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Orbifolds, Penrose limits, and supersymmetry enhancement
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We consider supersymmetricpp-wave limits for differentN51 orbifold geometries of the five-sphereS5

and the five-dimensional Einstein manifoldT1,1. As there are several interesting ways to take the Penrose
limits, the pp-wave geometry can be either maximally supersymmetricN54 or half-maximally supersym-
metric N52. We discuss in detail the cases AdS53S5/Z3 , AdS53S5/(Zm3Zn), and AdS53T1,1/(Zm3Zn)
and we identify the gauge invariant operators that correspond to stringy excitations for the different limits.
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I. INTRODUCTION

The duality between open strings and closed strings
been explored extensively over recent years. One impor
example is the AdS conformal field theory~CFT! conjecture
between theN54 field theory and type IIB strings on
AdS53S5 @1–3#. The conjecture has been generalized to
bifolds of S5 @4,5# and to conifolds@6#. The supergravity
limit of the string has been mainly considered so far beca
of the difficulties in quantizing strings in the presence
Ramond-Ramond~RR! fluxes. On the other hand, anoth
maximally supersymmetric background, thepp wave, has
been discussed recently in@7#, and string theory on thepp
wave is an exactly solvable model, where one can identify
the string oscillators@8#.

The pp-wave solution appear, as a Penrose limit of t
AdS53S5 solution@7,9# so it can be used to obtain informa
tion about the AdS/CFT correspondence. The authors of@9#
have extended the AdS/CFT conjecture to the case of str
moving on app-wave background where the correspondi
field theory operators are the ones with highR charge, and in
this case the field theory describes not only the supergra
but also the full closed string theory.

The idea of@9# has been extended in many directio
@10–17#. The direction we are pursuing in this work wa
initiated in a series of papers@11–17# and involves geom-
etries more complicated than theS5. Especially interesting
are the cases of orbifolds ofS5 or conifolds where one can
take two kinds ofpp-wave limit: one which preserves th
supersymmetry and the other one which enlarges the su
symmetry. As discussed in@7#, if we take the Penrose limi
on directions orthogonal to the orbifolding direction, then w
expect to get the same amount of supersymmetry, but a
rose limit along the orbifolding direction will get an increa
of supersymmetry. One example of the second type was
scribed in@11–13# for the case of D3-branes at a conifo
singularity, where the Penrose limit gives a maximally sup
symmetric solution. In this case we expect a supersymm
enhancement in field theory, fromN51 to N54, and the
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relevantN51 multiplets which give rise to anN54 mul-
tiplet have been identified. In@15,16# a similar discussion
was developed for the supersymmetry enhancement fromN
52 to N54 in the case ofS5/Zk .

In the present work we study the supersymmetry enhan
ment in the Penrose limit for several examples of orbifol
As only the infinitesimal neighborhood of the null geodes
is probed in thepp-wave limit, the orbifold action disappear
unless it is considered locally around the null geodesic.
other words, the orbifolding action also changes in t
pp-wave limit. Thus, in general, it is not possible to bui
duals to string oscillators in the Penrose limit from gau
invariant operators of the original orbifold theory. We ha
found that, in the Penrose limit, one needs to consider op
tors from the covering space of the original space. We a
comment on anomalous dimensions and correlation fu
tions for the orbifold theories and on the interpretation a
limit of a discrete light-cone quantization~DLCQ! theory
with the light-cone momentump1 fixed.

In Sec. II we will describe examples ofN51 orbifolds of
S5. The first model isS5/Z3 whose Penrose limit was out
lined in @12#, for which we describe the string/field theor
matching. As a second example we consider different bo
ings for theS5/(Zk3Z l) orbifold which can give an enlarge
ment of supersymmetry fromN51 to N52 or N54. In
Sec. III we consider the Penrose limits ofT1,1/(Zk3Z l)
along the fixed circles of the quotienting action.

II. NÄ1 ORBIFOLDS OF S5

A. Review of the AdS5ÃS5 result

We start with a brief review of the result of@9#, pointing
out the features that we expect to get from the orbifold d
cussion.

Consider AdS53S5 where the anti–de Sitter space AdS5

is represented as a universal covering of a hyperboloid
radiusR in the flat spaceR2,4 and a sphereS5 of radiusR in
the flat spaceR0,6. One may regard the AdS5 (S5) as a fo-
liation of a timelike direction and a three-sphereV3 ~a circle
parametrized byc and a three-sphereV38). Then the induced
metric on AdS53S5 becomes
©2003 The American Physical Society01-1
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ds25R2@2dt2 cosh2r1dr21sinh2rdV3
21dc2 cos2u1du2

1sin2udV38
2#. ~1!

One now considers thepp limit by boosting along thec
direction aroundr50. The metric in this limit can be ob
tained by takingR→` after introducing coordinates

x15
1

2
~ t1c!, x25

R2

2
~ t2c! ~2!

and rescalingr5r /R,u5y/R as follows:

ds2524dx1dx22~r•r1y•y!dx121dy21dr2 ~3!

wherey and r parametrize points onR4. Only the compo-
nents of the RR five-formF with a plus index survive in this
limit.

The energy is given byE5 i ] t and the angular momentum
in the directionc is J52 i ]c and the latter is seen as
generator that rotates a two-plane inside the originalR6.

In terms of the dualN54 theory, the energyE is related
to the conformal weightD and the angular momentum to th
R charge. As discussed in@9#, the relation between the osci
lations of the string in thepp-wave geometry~3! and the
field theory quantities is

~D2J!n5A11
4pgNn2

J2
~4!

whereN stands for the rank of the gauge theory andg is the
string coupling constant. The vacuum hasD2J50.

In the N54 field theory, the interpretation of the strin
vacuum and of the string oscillators is made in terms of
gauge invariant operators. Consider theN54 multiplet in
terms of a triplet ofN51 multiplets, denoted byZ,Y1,Y2,
the dimension of each field being 1. The complex fieldZ is
on the directions whose rotation generator isJ, so the value
of J for the fieldZ is 1; therefore for the fieldZ we haveD
2J50. The other fieldsY1,Y2 ~and their complex conju-
gatesȲ1,Ȳ2) haveJ50 andD2J51.

We can proceed to compare the stringy results with
field theory results. The string vacuum is given by Tr@ZJ#
and the stringy oscillators are given by inserti
Y1,Y2,Ȳ1,Ȳ2, i.e., the operators

Tr@ZJ21#Yi , Tr@ZJ21#Ȳi , i 51,2. ~5!

We can also have gauge invariant operat
Tr@ZJ21#Z̄,Tr@ZJ22#YiȲj , etc., but in @9# arguments have
been given that such operators will get infinite mass.

B. String oscillators in the pp limit of the AdS5ÃS5ÕZ3

The geometry AdS53S5/Z3 is obtained as a near horizo
geometry ofN D3-branes placed at aC3/Z3 orbifold. The
generatorg of Z3 acts onC3 by

g•~z1 ,z2 ,z3!→~vz1 ,vz2 ,vz3!, v351. ~6!
02600
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We consider the boosting along the direction of the or
folding which was studied in@12#. We need to consider a
metric for the threefold covering ofS5. As in @12#, it is
convenient to considerS5 as a Hopf fibration overCP2. The
metric can be written as

ds25~3dc1A!21dCP2
2 ~7!

wheredA/2 gives the Ka¨hler class ofCP2. As c ranges from
0 to 2p, we get a threefold ofS5. More generally, we may
take an orbifold theory onC3/Zm where the generatorg of
Zm acts onC3 by

g•~z1 ,z2 ,z3!→~va1,z1 ,va2z2 ,va3z3!, vm51,

a11a21a350~mod m!, ai.0. ~8!

Then theS5 is a Hopf fibration over a weighted projectiv
spaceCP(a1 ,a2 ,a3). As long as the null geodesic does n
lie over the singular locus of the weighted projective spa
CP(a1 ,a2 ,a3), there will no change in the argument.

We now choose the null coordinates as

x15
1

2 S t1
1

3
c D ,

x25
R2

2 S t2
1

3
c D . ~9!

In the limit R→` and after rescaling the transversal dire
tion CP2, we obtain the maximally supersymmetricpp-wave
metric ~3! as in@12#. The light-cone momenta can be writte
in terms of the conformal weightD and the angular momen
tum J52 i ]c :

2p25 i ]x15 i ~] t13]c!5D23J,

2R2p15 i ]x25 i ~] t23]c!5D13J. ~10!

Before we describe the duality of string and field theory
the Penrose limit, we recall the results of@4,5# concerning
the field theory on D3-branes atC3/Z3 singularities. By
starting with 3N D3-branes in the covering space ofC3/Z3
orbifold, the SU(3N) gauge group is broken to SU(N)3 by
orbifold action on the Chan-Paton factors and there are th
fields in the bifundamental representation for each pair
gauge groups, denoted byXi ,Yi ,Zi , i 51,2,3 ~they come as
3 N3N blocks inside each of the 3N33N matricesX,Y,Z
describing the transversal motion of the D-branes!. The sur-
viving Kaluza-Klein ~KK ! modes are of the form@18#

Tr~Xi
m1Yi 11

m2 Zi 12
m3 !, m11m21m350 ~mod 3!,

~11!
i 51,2,3 ~mod 3!.

The quiver gauge theories have a quantumZ3 symmetry and
the surviving KK modes have to be invariant under it. In t
Penrose limit, the effect of theZ3 action on the transversa
direction to the boosting direction disappears as the st
1-2
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probes an infinitesimally small neighborhood of the boost
circle parametrized byc. In the quantum vacua, theZ3 ac-
tion remains along the boosting direction as we see in
~10!. In the orbifold theoryS5/Z3, the global symmetry
SO(6)'SU(4) is broken up into U(1)3Z3. Before the
limit, the Hopf fibration is nontrivial, so even if theZ3 acts
only along the Hopf fiber, this does not imply the breaking
global SO(6) isometry. In thepp limit, the fibration be-
comes trivial and it breaks the global symmetry SO(6)
SO(4)3SO(2), with SO(2) being in the boosting directio
and SO(4) in the transverse directions.

To describe the string/field theory duality, we denote byZ
the boosted direction and byX,Y the transverse direction
where the orbifold does not act soX,Y do not enter in a
gauge invariant form.1 The action of theZ3 orbifold is only
on the Hopf fiber parametrized byZ. We identify the scalar
field along the Hopf fiber asZ5Z1Z2Z3 where Zi are the
above fields in the bifundamental representation of SU(N) i
3SU(N) i 11 , i 51,2,3. The fieldZ is in the adjoint repre-
sentation of SU(N) and has angular momentum in the U~1!
direction equal to 3. The fieldsX,Y are also in the adjoin
representation of the same SU(N) and together withZ they
form anN54 multiplet.

The vacuum of the string in the presence ofZ3 is

1

A3JN3J/2
Tr@ZJ#. ~12!

The first excited states are obtained by insertions ofX,Y,X̄,Ȳ
for the string in thepp-wave background, these states bei
obtained by acting with a single oscillator on the grou
states. Because there are eight bosonic zero-mode oscilla
we expect to find eight bosonic states withD23J51. They
are

Tr@ZJX#, Tr@ZJX̄# or Tr@ZJY#, Tr@ZJY# ~13!

and the ones with the covariant derivative

Tr@ZJDmZ#. ~14!

The nonsupergravity modes are obtained by acting with
ation operators which imply the introduction of a positio
dependent phase, in addition to the above insertions@9#.

Because we discuss theZ3 orbifold, we do not have a
DLCQ limit as in@15,16#, which holds only forZn with large
n. Therefore, if we make the identification of the radius
the x2 direction as in@15,16#,

pR2

n
52pR2 , ~15!

1This set ofX,Y,Z is different from the original complex coordi
nates ofC3 in Eq. ~11!. But by a change of complex structures w
may identify them as complex coordinates of the infinitesim
neighborhood of the boosting circle.
02600
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whereR2 is approximatelyN ~the rank of the gauge group!,
we see that whenn is small the radiusR2 of thex2 direction
is infinite, so we are not allowed to use a discrete light co
quantization. There is no winding mode discussion for theZ3
orbifold and the insertions corresponding to the nonsup
gravity modes are identical to the ones of@9#.

An interesting case of supersymmetry enhancement
treated in@15,16# for theN52 orbifoldsS5/Zn . By boosting
along the nonfixed directions of the orbifold, one gets
maximal N54 theory. One interesting related developme
would be to consider the supersymmetry enhancement w
D3-branes probe backgrounds of D7/O7 planes@19,20#. The
Penrose limit in the fixed direction~orthogonal to O7! was
considered in@17# but the discussion of Penrose limits in th
nonfixed directions still remains to be discussed. One s
further in this direction would be to consider the Penro
limit for the case when D3 branes probe geometries w
orthogonal D7 branes as in@20–22#.

C. ZmÃZn orbifolds of S5

In this subsection we consider the geometry Ad5
3S5/(Zm3Zn) which is the near-horizon limit of the D3
branes placed at the tip ofC3/(Zm3Zn).2 The coordinates of
C3 arez1 ,z2 ,z3 and the generatorsgm ,gn of Zm ,Zn act on
(z1 ,z2 ,z3) as

gm : ~z1 ,z2 ,z3!→~e2p i /mz1 ,e22p i /mz2 ,z3!, ~16!

gn : ~z1 ,z2 ,z3!→~e2p i /nz1 ,z2 ,e22p i /nz3!. ~17!

The singular points in the quotient are points left invaria
under elements of the discrete group. The complex cu
z15z250, parametrized byz3, is invariant under theZm and
becomes a curve ofAm21 singularities, the complex curve
z15z350, parametrized byz2, is invariant under theZn and
becomes a curve ofAn21 singularities, and the comple
curvez25z350, parametrized byz1, is invariant under the
Zr , r 5gcd(m,n), and becomes a curve ofAr 21 singulari-
ties.

The field theory on D3-branes atC3/(Zm3Zn) singularity
is N51 theory with gauge group) i 51

m ) j 51
n SU(N)( i , j ) and

chiral bifundamentals@23,24#. The gauge invariant operator
are

Tr H ( i , j )( i 11,j )D ( i 11,j )( i , j 21)V( i , j 21)(i , j ) ~18!

whereH ( i , j )( i 11,j ) are in the bifundamental representation
SU(N)( i , j )3SU(N)( i 11,j ) , V( i , j )( i , j 11) are in the bifunda-
mental representation of SU(N)( i , j )3SU(N)( i , j 11) , and
D ( i 11,j 11)(i , j ) are in the bifundamental representation
SU(N)( i 11,j 11)3SU(N)( i , j ) . If D3-branes move to the
points of Am21 (An21 or Ar 21) singularities described
above, the field theory on the D3-branes becomesN52 with

l
2This model was also discussed in@15#.
1-3
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gauge group SU(N)m @SU(N)n or SU(N) r ]. Hence there are
flat directions in theN51 theory which connect it to anN
52 theory.

In the S5/(Zm3Zn) geometry, there are many interestin
directions along which we can consider the boosting, and
amount of the supersymmetry enhancement will depend
both the direction and the locality of the trajectories. We n
classify the different possibilities.

Case 1. Boosting in the direction of theZm orbifolding
~the same discussion holds for the direction of theZn or Zr
orbifolding!.

We understand that the direction ofZm orbifolding is a
U(1) direction in whichZm is embedded. For this purpose,
is convenient to considerS5 as a foliation of theS3 in C2

with coordinatesz1 ,z2 and theS1 in C1 with coordinatesz3.
Furthermore, we considerS3 as a Hopf fibration overCP1

after changing the complex structurez2 to z̄2 and theZ3 will
locally act along the Hopf fiber. From this geometric descr
tion of S5, we obtain the metric for the AdS53S5 as

dSAdS
2 5R2~2cosh2rdt21dr21sinh2rdV3

2!,

dsS5
2

5R2S du21sin2udS1
2

1cos2u

3H Fdt1
1

2
~cosx21!dfG2

1
1

4
~dx21sin2xdf2!J D . ~19!

where t is the coordinate for the fiber direction anddx2

1sin2xdf2 is the metric for the baseCP1 in the Hopf fibra-
tion of S3.

We need to consider anm-fold cover ofS5. As the string
probes only an infinitesimal neighborhood of the boost
direction, the action on the directions transverse to the H
fiber is not seen. For simplicity we take anm-fold covering
of the S5 where theS3 part of the metric changes to

1

m2 S dt1
m

2
~cosx21!df D 2

1
1

4
~dx21sin2xdf2!.

~20!

We now choose the null coordinates as

x15
1

2 S t1
t

mD , x25
R2

2 S t2
t

mD , ~21!

and consider a scaling limitR→` aroundu5x50 with

r5
r

R
, u5

u

R
, x5

v
R

. ~22!

In this limit, the metric becomes
02600
e
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ds252~R21r 2!dt21dr21r 2d2V31du21u2dS1
2

1R2S 12
u2

R2D S dt2

m2
2

v2

2mR2
dfdt1

v4

16R4
df2

1
dv21v2df2

4R2 D
524dx1dx21dr21r 2dV3

22r 2dx121du21u2dS1
2

2
v2dx1df

2
2u2dx121

dv21v2df2

4

524dx1dx22S r 21u21
v2

4 Ddx121dr21r 2dV3
2

1du21u2dS1
2

1
dv21v2df82

4
~23!

wheref85f2x1.
After replacingv by 2v, we go to the rectangular coor

dinate system and rewrite the metric as

ds2524dx1dx22~r21u21v2!dx121dr21du21dv2.
~24!

The pp wave has a natural decomposition of theR8 trans-
verse space intoR43R23R2 whereR4 is parametrized byr
and theR23R2 by u and v, respectively. The covariantly
constant flux of the RR field is on (x1,r ) and (x1,u,v). In
this geometry, the light cone momenta are

2p25 i ]x15 i ~] t1m]t!5D2mJ,

2R2p15 i ]x25 i ~] t2m]t!5D1mJ. ~25!

The effective angular momentum in the boosting direction
mJ and this is the quantity which should be large in t
Penrose limit of the AdS/CFT correspondence. Therefore
have two options, the first one being to consider a discr
orbifold groupZm with a very largem and finiteJ and the
second a discrete orbifold groupZm with finite m and with a
large value forJ @15,16#.

In the field theory, the supersymmetry is enlarged fro
N51 to N54 and the corresponding global symmetries a
SO(2) in the boosted direction and SO(4) in the direct
transverse to the boosting. To identify the gauge invari
operators, we need to use the fact that we boost along
direction of theZm orbifolding and the rest of the space
invariant. The direction of the boosting is denoted byZ and,
as in the previous subsection, we denote the coordin
transverse to the boosting byX andY. In terms of the fields
of the N51 theory,Z should be in a gauge invariant form
and is written as a productZ5) i 51

m Zi whereZi are either
H ( i , j )( i 11,j ) for fixed j , D ( i 11,j 11)(i , j ) for fixed j, or
1-4
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V( i , j )( i , j 11) for fixed i. The above fields are in the bifunda
mental representation of SU(N) i3SU(N) i 11; the field Z
transforms in the adjoint representation of the group SU(N).
Together with the scalar fields denoting the transverse di
tion, X andY, they form anN54 multiplet.

The coupling of the SU(N) gauge theory is of orde
gY M

2 5gsm and the effective ’t Hooft parameter i

gY M
2 N/J2m2 which is finite, being of the order ofgsNm/R4,

which is finite. Therefore we can treat the SU(N) gauge
theory perturbatively.

We can now proceed to describe the gauge invariant
erators corresponding to the stringy ground state and ex
tions. The gauge invariant operators Tr(ZJ) have angular
momentummJ in the boosted direction due to the action
Zm , and this corresponds to the vacuum of the string the
To describe the excitations, we need to consider the
cases discussed above, i.e., whenm is either small or large.

For the case of smallm and largeJ, the first level eight
bosonic zero-mode oscillators are

Tr~ZJX!, Tr ~ZJY!, Tr ~ZJX̄!, Tr~ZJȲ! ~26!

together with Tr(ZJDmZ). In this casex2 is not compact as
it was for theS5/Z3 case discussed in the previous sectio
The insertions ofX,Y,X̄,Ȳ should be made as Tr(ZlXZJ2 l),
etc. The nonsupergravity oscillations are obtained by in
ducing extra phases in the above operators.

More interesting is the case whenm is very large and the
light cone is compact with radiuspR2/m, the light-cone
momentum being quantized as 2p15m/R2 . The string
theory has a matrix string description which mimics that
the flat space as pointed out in@15,25#. In @15# string propa-
gation in the DLCQpp wave was considered and the sta
were labeled by two quantum numbers, the first being
DLCQ momentumk and the second being the winding num
ber m in the x2 direction.

The vacuum corresponds to Tr(ZJ) which has 2p1

5m/R2 and zero winding number. AsJ is finite, we can
considerJ51. The insertions of the fieldsX,Y,X̄,Ȳ should
now be made into the trace of the string ofZi fields. To do
this, we also need to consider the splitting of the matri
X,Y into mN3N blocks, each one being inserted inm dif-
ferent positions and then a summation over position is
quired to ensure gauge invariance. In terms of the orig
N51 theory, if we chooseZi to be the fieldsH ( i , j )( i 11,j ) for
fixed j, then the fieldsX and Y are built of mN3N blocks
which can be eitherD ( i 11,j 11)(i , j ) for fixed j ~we denote
these byXi) or V( i , j )( i , j 11) for fixed i ~we denote these by
Yi . By choosing theZi transform in the bifundamental rep
resentation of SU(N) i3SU(N) i 11, the result is thatXi trans-
form in the bifundamental of SU(N) i 113SU(N) i andYi are
in the adjoint representation of SU(N) i . Therefore the fields
Xi should be inserted betweenZi and Zi and the fieldsYi
should be inserted betweenZi 21 andZi . The first oscillators
with zero winding number will then be
02600
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i 51

m

Tr~Z1Z2•••ZiXiZi•••Zm!,

(
i 51

m

Tr~Z1Z2•••Zi 21YiZi•••Zm!, ~27!

and

(
i 51

m

Tr~Z1Z2•••Zi 21X̄iZi 11•••Zm!,

(
i 51

m

Tr~Z1Z2•••Zi 21ȲiZi•••Zm!, ~28!

where the summation overi ensures the gauge invarianc
The states that have winding numbers are built with an
ditional factore2p i /m in the above formulas.

In this form, the stringy operators have an expans
which is similar to the Kaluza-Klein expansion of a gene
field of five-dimensional theory reduced on a circle used
@26,27# to conjecture the deconstruction of a fiv
dimensional theory for largem quiver theories in four dimen-
sions. OurS5/(Zm3Zn) model should actually be related t
a (1,1) theory in six dimensions@27#, but we expect to get a
five-dimensional theory as long as we boost along the o
folding directions. The two directions needed to deconstr
a six-dimensional theory are obtained in different boostin
one discussed in this subsection and the other discusse
the next subsection.

The conclusion is that a fast moving particle in thet
direction reduces the gauge group to SU(N) and enhances
the supersymmetry fromN51 to N54.

Case 2. Boosting in the direction of the fixed locus of th
Zm orbifolding ~the same discussion holds for theZn or Zr
orbifolding!.

We take the same form of the metric as in Eq.~19!, we
parametrize the angle ofS1 by c, the phase ofz3, and we
boost along thec direction. SinceZn acts onz3, we take an
n-fold covering ofS5, replacingc by c/n in the metric.

The metric for the spherical part is

R2H du21
1

n2
sin2udc21cos2uF S dt1

1

2
~cosx21!df D 2

1
1

4
~dx21sin2xdf2!G J . ~29!

We introduce the null coordinates

x15
1

2 S t1
c

n D , x25
R2

2 S t2
c

n D , ~30!

and consider a scaling limitR→` aroundu5p/2 with

r5
r

R
, u2

p

2
5

u

R
. ~31!
1-5



te
e

e
e

in

th

-

er
are

se

the
e a

ed
-
e

r.
ulas

in

er

all
on
ym-
old

ed
-
lar
g.

m-
are

e

ns

ct

K. OH AND R. TATAR PHYSICAL REVIEW D 67, 026001 ~2003!
The computation is essentially the same as in@14#. The trans-
versal S3 part of the metric$@dt1 1

2 (cosx21)df#211
4(dx2

1sin2xdf2)% is left intact in this limit and hence theZm
action remains. The result is a metric that is similar to
maximally supersymmetric one, the difference being theZn
action ~seen from the range ofc), which tells us that the
supersymmetry preserved isN52 and notN54.

We now denote the scalar field parametrizing the boos
direction by z35Z and the scalar fields parametrizing th
transverse directions byz15X,z25Y. TheZm discrete group
acts now onX,Y,Z as

X→e2p i /mX, Y→e22p i /mY, Z→Z, ~32!

and there is also an action of theZn discrete group on the
boosting direction:

Z→e22p i /nZ. ~33!

Because of the last action, the fieldZ should enter at the
powern, and this is obtained if we consider thatZ is a prod-
uct of theN51 fieldsV( i j )( i j 11) for fixed i. We introduce the
notation

Zn5V( i , j )( i , j 11)V( i , j 11)(i , j 12)•••V( i , j 1n21)(i , j 1n) ~34!

where j 5 j 1n (mod n). The fieldZn is in the adjoint rep-
resentation of SU(N) i , j for fixed i , j . For future use, we also
introduce the notationZj5V( i , j )( i , j 11) .

In this case the field theory after the boosting becom
N52) i 51

m SU(N) i , the gauge coupling constants of th
gauge groups are of ordergY M

2 5gsn, and the effective

’t Hooft parameters aregY M
2 N/J2n2, which are finite, being

of the order ofgsNm/R4.
Because of theZm projection, the fieldZ is actually pro-

moted to anmN3mN matrix, with mN3N blocks, each
block being in the adjoint representation of SU(N) i , j . To-
gether with the corresponding vectors of SU(N) i , j , they
form N52 multiplets. The effective angular momentum
the boosting direction for TrZJ beingnJ, we again have two
choices, one whenn is small and the other whenn is big.

Consider first the case whenn is small. The vacuum of the
string theory corresponds to theZm invariant operators

1

AmJ
Tr@SqZnJ# ~35!

where S5(1,e2p i /m, . . . ,e2p i (m21)/m) denotes the qth
twisted sector. The oscillations of the string belong to
untwisted modes, which are of the type

Tr@SqZnJDm~Z!# ~36!

and

Tr@SqZnJx# ~37!

whereDm is the covariant derivative andx is the supersym-
metric partner of the scalarZ. The scalar fieldsX andY are
now mN3mN matrices withm N3N extra diagonal blocks
02600
a

d

s

e

denoted byXi and Yi , each one transforming in the bifun
damental representation of the group SU(N) i j
3SU(N) i 11 j . For the twisted sectors we need to consid
states built with oscillators with fractional modes. These
obtained by multiplying withX andY, which are acted upon
by theZm group, together with a position independent pha
factor e(2p i /J)n(q) when insertingX,Y and e(2p i /J)n(2q) for
insertions ofX̄,Ȳ.

The discussion changes whenm is very large. In this case
we have a compact light cone with radiuspR2/n and the
light-cone momentum is quantized as 2p15n/R2 . The
vacuum and the oscillations of the string belonging to
untwisted modes are the same as before, but we hav
change in the definition of the oscillations of the twist
sectors. The insertions ofX andY should now be made be
tweenZj 21 andZj . To do this, we have to consider all th
blocks Xi ,Yi , i 51, . . . ,m, as nN3nN matrices and split
each one of them inton diagonalN3N blocks denoted by
Xi j ,Yi j , i 51, . . . ,n, for fixed i. The insertions will then be

(
j 51

n

Tr~Z1•••Zj 21Xi j Zj•••Zn! ~38!

or

(
j 51

n

Tr~Z1•••Zj 21Yi j Zj•••Zn! ~39!

wherej denotes the insertion andi denotes the twisted secto
The winding modes are obtained by using the same form
with an extrae1p i /n factor.

The conclusion is that a fast moving particle moving
thec direction reduces the gauge group to) i 51

m SU(N) i and
enhances the supersymmetry fromN51 to N52.

Case 3. Boosting in a general direction which is neith
Case 1nor Case 2.

In this case both discrete groupsZm and Zn are in the
direction of the boosting and the string probes only a sm
strip along this direction; therefore there is no orbifold acti
on the scalar fields and the result is a maximally supers
metric Penrose limit. Because we do not have any orbif
projection on the three scalar fieldsZ,X,Y, the situation is
similar to moving the D3-brane from the tip of theZm3Zn
orbifold into the bulk, when the supersymmetry is chang
from N51 to N54. The string/field theory duality then re
duces to that of Sec. II A. There is no change in the angu
momentum in the boosted directions due to the orbifoldin

We have identified several boosting directions which i
ply an enlargement of supersymmetry. Three directions
along theZm , Zn , or Zr orbifolding, which give maximally
supersymmetricpp limits, three directions are along th
fixed loci of Zm , Zn , or Zr orbifolds, which giveN52
supersymmetry, and an infinite number of boosting directio
are along a general direction, which would giveN54.

The discussion is different for largem,n as compared to
the case of smallm,n. For the first case we get a compa
light cone and this can be used to describe thepp wave as
the limit of a DLCQ theory with fixedp1. In terms of the
1-6
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choice of boosting, we get a specific circle so we get a tw
dimensional torus when bothm and n are large. These two
directions are the ones used in@27# to describe the decon
struction of the six-dimensional~1,1! theories.

D. Correlation functions and supersymmetry enhancement

In @28#, a detailed analysis was made for the anomal
dimensions and three-point functions for the chiral and
most chiral operators introduced in@9# ~see also@29# for a
similar discussion!. In particular, the authors of@28# identi-
fied the parameterg25J2/N as the genus counting paramet
in the free Yang-Mills theory, so the correlation function
Tr Z̄J and TrZJ has a contributionJNJg2

2h from the genush
Feynman diagram.

We want to see what happens for thepp-wave limits of
orbifold theories. To do this, we start from the observat
that the correlation functions for the orbifold theories co
cide with those ofN54 theory, modulo the rescaling of th
gauge coupling constant, as observed in@30# with string
theory methods and@31# using field theory methods. If we
consider the caseS5/Zn , in theN52 theory we have a fac
tor of 1/n in front of the correlation functions. After the
Penrose limit in the nonfixed direction, we go from the or
fold theory to the covering space and therefore the factorn
disappears. The correlation functions for the orbifold theor
are then expected to have a similar expansion in the genu
in the S5 case. It would be interesting to show this in deta
by analogous computations to those of@30,31#.

III. THE NÄ1 ORBIFOLDS OF T1,1

The case of D3-branes at the conifold or at orbifolds
the conifold has been discussed extensively in the litera
@6,32–35#. The conifold is a three-dimensional hypersurfa
singularity inC4 defined by

z1z22z3z450 ~40!

which is a metric cone over the five-dimensional Einst
manifold T1,15SU(2)3SU(2)/U(1). Theconifold can be
realized as a holomorphic quotient ofC4 by the C* action
given by @6#

~A1 ,A2 ,B1 ,B2!→~lA1 ,lA2 ,l21B1 ,l21B2!. ~41!

The map

z15A1B1 , z25A2B2 , z35A1B2 , z45A2B1 ~42!

provides an isomorphism between these two representa
of the conifold. The horizonT11 can be identified with the
uA1u21uA2u25uB1u21uB2u251 quotient by a U(1) action in-
duced by Eq.~41!. Following @32#, we can parametrizeAi ,Bi
in terms of Euler angles of SU(2)3SU(2):
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A15cos
u1

2
exp

i

2
~c11f1!, A25sin

u1

2
exp

i

2
~c12f1!,

B15cos
u2

2
exp

i

2
~c21f2!, B25sin

u2

2
exp

i

2
~c22f2!,

~43!

and the U(1) is diagonally embedded in SU(2)3SU(2).
After taking a further quotient by the remaining U(1) fact
of SU(2)3SU(2), we obtain a product of two projective
spacesCP1

13CP2
1, and may identify the parametersu i ,f i

with the spherical coordinates ofCPi
1 for i 51,2. NowT1,1 is

a U(1) fibration overCP1
13CP2

1 and the U(1) fiber can be
parametrized bycªc11c2. The Einstein metric onT1,1 of
radiusR is

dsT1,1
2

5R2F1

9
~dc1cosu1df11cosu2df2!2

1
1

6
~du1

21sin2u1df1
21du2

21sin2u2df2
2!G .

~44!

Consider an orbifold theory of the conifold where the d
crete groupZm3Zn acts onAi ,Bj by

~A1 ,A2 ,B1 ,B2!→~e22p i /mA1 ,A2 ,e2p i /mB1 ,B2! ~45!

and

~A1 ,A2 ,B1 ,B2!→~e22p i /nA1 ,A2 ,B1 ,e2p i /nB2!. ~46!

The action~45! descends to the horizonT1,1 and yields
two fixed circles uA2u25uB2u251,A15B150 @mod U(1)#
and uA1u25uB1u251,A25B250 @mod U(1)# @35#. Simi-
larly, the action~46! yields two fixed circlesuA2u25uB1u2
51,A15B250 @mod U(1)# and uA1u25uB2u251,A25B1

50 @mod U(1)#.The horizon T11/(Zm3Zn) is singular
along these circles, having anAm21 singularity along the
first two circles and anAn21 singularity along the last two
circles. The discrete groupZm3Zn breaks the SU(2)
3SU(2) part of the isometry group SU(2)3SU(2)3U(1)
of T1,1 and the U(1) part remains as the globalR symmetry.

In terms of Euler angles of SU(2)3SU(2), thediscrete
groupZm3Zn action is given by

~c1 ,f1 ,c2 ,f2!→~c122p i /m,f122p i /m,c2

12p i /m,f212p i /m!,

~c1 ,f1 ,c2 ,f2!→~c122p i /n,f122p i /n,c2

12p i /n,f222p i /n!. ~47!

What we see from the above equations is that the coordi
of the U(1) fiber (c5c11c2) is left invariant under the
action of Zm3Zn , as it should be in order to preserve th
N51 supersymmetry.

Now we study the Penrose limits of AdS53T1,1/Zm
3Zn . The metric for AdS53T1,1 is
1-7
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ds25R2F2cosh2rdt21dr21sinh2rdV3
2

1
1

9
~dc1cosu1df11cosu2df2!2

1
1

6
~du1

21sin2u1df1
21du2

21sin2u2df2
2!G . ~48!

The Penrose limit for the conifold was studied in@11–13#.
As in the previous section, there are many directions
boosting. We want to study the boosting along the fixed lo
of the discrete group action. Consider first the boosting al
the circleuA1u25uB1u251,A25B250 @mod U(1)# which is
a fixed locus of theZm action. In terms of the paramete
used in Eq.~44!, this is located atu15u250 and can be
parametrized byc1f11f2. Because of the action ofZn ,
we are actually dealing with ann-covering of T1,1 whose
metric looks the same as before:

1

9
~dc1cosu1df11cosu2df2!2

1
1

6
~du1

21sin2u1df1
21du2

21sin2u2df2
2!

~49!

but the ranges off i andc are 1/n of the initial ones.
We introduce the null coordinates

x15
1

2 S t1
1

3
~c1f11f2! D ,

x25
R2

2 S t2
1

3
~c1f11f2! D , ~50!

and consider a scaling limitR→` aroundu15u250 with

r5
r

R
, u i5

A6

R
j i , i 51,2, ~51!

and in the limitR→`, the metric becomes

ds2524dx1dx22r 2dx121dr21r 2dV3
2

1 (
i 51,2

~dj i
21j i

2df i
222j i

2df idx1!

524dx1dx21dr22~r•r1w•w̄!dx121dwdw̄

~52!

wherew5(j1ei (f12x1),j2ei (f22x1)) .
In Eq. ~52! and in the definition ofw, we understand tha

the range off i is (0,2p/n). The change in the range off i
from (0,2p) to (0,2p/n) is due to a remnantZn orbifolding
and the presence of this orbifolding is telling us that t
theory is not maximally supersymmetric butN52 super-
symmetric.
02600
f
s
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The same discussion can be extended to the other fi
circlesA15B150, A15B250, andA25B150, where the
boosting is again in the directionc1f11f2, but around
u15u25p, u15p,u250, and u150,u25p, respectively.
The Penrose limit will be identical with Eq.~52! after rede-
fining w appropriately. The transverse spaceR8 decomposes
into a product ofR4 which is in the r i direction andC2

whose coordinates are given byw1 andw2. We now inves-
tigate the effect of the orbifolding on the geometry of thepp
limit. Note that if we project the conifold~40! in C4 to C3 by
(z1 ,z2 ,z3 ,z4)→(z1 ,z3 ,z4), we can identify the boosting di
rection of T1,1 with the angular direction ofz1, which is
parametrized by (1/2)(c1f11f2) as in Eqs.~42! and~43!,
and the transversal spaceC2 can be parametrized byz3 and
z4. At the pp limit, Zn acts on the boosting direction as

z1→e22p i /nz1 ~53!

and on the transversal direction trivially, and, on the oth
hand,Zm acts on the transversal direction as

~z3 ,z4!→~e22p i /mz3 ,e2p i /mz4! ~54!

and acts trivially on the boosting directionz1 which is along
the circle of boosting. In terms of the coordinate of t
boosting direction, there is aZn action onc̃5c1f11f2 as

c̃→c̃2
p i

n
. ~55!

On the string theory side, our conclusion is that, by boo
ing along the fixed angular directions with respect to theZm
or Zn actions, we get half-maximally supersymmetric so
tions which should correspond toN52 supersymmetric
gauge theories.

We now go to the gauge theories and identify the gau
invariant operators which are dual to the string modes in
abovepp-wave geometry. The transverse space isS5/Zn or
S5/Zm , so the field theory isN52, ) i 51

n SU(N) i or
) i 51

m SU(N) i . Before the boosting the field theory isN51:

)
i 51

m

)
j 51

n

SU~N! i j 3)
i 51

m

)
j 51

n

SU~N! i j8 , ~56!

and there are bifundamental fields (A1) i , j ; i , j in SU(N) i , j

3SU(N) i , j8 , (A2) i 11,j 11;i , j in SU(N) i 11,j 11

3SU(N) i , j8 , (B1) i , j ; i , j 11 in SU(N) i , j8 3SU(N) i , j 11, and
(B2) i , j ; i 11,j in SU(N) i , j8 3SU(N) i 11,j8 . The products of
Ai ,Bj , which enter in the definitions ofz1 ,z3 ,z4 are
(A1B1) i , j ; i , j 11 in SU(N) i , j3SU(N) i , j 11 , (A1B2) i , j ; i 11,j in
SU(N) i , j3SU(N) i 11,j , and (A2B1) i 11,j 11;i , j 11 in
SU(N) i 11,j 113SU(N) i , j 11.

We want to see the change in field theory after the boo
ing. There are four possible particular cases of particu
gauge groups which correspond to D3-branes at fo
dimensionalAm21 or An21 singularities, and the field theor
becomesN52, ) i 51

m SU(N) i j or ) i 51
m SU(N) i j8 for fixed j

and ) j 51
n SU(N) i j or ) j 51

n SU(N) i j8 for fixed i. The chiral
1-8
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primaries are constructed from sums of gauge invar
products of chiral superfields, modulo F- and D-flatne
conditions @34#. They are products of the form
Ai 1

Bj 1
Ai 2

Bj 2
•••Ai mn

Bj mn
, symmetrized inAi and Bj . For

fixed i, a particular example of a chiral primary involvin
only A1 andB1 fields is

Tr@~A1! i , j ; i , j~B1! i , j ; i , j 11~A1! i , j 11;i , j 11

3~B1! i , j 11;i , j 12•••~A1! i , j 1n21;i , j 1n21

3~B1! i , j 1n21;i j 1n# ~57!

wherej 1n5 j (mod n) so the trace is taken over the adjoi
representation of SU(N) i , j . The R charges of the fields
Ai ,Bi are not changed by the quotienting so theR charge of
the gauge invariant operator~57! is n.

We now relate the field theoryR charge to the other U(1)
charges that appear in the field theory and geometry. In
geometry we have two rotation charges for the U(
3U(1) isometry group which are denoted byJ1 andJ2, and
they are related to the Cartan generators of the SU
3SU(2) global symmetry of the dual superconformal fie
theory by@11,12#

Ja52 i
]

]fa ux6
52 i

]

]fa ut,c
1 i

]

]c ut,f i

5Qa2
1

2
R

a51,2. ~58!

Because of theZn action on the fixed circle of the quotiente
conifold, the above relation becomes

nJa5nQa2
R

2
. ~59!

We use the convention thatA1 hasQ15 1
2 and B1 hasQ2

5 1
2 . In @11–13#, the vacuum of the string theory has be

identified with the stateJ15J250 and the first oscillations
of the strings withJ1561,J250 andJ150,J2561.

Consider now boosting along thez1 direction. We want to
identify the gauge invariant operators which correspond
the string theory ground state and first oscillation modes
the case of the conifold, the ground stateJ15J250 was
identified with the gauge theory operators@11–13#

Tr~A1B1!J, ~60!

the first oscillationsJ1521,J250 or J150,J2521 were
identified with multiplication by

A1B2 or A2B1 , ~61!

and the first oscillationsJ151,J250 or J150,J251 were
identified with multiplication by

A1Ā2 or B̄2B1 , ~62!

whereAi ,Bi are all N3N matrices.A1Ā2 or B̄2B1 came
from the semiconserved currents of the SU(2) groups
were introduced in@36#. When there is a quotient action o
02600
t
s

e
)

)

o
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d

the SU(2) groups,A1Ā2 or B̄2B1 are not invariant so they
do not appear in the spectrum. Because the supersymm
in the Penrose limit isN52, we do not need the semicon
served currents to buildN52 multiplets and we only need
A1B2 and A2B1 in order to build the field theory duals t
the twisted sectors of the string theory.

For the quotiented conifold, the matrixA1B1 is promoted
to an mN3mN matrix, which splits intomN3N diagonal
matrices in the adjoint representation SU(N) i , j ,
i 51, . . . ,m, for fixed j. The matricesA1B2 and A2B1 be-
comemN3mN matrices which also split intom extradiago-
nal N3N matrices and each block corresponds to fie
transforming in the bifundamental representation
SU(N) i , j3SU(N) i 11,j . The boosted direction is acted upo
by the discrete groupZn so the invariant quantity is a produc
as in Eq.~57! with n copies ofA1 andn copies ofB1, of the
form

~A1! i , j ; i , j~B1! i , j ; i , j 11•••~A1! i , j 1n21;i , j 1n21

3~B1! i , j 1n21;i , j 1n , ~63!

which is indeed in the adjoint representation of SU(N) i , j .
Denoting this by (A1B1)n, we see that Eq.~59! implies that
it hasJ15J250 and it is the ground state of the string. Th
vector field for all SU(N) i , j with fixed j, together with the
field @(A1B1)n# i , form anN52 multiplet. The ground state
is given bym mutually orthogonalZm invariant single trace
operators

Tr@Sq~A1B1!nJ# ~64!

where S is defined asS5(1,e2p i /m, . . . ,e2p i (m21)/m) de-
notes theqth twisted sector.

The first level untwisted sectors are built with derivativ
and descendants of (A1B1)n and are of the form

Tr@Sq~A1B1!nJDm~A1B1!n# ~65!

and

Tr@Sq~A1B1!nJx# ~66!

whereDm is the covariant derivative andx is the supersym-
metric partner of the scalar (A1B1)n.

The first level twisted sectors are written with insertio
of A1B2 and A2B1, which are acted upon byZm but are
invariant underZn . They have zero angular momentum
the boosted direction so they are used to build first le
string oscillations. The discussion is similar to that in@14#.

As the effective angular momentum of the string states
nJ, we can again choosen to be either small or large. For th
case of largen, the insertions ofA1B2 and A2B1 should be
made between different (A1) i , j ; i , j (B1) i , j ; i , j 11. The Penrose
limits of the quotiented conifold will then be the limit of
DLCQ theory with constantp1.

IV. CONCLUSIONS

In this paper we studied the Penrose limits of differe
N51 orbifold geometries ofS5 and T11 which lead to su-
1-9
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persymmetricpp-wave backgrounds with enlarged supe
symmetry. We considered the gauge invariant chiral ope
tors in the different Penrose limits and we identified t
string oscillations in terms of the gauge invariant operato
We discussed the different choices for the rank of the q
tient groups.
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and C. N. Pope, ‘‘Penrose Limits,pp- Waves and
Deformed M2-branes,’’ hep-th/0203082; Nucl. Phys.B644, 65
~2002!; S. R. Das, C. Gomez, and S.-J. Rey, Phys. Rev. D66,
046002~2002!; C. S. Chu and P. M. Ho, Nucl. Phys.B636,
141 ~2002!; A. Dabholkar and S. Parvizi,ibid. B641, 223
~2002!; P. Lee and J. Park, ‘‘Open Strings inpp- Wave Back-
ground from Defect Conformal Field Theory,
hep-th/0203257; H. Lu and J. F. Vazquez-Poritz, Class. Qu
tum Grav.19, 4059~2002!; E. Kiritsis and B. Pioline, J. High
Energy Phys.08, 048 ~2002!; A. Kumar, R. R. Nayak, and
Sanjay, Phys. Lett. B541, 183 ~2002!; R. G. Leigh, K.
Okuyama, and M. Rozali, Phys. Rev. D66, 046004~2002!; D.
Bak, ‘‘Supersymmetric Branes inpp- Wave Background,’’
hep-th/0204033; S. S. Gubser, I. R. Klebanov, and A.
Polyakov, Nucl. Phys.B636, 99 ~2002!; K. Skenderis and M.
Taylor, J. High Energy Phys.06, 025 ~2002!; M. Spradlin and
A. Volovich, Phys. Rev. D66, 086004~2002!; Y. Imamura, J.
High Energy Phys.06, 005 ~2002!; H. Takayanagi and T.
Takayanagi,ibid. 05, 012 ~2002!; I. Bakas and K. Sfetsos
Nucl. Phys.B639, 223 ~2002!; C. Ahn, Phys. Lett. B539, 281
~2002!; A. Parnachev and D. A. Sahakyan, J. High Ener
Phys.06, 035 ~2002!; H. Singh, ‘‘M5-branes with 3/8 super
symmetry inpp-Wave Background,’’ hep-th/0205020; M. Li
Nucl. Phys.B638, 155 ~2002!.

@11# N. Itzhaki, I. R. Klebanov, and S. Mukhi, J. High Energy Phy
03, 048 ~2002!.

@12# J. Gomis and H. Ooguri, Nucl. Phys.B635, 106 ~2002!.
.

,

gy

n-

.

@13# L. A. Zayas and J. Sonnenschein, J. High Energy Phys.05, 010
~2002!.

@14# M. Alishahiha and M. M. Sheikh-Jabbari, Phys. Lett. B535,
328 ~2002!; N. w. Kim, A. Pankiewicz, S. J. Rey, and S
Theisen, Eur. Phys. J. C25, 327 ~2002!; T. Takayanagi and S
Terashima, J. High Energy Phys.06, 036 ~2002!; E. Floratos
and A. Kehagias,ibid. 07, 031 ~2002!.

@15# S. Mukhi, M. Rangamani, and E. Verlinde, J. High Ener
Phys.05, 023 ~2002!.

@16# M. Alishahiha and M. M. Sheikh-Jabbari, Phys. Lett. B538,
180 ~2002!.

@17# D. Berenstein, E. Gava, J. Maldacena, K. S. Narain, and
Nastase, ‘‘Open Strings on Plane Waves and Their Yang-M
Duals,’’ hep-th/0203249.

@18# Y. Oz and J. Terning, Nucl. Phys.B532, 163 ~1998!.
@19# A. Fayyazuddin and M. Spalinski, Nucl. Phys.B535, 219

~1998!.
@20# O. Aharony, A. Fayyazuddin, and J. Maldacena, J. High E

ergy Phys.07, 013 ~1998!.
@21# C. h. Ahn, K. Oh, and R. Tatar, Mod. Phys. Lett. A14, 369

~1999!.
@22# O. Aharony, J. Sonnenschein, S. Yankielowicz, and S. Theis

Nucl. Phys.B493, 177 ~1997!.
@23# A. Hanany and A. Zaffaroni, J. High Energy Phys.05, 001

~1998!.
@24# A. Hanany and A. M. Uranga, J. High Energy Phys.05, 013

~1998!.
@25# R. Gopakumar, Phys. Rev. Lett.89, 171601~2002!.
@26# N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Re

Lett. 86, 4757 ~2001!; C. T. Hill, S. Pokorski, and J. Wang
Phys. Rev. D64, 105005~2001!; I. Rothstein and W. Skiba,
ibid. 65, 065002~2002!.

@27# N. Arkani-Hamed, A. G. Cohen, D. B. Kaplan, A. Karch, an
L. Motl, ‘‘Deconstructing ~2,0! and Little String Theories,’’
hep-th/0110146.

@28# N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwal
L. Motl, A. Postnikov, and W. Skiba, J. High Energy Phys.07,
017 ~2002!.

@29# C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudac
Nucl. Phys.B643, 3 ~2002!; D. Berenstein and H. Nastase
‘‘On Lightcone String Field Theory from Super Yang-Mill
and Holography,’’ hep-th/0205048; D. J. Gross, A. Mikhailo
and R. Roiban, Ann. Phys.~N.Y.! 301, 31 ~2002!.

@30# M. Bershadsky, Z. Kakushadze, and C. Vafa, Nucl. Ph
B523, 59 ~1998!.

@31# M. Bershadsky and A. Johansen, Nucl. Phys.B536, 141
~1998!.

@32# P. Candelas and X. de la Ossa, Nucl. Phys.B355, 455 ~1991!.
1-10



gy

rgy

s.
.

ORBIFOLDS, PENROSE LIMITS, AND . . . PHYSICAL REVIEW D67, 026001 ~2003!
@33# D. R. Morrison and M. R. Plesser, Adv. Theor. Math. Phys.3,
1 ~1999!; A. M. Uranga, J. High Energy Phys.01, 022~1999!;
K. Dasgupta and S. Mukhi, Nucl. Phys.B551, 204 ~1999!; E.
Lopez, J. High Energy Phys.02, 019 ~1999!; R. de Mello
Koch, K. Oh, and R. Tatar, Nucl. Phys.B555, 457 ~1999!; R.
von Unge, J. High Energy Phys.02, 023~1999!; M. Aganagic,
A. Karch, D. Lust, and A. Miemiec, Nucl. Phys.B569, 277
~2000!; K. Dasgupta and S. Mukhi, J. High Energy Phys.07,
008 ~1999!; K. Oh and R. Tatar,ibid. 10, 031 ~1999!; J. Park,
02600
R. Rabadan, and A. M. Uranga, Nucl. Phys.B570, 38 ~2000!;
K. Dasgupta, S. Hyun, K. Oh, and R. Tatar, J. High Ener
Phys.09, 043 ~2000!.

@34# S. Gubser, N. Nekrasov, and S. Shatashvili, J. High Ene
Phys.05, 003 ~1999!.

@35# K. Oh and R. Tatar, J. High Energy Phys.05, 030 ~2000!.
@36# A. Ceresole, G. Dall’Agata, R. D’Auria, and S. Ferrara, Phy

Rev. D61, 066001~2000!; A. Ceresole, G. Dall’Agata, and R
D’Auria, J. High Energy Phys.11, 009 ~1999!.
1-11


