all calculations can be done in
terms of positive norm states, but the analysis above showafter the orbifold projection, the invariant states have mo-
that such a gauge does not exist. Nevertheless, as we hameentum wave functions of definite symmetrjp?,p')
shown, there are no negative norm physical states on the|—p?p'), depending on thed+ 1)-dimensional chirality
orbifold. We expect that these features are generic for themf the R ground state and the oscillator numbers.
ries in time dependent backgrounds. As in the bosonic orbifold of the previous section, the
Sinceb and c are reparametrization ghosts, their period-physical untwisted orbifold states form a subspace in the
icities on the world-sheet torus are fixed by the theory. How-space of physical states of the parent type Il theory. Conse-
ever, suppose that we regard tké as describing simply a quently, the untwisted sector is free of physical negative
free field theory on the orbifold. Then, in principle, we can norm states.
introduce a b,c) system, not as reparametrization ghosts, The supersymmetry of the physical untwisted spectrum
but with the sole purpose of removing the negative norm(for oddd) can be illustrated as follows. L&t(*®) denote an
states. Then, by assigning appropriate periodicities to th&O(1,9) spin-field of definite chirality that relates the NS
ghosts, depending on th¢* boundary conditions, it is pos- and R ground states in type Il theorp)g~S™9|p)ys.
sible to fully cancel the contributions of negative norm statesThen the space-time supersymmetry current in the unorbi-
in all sectors of the theory. However, this will not be a stringfolded theory has the ford~e™ #2519, wheree™ #2 is
theory. the spin-field for thes, y ghost system. Suppose thgt:®)
SummaryWe have found that there are no negative normhas positive chirality and we deno&O(n) spinors of =1
physical states in the bosonic string theory on the Lorentziaghirality by S™. As the orbifold breaksSO(1,9) to
orbifold Rl'd/ZZ whend+1=9, and the partition function is so(l,d)xso(gf_ d), the positive chirality spin-field de-
composes as

°Note that for the Euclidean orbifold, the contributions from the S(f'g)=$(+l'd)®8(f*d)+S(,l'd)®8(,97d) .
time-like oscillator is always 1/(Z q") which cancels the contribu-
tion from the negative norm ghost oscillators resulting in the equal-Then, under the orbifold projectiaii6), the piece with posi-
ity Z(r,7)=9(r,7) for the Euclidean orbifold. tive SO(1,d) chirality survives and the orbifold inherits a
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supercurrent J,,p~e~ #2510 509 from the parent B 3-d .
theory. This proves the supersymmetry of the untwisted sec- a=agtap= 8 (twisted, NS, (23
tor, while showing that the amount of supersymmetry has
been reduced. , _ a=ag+ap=0 (twisted, R. (24)
We now turn to the twisted sector. The twisted bosons
have the mode expansig4). Fermions in the twisted sector The zero point energy vanishes for any valuedoin the
satisfy boundary conditions: twisted Ramond sector.
NS: ¢2(o+2m)=¢0), P (o+2m)=—¢'(0);
1 A. Twisted sector physical states
The content of the twisted sector physical spectrum is

. a __qa i —
R: ¢ o+2m)=—y%0o), Y (o+2m)=¢'(0). determined by the super-Virasoro constraints,

(18)
These lead to the mode expansions: (Lm—adm)[phys =0 (m=0),
. G,|phy9=0 (r=3%NS),
NS:I//a(O'_)ZE l/jge—m(r—o—), r|p y$ ( 2 )
eZ
" Fn|phys}=0 (n=0,R), (25
Yoo)= 2 ye "o, (190 with the generators given in Appendix A. As in the bosonic
reZ+1/2 . .
case, thd_, constraint gives
R: a )= ae—ir(r—a')’ X 3—d
¥i(o-) re;1/2 v p'pﬁr}l: IN,= B (NS sectoy, (26)
Yo)=2 gre . (20) ~0 (R sectoy. 27)
ne

The periodicities and mode expansions are reversed alorigerep' is the momentum carried by the twisted sector state
the orbifolded directions compared to the unorbifolded onesin the unorbifolded direction, and,IN, schematically rep-

The twisted NS sector has fermion zero modes along th&eSents the combined sum over the bosonic, fermionic and
orbifold and the corresponding ground stdf)ls is a ghost number operators in the twisted sector. Note that the

SQO(1,d) spinor and &0(9—d) scalar. The twisted R sector minimu_m nonzero value of this sum i while _the right-
gr(g(und)stgte}pi)E is a Sr()inor BmdeSO(Q—d) and a scalar hand side is always less thgn Therefore, physical twisted

underSO(1,d). Some more details can be found in Appen- states _cannot have any oscillator excnauons. In particular,
dix B. they will be free of negative norms. In the twisted NS sector,

Using the mode expansions, the Virasoro generatigys there are no physical states for-3. Ford=<3, the twisted

and the world sheet supercurre@s andF,, can be worked NS ground statgp'ys is phxsmal vy|thp'pi—(3 d)/8. Iri1
out. These are summarized in Appendix A. To identify thepartlcular, for the case ofi=3, this ground state hag

physical spectrum, one also needs the zero point energies,”" . - - .
a=an+a-. In the NS sector. the world sheet bosonic and 1S state also trivially satisfies all the other physical state
fermiEé)nicFéectors contribute 6'13 constraints in Eq(25). In the R sector, the only physical

state, for anyd, is the Ramond ground state at zero momen-

d+1 9-d 2 tum, |pi:0)E. This also satisfies the remaining constraints
®=~" 28 T 24 22 in Eq. (25). In particular, theF, constraint givepI" |p')%
=0, which is normally the Dirac equation reducing the num-
d+1 9-d 2 ber of spinor components by half. In our case, sipce0, it
&=~ %1 T a8 78 (21)  does not impose a constraint. Thus, e.gd#3 the twisted

R sector vacuum has twice as many components as the

Here, —2/24 is the contribution from thé,c ghosts and  twisted sector NS vacuurtsee Appendix B .
—2/48 is the contribution from the NS seci8ry ghosts. In The Gliozzi-Scherk-OliveGSO projection results in the

Ve _
the twisted Ramond sectaag is as above and the fermions NS sector ground stat¢p')ys, having the sam&sQ(1,d)

give, chirality in the left and right moving sectot§In the twisted
R sector, the ground stal@')%, has the saméopposite
(9—d) d+1 2 SQ(9—d) chirality in the left and right moving sector for
aF=""5; + K“L 24" (22) type 1IB (type ll1A) string theory.

where 2/24 is from the Ramond secifry ghosts. In total
then, 10Recall we consider odd so chirality is well defined.
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In general, the bosonic and fermionic degrees of freedom The torus partition function for the orbifold is given by
in the twisted sector will not match. For the special case of
d=3, the twisted sector NS ground state is a chiral spinor of
S((1,3) and the R sector ground state is a chiral spinor of

SQ(6). These spinors have different dimensionalities and as  z(7 7)=Tr, (1+g) gHigHrR+ TrT(1+g) gHigHr,
a result Bose-Fermi degeneracy of the space-time spectrum 2
is broken in the twisted sectdt.
B. Partition function and tadpoles whereg is the representation of tt#, orbifold action on the

The one-loop partition function, as in the bosonic case,F ock space, and frand T represent traces taken over the
does not distinguish between space-like and time_"kémtwisted and the twisted sectors. We also need to sum over
oscillators!? Therefore, the result for superstrings on the the four different spin structures of the torus in both sectors.
Lorentzian orbifoldR>/Z, will be the same as that for the The contributions from thé,c and 8,y ghosts will cancel
Euclidean orbifoldR?*%/Z,. This is in spite of the fact that the contributions from two unorbifolded Euclidean direc-
the spectra in the two cases are very different, especially ifions. Then, for thed=3 case, the result after the relative
the twisted sector. For definiteness, we look at the case ¢fign factors for the contributions from different spin struc-

d=3. tures have been chosen, is
|
,| @ a+h| [a—h
1 1-h1-g7hg 1 0% |9 o _
7= VG_ (V4) Zb % 2 (_ 1)(a+b+ab) b b+g b g
27-%774774 h,g=0 (16)(t~Mg a,b=0 29

al_ja+h

" 0% | 6| —
xS (—q1)@bian_ L) 1P*O
a,b=0 27"

i?—h
0 _
b—g

where\ =0,1 for type IIA, 1IB superstring. This is the same as the Euclidean ¢ses® for exampld,17]). The 6 functions
are defined as
a a
=0 b

: (28)

(0|7)= 2 q(1/2)(n—a/2)2e— mib(n—a/2)

neZ

o

andZ, is the contribution from the bosonic sector,

1 772
0,0)__ h,g) _
ZE, ) 7(h.g) .

_ . (h,9)#(0,0).
L az{i:g}_ﬁ:ﬂ

Ve andV, are volume factors entering the continuum nor-world sheet fermions vanish in each one of the folrg)
malization of the momentum integrals parallel and transversgectors separately, due to the Jacobi identity,
to the orbifold. h=0 for the twisted sector ang=0 for

terms without the operatog. The contributions from the N

4
Eaz (_1)a+b+abH 0

,b=0 =1

a+hi
b+g;

L

Yn the case of the Euclidean orbifoRl'/Z,, the Dirac equation
in the Ramond sector reduced the fermionic components by half

resulting in a Bose-Fermi degenerate spectrum. . 14 — . .
2As in the bosonic case, care is necessary in general to defin(éOLIpIEd with6[1]=0. HenceZ(7,7) =0, without having to

string amplitudes in time-dependent backgrounds via analytic confiX the relative factoV,. The vanishing of the partition func-
tinuation. Here we will not analyze this in detail. We naively con- tion in particular implies its modular invariance. All this
tinue world sheet time to Euclidean signature while evaluating thd0ooks rather surprising considering the difference between
torus diagram. The resulting formal object appears to be wellthe Euclidean and Lorentzian orbifolds. As in the bosonic
defined. case, the difference can be made manifest by inserting, in the
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partition function, an operator{1)® that changes the sign of creating the observed large entropy of the universe in a cos-
all negative norm states. Once again one finds that althoughological context.
the physical spectrum is free of negative norm states, non- One might wonder whether a loss of unitarity is also im-
physica| negative norm states do not decoup|e in the |oopsp|i8d by the uncanceled contributions of negative norm vir-
The vanishing of the partition function implies that there tual states in the partition function of our space-time orbi-
is no dilaton tadpole, at zero energy momentrd]. In the folds. Certainly, this result |.mpI|e_s that it is not possmle to
absence of the orbifold, a non-zero momentum tadpole varn00se a ghost-free gauge in which all computations are car-
ishes simply by momentum conservation. However, in thé'?d out in terms of positive-norm states. We expect that 'FhIS
space-time orbifold, because of energy-momentum noncorVill b€ true in many time-dependent backgrounds of string
servation at the “conical” singularity, kinematics can allow th€ory—it is at least clear that the ghost-free light-cone
inserting, on the torus, a dilaton vertex operator carryingd@Uge cannot be chosen in time-dependent backgrounds.

nonzero energy and momentum. The vanishing of such tad-hhIS is in sharp cbontlr(ast todusual strlrrl]gltheor.le_s and f'leld
poles is not obvious and requires further investigation. ~ [1€0ries in static backgrounds. Nevertheless, it is not clear

Summary For type Il superstring, we have found that that a loss of unitarity in transition amplitudes is implied. In

there are no negative norphysicalstates on the Lorentzian Particular, since our models do not have giysicalnega-

orbifold R*/Z,. The ground state in the twisted NS sector Ve norm states, cutting the one loop diagram will not give a
transforms as a spinor BO(1,d) and a scalar 05O(9 transition amplitude to a ghostlike state. In the absence of a

—d). It is only physical wherd=3 and the momentum it general argument connecting negative norm virtual contribu-

es in th bifolded di . h 2o tions to the partition function an8-matrix unitarity, we re-
c_arrles In the unor ifolde irections has to satigpy quire detailed study of amplitudes for propagating untwisted
,_(S_d)/& In the twisted Ramond .sector,.the 9“?“”0' Stat&ector states scattering from the orbifold singularity.
is aSO(1,d) scalar andSQ(9—d) spinor. It is physical for There are very interesting subtleties in the computation of
any value ofd and Its momentum in the unorbifolded direc- ¢ alation functions and transition amplitudes on space-time
tions has to vanistp'=0. The partition function is modular o pio14s such as ours in which the twisted sectors are local-
invariant and the zero momentum dilaton tadpole vanishes &lo in time. Because of the localization, we do not expect
one loop. energy(or momentum in any of the orbifolded directiorte
be conserved in interactions between the untwisted and
twisted sectors. One important consequence is (thalike
V. DISCUSSION usual spatial orbifoldskinematics does not forbid a finite

In this article we studied two basic issues in string theorﬁointimu.m tadpfo:f: '?prr)r?arrr:ngnta:notn% Iolop. \\I/V\I/ﬁ carn ietx?erct
about which very little is known—time-dependent back- at this issue of iinite-momentum tadpoles persist fo

- ; - ._time-dependent string backgrounds in general.
rounds and cosmological singularities. We chose the sim- .
g g g One reason for our focus on th-¥Z, orbifold of the

glr%?}torl)é)ss 2fb :\jiiﬁg\?viiie;(gggg?g;gessfosvr;%nﬁg]; r;?m;ﬁ): Z?Jct)l_@&perstring is that this orbifold had “me_lssl_egss" twisted sec-
tients by time reversal and spatial reflections evade some ¢¢r States with Euclidean momenta satisfyipg=0. In the
the obvious potential pitfall§tachyons and ghosts in the classicR*/Z, orbifold the massless twisted sector stefes
physical spectrum, zero-momentum tadpoles at one loopyhich Lorentzian|52=0) correspond to geometric blowup
lack of modular invariance etct® Although there are closed modes which can resolve the singularity. Some condensates
time-like loops in the construction, quantum mechanical evoof the twisted sector states correspond to parameters of the
lution is consistent because the orbifold prescription project&guchi-Hanson Ricci-flat metric on the smooth manifold ob-
onto states that are invariant under the discrete identificationained by replacing the tip of the*/Z, cone by a sphere. We
How is anSmatrix defined when a class of physical statesmight hope that some conical space-time singularities can be
is localized in time? An asymptotic observer in models suchresolved by similar condensates of “massless” twisted sector
as ours only observes transition amplitudes between thstates. When the twisted sector states are tachyonic, we
propagating untwisted sector states. Any such amplitudenight similarly hope that tachyon condensation would re-
could involve the emission of arbitrarily many twisted sectorsolve the orbifold singularity. Unfortunately, much of the
states which cannot be observed at late or early times. Thergeometric technology of deforming singular manifolds into
fore it appears that the rules for computing transition ampli-smooth spaces relies on complex geometry and cannot ac-
tudes in space-time orbifolds will require tracing over emis-commodate a manifold with signature @}, For example,
sions of states that are localized in time. If so, pure statethe Eguchi-Hanson metr[d 9] has signature (4,0) and while
scattering off a space-time orbifold singularity could emergeone can easily obtain a (2,2) signature Ricci-flat metric by
as mixed states due to entanglement with an unobservablgalytic continuation from it, é1,3) signature Ricci-flat met-
twisted sector. Perhaps such a mechanism is responsible fdc cannot be obtained in this wa$.In order to understand

130f course, even if tachyons appear in the physical spectrum, A simple generalization of the Eguchi-Hanson metric cannot
recent experience has taught us that the condensation of the tachyaork because the curvature two form for an Eguchi-Hanson space
may be under control and could even perhaps be cosmologicallis self-dual, but in (1,3) signature, the self-duality condition has an
interesting. extra factor of 1.”
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cosmological singularities in string theory it is urgent that wesupported by the Academy of Finland, and thanks the Uni-
develop the mathematics of resolution of singularities ofversity of Pennsylvania for hospitality. V.B. and A.N. were
Lorentzian manifolds® supported by DOE grant DOE-FG02-95ER40893.

In string theory, the quantum mechanics of a relativistic
string is used to compute transition amplitudes and ama- APPENDIX A: TWISTED SECTOR SUPERCONFORMAL
trix for the scattering of conventional multigraviton states. In GENERATORS
view of this we have studied the quantum mechanics of
strings on space-time orbifolds. Field theories on such spaces
raise several new issues. For example, new singularities catf¢'©!
potentially arise in correlation functions of operators at'€ given by
space-like separations if the space-time interval between LNS_| B FNS LR=| B4 |FR (A1)
some operators and the orbifold images of others is time-like moommommee moTm-oTm
or null. The rules for defining field theories in such back-where, in the twisted sector,
grounds remain to be worked offt.

Here we list the superconformal generators in the twisted
tor of theR'9/Z, orbifold theory. The Virasoro generators

We conclude here by summarizing some perspectives g 1 S (at b N
from this work about time-dependent backgrounds and cos- m=7 20 (@ n_1plmins17abT @ n@min):
mological singularities in string theory: (A2)

String theories defined on time dependent backgrounds
run the risk of having ghosts and tachyons in the physicafnd

spectrum.
Even when there are no ghosts in the physical spectrum, LFNS— } > I n+ m R R map
negative norm states can make uncancelled contributions to m 2 icz 2 ) 7 -n¥minab
the partition function. In such cases it is not possible to
choose a ghost-free gauge like light-cone gauge. This might i (r+ T) g (A3)
lead to loss of unitarity, but a more detailed analysis is 2 772 2) rorrmer
needed.
The quantum mechanics of strings on space-time orbi- LF*R—E S r+T Ca b )
folds can be consistently defined even if there are closed m o2 2 Y e Mab’
time-like loops by projecting onto states invariant under the
orbifold group. It would be interesting to consider space-time 1 m .
orbifolds without closed time-like curves, but we expect the + 2 = n+ 2 Wnmin (A4)

issues raised here to persisee[20]).
The resulting orbifolds can be tachyon and ghost-free and’he supercurrent components in the twisted sector are
typically contain a twisted sector at a fixed plane localized in
time. A b [ iy
. . G,= (Y« + a_ ) A5
Scattering from such an asymptotically unobservable ' ; (V= matrsmap ™t Yrmem) AS)
twisted sector could cause transitions from a pure state to a

mixed state, generating entropy. _ . a b i P
Since energy need not be conserved in a time-dependent Fr% {12+ m-1i2Mab+ Y m@—m)-
background, kinematics does not forbid the production of (A6)

tadpoles with finite momentum. Hence, the vanishing of o )
these amplitudes must be checked to confirm the existence gf1ere are similar expressions for the left movers.
a valid solution to string theory.
We expect to return to many of the issues laid out above APPENDIX B: TWISTED SECTOR VACUA AS SPINORS

in & future publication. Consider 2 world sheet fermion zero modes satisfy-

ing {2,y5}= 62" and commuting with the mass operator.
The theory then has aBQ(2n) spinor as its degenerate
vacuum, which can be constructed as follows. Defiife
We thank J. Christian, M. Cvetic, E. Gimon, P. Kraus, D.=242. These then satisfy the Dirac algebf&?I'°}
Minic, B. Ovrut, N. Seiberg, G. Shiu, C. Thorn, C. Vafa, and =252, The ground state is a representation of this algebra
E. Witten for useful conversations. E.K-V. has been in partand can be constructed using the standard procedurek For
=1,...n, define
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perhaps the geometric difficulty in resolving these singularities
is related to the fact that the “massless” twisted sector states are not
exactly moduli fields in the low energy theory. They are localized in

1 L1
ekzi(rkﬂrmk), ekzz(rk_|rn+k)-

time and are on shell only at zero momentum. These satisfy the fermionic algebl{zel ,€1}= &y, with other
15we are grateful to Nati Seiberg for a discussion of these issuesanticommutators vanishing. Start from a st@teannihilated
Also see[20]. by the lowering operators. Other components of the ground
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state spinor are obtained by using the raising operators oof a spinor. The chirality operator i§,,,:=171---T5,.
this lowest state]0),e/|0),e/e/|0),---,ele}-.-T|0). The States with everfodd number of oscillators form a positive
degeneracy of a state withraising operators is the combi- (negative chirality spinor. In the twisted NS sectorn2d
natoric factor,"C, and the total number of states i5;2hat ~ +1 and in the twisted R sectom2-9—d.

[1] Supernova Cosmology Project Collaboration, S. Perimutter (1993; N. Kaloper, Phys. Rev. @8, 2598(1993; M. Nats-

et al, Astrophys. J517, 565(1999. uume and Y. Satoh, Int. J. Mod. Phys.18, 1229(1998; S.
[2] See, e.g., T. Banks, Nucl. PhyB309, 493(1988; R. Bousso, Hemming and E. Keski-Vakkuri, Nucl. Phy$B626 363

J. High Energy PhysD4, 035 (2002); V. Balasubramanian, P. (2002.

Horava, and D. Minic,ibid. 05, 043 (2001); E. Witten, [9] C. Kounnas and D. Lust, Phys. Lett. 89, 56 (1992; C.R.

hep-th/0106109; A. Strominger, J. High Energy Phy3.034 Nappi and E. Wittenibid. 293 309 (1992.

(2001); V. Balasubramanian, J. de Boer, and D. Minic, Phys.[10] G.W. Moore, “Finite In All Directions,” hep-th/9305139.
Rev. D 65, 123508(2002; R. Bousso, A. Maloney, and A. [11] C.M. Hull, J. High Energy Phy<7, 021 (1998.
Strominger,ibid. 65, 104039(2002; M. Spradlin and A. Vo-  [12] G.T. Horowitz and A.R. Steif, Phys. Rev. Lefi4, 260(1990);

lovich, ibid. 65, 104037(2002. Phys. Lett. B258 91 (1991); E. Kiritsis, “Duality symmetries
[3] J. Khoury, B.A. Ovrut, P.J. Steinhardt, and N. Turok, Phys. and topology change in string theory,” hep-th/9309064; E.J.
Rev. D64, 123522(2001); J. Khoury, B.A. Ovrut, N. Seiberg, Martinec, Class. Quantum Gravl2, 941 (1995; A.E.
P.J. Steinhardt, and N. Turolbid. 65, 086007 (2002; N. Lawrence and E.J. Martinedyid. 13, 63 (1996.
Seiberg, “From big crunch to big bang—is it possible?,” [13] D. Ghoshal and S. Mukherji, Mod. Phys. Lett6A939(1991);
hep-th/0201039. M. Asano and M. Natsuume, Nucl. PhyB588, 453 (2000.
[4] G. Veneziano, “String cosmology: The pre-big bang scenario,”[14] E. Witten, Prog. MathB133, 637 (1995.
hep-th/0002094. [15] S.D. Mathur, “Is the Polyakov path integral prescription too

[5] L.J. Dixon, J.A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. restrictive?,” hep-th/9306090.
B261, 678(1985; B274, 285(1986; L.J. Dixon, D. Friedan, [16] J. Polchinski,String Theory. Vol. 1: An Introduction To The

E.J. Martinec, and S.H. Shenkebid. B282 13 (198%; S. Bosonic String({Cambridge University Press, Cambridge, En-
Hamidi and C. Vafajbid. B279 465 (1987). gland, 1998.

[6] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. l&3t. [17] E.  Kiritsis,  “Introduction to  superstring theory,”
1849(1992. hep-th/9709062.

[7] J. Maldacena and H. Ooguri, J. Math. P42, 2929(200J); J. [18] P. Ginsparg and C. Vafa, Nucl. Phy&289, 414 (1987).
Maldacena, H. Ooguri, and J. Sdhijd. 42, 2961 (2002). [19] T. Eguchi and A.J. Hanson, Phys. LeTdB, 249 (1978.

[8] G.T. Horowitz and D.L. Welch, Phys. Rev. Letfl, 328 [20] H. Liu, G. Moore, and N. Seibergnpublished

026003-11



