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Scattering amplitudes at finite temperature
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We present a simple set of rules for obtaining the imaginary part of a self-energy diagram at finite tempera-
ture as a product of tree amplitudes. These diagrams correspond to physical scattering amplitudes.
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I. INTRODUCTION

In this paper we discuss a set of rules for calculating
imaginary part of self-energy diagrams. These rules hav
simple diagrammatic representation in terms of scatte
amplitudes. They have been deduced by studying a large
of diagrams; a derivation from first principles is in progre
and will be presented in another paper.

It is well known that the imaginary part of the retarde
self-energy is an important quantity in thermal field theory
provides information about decay and production rates
particles, among other things. The physics that is contai
in the imaginary part of the self-energy is revealed by writi
it as the product of two scattering amplitudes. At the o
loop level, the structure of the scattering amplitude has b
understood for some time@1#. Extension to higher loops is
not straightforward. In this paper we discuss cutting rules
the context of this problem. We show that rules exist t
make it easy to understand the physical content of the im
nary part of a self-energy diagram at high loop order.

We begin by reviewing some basic concepts and defin
some notation:

~a! An on shell 2-point function is proportional to a del
function of the formd(p22m2) wherep is the momentum of
the field. On shell 2-point functions are nonzero only on
mass shell and correspond to real fields that do not propa
through the medium.

~b! The system also contains virtual fields that do pro
gate through the medium. The structure of the correspond
2-point functions depends, in general, on the choice of e
lon prescription. In this paper, all such 2-point functions w
be either retarded or advanced propagators. Diagramm
cally, these propagators are represented by continuous
that begin and end at interaction vertices.

*Electronic address: meg@theory.uwinnipeg.ca
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~c! Consider any closed loop in which all of the propag
tors are off shell and momentum is free to flow around
loop. If any one of the propagators in the loop is put on sh
momentum is no longer free to flow around the loop and
loop is effectively ‘‘opened.’’

~d! There are two kinds of propagators that are on sh
We call these two types of propagators ‘‘cut’’ propagato
and ‘‘tic-ed’’ propagators. Cut propagators and tic-ed prop
gators carry different thermal factors. This point will be e
plained in detail.

~e! A ‘‘cut line’’ is a line that divides the self-energy into
two pieces, each of which has one external leg. Any pro
gator that is crossed by a cut line is put on shell and beco
a ‘‘cut’’ propagator.

~f! Diagrammatically, our notation is as follows. In a se
energy diagram, a cut propagator is a propagator tha
crossed by the cut line and a tic-ed propagator is drawn w
a double tic mark through it. To obtain scattering amplitud
all on shell propagators~cut or tic-ed! are split into two
pieces, each of which has an end that is not connected
vertex. As a result, the cut line divides the self-energy d
gram into two separate amplitudes, and~as will be explained
below! the tic-ed propagators cause each amplitude to h
the form of a tree amplitude, with no closed loops. The lin
obtained from the splitting of on shell propagators repres
the emission or absorption of fields by the medium. The lin
that represent absorbed fields are drawn slanting backw
from the vertex and lines that represent emitted partic
slanting forward from the vertex.

~g! For any given diagram, the number ofd functions, or
the number of on shell5 (cut1tic-ed) propagators, is equa
to L11 whereL is the number of loops.

To begin, we consider a one loop calculation. Followi
Weldon @1# we look at the simple case of a scalar fieldF
coupled to two other scalarsf1 and f2 through a cubic
interaction. The production rate for the fieldF is obtained
from the imaginary part of the one loop self-energy shown
Fig. 1~a!. We obtain the imaginary part by drawing a cut lin
through the diagram. At one loop, there is only one way
©2003 The American Physical Society21-1
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draw a cut line so that each half of the diagram contains
of the two external legs@Fig. 1~b!#. This cut line produces
two cut propagators, each of which carries a delta funct
~there are no tic-ed propagators in this case!.
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Expanding these two delta functions we find that t
imaginary part of this diagram can be written as the sum
four terms, each of which corresponds to the square o
scattering amplitude@1#. We obtain,
ImP~q0 ,qW !52g2E d3p

~2p!3

2p

2v12v2
$d~q02v12v2!@~11n1!~11n2!2n1n2#1d~q01v12v2!@n1~11n2!

2~11n1!n2#1d~q02v11v2!@~11n1!n22n1~11n2!#1d~q01v11v2!@n1n22~11n1!~11n2!#% ~1!
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where v15ApW 21m1
2, v25A(pW 1qW )21m2

2 and n1

51/(ebv121) with b the inverse temperature andg the cou-
pling constant. The first term in this expression correspo
to the probability for the decayF→f1f2 with a statistical
weight (11n1)(11n2) for stimulated emission, minu
the probability for the inverse decayf1f2→F with the
weight n1n2 for absorption. Note that the thermal fact
(11n1)(11n2)2n1n2 which reflects the physics of the pro
cess involved could be written in the mathematically simp
form 11n11n2 at the cost of losing information about th
physics. Similarly, the second term gives the probability
the decayFf1→f2 ~which involves the absorption of af1
field and the emission of af2 field!, minus the probability
for the reverse processf2→Ff1, with appropriate therma
weights. The interpretation of the third and fourth terms
straightforward. These four processes are shown in Fig.

We would like to study what happens at higher loo
where scattering amplitudes have a much more complic
structure. The task of calculating the imaginary part of
self-energy and separating it into scattering amplitudes
complicated in different ways, depending on the techniq
that is used to calculate the imaginary part of the self-ene

In the imaginary time formalism~ITF!, one starts in Eu-
clidean space, calculates Green’s functions with imagin
time arguments, and performs an analytic continuation
real time at the end of the calculation. One attractive feat
of the ITF is that it satisfies the intuitive belief that it shou
be possible to obtain finite temperature field theory from z
temperature field theory by adding thermal weights to
Feynman rules, in some fashion. The ITF is mathematic
simpler than the RTF because of this structure. However,
price one pays for mathematical simplicity is that som
physical processes are hidden. Thinking more carefully
realize that this feature of the ITF is not surprising since

FIG. 1. One-loop self-energy.
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should not in fact expect that finite temperature field the
should have the same structure as zero temperature
theory. In a thermal situation, individual fields do not simp
propagate through the vacuum, but interact with a mediu
Consequently, a specific scattering amplitude will involve
number of interference processes that are not present at
temperature. All of these processes are, of course, prese
the ITF calculation, but the compactness of the notation
fectively hides them from view. A lengthy procedure for e
tracting physical amplitudes from the ITF has been discus
by Wong @2#. This extremely complicated calculation ha
been carried out explicitly by Majumder and Gale for t
two loop vector boson self-energy in thermal QCD@3#.

In the real time formalism ~RTF!, one works in
Minkowski space, and Green’s functions with real time
guments are obtained directly. It is well known that the R
is mathematically more complicated than the ITF because
the doubling of field degrees of freedom. In the closed ti
path ~CTP! representation of the RTF, the contour has tw
branches: the top one (C1) runs from negative infinity to
positive infinity, and the bottom one (C2) runs backwards in
the other direction. These two branches give the propaga
matrix structure. The four components of the 232 matrix
are labeledD11, D12, D21, and D22 and correspond to
propagation alongC1, propagation fromC1 to C2, etc. The
propagatorD11 corresponds to time ordered propagation. T

FIG. 2. The scattering amplitudes corresponding to Fig. 1.
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3.

SCATTERING AMPLITUDES AT FINITE TEMPERATURE PHYSICAL REVIEW D67, 025021 ~2003!
advantage of working in the RTF is that it is easier to se
rate the imaginary part of a self-energy into physical scat
ing amplitudes. This point will be discussed in detail.

A great deal of work has already been done on the de
opment of rules for the calculation of the imaginary parts
diagrams in the RTF. One set of rules was derived by Ko
and Semenoff@4# using the 1/2 representation of the RT
Different versions of these rules have been studied by sev
authors@5,6#. A set of rules based on more general repres
tations, such as the R/A or Keldysh representaions, has
developed by Gelis@7#. A summary of these different ap
proaches is found in@8#. We have checked that all of thes
methods are equivalent to the rules discussed in this pape
they must be. However, our rules are the only ones fr
which one can extract scattering amplitudes without inv
ing a series of intricate cancellations. Several other auth
have looked directly at scattering amplitudes. Aurenche
collaborators have separated the scattering amplitudes
taining the imaginary parts of the two loop photon se
energy diagrams by dividing the phase space of the mom
tum integrals into regions that contain the different possi
combinations of signs of the frequencies of the fields@9#.
However, this technique would be difficult to generalize
higher loops. Brandt and collaborators have developed a
grammatic representation for retarded Green’s functions
terms of tree scattering amplitudes in the high tempera
limit @10#.

In this paper we describe a set of rules that we have
veloped for calculating the imaginary part of self-energy d
grams. These rules are effectively a rearrangement of
integral obtained from the RTF of finite temperature fie
theory, which displays the physical content of the express
in a transparent way. Note that in this paper we will not
any integrations. We remind the reader that several iss
will arise when one attempts to perform the integrations:

~a! All of the zero temperature ultraviolet divergences th
were present in the theory before we rearranged it, will s
be there. They must be removed by renormalization in
usual way.

~b! There are pieces that contain singularities of the fo
*dpd(p2)/(p26 ip0e). These singluarities can be regulat
using standard tricks~see for example@11#!.

~c! Some of the diagrams contain delta functions that
not have support except when certain constraints on
masses are satisfied.

These questions have been discussed elsewhere in th
erature and are not the subject of this paper.

The paper is organized as follows. In Sec. II we pres
the first part of our cutting rules: how to determine the d
grams that contribute to the imaginary part of a given s
energy, and for each diagram, which propagators are
shell, retarded, or advanced. Section III contains a discus
of how to interpret the diagrams produced by our rules
terms of scattering amplitudes. Section IV contains the s
ond part of our rules: how to determine the thermal factor
each propagator. Section V contains a list of the self-ene
diagrams that were used to deduce these rules, and the
grams that contribute to their imaginary parts. In Sec. VI
present our conclusions.
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II. FIRST PART OF THE CUTTING RULES:
PROPAGATORS

A. Allowed diagrams

For any self-energy diagram, draw all possible cut lines~a
cut line is any line that divides the diagram into two piece
each of which contains an external leg!. A cut line that opens
all loops will produceL11 cut propagators and thusL11
delta functions. No other propagators will be on shell. Oth
cut lines will leave some loops unopened, and produce
than the required number ofL11 delta functions. Add tic
marks to these diagrams in every possible way so that~i! all
loops are open;~ii ! the total number of delta functions i
equal to theL11 and~iii ! it is possible to move from eithe
external leg, to the cut line by following a continuous pa
along uncut and untic-ed propagators. As an example, for
scalar self-energy in Fig. 3, the allowed cut diagrams
shown in Fig. 4@for a scalar theory, the diagrams in Fig
4~a! and 4~b! and Figs. 4~c! and 4~d! are equivalent#.

Two examples of diagrams that violate rule~iii ! are shown
in Fig. 5. Both of these diagrams contain the right number
delta functions~5!, and every loop is opened, but it is no
possible to get from the right leg of either diagram to the
line without going through a cut or tic-ed propagator. Neith
of these diagrams should be drawn.

At first glance the statement that all loops must be ope
is surprising: the imaginary part of a self-energy is usua
written in terms of amplitudes that contain loop correction
However, for all of the diagrams that we have considered,
have found that one can write the imaginary part of a s
energy in an equivalent way in terms of tree amplitudes. I
easy to illustrate this point by looking at Fig. 3. It appea
that the cuts shown in Figs. 4~a!–4~d! should contain a loop
integral of the form

FIG. 3. A two-loop self-energy.

FIG. 4. The cuts that contribute to the imaginary part of Fig.
1-3
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I 5E d4k

~2p!4
DA~k!DR~p1q1k!

where DR indicates a retarded propagator andDA an ad-
vanced propagator. However, we observe that

E d4k

~2p!4
DR~k!DR~p1q1k!

5E d4k

~2p!4
DA~k!DA~p1q1k!50

because of the fact that, in both integrals, all poles in
complexk0 plane lie on the same side of the real axis. T
observation allows us to rewrite the original loop integral

I 5
1

2E d4k

~2p!4
$DA~k!@DR~p1q1k!2DA~p1q1k!#

1@DA~k!2DR~k!#DR~p1q1k!%.

Since@DR(p)2DA(p)# is proportional to a delta function o
the formd(p22m2) we find

I;
1

2E d4k

~2p!4
@DA~k!d„~p1q1k!22m2

…

2DR~p1q1k!d~k22m2!#.

These two terms correspond to two diagrams with tic
propagators on the bottom and top lines of the loop.

FIG. 5. Two diagrams that violate rule~iii !.

FIG. 6. An illustration of the propagator rule.
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B. Uncut and untic-ed propagators

Propagators that are uncut and untic-ed are either reta
or advanced. There is a rule to determine which. Cons
the imaginary part of a retarded self-energy. Start from eit
external leg and trace any continuous path through the
gram ~continuous means not traveling along a propaga
that is cut or tic-ed!. If the energy of a given propagato
flows in the same direction as the path you are tracing,
propagator is retarded. If the energy flows in the direct
opposite to the direction of the path, the propagator is
vanced. This rule is illustrated in Fig. 6.

III. SCATTERING AMPLITUDES

In this section, we discuss how to interpret the diagra
produced by our rules as scattering amplitudes.

A. QED at one loop

Throughout most of this paper, we will work withf3

theory. This toy theory allows us to avoid a lot of the mat
ematical complexities associated with physical theor
which are not directly relevant to the problem of how
calculate the imaginary part of a self-energy, and how
interpret the result in terms of scattering amplitudes. Ho
ever, in this section and the next, in order to discuss
physics of scattering amplitudes in more familiar terms,
will switch to quantum electrodynamics~QED!. The struc-
ture of the scattering amplitudes in QED andf3 theory is
similar since both theories have an interaction involvi
three fields:f3 theory has a cubic interaction, and QED h
a photon-electron-positron interaction. In the diagrams
this section and the next, all arrows give the direction of flo
of lepton number. We will look at the photon self-energy.

We start with the one loop diagram@Fig. 7~a!#. There is
only one possible cut line that separates the diagram into
pieces, so that each contains an external leg. The amplit
obtained from the right-hand side are shown in Fig. 7~b! and
have the same structure as those shown in Fig. 2. As
cussed in the Introduction, a fermion line that represents

FIG. 7. One loop photon self-energy and scattering amplitud

FIG. 8. Two loop photon self-energies.
1-4
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SCATTERING AMPLITUDES AT FINITE TEMPERATURE PHYSICAL REVIEW D67, 025021 ~2003!
emitted~absorbed! fermion is connected to a vertex at on
one end and is drawn slanting forwards~backwards! from
that vertex. Fig. 7~b! shows the amplitude for a photon t
decay into an electron-positron pair (g→e1e2), the ampli-
tude for a photon to absorb a positron from the medium
emit an electron (ge1→e2), etc. In the future, we restrict to
positive frequencies for the external field. In this case
process represented by the last amplitude is kinematic
forbidden. The left-hand side of the cut self-energy in F
7~a! gives the conjugate of the amplitudes in Fig. 7~b!, and
thus the product of the right hand side and the left-hand s
is a real probability.

B. QED at two loops

There are two diagrams that contribute to the photon s
energy at two loops. They are shown in Figs. 8~a! and 8~b!.
For each of these diagrams, there is more than one pos
cut line.

1. Central cuts

To begin with, for both diagrams, we look at the cut lin
that goes directly through the center as shown in Fig. 9
both cases, all loops are opened and thus there are no t
propagators. Both cut lines cross one photon propagator
two fermion propagators. The forward scattering amplitu
is given by the terms in which all three particles are emitt
The Compton scattering amplitude occurs when the pho
is emitted, and one fermion is emitted and one is absorb
The amplitude for pair production is produced when the p
ton is absorbed and both fermions are emitted. When
restrict to positive external frequencies, no other possibili
are kinematically allowed. We describe these processes
low.

~1! Forward scattering. The amplitude produced by
left hand side of Fig. 9~a! is shown in Fig. 10~a!. The
right-hand side of the diagram is the conjugate amplitu
There is another contribution to the self-energy that is
same as Fig. 8~a! except with the propagator correction o
the lower line, or alternatively, with the flow of lepton num
ber in the fermion loop routed in the opposite direction. T

FIG. 9. Central cuts.

FIG. 10. Photon decay amplitudes from Fig. 9~a!.
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graph is just the Hermitian transpose of Fig. 8~a! and the
central cut produces the same amplitude with the roles of
electron and positron reversed, as shown in Fig. 10~b!.
Again, the right-hand side of the diagram is the conjug
amplitude. These two diagrams represent the amplitude f
photon to decay into an electron-positron pair where one
the fermions emits an additional photon.

The amplitude corresponding to the left hand side of F
9~b! is also shown in Fig. 10~a!. In this case however, the
right-hand side of the diagram does not give the conjug
amplitude. Instead, we get the cross product of Fig. 10~a!
with the conjugate of Fig. 10~b!. By taking the cut line di-
agonally in the opposite direction, we obtain the revers
cross product, with the electron and positron switched. Co
bining these results we obtain the square of the amplit
shown in Fig. 11, which is proportional to the photon dec
probability.

~2! Compton scattering. We look at exactly the same c
as above, but consider the amplitudes that correspond to
emitted photon, one emitted fermion and one absorbed
mion. The graph in Fig. 9~a! produces the squares of the tw
amplitudes shown in Fig. 12~a!. The diagram with the propa
gator correction on the bottom line gives the same am
tudes, with the direction of lepton flow reversed. The d
gram in Fig. 9~b! gives the two cross terms shown in Fi
12~b!. The graphs that are the same as those in Fig. 12~b! but
with the fermion lines reversed are produced by the cut
the opposite diagonal. Combining these results we obtain

FIG. 11. Photon decay.

FIG. 12. Compton scattering amplitudes from Fig. 11.
1-5
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M. E. CARRINGTON, HOU DEFU, AND R. KOBES PHYSICAL REVIEW D67, 025021 ~2003!
square of the amplitude shown in Fig. 13, which is prop
tional to the Compton scattering rate.

~3! Pair production. Following the same method, we o
tain the square of the amplitudes for pair production
shown in Fig. 14. As before, the cross term is produced
Fig. 9~b!.

2. Noncentral cuts

From this point on we will discuss only forward scatterin
amplitudes. Also, we will not discuss the fact that each a
plitude has a partner in which the flow of the fermion nu
ber is reversed. These graphs are obtained in exactly
same way as was described above for the central cuts.

For both of the diagrams in Fig. 8 there is a cut that do
not open both loops. For the diagram in Fig. 8~a! this cut
leaves the loop formed by the propagator correction
opened. There are two ways to open this loop with a
These two graphs are shown in Fig. 15.

The amplitudes corresponding to the left hand side of F
15~a! are shown in Figs. 16~a! and 16~b!. The first of these
graphs represents the amplitude for a photon to decay int
electron-positron pair, where the electron subsequently
sorbs a photon from the medium and emits it back into
medium. The second graph is the same as the first, excep
photon is emitted into the medium and then absorbed. T
photon is sometimes referred to as a spectator field. Spe
tors are on shell particles from the heat bath that enter w
the in-state and leave with the out-state without having in
acted with the rest of the participants. The right-hand side

FIG. 13. Compton scattering.

FIG. 14. Pair production.
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Fig. 15~a! is shown in Fig. 16~c!. The lone wiggly line rep-
resents the spectator particle from the heat bath. This s
tator field is normally not drawn, but its presence is nec
sary to obtain an interference effect: when calculating
convolution of the two amplitudes, it is necessary to have
same number of incoming and outgoing particles. We c
write a schematic equation to describe these amplitudes

~gg̃→e1e2g̃ ! ^ ~g→e1e2 ; g̃→g̃ !

where the tilde indicates the spectator field.
The amplitudes from the left-hand side of Fig. 15~b! are

shown in Figs. 17~a!–17~c!. Figure 17~a! represents the am
plitude for a photon to decay to an electron-positron p
where the electron subsequently absorbs a positron from
medium and emits it back into the medium. In Fig. 17~b! this
spectator positron is emitted and then absorbed. Figure 1~c!
shows the amplitude from the right-hand side of the se
energy, with the spectator positron. Schematically we wr

~gẽ1→e1e2ẽ1! ^ ~g→e1e2 ; ẽ1→ẽ1!.

A real probability is obtained by combining with the am
plitudes produced by the graphs that are just like those
Fig. 15, but with the cut line on the left-hand side. All o
these graphs have been extracted from the imaginary
calculation by the authors of@2# and @3#. In @2# they appear
as Figs. 16 and 17 and in@3# they are as in Fig. 12. In the
imaginary time calculation, a great deal of tedious effort
required to separate these physical contributions. Using
rules however, they appear immediately.

Now we consider the noncentral cut for Fig. 8~b!. The
unopened loop can be opened with a tic on the photon
@Fig. 18~a!#, or a tic on the fermion line@Fig. 18~b!# ~tic-ing
the upper fermion line would change the spectator fermion
a spectator anti-fermion!. The amplitudes that result from
Fig. 18~a! are shown in Figs. 19~a!–19~c!. The first two
graphs show the decay of a photon into an electron-posi

FIG. 15. Noncentral cuts for Fig. 8~a!.

FIG. 16. Amplitudes from Fig. 15~a!.
1-6
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SCATTERING AMPLITUDES AT FINITE TEMPERATURE PHYSICAL REVIEW D67, 025021 ~2003!
pair with a spectator photon. In Fig. 19~a! the electron ab-
sorbs a photon from the medium and the positron emit
photon, and in Fig. 19~b! the electron emits a photon and th
positron absorbs a photon. Figure 19~c! shows the amplitude
from the right hand side of the self-energy in Fig. 18~a!, with
the spectator photon. We write schematically,

~gg̃→e1e2g̃ ! ^ ~g→e1e2 ; g̃→g̃ !.

The amplitudes from Fig. 18~b! are shown in Figs. 20~a!–
20~c!. Schematically we write,

~gẽ2→e1e2ẽ2! ^ ~g→e1e2 ; ẽ2→ẽ2!.

These diagrams are Figs. 19 and 20 in@2# and Figs. 10 and
11 in @3#.

C. f3 Theory at more than two loops

In order to discuss scattering amplitudes at higher lo
levels, we will simplify the notation as follows.

~i! We revert tof3 theory.
~ii ! We will only draw the forward scattering amplitud

~all cut fields on the positive mass shell! associated with the
left hand side of a given cut self-energy.

~iii ! We simplify the diagrammatic representation of tic-
fields as follows. All tic-ed propagators correspond to fie
that are emitted and then absorbed, or absorbed and
emitted. Thus, if there are two tic-ed propagators on
left-hand side of a cut self-energy, there are four differ
scattering amplitudes corresponding to the four differ
ways in which these two fields could be emitted and
sorbed from the heat bath. Using the notation from the fi
part of this section we would draw four diagrams, one
each of these processes, with the tic-ed propagators re
sented by lines slanting forward or backwards to repres
emission or absorption respectively. In this subsection,
will draw only one diagram instead of four, and represe
emitted or absorbed fields by arrows pointing straight up
slightly slanted to one side or the other in the case where

FIG. 17. Amplitudes from Fig. 15~b!.

FIG. 18. Noncentral cuts for Fig. 8~b!.
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fields are emitted/absorbed from the same vertex and c
not be seen in the figure if they were drawn on top of ea
other.

~iv! All propagators will be drawn as slanting lines. No
that if we define momentum variables so that moment
flows to the right, all propagators are retarded~following the
rule in Sec. II B!, and thus the scattering amplitude has
causal interpretation: time flows to the right along any co
tinuous line.

~v! Cut propagators represent fields that are emitted
absorbed on opposite sides of the diagram. These cut l
are drawn as horizontal arrows pointing to the right.

An example of this notation is shown in Fig. 21. In th
next section we describe in detail how to determine the
propriate thermal factor for a given cut diagram by looki
at the corresponding scattering amplitude.

IV. SECOND PART OF THE CUTTING RULES: THERMAL
FACTORS

In the Introduction we said that both cut propagators a
tic-ed propagators are on shell, and that the difference
tween them is that they carry different thermal factors. T
key to determining these thermal factors is understanding
physical role of the cut and tic-ed propagators. We will d
cuss cut and tic-ed propagators separately.

A. Cut propagators

Return for a moment to the one loop example discusse
the Introduction. As discussed previously, the first term
Eq. ~1! comes from the square of the forward scattering a
plitude and represents the probability for the decayF
→f1f2, minus the probability for the inverse decay. Th
field F is the field whose self-energy we are calculating. T
fields f1 andf2 are the fields produced by the decay of t
F field ~or the fields which combine to produce aF field!

FIG. 19. Amplitudes from Fig. 18~a!.

FIG. 20. Amplitudes from Fig. 18~b!.
1-7
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M. E. CARRINGTON, HOU DEFU, AND R. KOBES PHYSICAL REVIEW D67, 025021 ~2003!
and they appear as emitted lines on the right side of
scattering amplitude. This interpretation of the physical r
played by the fields corresponding to the cut propaga
allows us to understand the associated thermal factors.
thermal factor (11n1)(11n2)2n1n2 is the statistical
weight associated with the probability for the processF
→f1f2 minus the statistical weight for the inverse proce

The generalization of this idea is straightforward. W
write the thermal factor for the cut propagators as an eq
tion of the form,

P lP r@~11nl !nr2nl~11nr !# ~2!

where the product overl multiplies over fields whose mo
menta approach the cut line from the left, and the prod
over r multiplies over fields whose momenta approach
cut line from the right. It is easy to understand the struct
of this expression. Performing the loop integrals puts e
cut propagator on either the positive or negative mass s
A particle that approaches the cut from the left and is on
positive mass shell carries a factor@11n(v)# in the first
term of Eq.~2!, and corresponds to an emitted particle. If t
same particle were on the negative mass shell, the co
sponding thermal factor would be

FIG. 21. An example of the notation to be used in Sec. IV.
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@11n~2v!#52n~v!, ~3!

which correctly reflects the fact that the emission of a po
tive energy particle is equivalent to the absorption of a ne
tive energy particle. Note also that the momentum of a
propagator could flow in either direction~right or left!, de-
pending on the definitions chosen for the momentum v
ables in the loops. Of course, physics must not depend on
choice of an integration variable. The identity~3! ensures
that all definitions of loop monenta are equivalent.

B. Tic-ed propagators

Now we consider tic-ed propagators. Both cut and tic-
propagators are on shell, and both correspond to fields
are emitted and absorbed. However, the fields associ
with tic-ed propagators are emitted and absorbed on the s
side of the cut self-energy diagram. They represent inte
tions with fields in the heat bath. Naively, it appears tha
tic-ed propagator should carry a factorN:5(11n)1n
which would give the appropriate statistical weight for a fie
that is emitted and then subsequently absorbed.~Of course
the same factor appears if emission and absorption occu
the opposite order.! For convenience, we include a factor o
1/2 ~which will be explained below! and use a thermal facto
of the form

N/2. ~4!

In most cases this naive guess gives the correct answer.
that the interaction represented by the thermal factorN/2 is
essentially trivial: the particle is produced and disappe
FIG. 22. Diagrams used to il-
lustrate the rule in Sec. IV B 2.
1-8
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SCATTERING AMPLITUDES AT FINITE TEMPERATURE PHYSICAL REVIEW D67, 025021 ~2003!
without undergoing any interactions with the rest of the s
tem. As discussed in Sec. III, these particles are someti
called ‘‘spectators.’’

There are some cases in which the fields associated
the tic-ed propagators undergo nontrivial interactions w
the system, and in these cases the naive thermal fact
incorrect. These diagrams always have more than one ti
propagator, and thus only occur for self-energies with th
or more loops. The authors of@2,3# have not gone beyond th
two loop level and thus have not seen this effect. In orde
identify the cut self-energy diagrams in which these no
trivial interactions occur, and to determine the appropri
thermal factor, we need to look at the corresponding sca
ing amplitudes. We describe below the rule for determin
if the fields represented by the tic-ed fields undergo n
trivial interactions, and for obtaining the thermal factors f
these fields. We illustrate these rules by looking at sev
cuts of the diagrams shown in Fig. 22.

1. Notation

We define two kinds of tic-ed propagators.
For type-A tic-ed propagators, in the corresponding sc

tering amplitude, the emitted-absorbed pair of fields from
tic-ed propagator are ‘‘unsplit’’ by either of the emitte
absorbed fields associated with the cut line.

For type-B tic-ed propagators, in the corresponding sc
tering amplitude, the emitted/absorbed pair of fields from
tic-ed propagator are ‘‘split’’ by one of the emitted/absorb
fields associated with the cut line.

The meaning of the expressions ‘‘split’’ and ‘‘unsplit’’ i
explained below. The cut propagators are labeleda andb in

FIG. 23. Self-energies with type-A tic-ed propagators and
corresponding scattering amplitudes.
02502
-
es

ith
h
is

ed
e

o
-
e
r-

g
-

r
al

t-
e

t-
e

this section. The emitted/absorbed lines in the scattering
plitude that are associated with the cut propagators are h
zontal arrows labeleda and b. The tic-ed propagators ar
labeled$x, y, z •••%. The corresponding emitted/absorbe
fields in the scattering amplitude appear as pairs labe
$x, y, z •••% ~see Fig. 21!. Consider a tic-ed propagator la
beledx. In order to determine if this is a type-A or type-
tic-ed propagator, one proceeds as follows. Trace a p
through the scattering amplitude from a to b. If you encou
ter both or neither of the fields labeledx, then the tic-ed
propagator labeledx in the corresponding self-energy is ‘‘un
split’’ ~type-A!. If you encounter onex field, then the tic-ed
propapator is ‘‘split’’ ~type-B!. Numerous examples of thi
notation are given below.

2. The rule

~a! If the scattering amplitude corresponds to a cut se
energy that contains an arbitrary number of type-A tic-
propagators, all of these propagators carry the naive ther
factorN. Several examples are shown in Fig. 23. The therm
factors for these four diagrams are, respectively,

1

4
@~11np1q!np2~11np!np1q#N~m!N~ l 1m!

1

4
@~11np1q!np2~11np!np1q#N~ l !N~p1q1m!

1

4
@~11np1q1m1k!np1m1k

2~11np1m1k!np1q1m1k#N~p!N~k!

1

8
@~11np1q!np2~11np!np1q#N~p1q1m1 l 1s!

3N~p1q1 l 1m!N~ l !.

~b! If there is one type-B tic-ed propagator and an ar
trary number of type-A tic-ed propagators, all propagat
carry the naive thermal factor. Several examples are sh
in Fig. 24. In the first two diagrams, the tic-ed propaga
markedy is type-B, in the third diagram the tic-ed propagat
markedx is type-B. The thermal factors for the three di
grams are, respectively,

1

4
@~11np1q1m1k!np1m1k

2np1q1m1k~11np1m1k!#N~p!N~p1m!

1

4
@~11np1q1m1k!np1m1k

2np1q1m1k~11np1m1k!#N~p!N~p1q1m!

1

8
@~11np1q!np2np1q~11np!#N~m!N~p1q1 l !

3N~p1q1m1 l 1s!.

e
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~c! If the scattering amplitude corresponds to a cut s
energy with more than one type-B tic-ed propagator, the th
mal factors for those propagators will not have the na
form. The correct thermal factor can be written,

2P iP j@~11ni !nj1ni~11nj !#. ~5!

The notation is described below. Look at the set of fie
coming from tic-ed propagators that appear betweena andb.
Identify the vertex in the self-energy that these fields ca
from. The producti runs over fields whose momentum flow
away from this vertex, and the productj runs over fields
whose momentum flows towards this vertex.~Note that since
the factor above is symmetric under interchange ofi and j
this definition could be reversed.! This factor looks almost
exactly like the factor for cut propagators, expect for t
relative plus sign. This point and the factor of 2 in~5! will be
explained below. Several examples are shown in Fig. 25.
the first diagram, the tic-ed propagators markedx andy are
both type-B. Thex in the center of the scattering amplitud
came from a vertex that the momentum of the tic-ed pro
gator flowed towards, and they in the center of the scatterin
amplitude came from a vertex that the momentum of
tic-ed propagator flowed away from. Thus, the thermal fac
for these two propagators is 2@(11nm)nl 1m1p1q1nm(1
1nl 1m1p1q)#, and the full thermal factor is

FIG. 24. Self-energies with one type-B ticed propagator and
corresponding scattering amplitudes.
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FIG. 25. Self-energies with more than one type-B tic-ed pro
gator and the corresponding scattering amplitudes.
rs marked
e

@~11np1q!np2np1q~11np!#N~p1q1m1 l 1s!@~11nm!nl 1m1p1q1nm~11nl 1m1p1q!#.

In the second diagram, all three tic-ed propagators are type-B. In the center of the scattering amplitude, the propagato
y andz have momenta that flow towards the vertex, and the propagator markedx has momentum that flows away from th
vertex. The full thermal factor is
1-10
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2@~11np1q!np2np1q~11np!#@~11np1q1m1 l 1s!nmns1np1q1m1 l 1s~11nm!~11ns!#.

The thermal factors for the last four diagrams in Fig. 25 are, in order,

2@~11np1q1m1k!np1m1k2np1q1m1k~11np1m1k!#@~11nm!~11np!1nmnp#

2@~11np1q1m1k!np1m1k2np1q1m1k~11np1m1k!#@~11nm!~11np1q!1nmnp1q#

2@~11np1q!np2np1q~11np!#@~11nl !np1q1m1 l1nl~11np1q1m1 l !#

2@~11np1q!np2np1q~11np!#@~11nl !nm1 l1nl~11nm1 l !#.
o
ot
te

n
r-
os
sio

ld

d

te
th
em
r-
o

e
ce
p
n
th
th
th

ar
no
th

or,

al

ber

rs

n,
y
es
he
ed
d

ted
ula-

op
tors
gs.
-

3. Interpretation of the rule

The physical interpretation of these results is straightf
ward. Consider the case of two tic-ed propagators. If b
propagators were type-A, the thermal factor would be de
mined by Eq.~4! which gives~up to numerical factors!,

N1N25~e11a1!~e21a2!

whereei5(11ni) is the statistical weight for the emissio
andai5ni is the statistical weight for absorption. This the
mal factor tells us that type-A fields are spectators wh
emission and absorption are uncorrelated with the emis
and absorption of any of the other fields.

If both propagators were type-B, the thermal factor wou
be determined by Eq.~5! which gives~up to numerical fac-
tors and depending on which way the momentum is route!,

e1e21a1a2 .

This result tells us that the production of the fields associa
with two type-B tic-ed propagators is correlated, and that
two emitted-absorbed pairs of fields interact with the syst
in a nontrivial way. This result is consistent with the info
mation we obtain from the scattering amplitude: for each
the two emitted-absorbed pairs, one of the partners app
on the opposite side of the emitted/absorbed line produ
by a cut propagator, and thus they cannot be treated as s
tator fields. The plus sign between the two terms correspo
to the fact that emission and absorption take place on
same side of the cut line: we do not take the difference of
weighting factors for a given process and its inverse, but
sum of the two factors. Note that the plus sign appears
exactly the same way in Eq.~4!: N/251/2@(11n)1n#.

In the case of one type-B propagator, and an arbitr
number of type-A propagators, the lone type-B field does
have any other field with which to correlate, and thus
factor given by Eq.~4! is the correct one.

C. Numerical factors

All diagrams carry an overall factor

~2p!L11
1

~2p!4L S E dpipi
2dV i D L

~6!
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whereL is the number of loops. There is an additional fact
before thermal factors are considered, which is given by@12#

S 1

2D p

2v21i ~ i p!~2 i !v ~7!

wherep is the number of propagators andv is the number of
vertices. The numerical factor contributed by the therm
factor is

2(C21)2(CorrT21)2~1/2!UnCorrT

where C is the number of cut propagators,CorrT is the
number of correlated tic-ed propagators or the total num
of factors involved in the products overi andj in Eq. ~5!, and
UnCorrT is the number of uncorrelated tic-ed propagato
or the number of thermal factors of the formN/2 from
Eq. ~4!. The second two factors in this expressio
2(1/2)UnCorrT, are explicitly included in the rules given b
Eqs. ~4!,~5!. The first two factors appear when one rewrit
the thermal factors that one obtains directly from t
Keldysh RTF Feynman rules in the physically motivat
forms given by Eqs.~2!,~5!. Combining these results an
using

C1CorrT1UnCorrT5L11

L5p112v

we find that all factors of 2 cancel and, in addition to Eq.~6!,
we are left with a numerical factor of

i ~ i p!~2 i !v.

V. EXAMPLES

In this section we give a list of the diagrams we calcula
in order to deduce the rules described above. The calc
tions were performed using theMATHEMATICA program in
@12#.

A. Two loop self-energy formed by a propagator correction

The two loop self-energy that is formed from the one lo
self-energy by adding a correction to one of the propaga
is shown in Fig. 3. There are five cuts, as shown in Fi
4~a!–4~e!. The cut in Fig. 4~e! produces three cut propaga
1-11
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M. E. CARRINGTON, HOU DEFU, AND R. KOBES PHYSICAL REVIEW D67, 025021 ~2003!
tors and carries a thermal factor (11np1q1k)nknp
2np1q1k(11np)(11nk) according to the rule in Eq.~2!.
The graphs in Figs. 4~a!–4~d! contain two cut propagator
and one tic-ed propagator. Following the rules given in E
~2!,~4!, the thermal factor for Figs. 4~a! and 4~c! is
Nk/2@(11np1q)np2np1q(11np)#. In the same way, the
thermal factor for Figs. 4~b! and 4~d! is Nk1q1p/2@(1
1np1q)np2np1q(11np)#. For a scalar theory, the dia
grams in Figs. 4~a! and 4~d! can be written in the same form
by shifting momentum integrals, and/or taking the comp
conjugate. For any theory with a cubic interaction, these d
grams have the same structure. In the future, in orde
compactify the notation, we will represent a set of diagra
of this form by drawing one diagram and writing a fact
^ N next to it, to indicate that there areN permutations of the
diagram.

B. Two loop self-energy with a vertex correction

The two loop self-energy that is formed from the one lo
self-energy by adding a correction to one of the vertices
shown in Fig. 26~a!. There are eight cuts, as shown in Fig
26~b!–26~i!. The thermal factors are obtained from the ru
given in Eqs.~2!,~4!. Figures 26~h! and 26~i! have three cut
propagators and carry the thermal factors (11nq1p)np2knk
2np1q(11np2k)(11nk) and (11nq1k)(11np2k)np
2nk1qnp2k(11np), respectively. Figures 26~b!–26~g! have
two cut propagators and one tic-ed propagator and carry
factors

@~11nk1q!nk2nk1q~11nk!#Np1q/2;

@~11nk1q!nk2nk1q~11nk!#Np2k/2;

@~11nk1q!nk2nk1q~11nk!#Np/2;

@~11np1q!np2np1q~11np!#Nk/2;
02502
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@~11np1q!np2np1q~11np!#Nk1q/2;

@~11np1q!np2np1q~11np!#Np2k/2.

In the future, we will compactify the notation by noting th
Figs. 26~b!, 26~d!, 26~e!, and 26~f!, and Figs. 26~c! and 26~g!
are permutations of each other. We will draw Fig. 26~b!, with
a factor^ 4, and Fig. 26~c!, with a factor^ 2.

FIG. 26. A two loop self-energy and its cuts.
C. Further examples

The thermal factors for the diagrams listed below are determined from the rules given by Eqs.~2!,~4!, and~5!. To simplify
notation, we define the symbol

N~x1 , . . .xn ;y1 , . . . ym!5$@11n~x1!#•••@11n~xn!#n~y1!•••n~yn!2n~x1!•••n~xn!@11n~y1!#•••@11n~ym!#%.
The thermal factors for Figs. 27~b!–27~d! are, respectively,

1

2
N~k!N~p1q1m;m,p!

1

4
N~k!N~m!N~p1q;p!

1

4
N~m!N~k!N~p1q;p!.

The thermal factors for Figs. 28~b!–28~e! are, respectively,
N~p1q1m,l ;p,l 1m!

1

2
N~p1q1m!N~p1q1 l 1m;p,l 1m!

1

4
N~m!N~ l 1m!N~p1q;p!

1

4
N~ l !N~m!N~p1q;p!.

The thermal factors for Figs. 29~b!–29~d! are, respectively,
1-12
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FIG. 27. A three loop self-energy and its cuts.

FIG. 28. A three loop self-energy and its cuts.

FIG. 29. A three loop self-energy and its cuts.
02502
FIG. 30. A three loop self-energy and its cuts.

FIG. 31. A three loop self-energy and its cuts.
1-13
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N~p1q1m1 l ;p,m,l !

1

4
N~ l !N~p!N~p1q1m;p1m!

1

2
N~ l !N~p1q1m;p,m!.

The thermal factors for Figs. 30~b!–30~g! are, respectively,

N~p1q,m,k;p1m1k!

1

2
N~k!N~p1q,m;p1m!

1

4
N~k!N~m!N~p1q;p!

1

4
N~m!N~p1m1k!N~p1q;p!

1

4
N~k!N~p1m!N~p1q;p!

FIG. 32. A four loop self-energy and its cuts.
02502
2@~11nk!np1m1k1nk~11np1m1k!#N~p1q;p!.

The thermal factors for Figs. 31~b!–31~i! are, respectively,

N~p1q1m1k;k,m,p!

1

2
N~p!N~p1q1m1k;k,p1m!

1

4
N~q1p!N~q1p1m1k!N~p1q1m;p1m!

1

4
N~m!N~k!N~p1q1m1k;p1m1k!

1

4
N~p1q!N~p1q1m!N~p1q1m1k;p1m1k!

1

4
N~p!N~k!N~p1q1m1k;p1m1k!

1

4
N~m!N~p1q1m!N~p1q1m1k;p1m1k!

2@~11nm!~11np!1nmnp#N~p1q1m1k;p1m1k!.

The thermal factors for Figs. 32~b!–32~m! are, respectively,

1

4
N~k!N~p1m!N~p1q;p!

FIG. 33. A four loop self-energy and its cuts.
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1

2
N~k!N~p1q,m;p1m!

1

2
N~p1m1q!N~p1q1k;p,k!

N~p1q1k,m;p1m,k!

1

4
N~k!N~m!N~p1q;p!

1

2
N~k!N~p1q,m;p1m!

1

2
N~k!N~p1q1m;p,m!
1

4
N~k!N~m!N~p1q1m;p1m!

1

4
N~k!N~p!N~p1q1m;p1m!

1

4
N~k!N~p1q!N~p1q1m;p1m!

1

4
N~k!N~p1q!N~p1q1m;p1m!

2@~11nk!nq1p1k1nk~11nq1p1k!#N~p1q1m;p1m!.

The thermal factors for Figs. 33~b!–33~p! are, respectively,
N~p1q1m1 l 1s;s,m,l ,p!

1

2
N~s!N~p1q1m1 l ;m,l ,p!

2@~11ns!np1q1m1 l 1s1ns~11np1q1m1 l 1s!#N~p1q1 l ; l ,p!

1

4
N~p1q1m1 l 1s!N~m!N~p1q1 l ; l ,p!

1

4
N~s!N~m!N~p1q1 l ; l ,p!

1

4
N~p1q1m1 l 1s!N~p1q1 l 1m!N~p1q1 l ; l ,p!

2@~11np1q1m1 l 1snsnm!1np1q1m1 l 1s~11ns!~11nm!#N~p1q;p!

N~ l !@~11np1q1m1 l 1s!ns1np1q1m1 l 1s~11ns!#N~p1q;p!

1

8
N~p1q1m1 l 1s!N~m!N~ l !N~p1q;p!

1

8
N~s!N~m!N~ l !N~p1q;p!

1

8
N~p1q1m1 l 1s!N~p1q1m1 l !N~p1q1 l !N~p1q;p!

1

8
N~p1q1m1 l 1s!N~p1q1m1 l !N~ l !N~p1q;p!

N~s!@~11np1q1m1 lnm1np1q1m1 l~11nm!#N~p1q;p!

1

8
N~m!N~p1q1m1 l 1s!N~p1q1 l !N~p1q;p!

N~p1q1 l !@~11np1q1m1 l 1s!ns1np1q1m1 l 1s~11ns!#N~p1q;p!.

025021-15
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VI. CONCLUSIONS

In this paper we have discussed a set of rules for ca
lating the imaginary parts of self-energy diagrams as a se
of tree amplitudes. For a physical theory such as QED th
amplitudes can be associated with physical scattering
cesses by splitting the mass shell delta functions into pos
and negative frequency parts, and looking at the terms wh
have kinematic support. The thermal factors associated
each scattering diagram have a physical interpretation
02502
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terms of the statistical weighting factors associated with
emission and absorption of thermal fields. Work on a gene
derivation of these rules from first principles is in progres
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