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Orbifolds, Penrose limits, and supersymmetry enhancement
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We consider supersymmetrigp-wave limits for differentA’/=1 orbifold geometries of the five-spheg
and the five-dimensional Einstein manifolti. As there are several interesting ways to take the Penrose
limits, the pp-wave geometry can be either maximally supersymmetfie4 or half-maximally supersym-
metric /=2. We discuss in detail the cases A§S/Z5, AdSSX S¥/(Z,,X Z,), and AdSX THY(Z,,X Z,)
and we identify the gauge invariant operators that correspond to stringy excitations for the different limits.
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. INTRODUCTION relevant\/=1 multiplets which give rise to aw=4 mul-
tiplet have been identified. Ifil5,16 a similar discussion
The duality between open strings and closed strings hagas developed for the supersymmetry enhancement fxom
been explored extensively over recent years. One important 2 1o A’=4 in the case 0B°/Z,.
example is the AdS conformal field theoi@FT) conjecture In the present work we study the supersymmetry enhance-
between theN=4 field theory and type IIB strings on ment in the Penrose limit for several examples of orbifolds.
AdSs X S* [1-3]. The conjecture has been generalized to or-As only the infinitesimal neighborhood of the null geodesic
bifolds of S° [4,5] and to conifolds[6]. The supergravity s probed in thes p-wave limit, the orbifold action disappears
limit of the string has been mainly considered so far becausg@nless it is considered locally around the null geodesic. In
of the difficulties in quantizing strings in the presence ofother words, the orbifolding action also changes in the
Ramond-RamondRR) fluxes. On the other hand, another pp-wave limit. Thus, in general, it is not possible to build
maximally supersymmetric background, th@ wave, has duals to string oscillators in the Penrose limit from gauge
been discussed recently fid], and string theory on thep  invariant operators of the original orbifold theory. We have
wave is an exactly solvable model, where one can identify alfound that, in the Penrose limit, one needs to consider opera-
the string oscillator$8]. tors from the covering space of the original space. We also
The pp-wave solution appear, as a Penrose limit of thecomment on anomalous dimensions and correlation func-
AdS;x S° solution[7,9] so it can be used to obtain informa- tions for the orbifold theories and on the interpretation as a
tion about the AdS/CFT correspondence. The authof®pbf [imit of a discrete light-cone quantizatiofDLCQ) theory
have extended the AdS/CFT conjecture to the case of stringgith the light-cone momentump™ fixed.
moving on app-wave background where the corresponding In Sec. Il we will describe examples ¢f=1 orbifolds of
field theory operators are the ones with hgharge, and in  s°. The first model isS°/Z; whose Penrose limit was out-
this case the field theory describes not only the supergravitlined in [12], for which we describe the string/field theory
but also the full closed string theory. matching. As a second example we consider different boost-
The idea of[9] has been extended in many directionsings for theS°/(Z, X Z,) orbifold which can give an enlarge-
[10-17. The direction we are pursuing in this work was ment of supersymmetry frol/=1 to N=2 or N'=4. In
initiated in a series of papefd1-17 and involves geom- gec. |1l we consider the Penrose limits ofY(z,x2)

etries more complicated than ti88. Especially interesting along the fixed circles of the quotienting action.
are the cases of orbifolds & or conifolds where one can

take two kinds ofpp-wave limit: one which preserves the
supersymmetry and the other one which enlarges the super-
symmetry. As discussed ii7], if we take the Penrose limit
on directions orthogonal to the orbifolding direction, then we A. Review of the AdSX S° result

expect to get the same amount of supersymmetry, but a Pen- We start with a brief review of the result §8], pointing

rose limit along the orbifolding direction will get an increase : .
of supersymmetry. One example of the second type was dé)_ugst?oenfeatures that we expect to get from the orbifold dis-

scribed in[11-13 for the case of D3-branes at a conifold cu i 5 . .

singularity, where the Penrose limit gives a maximally super- CONsider Adgx S” where the anti—de Sitter space AdS
symmetric solution. In this case we expect a supersymmetrly 'epresented as a un|v2ersal covering of a hyperboloid of
enhancement in field theory, from=1 to N=4, and the radiusR in the flat spacdR®* and a spher&® of radiusR in

the flat spaceR®®. One may regard the AdgS°) as a fo-
liation of a timelike direction and a three-sphéig (a circle
*Email address: oh@arch.umsl.edu parametrized bys and a three-sphef@;). Then the induced

TEmail address: tatar@physik.hu-berlin.de metric on Ad$x S® becomes
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ds?=R —dt? costtp+dp?+sinttpdQ3+ dy? co 6+ d 62
D

One now considers thgp limit by boosting along the)
direction aroundo=0. The metric in this limit can be ob-
tained by takingR— <« after introducing coordinates

+sir?9dQ4?].

2

+—1 t+ _—R t 2
XT=S (), X =5 (=) @

and rescaling=r/R,0=Yy/R as follows:
ds?=—4dx dx —(r-r+y-y)dx 2+dy?+dr? (3)

wherey andr parametrize points oR*. Only the compo-
nents of the RR five-fornk with a plus index survive in this
limit.

The energy is given big=i4; and the angular momentum
in the directiony is J=—id, and the latter is seen as a
generator that rotates a two-plane inside the origifal

In terms of the dualV=4 theory, the energg is related
to the conformal weighA and the angular momentum to the
R charge. As discussed [®], the relation between the oscil-
lations of the string in thg p-wave geometry(3) and the
field theory quantities is

4rgNn?
(A_J)n: 1+?

whereN stands for the rank of the gauge theory and the
string coupling constant. The vacuum hias J=0.
In the =4 field theory, the interpretation of the string

(4)
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We consider the boosting along the direction of the orbi-
folding which was studied if12]. We need to consider a
metric for the threefold covering o8°. As in [12], it is
convenient to conside®® as a Hopf fibration ove€P?. The
metric can be written as

ds*=(3dy+A)2+d2 @)
whered A/2 gives the Kaler class ofCP?. As i ranges from
0 to 27, we get a threefold 08°. More generally, we may
take an orbifold theory oi€3/Z,,, where the generatay of
Z., acts onC? by

m

g'(21,22,23)—>(wa1,21,wazzz,wa323), w :1,

a;+a,+az=0(modm, a;>0. 8
Then theS® is a Hopf fibration over a weighted projective
spaceCP(a;,a,,a3). As long as the null geodesic does not
lie over the singular locus of the weighted projective space
CP(a;,a,,a3), there will no change in the argument.

We now choose the null coordinates as

vt t+1
X =g\t g

SLIEY

In the limit R—c and after rescaling the transversal direc-
tion CP?, we obtain the maximally supersymmetgdp-wave
metric (3) as in[12]. The light-cone momenta can be written
in terms of the conformal weight and the angular momen-

1

t-3 9

vacuum and of the string oscillators is made in terms of thaum J= —idy:

gauge invariant operators. Consider the=4 multiplet in
terms of a triplet of=1 multiplets, denoted by,Y?!,Y?,
the dimension of each field being 1. The complex figlds
on the directions whose rotation generatod,iso the value
of J for the fieldZ is 1; therefore for the fiel@ we haveA
—J=0. The other fieldsy?,Y? (and their complex conju-

gatesY!,Y?) haveJ=0 andA—J=1.

We can proceed to compare the stringy results with th

field theory results. The string vacuum is given by ZF]
and the stringy oscillators are given by

Y1, Y2 Y1 Y2 ie. the operators

™My, TZYhY, i=1,2. (5)

We can also have gauge invariant operator
T[22z, T Z°~?]Y'Y!, etc., but in[9] arguments have
been given that such operators will get infinite mass.

B. String oscillators in the pp limit of the AdSsX S/ Z,

The geometry AdSx S°/Z is obtained as a near horizon
geometry ofN D3-branes placed at @%/Z; orbifold. The
generatorg of Z5 acts onC? by

9-(21.2,23)— (021,02;,073), =1 (6)

inserting

S

2p” =idy+ =i(d+3d,)=A—3J,
2R%p* =idy-=i(d,—33d,)=A+3J. (10)

Before we describe the duality of string and field theory in
the Penrose limit, we recall the results [@,5] concerning

dhe field theory on D3-branes &3/Z5 singularities. By

starting with 3N D3-branes in the covering space ©f/Z,
orbifold, the SU(N) gauge group is broken to SN} by
orbifold action on the Chan-Paton factors and there are three
fields in the bifundamental representation for each pair of
gauge groups, denoted by,Y;,Z;, i=1,2,3 (they come as

3 N XN blocks inside each of theNB< 3N matricesX,Y,Z
describing the transversal motion of the D-brgné@$e sur-
viving Kaluza-Klein (KK) modes are of the forrfil 8]

Tr(X™Y[2,Z™3,),  my+my+my=0 (mod 3,
(1

i=1,2,3 (mod 3.

The quiver gauge theories have a quanZgrsymmetry and
the surviving KK modes have to be invariant under it. In the
Penrose limit, the effect of thé; action on the transversal
direction to the boosting direction disappears as the string
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probes an infinitesimally small neighborhood of the boostingvhereR? is approximatelyN (the rank of the gauge groyp
circle parametrized bys. In the quantum vacua, thé; ac-  we see that whenis small the radiu®k_ of thex™ direction
tion remains along the boosting direction as we see in Egs infinite, so we are not allowed to use a discrete light cone
(10). In the orbifold theoryS°/Z;, the global symmetry quantization. There is no winding mode discussion forzge
SO(6)SU(4) is broken up into U(TXZ;. Before the orbifold and the insertions corresponding to the nonsuper-
limit, the Hopf fibration is nontrivial, so even if th8; acts  gravity modes are identical to the ones[6f.
only along the Hopf fiber, this does not imply the breaking of An interesting case of supersymmetry enhancement was
global SO(6) isometry. In thgp limit, the fibration be- treated in15,16 for the =2 orbifoldsS°/Z,,. By boosting
comes trivial and it breaks the global symmetry SO(6) toalong the nonfixed directions of the orbifold, one gets a
SO(4)x SO(2),with SO(2) being in the boosting direction maximal V=4 theory. One interesting related development
and SO(4) in the transverse directions. would be to consider the supersymmetry enhancement when

To describe the string/field theory duality, we denoteZby D3-branes probe backgrounds of D7/O7 plaj320. The
the boosted direction and bY,Y the transverse directions Penrose limit in the fixed directi¢arthogonal to OY was
where the orbifold does not act $6,Y do not enter in a considered if17] but the discussion of Penrose limits in the
gauge invariant form.The action of theZ; orbifold is only ~ nonfixed directions still remains to be discussed. One step
on the Hopf fiber parametrized & We identify the scalar further in this direction would be to consider the Penrose
field along the Hopf fiber a&=27,7,Z, wherez; are the limit for the case when D3 branes probe geometries with
above fields in the bifundamental representation of I§)J(  orthogonal D7 branes as j20-22.
XSU(N),,.1, i1=1,2,3. The fieldZ is in the adjoint repre-
sentation of SUY) and has angular momentum in th¢1 C. Z,,XZ, orbifolds of S°
direction equal to 3. The fieldX,Y are also in the adjoint
representation of the same SWU)(and together witlZ they
form an N=4 multiplet.

The vacuum of the string in the presenceZafis

In this subsection we consider the geometry AdS
X S°/(Z,X Z,) which is the near-horizon limit of the D3-
branes placed at the tip &°/(Z,,X Z,,).2 The coordinates of
C® arez;,2,,23 and the generatorg,,,g, of Z,,,Z, act on
(21,25,23) as

1
J X .
Gaanee ) (12 O (21.22,25) (¥, 072 Mz, 29),  (16)
The first excited states are obtained by insertior,of, X, Y U0 (21,25,29)—(€2™""z21,2,,€72™/z5). (17

for the string in thep p-wave background, these states being
obtained by acting with a single oscillator on the ground
states. Because there are eight bosonic zero-mode oscillatofid)e singular points in the quotient are points left invariant
we expect to find eight bosonic states wikh-3J=1. They under elements of the discrete group. The complex curve
are z,=2,=0, parametrized bys, is invariant under th&,, and
becomes a curve oh,,_; singularities, the complex curve
J Iy J J z,=23=0, parametrized by,, is invariant under th&,, and
TZ7X], TzX] or TZ7Y], Tiz7v] (13 becomes a curve ofA,_, singularities, and the complex
curvez,=z3=0, parametrized by, is invariant under the
Z,, r=gcd(m,n), and becomes a curve &f,_; singulari-
ties.
The field theory on D3-branes @f/(Z,X Z,,) singularity
H H m n
The nonsupergravity modes are obtained by acting with crel—sh.j\/I s-fth(zory WI:hI gasuge g_grrr(])uiiI:lH].:lSU.(N)t(,'J) antd
ation operators which imply the introduction of a position chiral bifundamental§23,24. The gauge invariant operators
dependent phase, in addition to the above inser{iehs
Because we discuss tt#®; orbifold, we do not have a

and the ones with the covariant derivative

Tz’D,Z]. (14)

DLCQ limit as in[15,16, which holds only foiZ,, with large TrHG G+ Pavinai-nVai-va (18)
n. Therefore, if we make the identification of the radius of
thex™ direction as in15,16], whereH ; jyi+1j) are in the bifundamental representation of
SU(N)(I,j)XSU(N)(H—l,j)! V(i,j)(i,j+1) are in the bifunda-
7R? mental representation of SNJ; )} SU(N) ;+1), and
TZZWR*’ (15) D(i+1j+1)(,j) are in the bifundamental representation of

SUN)i+1j+1)XSUN)jy. If D3-branes move to the
points of A,_1 (A,—1 or A,_;) singularities described
IThis set ofX,Y,Z is different from the original complex coordi- above, the field theory on the D3-branes becofies2 with
nates ofC? in Eq. (11). But by a change of complex structures we
may identify them as complex coordinates of the infinitesimal
neighborhood of the boosting circle. 2This model was also discussed[it5].
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gauge group SWN)™ [SU(N)" or SUN)']. Hence there are  ds*= — (R?+r2)dt?+dr?+r2d?Qs+ du?+ u?d%
flat directions in the\/=1 theory which connect it to alV

=2 theory. ) u?\[dr? o2 vt
In the S°/(Z,,X Z,,) geometry, there are many interesting TR 1= — || —— dgdr+——d¢
e : h : R?/\ m*> 2mR 16R
directions along which we can consider the boosting, and the
amount of_ the_ supersymmetry enhancemt_ant wi_II depend on dv2+v2d 2
both the direction and the locality of the trajectories. We now e
classify the different possibilities. 4R

Case 1 Boosting in the direction of th&,,, orbifolding

— + - 2 2 2 24yt+2 2 242
(the same discussion holds for the direction of Zheor Z, = —4dxTdx driridQs—ridx T dut utdg

orbifolding). o o v2dx*de dv2+v2dp?
We understand that the direction Bf, orbifolding is a - T—uzdx+2+ —
U(1) direction in whichZ,, is embedded. For this purpose, it
is convenient to conside®® as a foliation of theS® in C2 02
with coordinates; ,z, and theS! in C* with coordinates;. =—d4dxtdx —|r?+u+ 7 dx™2+dr?+r2dQ3
Furthermore, we consided® as a Hopf fibration oveCP!
after changing the complex structurgto z, and theZ; will +du+ u2d2 4+ dv?+v%dg’? (23
locally act along the Hopf fiber. From this geometric descrip- st 4

tion of S°, we obtain the metric for the AdX S° as

where¢’ =¢p—x".
After replacingv by 2v, we go to the rectangular coor-
dinate system and rewrite the metric as

dSigs= R?(—cositpdt®+ dp?+sinPpdQ?),

ds%s=R?| d¢?+sin?6d% +cog 6

ds?=—4dx dx — (r?+u?+v?)dx"?+dr?+du®+dv.
(24)
X

1 2
dr+ E(cosx— 1)d¢}
The pp wave has a natural decomposition of tR& trans-

1 _ verse space intB*x R?x R whereR* is parametrized by
- 2 2
* 4(dX +sinxdé )] ) (19 and theR?xR? by u andv, respectively. The covariantly
constant flux of the RR field is orx(',r) and x*,u,v). In

where 7 is the coordinate for the fiber direction amg?  thiS geometry, the light cone momenta are

+ sir’xd¢? is the metric for the bas€P! in the Hopf fibra-
tion of S°. 2p =idy+=i(d+md,)=A—mJ,
We need to consider am-fold cover ofS°. As the string
probes only an infinitesimal neighborhood of the boosting ) )
direction, the action on the directions transverse to the Hopf 2R?p* =idy-=i(d—md,)=A+mJ. (25)
fiber is not seen. For simplicity we take amfold covering

5 .
of the S* where theS® part of the metric changes to The effective angular momentum in the boosting direction is

mJ and this is the quantity which should be large in the
1, 5 Penrose limit of the AdS/CFT correspondence. Therefore we
+ Z(dX +sir’xd$?). have two options, the first one being to consider a discrete
(20) orbifold groupZ,, with a very largem and finiteJ and the
second a discrete orbifold grouf, with finite m and with a
large value forJ [15,16].

In the field theory, the supersymmetry is enlarged from
N=1 to N=4 and the corresponding global symmetries are
SO(2) in the boosted direction and SO(4) in the direction
transverse to the boosting. To identify the gauge invariant
operators, we need to use the fact that we boost along the
and consider a scaling limR—oc aroundf= y=0 with direction of theZ,, orbifolding and the rest of the space is

invariant. The direction of the boosting is denotedzgnd,
as in the previous subsection, we denote the coordinates

1 2
m2

m
dr+ E(cosx—l)d¢

We now choose the null coordinates as

x+=1

2

;
t+—
m

, x‘=7(t—%), 21)

p:L, 9= E = v (22)  transverse to the boosting byandY. In terms of the fields
R R R of the N=1 theory,Z should be in a gauge invariant form
and is written as a produ@=1I{",Z; whereZ; are either
In this limit, the metric becomes H(i,j)(i+l,j) for fixed j, D(i+1,j+1)(i,j) for fixed j, or
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Vii.iyi.j+1 for fixed i. The above fields are in the bifunda- m
mental representation of SNJ; X SU(N);.q; the field Z .21 (2125 - ZiXiZi- - Zp),
transforms in the adjoint representation of the group$JJ(
Together with the scalar fields denoting the transverse direc- m
tion, X andY, they form an\'=4 multiplet. > THZyZy - Zi 1 YiZi - Zyy), (27)
The coupling of the SW{) gauge theory is of order i=1
g%MzgSm and the effective 't Hooft parameter is
g2 uN/J32m? which is finite, being of the order aj,Nm/R?,
which is finite. Therefore we can treat the $Y( gauge m _
theory perturbatively. E Tr(Z1Zy - - Zi 1 XZiv1 - Zm),
We can now proceed to describe the gauge invariant op- =1
erators corresponding to the stringy ground state and excita- m
tions. The gauge invariant operators Z¥[ have angular z THZ,Z,- - 'Zi—lvizi' 70, (28)
momentummJ in the boosted direction due to the action of i=1

Z,, and this corresponds to the vacuum of the string theory. _ _ o
To describe the excitations, we need to consider the twdvhere the summation overensures the gauge invariance.
cases discussed above, i.e., wineis either small or large.  The states that have winding numbers are built with an ad-
For the case of smath and largeJ, the first level eight ditional factore?™'™ in the above formulas.
bosonic zero-mode oscillators are In this fOI’m, the Stringy Operators have an eXpanSion
which is similar to the Kaluza-Klein expansion of a generic
field of five-dimensional theory reduced on a circle used in
[26,271 to conjecture the deconstruction of a five-
dimensional theory for largen quiver theories in four dimen-
sions. Ours®/(Z,x Z,,) model should actually be related to
a (1,1) theory in six dimension27], but we expect to get a
five-dimensional theory as long as we boost along the orbi-
_ . == o folding directions. The two directions needed to deconstruct
The insertions oK, Y,X,Y should be made as EKXZ ). a six-dimensional theory are obtained in different boostings,
etc. The nonsupergravity oscillations are obtained by intropne discussed in this subsection and the other discussed in
ducing extra phases in the above operators. the next subsection.
~ More interesting is the case whemis very large and the The conclusion is that a fast moving particle in the
light cone is compact with radiusrR?/m, the light-cone girection reduces the gauge group to SJ(and enhances
momentum being quantized asp2=m/R_. The string ine supersymmetry frol/=1 to N'=4.
theory has a matrix string description which mimics that of  case 2 Boosting in the direction of the fixed locus of the
the flat space as pointed out[ib5,29. In [15] string propa- 7 orhifolding (the same discussion holds for tig or Z,
gation in the DLCQpp wave was considered and the statesqpjfo|ding).
were labeled by two quantum numbers, the first being the e take the same form of the metric as in E4g), we
DLCQ momenturrk and the second being the winding num- parametrize the angle & by , the phase ofs, and we

and

Tr(Z°X), Tr (Z%), Tr (Z°X), Trn(Z’Y) (26)

together with Trg’D xZ). In this casex™ is not compact as
it was for theS®/Z; case discussed in the previous section

bermin thex" direction. _ . boost along they direction. SinceZ,, acts onzz, we take an
The vacuum corresponds to 4] which has 2 n-fold covering ofS°, replacingy by /n in the metric.
=m/R_ and zero winding number. A3 is finite, we can The metric for the spherical part is

considerJ=1. The insertions of the field%,Y,X,Y should

now be made into the trace of the string&ffields. To do 1

this, we also need to consider the splitting of the matrices RZ{ d¢?+— sinfod >+ cos 0
X,Y into mNXN blocks, each one being inserted imdif- n

ferent positions and then a summation over position is re-
quired to ensure gauge invariance. In terms of the original +
N=1 theory, if we choos&; to be the fieldsH; j)i+ 1,y for

fixed j, then the fieldsX and Y are built of MNXN blocks ) )
which can be eitheD 11y for fixed j (we denote Ve introduce the null coordinates
these byX;) or V; jyi,+1 for fixed i (we denote these by R?
Y; . By choosing theZ; transform in the bifundamental rep- t+ f) x=—<t— f) (30)
resentation of SU{); X SU(N); 1, the result is thaX; trans- 2 nj 2 nj’

form in the bifundamental of SUN);, ;X SU(N); andY' are

in the adjoint representation of SNJ; . Therefore the fields and consider a scaling limR— co aroundf= /2 with

X; should be inserted betweeh and Z; and the fieldsy;

should be inserted betwe&y ; andZ; . The first oscillators _r o m_u (31)
with zero winding number will then be PTR 2 R’

1 2
dr+ E(cosX—l)d¢)

]

(d)(2+sinz)(d¢2)H. (29
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The computation is essentially the same dsifi. The trans-
versal S® part of the metric{[d7+ 2 (cosy—1)d¢ ]+ 3(dx?
+sirfxd¢?)} is left intact in this limit and hence th&,,

PHYSICAL REVIEW D 67, 026001 (2003

denoted byX; andY;, each one transforming in the bifun-
damental representation of the group 8K
X SU(N);,q; . For the twisted sectors we need to consider

action remains. The result is a metric that is similar to astates built with oscillators with fractional modes. These are

maximally supersymmetric one, the difference beingZhe
action (seen from the range of), which tells us that the
supersymmetry preserved =2 and not\'=4.

obtained by multiplying withX andY, which are acted upon
by theZ, group, together with a position independent phase
factor eI when insertingX,Y and e?™/IN(-9) for

We now denote the scalar field parametrizing the boosteg,sertions ofX. Y.

direction by z;=Z and the scalar fields parametrizing the

transverse directions s = X,z,=Y. TheZ,, discrete group
acts now onX,Y,Z as

X_>eZﬂ'i/mX1 Y_)e72ﬂ'i/mY, Z%Z, (32)
and there is also an action of tifg, discrete group on the

boosting direction:

Z—e 2minz, (33

Because of the last action, the fieldshould enter at the
powern, and this is obtained if we consider thats a prod-
uct of theN'’=1 fieldsVjj; + 1) for fixedi. We introduce the
notation

Z"=Viinii+nVii+naj+2)  Vij+n-1aj+n (34

wherej=j+n (modn). The fieldZ" is in the adjoint rep-
resentation of SUY); ; for fixedi,j. For future use, we also
introduce the notatiol; =V jyi j+1)-

The discussion changes wharis very large. In this case
we have a compact light cone with radiwdk?/n and the
light-cone momentum is quantized ap2=n/R_. The
vacuum and the oscillations of the string belonging to the
untwisted modes are the same as before, but we have a
change in the definition of the oscillations of the twisted
sectors. The insertions of and Y should now be made be-
tweenZ;_, andZ;. To do this, we have to consider all the
blocks X;,Y;, i=1,... m, asnNxXnN matrices and split
each one of them inta diagonalN XN blocks denoted by

Xij,Yij, i=1,...n, for fixedi. The insertions will then be

=}

1Tr(Zl- . Zj—lxljzj .. Zn) (38)

B

TNZy---Z) 142 Zy) (39)

1

In this case the field theory after the boosting becomes
N=2II", SU(N);, the gauge coupling constants of the Wherej denotes the insertion andlenotes the twisted sector.

gauge groups are of ordeJ$M=gsn, and the effective
't Hooft parameters arg?,,N/J%n?, which are finite, being
of the order ofg,Nm/R*.

Because of th& ,, projection, the fieldZ is actually pro-
moted to anmNXmN matrix, with mNXN blocks, each
block being in the adjoint representation of $Y(;. To-
gether with the corresponding vectors of SU(;, they

form N=2 multiplets. The effective angular momentum in dir

the boosting direction for T2’ beingnJ, we again have two

choices, one when is small and the other whemis big.
Consider first the case wheris small. The vacuum of the

string theory corresponds to tixg, invariant operators

JmJ

where S=(1,27'm ...

Tr[S9Z™] (35)

,e?m(m=1/m  denotes the qth

The winding modes are obtained by using the same formulas
with an extrae*™'" factor.

The conclusion is that a fast moving particle moving in
the ¢ direction reduces the gauge grouptfl ; SU(N); and
enhances the supersymmetry frovix=1 to N=2.

Case 3 Boosting in a general direction which is neither
Case 1nor Case 2
In this case both discrete groug@s, and Z,, are in the
ection of the boosting and the string probes only a small
strip along this direction; therefore there is no orbifold action
on the scalar fields and the result is a maximally supersym-
metric Penrose limit. Because we do not have any orbifold
projection on the three scalar fieldsX,Y, the situation is
similar to moving the D3-brane from the tip of tlg, <X Z,
orbifold into the bulk, when the supersymmetry is changed
from N=1 to N=4. The string/field theory duality then re-
duces to that of Sec. Il A. There is no change in the angular
momentum in the boosted directions due to the orbifolding.

twisted sector. The oscillations of the string belong to the Wwe have identified several boosting directions which im-

untwisted modes, which are of the type
T[SZ™D (2)] (36)

and
T S9ZMx] (37)

whereD , is the covariant derivative ang is the supersym-
metric partner of the scalat. The scalar fieldX andY are
now mNX mN matrices withm NXN extra diagonal blocks

ply an enlargement of supersymmetry. Three directions are
along theZ,,, Z,, or Z, orbifolding, which give maximally
supersymmetricpp limits, three directions are along the
fixed loci of Z,,, Z,,, or Z, orbifolds, which give N'=2
supersymmetry, and an infinite number of boosting directions
are along a general direction, which would gi¥e=4.

The discussion is different for larga,n as compared to
the case of smaiin,n. For the first case we get a compact
light cone and this can be used to describe filpewave as
the limit of a DLCQ theory with fixedp™. In terms of the
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choice of boosting, we get a specific circle so we get a two- 6, i 6, i
dimensional torus when botim andn are large. These two ~ A1=C0S;-exp; (1+ ¢1), A=sin-exp; (Y1~ ¢a),
directions are the ones used [in7] to describe the decon-
struction of the six-dimensiondl,1) theories.

0, i 0, i
Blzco%expi(wz-l- ®2), Bzzsmfe)(pi(l//z_(f’z),
D. Correlation functions and supersymmetry enhancement (43)

In [23], a detailed analysis was made for the anomalougind the U(1) is diagonally embedded in SU(RIU(2).
dimensions and three-point functions for the chiral and al-atter taking a further quotient by the remaining U(1) factor
most chiral operators introduced @] (see alsd29] for a  of SU(2)x SU(2), weobtain a product of two projective
similar discussion In particular, the authors d28] identi-  gpacesCPlx CPL, and may identify the parametets, &,
fied the parameteg,=J2/N as the genus counting parameter iy, the spherical coordinates 6! fori=1,2. NowT"!is
in t_hJe free Yang-Mills theo.ry, s.o th(i cztzrrelann function of a U(1) fibration overCPiXCP% and the U(1) fiber can be
Tr Z° and TrZJ has a contributiodN-g5" from the genu$h parametrized bys:= g, + i,. The Einstein metric off - of
Feynman diagram. radiusR is

We want to see what happens for thp-wave limits of
orbifold theories. To do this, we start from the observation 2 1 )
that the correlation functions for the orbifold theories coin-  dSr11= R 5 (di+cosb dé, +cosdd¢,)
cide with those ofA//=4 theory, modulo the rescaling of the
gauge coupling constant, as observed[3®] with string
theory methods anf31] using field theory methods. If we
consider the cas8®/Z,, in the N’=2 theory we have a fac-
tor of 1/h in front of the correlation functions. After the (44)
Penrose limit in the nonfixed direction, we go from the orbi- ~ . <ijer an orbifold theory of the conifold where the dis-
fold theory to the covering space and therefore the factor 1/ crete groupZ,, X Z,, acts onA, ,B; by
disappears. The correlation functions for the orbifold theories meen b
are then expected to have a similar expansion in the genus as (A, ,A,,B;,B,)— (e 2"/MA; ,A,,e*™'™B, ,B,) (45)
in the S° case. It would be interesting to show this in detail,
by analogous computations to those[80,31]. and

1
+g(da§+sin291d¢§+d9§+sin202d¢§) :

Ill. THE A/=1 ORBIFOLDS OF T%! (A1,A2,B1,By)— (e 2™/"A A,,B,,67™/"B,). (46)

The case of D3-branes at the conifold or at orbifolds of The action(45) descends to the horizof'* and yields
the conifold has been discussed extensively in the literaturtvo fixed circles|A,|?=|B,|?=1,A;=B;=0 [mod U(1)]
[6,32—39. The conifold is a three-dimensional hypersurfaceand |A;|?=|B;|?=1A,=B,=0 [mod U(1)] [35]. Simi-
singularity inC* defined by larly, the action(46) yields two fixed circles|A,|?=|B,|?
=1A,=B,=0[mod U(1)] and |A,|?=|B,|*=1A,=B,
=0 [mod U(1)].The horizon TY(z,,xZ,) is singular
along these circles, having ai,,_; singularity along the
first two circles and am\,,_; singularity along the last two

which is a metric cone over the five-dimensional EinsteinCircles. The discrete grouz,xZ, breaks the SU(2)
manifold T11=SU(2)x SU(2)/U(1). Theconifold can be XSU(2) part of the isometry group SU(2)5U(2)xU(1)

realized as a holomorphic quotient 6f by the C* action ~ ©f T"*and the U(1) part remains as the gloBasymmetry.
given by[6] In terms of Euler angles of SU(X)SU(2), thediscrete

groupZ,,XZ, action is given by

2,2,~232,=0 (40

(A1,A;,B1,By)—(NAL NA, N IB N TIBy). (4D (Y1, 1,02, ¢2)— (1= 2milm, ¢, —2mi/m, i,
+2miIm, o+ 27wi/m),
The map _ _
(P1,P1,82,02)— (1= 2miINn, py—2miIN, i,
z;=A;B;, 2,=A,B,, z3=A;B,, z,=A,B; (42 +2mi/n, ¢p—2miln). (47

What we see from the above equations is that the coordinate
provides an isomorphism between these two representatioms the U(1) fiber (/= + i5) is left invariant under the
of the conifold. The horizom! can be identified with the action of Z,,XZ,, as it should be in order to preserve the
|A1|2+|A,|2=|B4|2+|B,|?=1 quotient by a U(1) action in- A=1 supersymmetry.
duced by Eq(41). Following[32], we can parametriz&; ,B; Now we study the Penrose limits of AdST>YZ,,
in terms of Euler angles of SU(X)SU(2): X Z,. The metric for Adgx Tt is
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ds?=R?| —costtpdt?+ dp?+ sintPpdQ3

1
+§(d¢+ cos6,d ¢+ cosh,dep,)?

1
+g(d0§+sin201d¢§+da§+sin292d¢§) . (49

The Penrose limit for the conifold was studied[itl—13.
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The same discussion can be extended to the other fixed
circlesA;=B,;=0, A;=B,=0, andA,=B,=0, where the
boosting is again in the directiof+ ¢+ ¢,, but around
01=6,=m, 0,=1,0,=0, and 6,=0,0,=m, respectively.
The Penrose limit will be identical with E¢52) after rede-
fining w appropriately. The transverse spaR:%decomposes
into a product ofR* which is in ther' direction andC?
whose coordinates are given lay andw,. We now inves-
tigate the effect of the orbifolding on the geometry of pe
limit. Note that if we project the conifol@40) in C* to C3 by

As in the previous section, there are many directions ofz;,z,,25,24) —(21,25,24), We can identify the boosting di-
boosting. We want to study the boosting along the fixed locusection of T*! with the angular direction of;, which is
of the discrete group action. Consider first the boosting alongparametrized by (1/2)f+ ¢, + ¢,) as in Eqs(42) and(43),

the circle|A;|2=|B4|?=1,A,=B,=0 [mod U(1)] which is

and the transversal spa@ can be parametrized t®; and

a fixed locus of theZ,, action. In terms of the parameters z,. At the pp limit, Z, acts on the boosting direction as

used in Eq.(44), this is located at9;=6,=
parametrized by/+ ¢, + ¢,. Because of the action &,,,
we are actually dealing with an-covering of T*! whose
metric looks the same as before:

1
§(d(//+ cosb,d ¢+ cosh,de,)?

1
+g(d9§+ sir?6,d g5+ d 65+ sirf 6,d ¢b3)

(49)
but the ranges of; and ¢ are 1h of the initial ones.
We introduce the null coordinates
L1 1
xT=g|tf §(¢+ b1t d2) |,
R? 1
X =5 |tmg(ytditd)), (50

and consider a scaling limR—oc aroundf,= 6,=0 with

r G

p=g bG=g&. =12 (51)

and in the limitR—«, the metric becomes
ds?=—4dx"dx™ —r2dx*?+dr?+r2dQ3

+__212 (d&8+ & dgf —2E8d idxT)

= —4dx*dx +dr2—(r-r+w-w)dx*2+dwdw
(52)

wherew= (&,€/(#17X7) £ gl(¢2x7)y

In Eg. (52) and in the definition ofv, we understand that

the range ofg; is (0,27/n). The change in the range df;
from (0,27) to (0,27/n) is due to a remnari,, orbifolding

and the presence of this orbifolding is telling us that thedimensionalA,_

theory is not maximally supersymmetric bxf=2 super-
symmetric.

0 and can be

z,—e 2"z, (53
and on the transversal direction trivially, and, on the other
hand,Z, acts on the transversal direction as

(23,24)— (€727 Mz5,€27/Mz,) (54)
and acts trivially on the boosting directian which is along
the circle of boosting. In terms of the coordinate of the

boosting direction, there is2, action ong= ¢+ ¢, + ¢, as

~ i
Y- b= (55)

On the string theory side, our conclusion is that, by boost-
ing along the fixed angular directions with respect toZhe
or Z, actions, we get half-maximally supersymmetric solu-
tions which should correspond t&/=2 supersymmetric
gauge theories.

We now go to the gauge theories and identify the gauge
invariant operators which are dual to the string modes in the
abovepp-wave geometry. The transverse spac&iZ,, or
S*/Z,,, so the field theory isN=2, M_,;SU(N); or
[T, SU(N); . Before the boosting the field theory Aé=1:

m n m n
11 1 su < I1 11 sum, (56)
and there are bifundamental fieldg\,); ;. ; in SU(N); ;
><SU(N)| R (A2)|+l]+1 HN| in SU(N)|+11+1
XSU(N)Hi (Bl)|,1,|,1+1 in SU(N)i/,jXSU(N)l,Hl: and
(B2)ijii+1j In SUN){;XSUN)/, ;. The products of
A;,Bj, which enter in the definitions of,,z;,z, are
(Al 1)| g+l in SU(N)I JXSU(N)I j+1 (Al 2)| NHESN in
SU(N); jXSU(N);;1;, and
SUN)i +1j+1XSU(N);j j 1.
We want to see the change in field theory after the boost-
ing. There are four possible particular cases of particular
gauge groups which correspond to D3-branes at four-
1 or A,_4 singularities, and the field theory
becomesN=2, TI/Z; SU(N);; or IIiZ; SU(N);; for fixed
and H?=1SU(N)” or l'IJ-”=1SU(N)Il for fixed i. The chiral

AB1)it1jr1ijrr N
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primaries are constructed from sums of gauge invarianthe SU(2) groupsA;A, or B,B; are not invariant so they
products of chiral superfields, modulo F- and D-flatnessdo not appear in the spectrum. Because the supersymmetry
conditions [34]. They are products of the form in the Penrose limitisV=2, we do not need the semicon-
A BjAiBj,---Ai_B;j . symmetrized inA; andB;. For  served currents to build/=2 multiplets and we only need
fixed i, a particular example of a chiral primary involving A;B, and A,B; in order to build the field theory duals to

only A; andB; fields is the twisted sectors of the string theory.
For the quotiented conifold, the matri¥ B, is promoted
TrL(ADi i, (B i+ 1(AD 1 j+a to an mNxmN matrix, which splits intomNx N diagonal

matrices in the adjoint representation SUf;,
i=1,...m, for fixedj. The matriceA;B, and A,B; be-
X (B1)i j+n—1:j+nl (57 comemNXxmN matrices which also split into extradiago-
nal NXN matrices and each block corresponds to fields
wherej +n=j (modn) so the trace is taken over the adjoint transforming in the bifundamental representation of
representation of SUN); ;. The R charges of the fields SU(N); ;X SU(N);.1;. The boosted direction is acted upon
Ai,B; are not changed by the quotienting so ieharge of  py the discrete grou, so the invariant quantity is a product

the gauge invariant operat@57) is n. as in Eq.(57) with n copies ofA; andn copies ofB;, of the
We now relate the field theorfg charge to the other U(1) form

charges that appear in the field theory and geometry. In the

X(Bijs1ijr2 (ADijen—1:ij+n-1

geometry we have two rotation charges for the U(1) (ADi i i(Boijijr (Aijrn—1ij+n-1
X U(1) isometry group which are denoted byandJ,, and
they are related to the Cartan generators of the SU(2) X(Ba)i,j+n-15ij+n: (63

X SU(2) global symmetry of the dual superconformal field

hich is indeed in the adjoint tati f SO .
theory by[11,17] which is indeed in the adjoint representation of SI(;

Denoting this by A;B;)", we see that Eq59) implies that
it hasJ;=J,=0 and it is the ground state of the string. The

J J J 1 : Sl . .
Ja=—i = +i— =Q,- =R vector field for all SUN); ; with fixed j, together with the
IPa x* Idalty  IY It 2 field [(A,B;)"];, form anAN/=2 multiplet. The ground state
B is given bym mutually orthogonak,, invariant single trace
a=1z2. (58) operators
Because of th&,, action on the fixed circle of the quotiented T SYAB )M 64
conifold, the above relation becomes TS (AB)™] 64
R where S is defined asS=(1>"'™ ... g™ (M-1/m ge.
Nd,=nQ,— =. (59  notes thegth twisted sector. - o
2 The first level untwisted sectors are built with derivatives

. 1 and descendants oA(B;)" and are of the form
We use the convention th#&; hasQ;=3 andB; hasQ,

=3. In [11-13, the vacuum of the string theory has been T S%A;B1)™D ,(A;B1)"] (65)
identified with the stated;=J,=0 and the first oscillations
of the strings with);=+1J,=0 andJ;=0,J,=*1. and

Consider now boosting along tlz¢ direction. We want to
identify the gauge invariant operators which correspond to
the string theory ground state and first oscillation modes. Iry,,
the case of the conifold, the ground stakg=J,=0 was
identified with the gauge theory operatdid—13

T SY(A1B1)™x] (66)

hereD , is the covariant derivative ang is the supersym-
metric partner of the scala¢B;)".
The first level twisted sectors are written with insertions
Tr(A,B,)° (60) of A;B, and A,B;, which are acted upon b¥,, but are
' invariant underZ,,. They have zero angular momentum in
the first oscillationsJ;=—1,J,=0 or J;,=0J,=—1 were the boosted direction so they are used to build first level

identified with multiplication by string oscillations. The discussion is similar to thaf 1]
As the effective angular momentum of the string states is
AB, or A,Bq, (61) nJ, we can again chooseto be either small or large. For the

case of largen, the insertions oA;B, and A,B; should be

and the first oscillations]1=1,J2=O or J]_:O,Jzzl were made between dif‘ferentA(l)i jii j(Bl)i EREE The Penrose
identified with multiplication by limits of the quotiented conifold will then be the limit of a
_ _ DLCQ theory with constanp™.

AiA, or B,Bq, (62
. — — IV. CONCLUSIONS
where A; ,B; are allNXN matrices.A;A, or B,B; came
from the semiconserved currents of the SU(2) groups and In this paper we studied the Penrose limits of different
were introduced if36]. When there is a quotient action on A’=1 orbifold geometries o8®> and T*! which lead to su-
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