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Geometric approach to a massivep form duality
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Massive theories of Abelianp forms are quantized in a generalized path representation that leads to a
description of the phase space in terms of a pair of dual nonlocal operators analogous to the Wilson loop and
the ’t Hooft disorder operators. Special attention is devoted to the study of the duality between the topologi-
cally massive and self-dual models in 211 dimensions. It is shown that these models share a geometric
representation in which just one nonlocal operator suffices to describe the observables.
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I. INTRODUCTION

As is known, the electric-magnetic duality of free Ma
well theory may be seen as a particular case of a dua
transformation relating different Abelian gauge theories
arbitrary rank in the appropriate space-time dimensions@1,2#.
In D dimensions, the ranksp1 , p2 of the generalized poten
tials describing the dual Abelian theories must obey
equality p11p25D22. For example, in four dimensions
Maxwell theory is self-dual, while the second rank gau
theory is dual to the massles scalar field.

In Ref. @3# it was shown that the ‘‘electric-magnetic’’ du
ality of Abelian gauge theories allows us to describe th
physical phase space in terms of a pair of nonlocal obs
ables that are dual in the Kramers-Wannier sense@4#. The
algebra that they obey results to be invariant under spa
diffeomorphisms. This topological algebra, the dual alge
~DA!, admits a realization in terms of operators acting
functionals that depend on extended objects, inasmuch a
dual operators themselves. For instance, in the case of M
well theory in four space-time dimensions, the dual opera
are the Wilson loop and the ’t Hooft disorder operator@5#.
Both operators depend on closed spatial loops, and ma
realized on a loop-dependent Hilbert space~see Sec. II!. The
DA of the three- and four-dimensional Maxwell theory h
been previously analyzed@6#, due to their close relation with
the Yang-Mills field. Furthermore, nonlocal operators th
obey commutation relations of the DA type have been u
to quantize topological excitations in interacting field the
ries @7#.
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In this paper we discuss how the ideas of Ref.@3# can be
extended to the conventional~i.e., nontopological! Abelian
massive theories in arbitrary dimensions, and to the s
dual @8# and topologically massive theories@9# in 211 di-
mensions, which are known to be dual to each other@10#. In
all the cases, the program that we develop is as follows:
starts from a first-order master Lagrangian that encodes
dual theories simultaneously. We take this master Lagrang
to be of the Stu¨ckelberg form @11#, in order to maintain
gauge invariance even in the massive case. The ma
theory is then quantized within the Dirac scheme@12#, and
the phase space is taken into account by choosing nonl
operators that encode all the gauge-invariant content of
original canonical operators. The algebra obeyed by th
dual operators is then studied and realized onto an appro
ate set of functionals.

We shall see that the DA of massive Abelian theories
also characterized by a topological quantity, namely, the
tersection number between the extended objects that sup
the nonlocal dual operators. This contrasts with the mass
case, where the DA is governed by the linking number of
closed extended objects that enter in the construction of
dual operators@3,6#. This and other differences between bo
cases are studied.

The case of the self-dual and topologically massive th
ries presents several interesting peculiarities, regarding
DA study. Perhaps the more relevant one is that instead
pair of Wilson loop operators, as in both the massless and
conventional massive theories, only one nonlocal opera
suffices to describe the gauge-invariant content of the the
Consequently, this operator has to play both the ‘‘coor
nate’’ and ‘‘momentum’’ roles. As we shall see, this featu
has an interesting geometrical counterpart when the nonl
operator is realized in a path-dependent Hilbert space
©2003 The American Physical Society20-1
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other direction the Proca model in 211 dimensions is
equivalent to two noninteracting self-dual models with opp
site spins.

The paper is organized as follows. In Sec. II we revi
the massless case, following Ref.@3#, focusing mainly on the
study of Maxwell theory in four dimensions. In Sec. III th
DA of the Proca model in three dimensions is consider
Section IV is dedicated to the study of the self-dual a
topologically massive theories. Some concluding remarks
given in the last section. In the Appendix we summarize
generalization of the study presented in Sec. III to the cas
forms of arbitrary rank in arbitrary dimension.

II. MAXWELL THEORY

Let us summarize the results of Ref.@3# regarding Max-
well theory. The starting point is the first-order Lagrangi
density,

L5 1
2 emnlr]mAnBlr2 1

4 ~Blr1]lCr2]rCl!

3~Blr1]lCr2]rCl!, ~1!

which is invariant under the simultaneous gauge transfor
tions

dAm5]mL, ~2!

dBlr5]rjl2]ljr , ~3!

dCr5jr1]rj. ~4!

Equation~4! shows that the fieldCr is pure gauge. Its pres
ence just serves to enforce gauge invariance. When this
is gauged away in Eq.~1!, the equations of motion becom

emnlr]mAn5Blr, ~5!

emnlr]mBlr50. ~6!

SubstitutingBlr from Eq. ~5! into the master Lagrangia
~with Cr50), one finds the standard Maxwell Lagrangia
If, instead, one solves Eq.~6! locally

Blr5]lÃr2]rÃl , ~7!

and substitutes the above expression into Eq.~1! ~again with
Cr50) we obtain~after an integration by parts! the ‘‘dual’’
Lagrangian density

L̃52 1
4 Fmn~Ã!Fmn~Ã!, ~8!

in correspondence with the fact that inD54 Maxwell theory
is self-dual.

The canonical analysis may be summarized as follo
There are three secondary first class constraints,

c52 1
2 e i jk] iBjk'0, ~9!

u i52~pC
i 2e i jk] jAk!'0, ~10!

u52] ipC
i '0, ~11!
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wherepc
i is the momentum canonically conjugate toCi . We

are takinggmn5diag(1,21,21,21). These constraints ar
reducible (] iu

i2u50) and appear associated, respective
to A0 , B0i , andC0 as their Lagrange multipliers.

The fieldsAi and 1
2 e i jkBjk are mutually conjugate,

@Ak~xW !, 1
2 e l i j Bi j ~yW !#5 idk

l d (3)~xW2yW !, ~12!

as can be seen from the first-orderBF term in the master
Lagrangian~see Ref.@13#!. c, u i , andu generate the gaug
transformations forAi , Bi j , Ci , andpC

i . The gauge trans-
formations for the remaining fields are obtained imposing
gauge invariance on the extended action, taking into acco
the reducibility of the first class constraints.

On the physical sector, the Hamiltonian reduces to

H5E d3xW
1

2
~B iB i1E iE i !, ~13!

with the magnetic and electric fields given, respectively,

B k[e i jk] jAi , ~14!

E i[ 1
2 e i jk@Bjk1F jk~C!#. ~15!

The gauge-invariant combinations of the operators
pearing in the above expressions indicate which are the n
local dual operators we are interested in. They are the Wil
loop

W~g!5expS i R
g
dyiAi~yW ! D , ~16!

with g a closed spatial path, and the operator

V~S,G!5expS i R
G
dyiCi~yW ! D expS i E

S
dSke

ki jBi j D ,

~17!

which depends on the spatial open surfaceS whose bound-
ary is G. In virtue of the constraint~9!, one has

V~Sclosed!ucphysical&5ucphysical&, ~18!

i.e., V does not depend on the surfaceS, but only on its
boundaryG. The algebra obeyed by the dual operators~the
DA! is given by

W~g!V~G!5eiL(g,G)V~G!W~g!, ~19!

where the quantity

L~g,G!5
1

4p R
g
dxi R

G
dyje i jk

~xW2yW !k

uxW2yW u3
~20!

measures the Gauss linking number betweeng andG, which
are closed curves inR3, and is a topological object, since
does not depend on the metric properties of the space.

The operatorV(G) results to be the ‘‘dual’’ Wilson loop,
i.e., the contour integral of the dual potentialÃ alongG @6#.
0-2
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It must be noticed, however, that these results are obta
from a formulation that does not include this potential a
Lagrangian variable, which would be redundant.

The DA ~19! is satisfied if the operators are defined to a
onto loop dependent functionalsC(g) as

W~g!C~g1!5C~g +g1!, ~21!

V~G!C~g1!5e2 iL(G,g1)C~g1!. ~22!

Here g +g8 denotes the Abelian group of loops produ
@14,15#. It is worth recalling that an Abelian loop is a
equivalence class of closed curves, defined as follows.
curves g1 and g2 are equivalent if their form factors
Ti(xW ,g1) andTi(xW ,g2), with

Ti~xW ,g![E
g
dyid (3)~xW2yW !, ~23!

are equal. With this definition it is easy to see that the us
composition of curves is lifted to a group product.

The electric and magnetic fields may be obtained fr
W(g) andV(G) through the expressions

B i~xW !52 i e i jkD jk~xW !W~g!ug50 , ~24!

E i~xW !52 i e i jkD jk~xW !V~G!uG50 , ~25!

where we have made use of the loop derivativeD i j (x) of
Gambini-Trias@14#,

ds i j D i j ~xW ! f ~g![ f ~dg +g!2 f ~g!, ~26!
l
e
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that measures the change experimented by a loop depen
object f (g) when its argumentg is modified by attaching a
small plaquettedg of areads i j at the pointxW . In view of
Eqs. ~24! and ~25!, the Hamiltonian and the other obser
ables of the theory may be expressed in terms of the b
operatorsW and V. Equations~19!, ~21!, and ~22! are the
basic results of the geometric formulation of massless th
ries that we are going to extend to massive cases, with
without topological terms, in the following sections.

III. PROCA THEORY IN THREE DIMENSIONS

In order to preserve gauge invariance, we start from
grangian of the Proca model in the Stu¨ckelberg form,

L52 1
4 FmnFmn1 1

2 m2~Am1]m f !~Am1]m f !. ~27!

It is a trivial matter to see that the equation of motion as
ciated with the auxiliar fieldf is nothing but a consistenc
requisite for the other equation, which is the relevant o
This reflects the invariance of the Lagrangian density~27!
under the gauge transformations

dAm5]mL, ~28!

d f 52L. ~29!

As in the Maxwell case,f may be eliminated by choosingf
50. To incorporate the dual formulation of the theory~27!,
we take the master Lagrangian
L85memnl]mAnBl1
m2

2
~Bm1]mv!~Bm1]mv!1

m2

2
~Am1]m f !~Am1]m f !, ~30!
a

ld

he

a

mas-
which is first order in the Proca fieldAm and the dual field
Bm . Besidesf we have introduced the Stu¨ckelberg fieldv,
associated withBm , to promote gauge invariance.

It can be seen that Eq.~30! corresponds to two self-dua
models@8# with opposite spins. In fact, if we do the chang

Am5
1

A2
~am

1 1am
2 !,

Bm5
1

A2
~am

1 2am
2 !,

f 5
1

A2
~ f 11 f 2!,

v5
1

A2
~ f 12 f 2!, ~31!
we will get two decoupled self-dual Lagrangians@see Eq.
~54! further# in Stückelberg form. Each of them describes
massive mode with spin11 for one mode and spin21 for
the other@10#. The invariance underP andT transformations
is accomplished if we exchange the fieldsam

1 andam
2 ~and so

with the fieldsf 1 and f 2). In this sense we see that the fie
Bm behaves as a pseudovector.

The equations of motion that result after eliminating t
Stückelberg fields are

emnl]nBl1mAm50, ~32!

emnl]nAl1mBm50. ~33!

By substitution ofBl from Eq. ~33! into Eq. ~30! we obtain
the Proca Lagrangian~27! ~with f 50). Doing an analogous
procedure withAm from Eq. ~32! we obtain the same Proc
Lagrangian, but this time in terms of the dual fieldBm . In
this sense, one says that the theory is self-dual, and the
0-3
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ter LagrangianL8 is a good starting point to explore th
geometrical consequences of this duality.

Let us now quantize the theory. From the ‘‘BF’’ term we
directly read the commutator@13#

@Ai~xW !,ek jBj~yW !#5 i
1

m
d i

kd (2)~xW2yW !. ~34!

The Hamiltonian results to be

H5E d2xW S 1

2m2
pv

2 1
1

2m2
p f21

m2

2
~Bi1] iv!~Bi1] iv!

1
m2

2
~Ai1] i f !~Ai1] i f !2A0~p f1me i j ] iBj !

2B0~pv1me i j ] iAj !D , ~35!

where pw and p f are the momenta conjugate tov and f,
respectively. We did not considerA0 and B0 as canonical
variables since their role as Lagrange multipiers is cle
They are associated with the first class constraints

p f1me i j ] iBj'0, ~36!

pv1me i j ] iAj'0, ~37!

that generate the time independent gauge transformation
the theory. At this point we can compare Eq.~35! with the
Hamiltonian of the Proca theory obtained from the stand
action. Starting from Eq.~27! with f 50, and following the
canonical quantization procedure one obtains the Ha
tonian

HProca5E d2xW S 1

4
Fi j Fi j 1

m2

2
AiAi1

1

2
p ip i

1
1

2m2
~] ip

i !2D , ~38!

after solving the second class constraint to eliminate the t
component of the vector field. In Eq.~38!, Ai and p i are
canonically conjugate. On the other hand, in the gau
invariant model the HamiltonianH may be expressed as

H5E d2xW S 1

2
~e i j ] iAj !

21
1

2
~e i j ] iBj !

2

1
m2

2
~Bi1] iv!~Bi1] iv!1

m2

2
~Ai1] i f !~Ai1] i f ! D .

~39!

The equivalence of the two formulations is clear after fixi
f 50, v50 and identifyingp i with me i j Bj .

Examining the first class constraints one realizes that
gauge-invariant combinations that can be formed from
02502
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canonical fieldsAi , Bi , f, andv areAi1] i f andBi1] iv.
Hence, it is natural to introduce the nonlocal Wilson-lik
operators

W~gx
x8!5expS ieE

gx
x8

dxi~Ai1] i f ! D , ~40!

V~Gy
y8!5expS ieE

Gy
y8

dxi~Bi1] iv! D , ~41!

wheregx
x8 (Gy

y8) is an open curve inR2, starting atx ~y! and
ending atx8 (y8) ande is a constant with unitsL21/2. These
operators play the role of the Wilson loop and its dual@Eqs.
~16! and ~17!# in the four-dimensional Maxwell theory. In
virtue of the constraints~36!,~37! the introduction of nonlo-
cal operators associated withp f andpv would be redundant.
In fact, the exponential ofi times the integral ofpv over the
region ofR 2 bounded by a closed contourC is equivalent to
W(C). A similar argument holds forp f andV.

It is simple to show that the operators~40!,~41! obey

W~g!V~G!5e2 i (e2/m)N(g,G)V~G!W~g!, ~42!

where

N~g,G!5E
g
dyiE

G
dxje i j d (2)~xW2yW !,

5E
G
dxje i j Ti~xW ,g!,

5E
g
dxie i j Tj~xW ,G!, ~43!

is the oriented number of intersections between the curveg
andG. This topological quantity obeys the relations

N~g,G!52N~G,g!, ~44!

N~g1 ,g2g3!5N~g1 ,g2!1N~g1 ,g3!. ~45!

Equation ~42! is the dual algebra for theD5211 Proca
theory. As was pointed out in the Introduction, its topologic
‘‘structure constant’’ involves the intersection index of th
curves that enter in the definition of the nonlocal operato
instead of linking numbers, which are the objects that app
in the DA of massless theories@3#.

Our next step will be to realize the DA~42! in an appro-
priate geometrical representation. To this end we employ
Abelian open-path representation, which has been discu
in Refs. @16,17#. The main features may be summarized
follows. One groups the piecewise continuous~and not nec-
essarily closed! curves ofR2 in equivalence classes chara
terized by the equality of their form factorsT(xW ,g). Then the
usual composition of curves turns into a group product. I
a trivial matter to show that the Abelian group of loops is
subgroup of the Abelian group of open paths. In addition
the loop derivative Eq.~26!, one can define the path deriva
tive @16,18#
0-4
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hid i~xW !C~g!5C~dg +g!2C~g!, ~46!

which computes the variation of a path-dependent func
when an infinitesimal open pathdgx

x1h going from x to x
1h (h→0) is appended tog. It is related to the loop de
rivative through the expression

D i j ~xW !5] id j~xW !2] jd i~xW !. ~47!

The DA ~42! may be realized onto open-path-depend
wave functionals in the form

W~g!C~g1!5C~g +g1!, ~48!

V~G!C~g1!5ei (e2/m)N(G,g1)c~g1!. ~49!

As in the Maxwell case, we have chosen a geometric re
sentation in which the nonlocal operator associated with
‘‘direct’’ field, i.e., the Wilson path, produces a ‘‘translation
in path space, while that associated with the dual field
diagonal. One could also interchange these roles. Since
theory is self-dual, the dual geometric representation res
to be a path representation too.

With the use of the derivative~46!, the basic local observ
ables of the theory may be obtained from the nonlocal d
operators,

Ai1] i f 52 i
d i~xW !

e
W~g!U

g50

, ~50!

Bi1] iv52 i
d i~xW !

e
V~G!U

G50

. ~51!

As we show in the Appendix, the program developed
this section can also be carried out for massivep forms in
arbitrary dimensions. InD dimensions, Abelian massiv
theories ofp1 andp2 forms are dual forp11p25D21.

For instance, the four-dimensional Proca theory is dua
the massive Kalb-Ramond model. On the other hand, m
sive p-form theories are associated with generalized Wils
surfacesW(Sp), whereSp is an openp surface. Then the
dual algebra generalizes to

W~Sp1
!V~Sp2

!5e2 iN(Sp1
,Sp2

)V~Sp2
!W~Sp1

!, ~52!

whereN(Sp1
,Sp2

) is the intersection index of the open su

facesSp1
andSp2

.

IV. SELF-DUAL AND TOPOLOGICALLY
MASSIVE THEORIES

A. Master Lagrangian and canonical quantization

It is well known that the topologically massive@9#,

STM5E d3xS 2
1

4
FmnFmn1

m

4
«mnlFmn~A!AlD , ~53!

and self-dual theories@8#
02502
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SAD5E d3xS 2
m

4
«mnlFmnAl1

m2

2
AmAmD , ~54!

provide locally equivalent descriptions of spin 1 mass
particles in 211 dimensions@10#, although they exhibit dif-
ferent global behaviors depending on the topological prop
ties of the space-time where they are defined@19,20#.

The local equivalence between these models may
viewed by noticing that they are dual, in the sense that b
may be obtained from the master action@10#

SM5
m

2 E d3xF«mnlFmn~A!S Cl1
1

2
AlD1mCmCmG ,

~55!

where Fmn5]mAn2]nAm . We shall takegmn5diag(1,21,
21). The equations of motions, obtained by varying t
independent fieldsAm ,Cm , are

«mnl]n~Cl1Al!50, ~56!

«mnl]nAl1mCm50. ~57!

Using Eq. ~56! to eliminateAl in Eq. ~57! we obtain the
equations of motion for the SD model. In other directio
from Eq. ~57! we can eliminateCm in Eq. ~56! to obtain the
equations of of motion of the TM model. This proves th
local classical equivalence.

As in the previous sections, the ‘‘C2’’ term spoils gauge
invariance. We remedy this fact by introducing an auxilia
Stückelberg fieldv,

SM8 5
m

2 E d3xF«mnlFmn~A!S Cl1
1

2
AlD

1m~Cm1]mv!~Cm1]mv!G . ~58!

This action is invariant under the simultaneous gauge tra
formations

dAm5]mj, ~59!

dCm5]mz, ~60!

dv52z. ~61!

From Eq. ~61! we see that the fieldv is pure gauge, as
corresponds to the Stu¨ckelberg formulation.

Now we apply the canonical procedure of quantization
the master model. First, we decompose the action~58! into
spatial and temporal parts,

SM8 5E d3xFm« i j F0i S Cj1
1

2
Aj D1

m

2
« i j Fi j S C01

1

2
A0D

1
m

2
~C01v̇ !22

m

2
~Ci1] iv!~Ci1] iv!G . ~62!

The canonical momenta conjugate to the dynamical varia
Ai , Ci , andv are
0-5
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pA
i 5m« i j ~Cj1

1
2 Aj !, ~63!

pC
i 50, ~64!

pv5m~C01v̇ !. ~65!

We consider the fieldsA0 and C0 as nondynamical. They
will appear in the next step as Lagrange multipliers. Eq
tions ~63! and ~64! are just primary constraints among th
phase-space variables

c i
A[pA

i 2m« i j S Cj1
1

2
Aj D'0, ~66!

c i
C[pC

i '0, ~67!

while Eq. ~65! allows us to obtain the velocities associat
with v. Thus, the Hamiltonian on the manifold defined
the primary constraints is given by

H5E d2xW S 1

2m2
pv

2 1
m2

2
~Ci1] iv!21A0u11C0u2D ,

~68!

where

u1[2m« i j ] i~Aj1Cj !, u2[2m« i j ] iAj2pv . ~69!

Following the scheme of quantization of Dirac, we exte
the Hamiltonian to the whole phase space,

H̃5E d2xW S 1

2m2
pv

2 1
m2

2
~Ci1] iv!~Ci1] iv!1A0u1

1C0u21lA
i c i

A1lC
i c i

CD . ~70!

At this point we observe that the variablesA0 andC0 are the
Lagrange multipliers associated with the ‘‘secondary’’ co
straintsu1 andu2, respectively. Now, we define the Poisso
brackets among the canonical variables by

$Ai~xW !,pA
j ~yW !%5d i

jd (2)~xW2yW !, ~71!

$Ci~xW !,pC
j ~yW !%5d i

jd (2)~xW2yW !, ~72!

$v~xW !pv~yW !8%5d (2)~xW2yW ! ~73!

~the remaining Poisson brackets vanish! and proceed to re
quire the preservation in time of the constraints, takingH̃ as
the generator of time translations. This leads to determine
Lagrange multipliers associated with the primary constra
~63! and ~64!,

lA
i 5] iA01m« i j ~Cj1] jv!, ~74!

lC
i 5] iC02m« i j ~Cj1] jv!, ~75!
02502
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and it is seen that no further secondary constraints ar
Substituting the multipliers into the Hamiltonian yields

H̃5E d2xW S 1

2m2
pv

2 1
m2

2
~Ci1] iv!~Ci1] iv!1A0w1

1C0w21m« i j ~Cj1] jv!c i
A2m« i j ~Cj1] jv!c i

CD ,

~76!

where

w1[2] ic i
A1u152] ipA

i 2
m

2
« i j ] iAj ,

w2[2] ic i
C1u252] ipC

i 2pv2m« i j ] iAj ,
~77!

result to be the first class constraints of the theory.
The matrix associated with the second class constra

Ca[(c i
A ,c i

C) may be written as

Cab~xW ,yW ![$Ca~xW !,Cb~yW !%52m« i j S 1 1

1 0D d (2)~xW2yW !.

~78!

Its inverse is given by

Cab
21~xW ,yW ![$Ca~xW !,Cb~yW !%21

52
1

m
« i j S 0 1

1 21D d (2)~xW2yW !, ~79!

and allows us to define the Dirac brackets

$F,G%* [$F,G%2E d2xWd2yW $F,Ca~xW !%Cab
21~xW ,yW !

3$Cb~yW !,G%. ~80!

Recalling that Dirac brackets are consistent with second c
constraints, we can eliminatepA

i andpC
i from now on, em-

ploying the constraintsCa . The brackets between the re
duced phase-space variables are then

$Ai~xW !,Aj~yW !%* 50, ~81!

$Ai~xW !,Cj~yW !%* 5
1

m
e i j d (2)~xW2yW !, ~82!

$Ci~xW !,Cj~yW !%* 52
1

m
e i j d (2)~xW2yW !, ~83!

$v~xW !,pv~yW !%* 5d (2)~xW2yW !. ~84!

Once the phase space has been reduced, the first class
straints become

u1'0, u2'0, ~85!
0-6
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and it can be seen that the time independent gauge tran
mations generated by these constraints on the reduced p
space variables are given by

dAi~xW !5] ij, ~86!

dCi~xW !5] iz, ~87!

dv~xW !52z, ~88!

dpv50, ~89!

as expected.
The next step in the quantization procedure is to prom

the fields to operators acting on a Hilbert spaceH, obeying
commutation relations given byi $•,•%* , and ask the physi-
cal vectorsuc& to belong to the kernel of both first clas
constraint operators:u1uc&50 andu2uc&50. The basic ob-
servables~in the sense of Dirac!, from which all relevant
gauge-invariant information of the theory can be recover
are the operators2e i j ] iAj , Ci1] iv, and pv . It is then
natural, within the spirit of the previous sections, to intr
duce the nonlocal operators

W~C![expS ie R
C
Aidxi D , ~90!

V~gx
x8![expS ieE

gx
x8

~Ci1] iv!dxi D . ~91!

In this expression,e is a constant with dimensionsL21/2. The
Wilson loop ~W! and Wilson path (V) operators depend o
the closed and open pathsC andg, respectively. It is easy to
see from Eqs.~81!–~84! that these operators obey

W~C!W~C8!5W~C8!W~C!, ~92!

W~C!V~g!5e2 i (e2/m)N(C,g)V~g!W~C!, ~93!

V~g!V~G!5ei (e2/m)N(g,G)V~G!V~g!, ~94!

whereN(g,G), the oriented number of intersections betwe
g andG, was defined in Eq.~43!.

One could also introduce a nonlocal operator associa
with pv : the exponential ofi times the integral ofpv over
the region ofR 2 bounded by a closed contourC. However,
in virtue of the first class constraintu2'0, this operator
would be just another representation for the Wilson loop~90!
when restricted to the physical space of states, so we do
gain anything with its introduction.

It should be remarked that, as in the previous cases,
local gauge-invariant operators may be obtained from
nonlocal ones. In fact, the local operatorCi1] iv can be
recovered from the Wilson path by considering an infinite
mal open pathdg, i.e.,

V~dg!511 iedg i~Ci1] iv!1O~dg2!. ~95!

On the other hand, ifdg is closed, we have
02502
or-
se-
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V~dg!511 ieds i j F̃ i j 1O~ds2!, ~96!

where F̃ i j [] iCj2] jCi . In a similar way, the local gauge
invariant operatorFi j 5] iAj2] jAi[e i j B and the Wilson
loop are related through

W~dg!511 ieds i j e i j B1O~ds2!, ~97!

wheredg is an infinitesimal loop. From the latter expansio
it is straightforward to see that

Ci1] iv52
i

e
d i~xW !V~g!U

g50

, ~98!

B52
i

2e
e i j D i j ~xW !W~C!U

C50

. ~99!

Finally, the evolution of the physical states is governed
the Schro¨dinger equation

i
d

dt
uc~ t !&5E d2xW S 1

2
B21m2~Ci1] iv!2D uc~ t !&.

~100!

B. Geometrical representation and the dual algebra

The algebra of nonlocal operators~92!–~94! may be real-
ized on the space of open-path-dependent functionalsc(g)
of Sec. III, if we prescribe

W~C!c~g![expS i
e2

m
N~C,g! Dc~g!, ~101!

V~G!c~g![expS 2 i
e2

2m
N~G,g! Dc~G+g!. ~102!

For instance, using Eq.~102! one has

V~G!V~G8!c~g!

5V~G!@e2 i (e2/2m)N(G8,g)c~G8+g!#

5e2 i (e2/2m)N(G,g)e2 i (e2/2m)N(G8,G+g)c~G+G8+g!

5ei (e2/m)N(G,G8)V~G8!V~G!c~g!, ~103!

in agreement with Eq.~94!. In addition to realizing the non-
local algebra, we have to consider the restrictions that
first class constraints impose onto the path dependent st
The constraintu2 is automatically satisfied if the nonloca
operator associated withpv @see comment after Eq.~94!# is
realized as~essentially! the Wilson loopW. So it remains to
study the constraintu1,

e i j ] i~Aj1Cj !'0, ~104!

which may be imposed onto the states as
0-7
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expS ie R
C
~Âi1Ĉi !dxi D uc&

5expS 2
1

2 R
C
R

C
dxidyj@Âi~xW !,Ĉj~yW !# DW~C!V~C!uc&,

5W~C!V~C!uc&,

5uc&, ~105!

or, in other words,

W~C!'V~ C̄!, ~106!

within the physical sector of the Hilbert space. To obtain t
result we used thatN(C1 ,C2)50 for closed pathsC1 , C2.
Equation~106! states that instead of a pair of ‘‘Wilson’’ op
erators just one of them suffices, namely,V(g), that simul-
taneously plays the role of ‘‘coordinate’’ and ‘‘momentum
That N(C1 ,C2) vanishes when the curves are closed a
matters to see that when Eq.~106! holds~i.e., on the physical
sector!, Eq. ~94! already implies Eqs.~92! and ~93!. There-
fore, it is just Eq.~94! which corresponds to the dual alg
bras of the previous sections@Eqs.~19! and~42!#, with which
it should be compared.

So far, it remains to study how Eq.~106! restricts the
space of states. Combining Eq.~106! with Eqs. ~101! and
~102!, one obtains

c~C +g!5e2 i (e2/2m)N(C,g)c~g!. ~107!

Taking C to be an infinitesimal closed path we can see t
this equation is just the nonlocal version of the different
constraint recently obtained in a study of the path-sp
quantization of the Maxwell-Chern-Simons theory@18#

S r~xW ,g!2 i
m

e2
e i j D i j ~xW !D c~g!50, ~108!

where

r~xW ,g![2] iT
i~xW ,g!52(

s
@d2~xW2bW s!2d2~xW2aW s!#

~109!

is a functional that depends on the boundary (aW ,bW ) of the
pathg. Since the path may comprise several piecess, bothaW

and bW denote the set of starting and ending points, resp
tively. It can be said then thatr(xW ,g) is the ‘‘density of
extremes’’ of the pathg. The solution to Eq.~108! was found
to be @18#

c~g!5eix(g)F~aW ,bW !, ~110!

where F(aW ,bW ) is an arbitrary functional of the boundar
(aW ,bW ) and
02502
s
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x~g!52 i
e2

4pm (
s
E

g
dxie i j S ~xj2bs

j !

uxW2bW su2
2

~xj2as
j !

uxW2aW su2
D

52 i
e2

4pm
DQ~g!, ~111!

with DQ(g) being the algebraic sum of the angles subtend
by the pieces ofg, measured from their ending pointsbW ,
minus that measured from their starting pointsaW .

The path-dependent functionx(g) is ill defined due to the
ambiguous definition of the angle subtended by a path w
it is measured from their own ending points. In fact, wh
the point from which the angle is measured coincides w
one of the extremes of the path, one loses the straight
connecting that point with the extreme, which would serve
a reference to compute the desired angle. We can replace
fidutial straight line by the tangent to the path at the pro
lematic point. For instance, if we want to compute the an
subtended by the pathg, given as a map from the interva

@0,1# to R3, measured from its starting pointyW (0)5aW , we
can take the prescription

Q~g,aW ![ lim
a→01

E
a

1

dt
dyi~ t !

dt
e i j

~yj~ t !2a j !

uyW2aW u2
. ~112!

It may be seen that this prescription is consistent with
fact thatx(g) must be a path-dependent function, and n
merely a curve-dependent one.

It is worth noticing, from Eq.~110!, that the path depen
dence of the wave functionals is realized through the bou
ary points of the paths, and through the way they wi
around these points. Hence, we see that in this case not
the DA shows a topological character, but also the geome
cal representation of the algebra carries a topological c
tent.

Equations~95!–~97!, together with the realizations~101!
and ~102! for the DA, allow us to see that the gaug
invariant operatorsB(xW ) andCi(xW )1] iv(xW ) are realized as

B~xW !→2 i
e2

m
r~xW ,g!, ~113!

Ci~xW !1] iv~xW !→2 iDi~xW !

[2 id i~xW !2
e2

2m
e i j Tj~xW ,g!, ~114!

whose action on gauge-invariant functionals can be see
respect the form given in Eq.~110! @18#. The same is then
true for the nonlocal operatorV(g), in view of its definition
~91!.

Now, let us quote the path-representation expressions
the Poincare´ generators of the theory:

H5
m2

e2 E d2xW F2D i j ~xW !D i j ~xW !2
1

2
Di~xW !Di~xW !G , ~115!

Pi5
m

2e2E d2xWe jkD jk~xW !iDi~xW !, ~116!
0-8
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J5
m

e2E d2xWe i j xieklDkl~xW !Dj~xW !. ~117!

It can be shown that the operatorPi ~J! generates rigid trans
lations~rotations! of the pathg appearing in the argument o
the wave functionalc(g), as should be expected. Sinc
x(g) is invariant under both translations and rotations,
above result does not contradict the fact thatPi and J are
gauge-invariant operators. In other words, one has, for
infinitesimal translation alongui ,

~11ui Pi !c~g!5eix(g)~11ui Pi !F~aW ,bW !. ~118!

Thus, Pi translates the boundary (aW ,bW ) of the path while
maintaining the form of the wave functional given by E
~110!, which is dictated by gauge invariance. A similar arg
ment holds for infinitesimal rotations.

V. DISCUSSION

We have studied the duality symmetry between mass
Abelian p forms, with and without topological terms, from
the point of view of the geometrical representations that
each case, generalize the loop representation of Max
theory. We found that in the cases without topological term
and within the physical sector of the Hilbert space, the
nonical algebra of local operators can be translated int
nonlocal algebra of a pair of gauge-invariant operators,
exhibit an interesting geometrical content, and that is ch
acterized by a topological quantity, namely, the intersect
index between the geometrical objects that constitute the
02502
e

n
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e

n
ell
,
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at
r-
n
r-

gument of the gauge-invariant operators. This algebra,
dual algebra, may be realized in a basis of wave function
depending on open paths, orp surfaces, according to the ran
of the forms involved. In general, for any pair of dual the
ries, there is also a pair of dual geometric representatio
This situation degenerates in the case of self-duality, si
then the ‘‘direct’’ and the ‘‘dual’’ theories are equivalent.

Regarding the study of the TM and SD case theories
211 dimensions, we found that, as in the Proca mode
211 dimensions, the topological quantity that characteri
the DA is the number of intersections of two paths. Howev
unlike the Proca’s case, these paths are different argum
of the same operator. Another important difference is tha
the TM and SD models, the open paths involved fall in
equivalence classes labeled by their boundary]g and their
winding properties described byDQ(g). One could say that
in this case the geometric representation correspond
‘‘rubber bands with fixed ends’’ and not to a path represe
tation.

The results of this study could contribute to put bo
massless and massive Abelian gauge theories under a
mon scope, regarding their geometrical properties. It rema
to explore whether or not these ideas find a suitable ex
sion to the non-Abelian case. Also, it would be interesting
study how the equivalence between the Proca model and
self-dual models with opposite spins is manifested in
geometrical representation.
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APPENDIX: CONVENTIONAL MASSIVE THEORIES

In this appendix we discuss briefly how to extend the results of Sec. III to the general case of duality between
Abelian formsAm1•••mp

andBm1•••mD2p21
, for p50,1, . . . ,D21, in D space-time dimensions. We start from the Stu¨ckelberg

form of the master action, i.e.,

I M
(p,D)5E dDxS g~21!pD

~p11!! ~D2p21!!
em1•••mp11n1•••nD2p21Fm1•••mp11

~A!Bn1•••nD2p21

2
g~21!p

2~D2p21!!
@Bm1•••mD2p21

1Fm1•••mD2p21
~C!#22

g~21!pm2

2p!
@Am1•••mp

1Fm1•••mp
~v!#2D , ~A1!

with F( f )[d f for any form f. Here,v and C are auxiliary Stu¨ckelbergp21 andD2p22 forms, respectively. From the
space-time decomposition of the master action~A1!, which is given by

I M
(p,D)5E dDxS 1

2~D2p22!!
@B0i 1••• i D2p22

1F0i 1••• i D2p22
~C!#22

1

2~D2p21!!
@Bi 1••• i D2p21

1Fi 1••• i D2p21
~C!#2

1
m2

2~p21!!
@A0i 1••• i p21

1F0i 1••• i p21
~v!#22

m2

2p!
@Ai 1••• i p

1Fi 1••• i p
~v!#2

1
g~21!pD

p! ~D2p21!!
e i 1••• i pj 1••• j D2p21Ȧi 1••• i p

Bj 1••• j D2p21

2
g~21!pD

~p21!! ~D2p21!!
e i 1••• i pj 1••• j D2p21] i 2

A0i 2••• i p21
Bj 1••• j D2p21

2
g~21!pD

p! ~D2p22!!
~21!pe i 1••• i p11 j 1••• j D2p22] i 1

Ai 2••• i p11
B0 j 1••• j D2p22D , ~A2!
0-9
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we can read the fundamental Poisson bracket

$Ai 1••• i p
~xW !,Bj 1••• j D2p21

~yW !%5ge i 1••• i pj 1••• j D2p21d (d)~xW2yW !, ~A3!

and obtain the Hamiltonian as

HM
(p,D)5E ddxW H 1

2~D2p22!!
~pC

i 1••• i D2p22!21
1

2~p21!!
~pv

i 1••• i p21!21
1

2~D2p21!!
@Bi 1••• i D2p21

1Fi 1••• i D2p21
~C!#2

1
1

2p!
@Ai 1••• i p

1Fi 1••• i p
~v!#21B0i 1••• i D2p22

Q1
i 1••• i D2p221C0i 1••• i D2p23

Q2
i 1••• i D2p231v0i 1••• i p22

Q3
i 1••• i p21

1A0i 1••• i p21
Q i 1••• i p21J . ~A4!

In this equation, the quantities

Q1
i 1••• i D2p2252

1

~D2p22!! FpC
i 1••• i D2p221

g~21!p(D11)

p!
e j 1••• j p11i 1••• i D2p22] j 1

Aj 2••• j p11G ,
Q2

i 1••• i D2p2352
1

~D2p23!!
] ipC

ii 1••• i D2p23 ,

Q3
i 1••• i p2252

1

~p22!!
] ipv

i i 1••• i p22 , ~A5!

Q4
i 1••• i p215

1

~p21!! Fpv
i 1••• i p211

g~21!p(D11)

~D2p21!!
e i 1••• i p21 j 1••• j D2p] j 1

Bj 2••• j D2pG , ~A6!

are the secondary first class constraints associated with the Lagrange multipliersB0 , C0 , v0, andA0, respectively.
The nonlocal and gauge-invariant ‘‘Wilson operators’’ of this theory are

W~Sp!5expS i E
Sp

~A1dv! D , ~A7!

V~SD2p21!5expS i E
SD2p21

~B1dC! D . ~A8!

They obey the dual algebra

W~Sp!V~SD2p21!5exp@2 iN~Sp ,SD2p21!#V~SD2p21!W~Sp!, ~A9!

whereN(Sp ,SD2p21) is the oriented number of intersection between the hypersurfacesSp andSD2p21. This model admits
two dual geometric representations. In one of them,W(Sp) appends ap surfaceSp to the argument of the surface-depende
functionalC(Sp8) on which it acts, whileV(SD2p21) counts (i times the exponential of! how many timesSp8 andSD2p21

intersect each other. In the ‘‘dual’’ geometric representation, on the other hand, these roles are interchanged:V appends
SD2p21 surfaces whileW counts intersection numbers. This result should be compared with the 211 case discussed in
Sec. III.
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