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Scattering amplitudes at finite temperature
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We present a simple set of rules for obtaining the imaginary part of a self-energy diagram at finite tempera-
ture as a product of tree amplitudes. These diagrams correspond to physical scattering amplitudes.
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[. INTRODUCTION (c) Consider any closed loop in which all of the propaga-
tors are off shell and momentum is free to flow around the
In this paper we discuss a set of rules for calculating théoop. If any one of the propagators in the loop is put on shell,
imaginary part of self-energy diagrams. These rules have momentum is no longer free to flow around the loop and the
simple diagrammatic representation in terms of scatterindpop is effectively “opened.”
amplitudes. They have been deduced by studying a large set (d) There are two kinds of propagators that are on shell.
of diagrams; a derivation from first principles is in progressWe call these two types of propagators “cut” propagators
and will be presented in another paper. and “tic-ed” propagators. Cut propagators and tic-ed propa-
It is well known that the imaginary part of the retarded gators carry different thermal factors. This point will be ex-
self-energy is an important quantity in thermal field theory: itplained in detail.
provides information about decay and production rates of (e) A “cut line” is a line that divides the self-energy into
particles, among other things. The physics that is containetivo pieces, each of which has one external leg. Any propa-
in the imaginary part of the self-energy is revealed by writinggator that is crossed by a cut line is put on shell and becomes
it as the product of two scattering amplitudes. At the onea “cut” propagator.
loop level, the structure of the scattering amplitude has been (f) Diagrammatically, our notation is as follows. In a self-
understood for some timgl]. Extension to higher loops is energy diagram, a cut propagator is a propagator that is
not straightforward. In this paper we discuss cutting rules ircrossed by the cut line and a tic-ed propagator is drawn with
the context of this problem. We show that rules exist thata double tic mark through it. To obtain scattering amplitudes,
make it easy to understand the physical content of the imagill on shell propagatorgcut or tic-ed are split into two

nary part of a self-energy diagram at high loop order. pieces, each of which has an end that is not connected to a
We begin by reviewing some basic concepts and definingertex. As a result, the cut line divides the self-energy dia-
some notation; gram into two separate amplitudes, dag will be explained

(a) An on shell 2-point function is proportional to a delta below) the tic-ed propagators cause each amplitude to have
function of the forms(p2— m?) wherep is the momentum of  the form of a tree amplitude, with no closed loops. The lines
the field. On shell 2-point functions are nonzero only on theobtained from the splitting of on shell propagators represent
mass shell and correspond to real fields that do not propagatee emission or absorption of fields by the medium. The lines
through the medium. that represent absorbed fields are drawn slanting backwards

(b) The system also contains virtual fields that do propafrom the vertex and lines that represent emitted particles
gate through the medium. The structure of the correspondinglanting forward from the vertex.
2-point functions depends, in general, on the choice of epsi- (g) For any given diagram, the number &ffunctions, or
lon prescription. In this paper, all such 2-point functions will the number of on shel: (cut+tic-ed) propagators, is equal
be either retarded or advanced propagators. Diagrammatie L +1 whereL is the number of loops.
cally, these propagators are represented by continuous lines To begin, we consider a one loop calculation. Following
that begin and end at interaction vertices. Weldon [1] we look at the simple case of a scalar fied

coupled to two other scalarg,; and ¢, through a cubic
interaction. The production rate for the fiedel is obtained

*Electronic address: meg@theory.uwinnipeg.ca from the imaginary part of the one loop self-energy shown in
"Electronic address: hdf@theory.uwinnipeg.ca Fig. 1(a). We obtain the imaginary part by drawing a cut line
*Electronic address: randy@theory.uwinnipeg.ca through the diagram. At one loop, there is only one way to
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draw a cut line so that each half of the diagram contains one Expanding these two delta functions we find that the
of the two external leg$Fig. 1(b)]. This cut line produces imaginary part of this diagram can be written as the sum of
two cut propagators, each of which carries a delta functiorfour terms, each of which corresponds to the square of a
(there are no tic-ed propagators in this gase scattering amplitud€l]. We obtain,

dp 2

(2m) m{5(QO_ @1~ ®2)[(1+N1)(1+Np) = NNy ]+ 8(0o+ @1~ w2)[N1(1+ny)

ImH(qo.d)=—92f

— (14NN, ]+ (0o~ w1+ wp)[(1+N)N;— Ny (1+n,) [+ 8(do+ w1+ w)[NNp— (1+ny)(1+ny) ]} (D)

where w;=Vp2+m?,  w,=+(p+q)2+m3 and n, Should notin fact expect that finite temperature field theory
= 1/(ef“1— 1) with 3 the inverse temperature agdhe cou- should have the same s.truc.turg as zero temperatu're field
pling constant. The first term in this expression correspond1€0ry- In a thermal situation, individual fields do not simply
to the probability for the decasp— ¢, ¢, with a statistical propagate through the_ vacuum, _but mter_act Wlth a medium.
weight (1+n;)(1+n,) for stimulated emission, minus Consequently, a specific scattering amplitude will involve a
the probability for the inverse decay;p,—® with the number of interference processes that are not present at zero
weight n,n, for absorption. Note that the thermal factor temperature. All of these processes are, of course, present in
(1+n,)(1+n,) —nyn, which reflects the physics of the pro- the ITF calculation, but the compactness of the notation ef-
cess involved could be written in the mathematically simplerfectively hides them from view. A lengthy procedure for ex-
form 1+n;+n, at the cost of losing information about the tracting physical amplitudes from the ITF has been discussed
physics. Similarly, the second term gives the probability forby Wong [2]. This extremely complicated calculation has
the decayd ¢, — ¢, (which involves the absorption of @,  been carried out explicitly by Majumder and Gale for the
field and the emission of &, field), minus the probability ~two loop vector boson self-energy in thermal QCE.
for the reverse process,— ® ¢,, with appropriate thermal In the real time formalism(RTF), one works in
weights. The interpretation of the third and fourth terms isMinkowski space, and Green’s functions with real time ar-
straightforward. These four processes are shown in Fig. 2. guments are obtained directly. It is well known that the RTF
We would like to study what happens at higher loopsis mathematically more complicated than the ITF because of
where scattering amplitudes have a much more complicatefie doubling of field degrees of freedom. In the closed time
structure. The task of calculating the imaginary part of thePath (CTP) representation of the RTF, the contour has two
self-energy and separating it into scattering amplitudes i®ranches: the top oneC{) runs from negative infinity to
complicated in different ways, depending on the techniquePositive infinity, and the bottom one’f) runs backwards in
that is used to calculate the imaginary part of the self-energythe other direction. These two branches give the propagator a
In the imaginary time formalisniiTF), one starts in Eu- matrix structure. The four components of thex2 matrix

clidean space, calculates Green's functions with imaginargre labeledD;;, Dj,, Dy, and Dy, and correspond to
time arguments, and performs an analytic continuation tgropagation along’;, propagation fronC; to C,, etc. The
real time at the end of the calculation. One attractive featur@ropagatoD (; corresponds to time ordered propagation. The
of the ITF is that it satisfies the intuitive belief that it should
be possible to obtain finite temperature field theory from zero v,
temperature field theory by adding thermal weights to the v,
Feynman rules, in some fashion. The ITF is mathematically ¢ ¢
simpler than the RTF because of this structure. However, the v 7_—’
price one pays for mathematical simplicity is that some : v,
physical processes are hidden. Thinking more carefully we (b)
realize that this feature of the ITF is not surprising since we
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FIG. 1. One-loop self-energy. FIG. 2. The scattering amplitudes corresponding to Fig. 1.
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advantage of working in the RTF is that it is easier to sepa- TN
rate the imaginary part of a self-energy into physical scatter- P+Q 4
ing amplitudes. This point will be discussed in detalil. Q

A great deal of work has already been done on the devel- >
opment of rules for the calculation of the imaginary parts of
diagrams in the RTF. One set of rules was derived by Kobes
and Semenoff4] using the 1/2 representation of the RTF. FIG. 3. A two-loop self-energy.
Different versions of these rules have been studied by several
authorg5,6]. A set of rules based on more general represen- Il. FIRST PART OF THE CUTTING RULES:
tations, such as the R/A or Keldysh representaions, has been PROPAGATORS
developed by Geli§7]. A summary of these different ap-
proaches is found ifi8]. We have checked that all of these A. Allowed diagrams
methods are equivalent to the rules discussed in this paper, as For any self-energy diagram, draw all possible cut lifes
they must be. However, our rules are the only ones frorrb ’

hich tract teri litud thout invok ut line is any line that divides the diagram into two pieces,
which one can exfract scatlening ampiitudes without INVoK“e , -y ¢ \which contains an external Jed cut line that opens

ing a series of intricate cancellations. Several other authorsII loons will producel + 1 cut propaqators and thist 1
have looked directly at scattering amplitudes. Aurenche an ps will p propagals
elta functions. No other propagators will be on shell. Other

collaborators have separated the scattering amplitudes co . .
taining the imaginary parts of the two loop photon self- cut lines will leave some loops unopened, and produce less

energy diagrams by dividing the phase space of the momenhan the requwec_i numbe_r @f+1 delta _functlons. Add tic
tum integrals into regions that contain the different possibleNarks to these diagrams in every possible way so(thatl
combinations of signs of the frequencies of the fiele loops are open(ii) the total number of delta functions is
However, this technique would be difficult to generalize atequal to thel +1 and(iii) it is possible to move from either
higher loops. Brandt and collaborators have developed a digxternal leg, to the cut line by following a continuous path
grammatic representation for retarded Green’s functions ilong uncut and untic-ed propagators. As an example, for the
terms of tree scattering amplitudes in the high temperaturscalar self-energy in Fig. 3, the allowed cut diagrams are
limit [10]. shown in Fig. 4{for a scalar theory, the diagrams in Figs.
In this paper we describe a set of rules that we have de4(a) and 4b) and Figs. 4c) and 4d) are equivalert
veloped for calculating the imaginary part of self-energy dia- Two examples of diagrams that violate ruii¢) are shown
grams. These rules are effectively a rearrangement of thig Fig. 5. Both of these diagrams contain the right number of
integral obtained from the RTF of finite temperature fielddelta functions(5), and every loop is opened, but it is not
theory, which displays the physical content of the expressiopossible to get from the right leg of either diagram to the cut
in a transparent way. Note that in this paper we will not doline without going through a cut or tic-ed propagator. Neither
any integrations. We remind the reader that several issuesf these diagrams should be drawn.
will arise when one attempts to perform the integrations: At first glance the statement that all loops must be opened
(a) All of the zero temperature ultraviolet divergences thatis surprising: the imaginary part of a self-energy is usually
were present in the theory before we rearranged it, will stillwritten in terms of amplitudes that contain loop corrections.
be there. They must be removed by renormalization in the4owever, for all of the diagrams that we have considered, we
usual way. have found that one can write the imaginary part of a self-
(b) There are pieces that contain singularities of the formenergy in an equivalent way in terms of tree amplitudes. It is
Jdps(p?)/(p?~ipge). These singluarities can be regulated easy to illustrate this point by looking at Fig. 3. It appears
using standard trickésee for exampl¢l1]). that the cuts shown in Figs(@—4(d) should contain a loop
(c) Some of the diagrams contain delta functions that ddntegral of the form
not have support except when certain constraints on the
masses are satisfied.
These questions have been discussed elsewhere inthe li 77
erature and are not the subject of this paper. L
The paper is organized as follows. In Sec. Il we present _.
the first part of our cutting rules: how to determine the dia-
grams that contribute to the imaginary part of a given self- (a)
energy, and for each diagram, which propagators are or
shell, retarded, or advanced. Section Il contains a discussiol
of how to interpret the diagrams produced by our rules in __
terms of scattering amplitudes. Section IV contains the sec. N
ond part of our rules: how to determine the thermal factor for
each propagator. Section V contains a list of the self-energy
diagrams that were used to deduce these rules, and the di
grams that contribute to their imaginary parts. In Sec. VI we
present our conclusions. FIG. 4. The cuts that contribute to the imaginary part of Fig. 3.

(d)
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FIG. 5. Two diagrams that violate rul@i).

I—J L"kD (k)Dr(p+g+k)
(2m)* A rRIPTQ

where Dy indicates a retarded propagator abgd an ad-
vanced propagator. However, we observe that

d*k
f Sy DRODR(P ATk

d*k
:f i DAODAP A =0

ko

because of the fact that, in both integrals, all poles in the
complexk, plane lie on the same side of the real axis. This
observation allows us to rewrite the original loop integral as

_1J d*k ) ) .
=3 (277)4{DA( )[Dr(P+0a+K)=Da(p+q+k)]

+[Da(k) = Dr(K)IDr(p+a+k)}.

Since[ Dr(p) —Da(p)] is proportional to a delta function of

the form 6(p?—m?) we find

1 d*k
|~§f (ZT)A[DA(I()é((p"’_q"_ k)2—m?)

—Dgr(p+qg+k)s(k?2—m?)].
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FIG. 7. One loop photon self-energy and scattering amplitudes.

B. Uncut and untic-ed propagators

Propagators that are uncut and untic-ed are either retarded
or advanced. There is a rule to determine which. Consider
the imaginary part of a retarded self-energy. Start from either
external leg and trace any continuous path through the dia-
gram (continuous means not traveling along a propagator
that is cut or tic-ed If the energy of a given propagator
flows in the same direction as the path you are tracing, the
propagator is retarded. If the energy flows in the direction
opposite to the direction of the path, the propagator is ad-
vanced. This rule is illustrated in Fig. 6.

Ill. SCATTERING AMPLITUDES

In this section, we discuss how to interpret the diagrams
produced by our rules as scattering amplitudes.

A. QED at one loop

Throughout most of this paper, we will work witk®
theory. This toy theory allows us to avoid a lot of the math-
ematical complexities associated with physical theories
which are not directly relevant to the problem of how to
calculate the imaginary part of a self-energy, and how to
interpret the result in terms of scattering amplitudes. How-
ever, in this section and the next, in order to discuss the
physics of scattering amplitudes in more familiar terms, we
will switch to quantum electrodynamid®QED). The struc-
ture of the scattering amplitudes in QED arid theory is
similar since both theories have an interaction involving

These two terms correspond to two diagrams with tic-edhree fields:¢® theory has a cubic interaction, and QED has

propagators on the bottom and top lines of the loop.

Dr (P+Q+L+M+S)

Dr(P+Q+L+M) Dr(P+O+LsM)

Dr(P+Q+L)

Dr(P+Q) Da (P+Q)

Q
2
8(P)

FIG. 6. An illustration of the propagator rule.

a photon-electron-positron interaction. In the diagrams in
this section and the next, all arrows give the direction of flow
of lepton number. We will look at the photon self-energy.

We start with the one loop diagraffrig. 7(@)]. There is
only one possible cut line that separates the diagram into two
pieces, so that each contains an external leg. The amplitudes
obtained from the right-hand side are shown in Fidp) and
have the same structure as those shown in Fig. 2. As dis-
cussed in the Introduction, a fermion line that represents an

P+Q+K

P+Q P+Q+K

P P+K
(a) (b)

FIG. 8. Two loop photon self-energies.
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- ptk+q) ® (pHerg) 2
NAAAS Eq P+Q k Eq
NAASAS +

k
\(P) Pog

@ ) FIG. 11. Photon decay.
FIG. 9. Central cuts.

) o graph is just the Hermitian transpose of Figa)8and the
emitted (absorbegl fermion is connected to a vertex at only central cut produces the same amplitude with the roles of the
one end and is drawn slanting forwarisackward$ from  gjeciron and positron reversed, as shown in Fig(bjl0
that vertex. Fig. ) shows the amplitude for a photon {0 agajn, the right-hand side of the diagram is the conjugate
decay into an electron-positron paiy{-e"e"), the ampli-  ampjitude. These two diagrams represent the amplitude for a
tude for a photon to absorb a positron from the medium anghhoton to decay into an electron-positron pair where one of
emit an electronfe™ —e™), etc. In the future, we restrict t0  the fermions emits an additional photon.
positive frequencies for the external field. In this case the The amplitude corresponding to the left hand side of Fig.
process represented by the last amplitude is kinematicallyp) s also shown in Fig. 1@). In this case however, the
forbidden. The left-hand side of the cut self-energy in Fig.right-hand side of the diagram does not give the conjugate
7(a) gives the conjugate of the amplitudes in Figb)7 and ~ amplitude. Instead, we get the cross product of Figall0
thus the product of the right hand side and the left-hand sidgjith the conjugate of Fig. 18). By taking the cut line di-

is a real probability. agonally in the opposite direction, we obtain the reversed
cross product, with the electron and positron switched. Com-
B. QED at two loops bining these results we obtain the square of the amplitude

There are two diagrams that contribute to the photon selfShown in Fig. 11, which is proportional to the photon decay

energy at two loops. They are shown in Figé)&nd §b).  Probability.

For each of these diagrams, there is more than one possible (2) Compton scattering. We look at exactly the same cuts
cut line. as above, but consider the amplitudes that correspond to one

emitted photon, one emitted fermion and one absorbed fer-
1. Central cuts mion. The graph in Fig. @) produces the squares of the two
L . . amplitudes shown in Fig. 18). The diagram with the propa-
To begln.wnh, for both diagrams, we look at the gut line atgr correction on theg bottom line gives the sam% zfmpli-
that goes directly through the center as shown in Fig. 9'. Iy es, with the direction of lepton flow reversed. The dia-
both cases, all loops are opened and thus there are no t|c-%§m in Fig. 9b) gives the two cross terms shown in Fig.
propagators. Both cut lines cross one photon propagator a (

) X . b). The graphs that are the same as those in Figp) 13t
two fermion propagators. The forward scattering amplitudgy i, 'the fermion lines reversed are produced by the cut on

is given by the terms i_n which ?‘" three particles are emittedthe opposite diagonal. Combining these results we obtain the
The Compton scattering amplitude occurs when the photon

is emitted, and one fermion is emitted and one is absorbed.
The amplitude for pair production is produced when the pho-
ton is absorbed and both fermions are emitted. When we
restrict to positive external frequencies, no other possibilities
are kinematically allowed. We describe these processes b

low.

(1) Forward scattering. The amplitude produced by the (a)
left hand side of Fig. @ is shown in Fig. 10a). The
right-hand side of the diagram is the conjugate amplitude.
There is another contribution to the self-energy that is the
same as Fig. @) except with the propagator correction on
the lower line, or alternatively, with the flow of lepton num-
ber in the fermion loop routed in the opposite direction. This

Mf“®;+
§/®M)ﬂw

FIG. 10. Photon decay amplitudes from Figa9 FIG. 12. Compton scattering amplitudes from Fig. 11.

(a) (b)
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Eq o B oGk
P+Q + P+K
@) 7
k @) k
Eq op+k+q) E‘l\/\/\/\}#ﬂv 2
—P;+Q—<</\ * P+K @ ®)
o® k ©e) K FIG. 15. Noncentral cuts for Fig.(8.
FIG. 13. Compton scattering. Fig. 15a) is shown in Fig. 1€c). The lone wiggly line rep-

resents the spectator particle from the heat bath. This spec-
square of the amplitude shown in Fig. 13, which is propor-tator field is normally not drawn, but its presence is neces-
tional to the Compton scattering rate. sary to obtain an interference effect: when calculating the
(3) Pair production. Following the same method, we ob-convolution of the two amplitudes, it is necessary to have the
tain the square of the amplitudes for pair production assame number of incoming and outgoing particles. We can
shown in Fig. 14. As before, the cross term is produced byvrite a schematic equation to describe these amplitudes:

Fig. ab).

(yy—e'e y)a(y—e'e ; y—y)
2. Noncentral cuts

; ; a1 A ; here the tilde indicates the spectator field.
From this point on we will discuss only forward scattering w ) . .
amplitudes. Also, we will not discuss the fact that each am- hThe gmplltudes from thelleft—hand side of F|g.(l%])5are
plitude has a partner in which the flow of the fermion num-Shown in Figs. 1®)-17(c). Figure 17a) represents the am-

ber is reversed. These graphs are obtained in exactly ﬂ.@itude for a photon to decay to an electron-ppsitron pair,
same way as was described above for the central cuts where the electron subsequently absorbs a positron from the

For both of the diagrams in Fig. 8 there is a cut that doednedium and e_mits_it bac_k into the medium. In Fig(lf_l)nhis
not open both loops. For the diagram in Figaigthis cut spectator positron is emitted and then absorbed. Figu® 17

leaves the loop formed by the propagator correction un_shows the amplitude from the right-hand side of the self-

opened. There are two ways to open this loop with a ticenergy, with the spectator positron. Schematically we write,

These two graphs are shown in Fig. 15.
The amplitudes corresponding to the left hand side of Fig. (yé+_>e+ ef’\é+)®('y—> ete” : et —>~e*).
15(a) are shown in Figs. 16) and 1&b). The first of these
graphs represents the amplitude for a photon to decay into an A real probability is obtained by combining with the am-

electron-positron pair, where the electron subsequently ab-,. . : .
sorbs a photon from the medium and emits it back into th IiSUdle; g[ﬁdvldﬁﬁdth%y cﬂl]te ”?]r:lr:)t:]s t:]heaﬁ e?tr-eh ;l:]zt gilfjee HX;'S f’;fm

medium. The second graph is the same as the first, except tlfuﬁ : : :
. . . . ‘these graphs have been extracted from the imaginary time

photon is emitted into the medium and then absorbed. Thi .

photon is sometimes referred to as a spectator field. Spectii'alcmaltlon by the authors 42] and[3]. In [2] they appear

. s Figs. 16 and 17 and [18] they are as in Fig. 12. In the
tors are on shell particles from the heat bath that enter W|ti aginary time calculation, a great deal of tedious effort is

?C?ég'x?;etﬁg(:égf ;/]?t\r/]vgh ;Tﬁc?u;'nsi[tsat%‘:\gtnoﬁ:_ng\éggsi'géecr)'fequired to separate these physical contributions. Using our
P P ’ 9 ules however, they appear immediately.

Now we consider the noncentral cut for Figlb8 The
2 unopened loop can be opened with a tic on the photon line

k
k ® (prketg) /:@+k+® [Fig. 18@)], or a tic on the fermion ling¢Fig. 18b)] (tic-ing
P + the upper fermion line would change the spectator fermion to
Q P+K : . ;
: a spectator anti-fermign The amplitudes that result from
Eq @) Eq o0 Fig. 18a) are shown in Figs. 18)-19c). The first two

graphs show the decay of a photon into an electron-positron

2 Ty
o (p+k+q)
k [0V) (p+k+q) k / \/\/\/\/<
e : i \ NANAANNAN
Eq Eq @ (p) \
w(p) ) (b)

(a (¢)

FIG. 14. Pair production. FIG. 16. Amplitudes from Fig. 1%).
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L L
W< ' wﬁ <
\ - (a) (b) (c)
a) (b)

FIG. 19. Amplitudes from Fig. 1®).

( (¢)

FIG. 17. Amplitudes from Fig. 1(®). fields are emitted/absorbed from the same vertex and could
not be seen in the figure if they were drawn on top of each
pair with a spectator photon. In Fig. & the electron ab- other.
sorbs a photon from the medium and the positron emits a (iv) All propagators will be drawn as slanting lines. Note
photon, and in Fig. 1®) the electron emits a photon and the that if we define momentum variables so that momentum
positron absorbs a photon. Figure(@9shows the amplitude flows to the right, all propagators are retardéalowing the
from the right hand side of the self-energy in Fig(@8with  rule in Sec. IIB, and thus the scattering amplitude has a

the spectator photon. We write schematically, causal interpretation: time flows to the right along any con-
_ _ . tinuous line.
(yy—e'e yo(y—ee ;| y—vy). (v) Cut propagators represent fields that are emitted and
] ] o absorbed on opposite sides of the diagram. These cut lines
The amplltudes_ from Fig. _IB) are shown in Figs. 28)-~  are drawn as horizontal arrows pointing to the right.
20(c). Schematically we write, An example of this notation is shown in Fig. 21. In the
~ L~ e~ o~ next section we describe in detail how to determine the ap-
(ve"—e'ee)e(y—e'e ; e —e). propriate thermal factor for a given cut diagram by looking

These diagrams are Figs. 19 and 2Q2h and Figs. 10 and at the corresponding scattering amplitude.

11 in[3].
(3l IV. SECOND PART OF THE CUTTING RULES: THERMAL

FACTORS
C. ¢* Theory at more than two loops

In order to discuss scattering amplitudes at higher loop. In the Introduction we said that both cut propggators and
levels, we will simplify the notation as follows. tic-ed propagators are on shell,_ and that the difference be-

(i) We revert tog® theory. tween them is t_hat they carry different thermal factors_. The

(i) We will only draw the forward scattering amplitude key t_o determining these thermal factors is understand.mg.the
(all cut fields on the positive mass shedlssociated with the physical role O.f the cut and tic-ed propagators. We will dis-
left hand side of a given cut self-energy. cuss cut and tic-ed propagators separately.

(iii ) We simplify the diagrammatic representation of tic-ed
fields as follows. All tic-ed propagators correspond to fields A. Cut propagators
that are emitted and then absorbed, or absorbed and then Return for a moment to the one loop example discussed in
emitted. Thus, if there are two tic-ed propagators on thehe Introduction. As discussed previously, the first term in
left-hand side of a cut self-energy, there are four differentgq. (1) comes from the square of the forward scattering am-
Scattering amplitudes corresponding to the four differenbmude and represents the probabi”ty for the deghy
ways in which these two fields could be emitted and ab-_, 1P, minus the probab”ity for the inverse decay_ The
sorbed from the heat bath. Using the notation from the firstield @ is the field whose self-energy we are calculating. The
part of this section we would draw four diagrams, one forfie|ds ¢, and ¢, are the fields produced by the decay of the

each of these processes, with the tic-ed propagators reprgs field (or the fields which combine to produceda field)
sented by lines slanting forward or backwards to represent

emission or absorption respectively. In this subsection, we
will draw only one diagram instead of four, and represent

emitted or absorbed fields by arrows pointing straight up, or /
slightly slanted to one side or the other in the case where tw! \/\/V\<\/v?\
(b)

(a)

@ @ =
\ \
| I('t’)

(c)

(a)

FIG. 18. Noncentral cuts for Fig.(B). FIG. 20. Amplitudes from Fig. 1®).
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[1+n(-w)]=—n(w), ()

which correctly reflects the fact that the emission of a posi-
tive energy particle is equivalent to the absorption of a nega-
tive energy particle. Note also that the momentum of a cut
propagator could flow in either directiamight or left), de-
pending on the definitions chosen for the momentum vari-
ables in the loops. Of course, physics must not depend on the
hoice of an integration variable. The identi$) ensures

at all definitions of loop monenta are equivalent.

b

FIG. 21. An example of the notation to be used in Sec. IV.

and they appear as emitted lines on the right side of th

scattering amplitude. This interpretation of the physical role
played by the fields corresponding to the cut propagators
allows us to understand the associated thermal factors. The B. Tic-ed propagators
thermal factor (X n;)(1+n,)—n4n, is the statistical . . .
weight associated with the probability for the procebs Now we consider tic-ed propagators. Both cut and tic-ed

— ¢1¢, minus the statistical weight for the inverse process.pr()pag‘"‘.ltors are on shell, and both correspo_nd to fields_that
The generalization of this idea is straightforward weare emitted and absorbed. However, the fields associated

write the thermal factor for the cut propagators as an equa\’—\{ith tic-ed propagators are er_nitted and absorbed on the same
tion of the form §|de of .the'cut s_elf—energy diagram. They represent interac-
' tions with fields in the heat bath. Naively, it appears that a
ILIL[(1+n)n,—n(1+n,)] 2) tic-ed propagator should carry a facttd:=(1+n)+n
which would give the appropriate statistical weight for a field
that is emitted and then subsequently absorl§@d.course

where the product over multiplies over fields whose mo- ) S . .
he same factor appears if emission and absorption occur in

menta approach the cut line from the left, and the produck . . .
over r multiplies over fields whose momenta approach the he opp.05|te.0rde)r.For convenience, we include a factor of
cut line from the right. It is easy to understand the structurell2 (which will be explained beloyvand use a thermal factor

of this expression. Performing the loop integrals puts eacﬁ)f the form

cut propagator on either the positive or negative mass shell. N/2. (4)

A particle that approaches the cut from the left and is on the

positive mass shell carries a factogt+n(w)] in the first

term of Eq.(2), and corresponds to an emitted particle. If theln most cases this naive guess gives the correct answer. Note
same particle were on the negative mass shell, the corréhat the interaction represented by the thermal fabi& is
sponding thermal factor would be essentially trivial: the particle is produced and disappears

P+Q+L+M+S

FIG. 22. Diagrams used to il-
lustrate the rule in Sec. IVB 2.

P+Q+L+M P+Q+L+M

P+Q+L " p+QsL
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this section. The emitted/absorbed lines in the scattering am-
plitude that are associated with the cut propagators are hori-
zontal arrows labeleé and b. The tic-ed propagators are
labeled{x, y, z - - -}. The corresponding emitted/absorbed
fields in the scattering amplitude appear as pairs labeled
{X,y, z---} (see Fig. 21 Consider a tic-ed propagator la-
beledx. In order to determine if this is a type-A or type-B
tic-ed propagator, one proceeds as follows. Trace a path
through the scattering amplitude from a to b. If you encoun-
ter both or neither of the fields labeled then the tic-ed
propagator labeled in the corresponding self-energy is “un-
split” (type-A). If you encounter ong field, then the tic-ed
propapator is “split” (type-B). Numerous examples of this
notation are given below.

2. The rule

(a) If the scattering amplitude corresponds to a cut self-
energy that contains an arbitrary number of type-A tic-ed
propagators, all of these propagators carry the naive thermal
factorN. Several examples are shown in Fig. 23. The thermal
factors for these four diagrams are, respectively,

1
Z[(1+ Nptg)Np—(14+Np)N4 o IN(M)N(l +m)

. . . 1
FIG. 23. Self-energies with type-A tic-ed propagators and the Zr(1+n n.—(1+n)n N(DN(p+a+m
corresponding scattering amplitudes. 4[( pra)Np p)Mp+qN(DN(p+q+m)

without undergoing any interactions with the rest of the sys- 1
tem. As discussed in Sec. lll, these particles are sometimes 2L M gem+ i) Npemk
called “spectators.”
There are some cases in which the fields associated with —(1+Npsmr )Nt g mr kN(PIN(K)

the tic-ed propagators undergo nontrivial interactions with

the system, and in these cases the naive thermal factor is

incorrect. These diagrams always have more than one tic-ed gl(1+Np+g)Np=(1+Np)Np.4]N(p+g+m+1+s)
propagator, and thus only occur for self-energies with three

or more loops. The authors [#,3] have not gone beyond the XN(p+qg+I1+m)N(l).

two loop level and thus have not seen this effect. In order to ) . .
identify the cut self-energy diagrams in which these non- (D) If there is one type-B tic-ed propagator and an arbi-
trivial interactions occur, and to determine the appropriatdrary number of type-A tic-ed propagators, all propagators
thermal factor, we need to look at the corresponding scattefc@rry the naive thermal factor. Several examples are shown
ing amplitudes. We describe below the rule for determining” Fig. 24. In the first two diagrams, the tic-ed propagator
if the fields represented by the tic-ed fields undergo nonmarkedy is type-B, in the third diagram the tic-ed propagator
trivial interactions, and for obtaining the thermal factors formarkedx is type-B. The thermal factors for the three dia-
these fields. We illustrate these rules by looking at severadrams are, respectively,

cuts of the diagrams shown in Fig. 22.

1. Notation Z[(l"' Nptqtm+ k) Np+mtk

We define two kinds of tic-ed propagators. -n 1+n N(DIN(D+m
For type-A tic-ed propagators, in the corresponding scat- pra+mek 1F pme i) JN(RIN(p-+m)

tering amplitude, the emitted-absorbed pair of fields from the 1
tic-ed propagator are “unsplit” by either of the emitted/ Z[(1+ Np+ gt mrk)Nptmrk
absorbed fields associated with the cut line.
For type-B tic-ed propagators, in the corresponding scat- — Mo gemek( 1+ Npsme) IN(P)N(p+g+m)

tering amplitude, the emitted/absorbed pair of fields from the

tic-ed propagator are “split” by one of the emitted/absorbed 1

fields associated with the cut line. g[(lﬁL Nptg)Np=Npiq(1+Np) IN(M)N(p+q+1)
The meaning of the expressions “split” and “unsplit” is

explained below. The cut propagators are labeleshdb in XN(p+q+m+l+s).

025021-9
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FIG. 24. Self-energies with one type-B ticed propagator and the
corresponding scattering amplitudes.

(c) If the scattering amplitude corresponds to a cut self-
energy with more than one type-B tic-ed propagator, the ther-
mal factors for those propagators will not have the naive™
form. The correct thermal factor can be written,

2IGIL[ (14 n)nj+ni(1+n;)]. (5)

The notation is described below. Look at the set of fields
coming from tic-ed propagators that appear betweeandb.

Identify the vertex in the self-energy that these fields came——
from. The product runs over fields whose momentum flows
away from this vertex, and the produgctruns over fields
whose momentum flows towards this vert@Xote that since
the factor above is symmetric under interchange ahd |
this definition could be reversedThis factor looks almost
exactly like the factor for cut propagators, expect for the b
relative plus sign. This point and the factor of 2(8) will be - -
explained below. Several examples are shown in Fig. 25. Fol b
the first diagram, the tic-ed propagators markeahdy are a
both type-B. Thex in the center of the scattering amplitude

came from a vertex that the momentum of the tic-ed propa-

gator flowed towards, and thein the center of the scattering
amplitude came from a vertex that the momentum of the
tic-ed propagator flowed away from. Thus, the thermal factor

for these two propagators is[@L+ nm)n|+m+p+q+ Nm(1 FIG. 25. Self-energies'with more_than one type-B tic-ed propa-
+ N4 msprg)], and the full thermal factor is gator and the corresponding scattering amplitudes.

[(1+np+q)np_np+q(1+np)]N(p+q+m+| +S)[(1+nm)nl+m+p+q+nm(1+nl+m+p+q)]-

In the second diagram, all three tic-ed propagators are type-B. In the center of the scattering amplitude, the propagators marked
y andz have momenta that flow towards the vertex, and the propagator markas momentum that flows away from the
vertex. The full thermal factor is

025021-10
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2[(1+ N4 )Np=Npug(L+N) LI+ Nt g me14+6) MmNst Npt g mt1+s(1+NR) (1+Ng) ]
The thermal factors for the last four diagrams in Fig. 25 are, in order,
2[(1+Nps grm+) Nptmek— Np+ grmrk( L+ Npsmi LT+ Ny) (1+np) +npng ]
2L (14 Mg gm0 My mek™ Mo qmek 1 N met) L1+ M) (141 )+ iy ]
2L(14 N )Ny = N (1N TN NG gt ML+ N g

2[(1+np+q)np_np+q(1+np)][(1+nl)nm+l+nl(1+nm+l)]-

3. Interpretation of the rule whereL is the number of loops. There is an additional factor,

The physical interpretation of these results is straightforPefore thermal factors are considered, which is givenltay

ward. Consider the case of two tic-ed propagators. If both 1\p
propagators were type-A, the thermal factor would be deter- (—) 2V L (P (—i)Y (7
mined by Eq.(4) which gives(up to numerical factojs 2

wherep is the number of propagators ands the number of
NiNp=(e;+ay)(ex+ay) vertices. The numerical factor contributed by the thermal
factor is
wheree;=(1+n;) is the statistical weight for the emission
anda;=n; is the statistical weight for absorption. This ther-

mal factor tells us that type-A fields are spectators whose . .
where C is the number of cut propagator€orrT is the

emission and absorption are uncorrelated with the emissio i
and absorption of any of the other fields. number of correlated tic-ed propagators or the total number

If both propagators were type-B, the thermal factor woulgof factors involved in the products oveandj _in Eq.(5), and
be determined by Eq5) which gives(up to numerical fac- UnCorrT is the number of uncorrelated tic-ed propagators

tors and depending on which way the momentum is routed or the number of thermal factors of _the f_orm/2 from.
Eq. (4). The second two factors in this expression,

2(1/2)°"C"T " are explicitly included in the rules given by
Egs.(4),(5). The first two factors appear when one rewrites

the thermal factors that one obtains directly from the

This result tells us that the production of the fields associate;temysh RTF Feynman rules in the physically motivated
with two type-B tic-ed propagators is correlated, and that thg, s given by Eqs(2),(5). Combining these results and
two emitted-absorbed pairs of fields interact with the systemusing

in a nontrivial way. This result is consistent with the infor-

2(071)2(CorrT71)2(1/2)UnCorrT

mation we obtain from the scattering amplitude: for each of C+CorrT+UnCorrT=L+1
the two emitted-absorbed pairs, one of the partners appears
on the opposite side of the emitted/absorbed line produced L=p+1-v

by a cut propagator, and thus they cannot be treated as spec-

tator fields. The plus sign between the two terms correspondge find that all factors of 2 cancel and, in addition to E&),
to the fact that emission and absorption take place on thwe are left with a numerical factor of

same side of the cut line: we do not take the difference of the

weighting factors for a given process and its inverse, but the H(iP)(—1)".
sum of the two factors. Note that the plus sign appears in
exactly the same way in E¢4): N/2=1/2 (1+n)+n]. V. EXAMPLES

In the case of one type-B propagator, and an arbitrary . . . . .
number of type-A propagators, the lone type-B field does not In this section we give a list of the diagrams we calculated
have any other field with which to correlate, and thus thel O'der to deduce the rules described above. The calcula-
factor given by Eq(4) is the correct one. For}s were performed using th@ATHEMATICA program in

12].
C. Numerical factors A. Two loop self-energy formed by a propagator correction

All diagrams carry an overall factor The two loop self-energy that is formed from the one loop

L self-energy by adding a correction to one of the propagators
fdpi p-zdﬂi) (6)  is shown in Fig. 3. There are five cuts, as shown in Figs.
4(a)—4(e). The cut in Fig. 4e) produces three cut propaga-

L+1 1
(2m) P
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tors and carries a thermal factor {hy. )N, K+Q
—np+q+k(1+_np)(_1+ ny) according_to the rule in Eq.2). QP+Q o
The graphs in Figs. (4)—4(d) contain two cut propagators - —
and one tic-ed propagator. Following the rules given in Egs. P

(2),(4), the thermal factor for Figs. (4 and 4c) is
NW/2[(1+ N, g)Np—Npig(1+np)]. In the same way, the
thermal factor for Figs. @) and 4d) is Ny, q:p/2[(1
+np+q)_np—_np+q(1+np)]. For a sc_alar _theory, the dia-
grams in Figs. @) and 4d) can be written in the same form
by shifting momentum integrals, and/or taking the complex
conjugate. For any theory with a cubic interaction, these dia-
grams have the same structure. In the future, in order tc
compactify the notation, we will represent a set of diagrams
of this form by drawing one diagram and writing a factor
®N next to it, to indicate that there alepermutations of the  _
diagram.

B. Two loop self-energy with a vertex correction

The two loop self-energy that is formed from the one loop
self-energy by adding a correction to one of the vertices is
shown in Fig. 26a). There are eight cuts, as shown in Figs. |
26(b)—26(i). The thermal factors are obtained from the rules
given in Eqgs.(2),(4). Figures 26n) and 2&i) have three cut
propagators and carry the thermal factorst(lg; )N, Nk (h) (i)
—Npig(1+n,)(1+n) and  (L+ng i )(1+n,- )N,

— N qNp—k(1+np), respectively. Figures 26)—-26(g) have
two cut propagators and one tic-ed propagator and carry the
factors [(1+N,1q)Np—Npigq(1+Np) INy, o/2;

FIG. 26. A two loop self-energy and its cuts.

[(1+ N4 q) M= N (1N INp - /25

In the future, we will compactify the notation by noting that

[(1+ N q)N— N (1N INR/2; Figs. 2&b), 26(d), 26(e), and 26f), and Figs. 26&) and 26g)
are permutations of each other. We will draw Fig(l26with
[(1+Npq)Np—Npyg(1+N5) IN/2; a factor® 4, and Fig. 26€c), with a factor® 2.

C. Further examples

The thermal factors for the diagrams listed below are determined from the rules given H2)Hds. and(5). To simplify
notation, we define the symbol

NXy, o XnsYas - Ym) =110 ] [14n(X) IN(Y1) - - - n(Yn) —N(Xy) - - -n(X)[L+Nn(yq)]- - - [1+n(ym) ]}

The thermal factors for Figs. 23)—27(d) are, respectively, Np+qg+m,l;p,I+m)
1 1
> N(Mp+ag+m;m,p) SN(p+a+m)Mp+g+I+m;p,l+m)
1 _ 1
2 NCON(MMp+a;p) 2 N(MN(I+m)Mp+a;p)
1 1
2 NMNKMp+a;p). 2 NONMMp+q;p).

The thermal factors for Figs. 28—28) are, respectively, The thermal factors for Figs. #9—29d) are, respectively,
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P+M+]

PAQIK P+Q+M

O+P

(a)

.@4 .@4 ._ Q4
‘o (o) )

FIG. 27. A three loop self-energy and its cuts.

(g)

FIG. 30. A three loop self-energy and its cuts.

®2
(b)
e — ®6 —& 8 —& 8 P+Q+M
! < T P+Q+M+K
() (d) (e)
O+P
. -
FIG. 28. A three loop self-energy and its cuts. e Q
P+M+K

(a)

_.52 ‘ /@3 Y
(a) ( I
®8 . q
‘ . ®4_’ i 54

e)
(b) (c) (d) (h) [0)

P+M+Q+L

(f) (8

FIG. 29. A three loop self-energy and its cuts. FIG. 31. A three loop self-energy and its cuts.
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(a)

®6 ®2 —®3
® e @

_, ®6 ®2
(e) ® (®

—®2_®2_®2
(h) 0] @
®2 ®2 »
0 o (m)

FIG. 32. A four loop self-energy and its cuts.

Mp+qg+m+I;p,m,l)

1
ZN(I)N(p)N(p+q+m:p+m)

1
S N(OMp+a+m;p,m).

The thermal factors for Figs. 89-30g) are, respectively,

Mp+q,mk;p+m+k)

1
EN(k)N(p+q,m;p+m)
1
ZN(k)N(m)N(vaq;p)
1
ZlN(m)|\|(p+m+|<)J\f(p+q;p)

—N(K)N(p+m)NMp+d;p)

PHYSICAL REVIEW 7, 025021 (2003

&

®

FIG. 33. A four loop self-energy and its cuts.

2[(1+nk)np+m+k+nk(1+np+m+k)]N(p+q;p)-
The thermal factors for Figs. 81)—31(i) are, respectively,

N(p+q+m+k;k,m,p)

1
5N(p)/\/(p+q+ m+k;k,p+m)
ZN@+pIN(g+p+m+kMp+g+m;p+m)

ZN(m)N(k)J\/’(p+q+m+ k;p+m+k)

1
ZN(p+q)N(p+q+ MM p+g+m+k;p+m+k)
—N(p)N(K)Mp+g+m+k;p+m+k)

1
ZN(m)N(p+q+m)N(p+q+m+k;p+m+k)

2[(1+np)(1+np) +npn, JM(p+ g+ m+k;p+m+Kk).

The thermal factors for Figs. 8)—32m) are, respectively,

1
ZN(k)N(p+m)N(p+q;p)
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1 1
EN(k)N(p+q,m:p+m) ZN(k)N(m)N(p+q+m:p+m)

1 1
ZN(pFm+a)Mp+a+kip.k) FNOON(PAp+q+m;p+m)

Mp+q+k,m;p+m,k) 1

L ZN(k)N(p+q)/\f(p+q+m;p+m)

ZN(k)N(m)N(p+q;p)

1

1 2 NOON(p+a)Mp+g+m;p+m)

EN(k)N(p+q,m;p+m)
2[(1+nk)nq+p+k+nk(1+nq+p+k)]Mp+q+m;p+m)'

1
EN(k)N(p+q+m,p,m) The thermal factors for Figs. 83—33(p) are, respectively,

Np+q+m+I1+s;s,m,l,p)
1
EN(S)N(p%—qu m+1;m,l,p)
2[(1+ns)np+q+m+l+s+ ns(1+np+q+m+|+s)]Mp+q+|;|!p)

Ll—lN(p+q+m+I+S)N(m)/\/(p+q+l;l,p)
1
2 NEONmMNMp+q+1il,p)

1
ZN(p+q+m+I+s)N(p+q+I+m)j\/’(p+q+|;|,p)

2[(1+ np+q+m+|+snsnm)+np+q+m+|+s(1+ns)(1+nm)]/\[(p+q;p)

N(I)[(1+np+q+m+|+s)ns+np+q+m+|+s(1+ns)]-/v(p+q;p)

1
gN(p+a+ m+1+s)N(m)N(HAMp+a;p)
1
§N(S)N(m)N(I)N(p+q;p)
%N(p+q+ m+1+s)N(p+g+m-+1)N(p+qg+1)Mp+q;p)

%N(p+q+m+l+s)N(p+q+m+I)N(I)/\/'(p+q;p)
N(S)[(1+Np 1 g+ms1Mm+ Npiqem+1(1+Nm) IM(p+0a;p)
%N(m)N(p+q+m+I+s)N(p+q+I)N(p+q;p)
N(P+a+DI(1+Nps s me1+)Ns T Npsgem+1+s(1+Ng) IMP+a;p).
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VI. CONCLUSIONS terms of the statistical weighting factors associated with the
emission and absorption of thermal fields. Work on a general
In this paper we have discussed a set of rules for calcuderivation of these rules from first principles is in progress.

lating the imaginary parts of self-energy diagrams as a series
of tree amplitudes. For a physical theory such as QED these ACKNOWLEDGMENTS
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