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Massive theories of Abeliap forms are quantized in a generalized path representation that leads to a
description of the phase space in terms of a pair of dual nonlocal operators analogous to the Wilson loop and
the 't Hooft disorder operators. Special attention is devoted to the study of the duality between the topologi-
cally massive and self-dual models int2 dimensions. It is shown that these models share a geometric
representation in which just one nonlocal operator suffices to describe the observables.
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I. INTRODUCTION In this paper we discuss how the ideas of R8f.can be
extended to the conventionéle., nontopological Abelian
As is known, the electric-magnetic duality of free Max- massive theories in arbitrary dimensions, and to the self-
well theory may be seen as a particular case of a dualityjual [8] and topologically massive theori¢g] in 2+1 di-
transformation relating different Abelian gauge theories ofyensjons, which are known to be dual to each ofaéf. In
arbitrary rank in the appropriate space-time dimensjt. 5| the cases, the program that we develop is as follows: one

In D d|men_S|pns, the ranks, , P2 of the ggnerallzed POIeN- giarts from a first-order master Lagrangian that encodes the
tials describing the dual Abelian theories must obey the : . . :
: > ; : ) dual theories simultaneously. We take this master Lagrangian
equality py +p,=D—2. For example, in four dimensions, "o~ ¢ 1o “Sigkelber form[11], in order to maintain
Maxwell theory is self-dual, while the second rank gauge . . 9 th o Th ¢
theory is dual to the massles scalar field. gauge invariance even in the massive case. The master

In Ref.[3] it was shown that the “electric-magnetic” du- th€ory is then quantized within the Dirac schefie], and
ality of Abelian gauge theories allows us to describe theith® Phase space is taken into account by choosing nonlocal
physical phase space in terms of a pair of nonlocal obsenRPerators that encode all the gauge-invariant content of the
ables that are dual in the Kramers-Wannier seddeThe  Original canonical operators. The algebra obeyed by these
algebra that they obey results to be invariant under spati@lual operators is then studied and realized onto an appropri-
diffeomorphisms. This topological algebra, the dual algebraate set of functionals.
(DA), admits a realization in terms of operators acting on We shall see that the DA of massive Abelian theories is
functionals that depend on extended objects, inasmuch as tladso characterized by a topological quantity, namely, the in-
dual operators themselves. For instance, in the case of Makersection number between the extended objects that support
well theory in four space-time dimensions, the dual operatorghe nonlocal dual operators. This contrasts with the massless
are the Wilson loop and the 't Hooft disorder operatbt. case, where the DA is governed by the linking number of the
Both operators depend on closed spatial loops, and may kdosed extended objects that enter in the construction of the
realized on a loop-dependent Hilbert spésee Sec. )l The  dual operator§3,6]. This and other differences between both
DA of the three- and four-dimensional Maxwell theory had cases are studied.
been previously analyzdé], due to their close relation with The case of the self-dual and topologically massive theo-
the Yang-Mills field. Furthermore, nonlocal operators thatries presents several interesting peculiarities, regarding the
obey commutation relations of the DA type have been use®A study. Perhaps the more relevant one is that instead of a
to quantize topological excitations in interacting field theo-pair of Wilson loop operators, as in both the massless and the
ries[7]. conventional massive theories, only one nonlocal operator
suffices to describe the gauge-invariant content of the theory.
Consequently, this operator has to play both the “coordi-

*Email address: parias@fisica.ciens.ucv.ve nate” and “momentum” roles. As we shall see, this feature
"Email address: lleal@fisica.ciens.ucv.ve has an interesting geometrical counterpart when the nonlocal
*Email address: jcperez@fisica.ciens.ucv.ve operator is realized in a path-dependent Hilbert space. In

0556-2821/2003/62)/02502@11)/$20.00 67 025020-1 ©2003 The American Physical Society



PIO J. ARIAS, LORENZO LEAL, AND J. C. F"REZ-MOSQUERA PHYSICAL REVIEW D67, 025020 (2003

other direction the Proca model in+2l dimensions is whererrL is the momentum canonically conjugateGp. We

equivalent to two noninteracting self-dual models with oppo-are takingg,,,=diag(1-1,—1,—1). These constraints are

site spins. reducible ¢;6'—6=0) and appear associated, respectively,
The paper is organized as follows. In Sec. Il we reviewto A,, By, andC, as their Lagrange multipliers.

the massless case, following RE3], focusing mainly on the The fieldsA; and 3 €' B« are mutually conjugate,
study of Maxwell theory in four dimensions. In Sec. Il the

DA of the Proca model in three dimensions is considered. [A(X), 5 €'l Bij(j)]:i5L5(3)(>Z—§), (12
Section IV is dedicated to the study of the self-dual and

topologically massive theories. Some concluding remarks aras can be seen from the first-ord@F term in the master
given in the last section. In the Appendix we summarize the agrangian(see Ref[13]). ¢, ¢, and ¢ generate the gauge
generalization of the study presented in Sec. Ill to the case afansformations fo;, B;;, C;, and 7. The gauge trans-

forms of arbitrary rank in arbitrary dimension. formations for the remaining fields are obtained imposing the
gauge invariance on the extended action, taking into account
Il. MAXWELL THEORY the reducibility of the first class constraints.

. . On the physical sector, the Hamiltonian reduces to
Let us summarize the results of Rg8] regarding Max- Phy

well theory. The starting point is the first-order Lagrangian a1
density, H=f d3x§(5'5'+5'5'), (13

=1 cuvip _1 _
£=2€"700,ABY, — (B, T\, 0,C0) with the magnetic and electric fields given, respectively, by

X (BM+ ghCP—gPCh), 1 y
( ) ( ) BkE eljkain , (14)
which is invariant under the simultaneous gauge transforma- i
tions E'=7e"[Bj+Fi(C)]. (19
OA,=3d,A, (2 The gauge-invariant combinations of the operators ap-
pearing in the above expressions indicate which are the non-
0B\, =3, =\, (3)  local dual operators we are interested in. They are the Wilson
loop
O0C,=§,+d,¢. (4)
Equation(4) shows that the fielc,, is pure gauge. Its pres- W( 7):exﬁ<i jg dyiAi()7)), (16)
Y

ence just serves to enforce gauge invariance. When this field
is gauged away in Eq1), the equations of motion become \yitp y a closed spatial path, and the operator

g A, =B, (5)
8 Q(z,r)zexp(i 3§deici(§)>exp<iLdzkek”B”),

e*"g B, ,=0. (6)
m=Np (17)
SubstitutingB,, from Eq. (5) into the master Lagrangian ) _
(with C,=0), one finds the standard Maxwell Lagrangian, Which depends on the spatial open surfaceshose bound-
If, instead, one solves E@6) locally ary isI". In virtue of the constrain(9), one has

B\,= 07)\Rp_ 5'pr , 7 Q(Zgiosed| ‘/’physica} =| ‘//physica}! (18

i.e., ) does not depend on the surfake but only on its
boundaryl’. The algebra obeyed by the dual operatahe
DA) is given by

and substitutes the above expression into(Ep(again with
C,=0) we obtain(after an integration by paijtshe “dual”
Lagrangian density

~ ~ - — alL(y.])
in correspondence with the fact thatlr=4 Maxwell theory where the quantity
is self-dual.

. . . 1 . o (x—y)k

The canonical analysis may be summarized as follows. L(y)=— é dx 35 dy € === (20)
There are three secondary first class constraints, 4m Jy r x—y|3

p=—3€1%9,B;~0, (9)  measures the Gauss linking number betwgemdI", which

_ . - are closed curves iR3, and is a topological object, since it
0'=—(me— e”k&jAk)~0, (100  does not depend on the metric properties of the space.
. The operato)(I") results to be the “dual” Wilson loop,
0=—ymc~0, (1) j.e., the contour integral of the dual potentfaialongT [6].
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It must be noticed, however, that these results are obtainethat measures the change experimented by a loop dependent
from a formulation that does not include this potential as aobjectf(y) when its argumeny is modified by attaching a

Lagrangian variable, which would be redundant. small plaquettesy of areads’l at the pointx. In view of
The DA(19) is satisfied if the operators are defined to actgqs, (24) and (25), the Hamiltonian and the other observ-
onto loop dependent functiona¥(y) as ables of the theory may be expressed in terms of the basic
operatorsW and €). Equations(19), (21), and(22) are the
W)W (y) =T (yoy1), 2y P quations(19, (21) and (22

basic results of the geometric formulation of massless theo-
AW — e LTy _ 29 ries that we are going to extend to massive cases, with and
(¥ (y)=e (72) (22 without topological terms, in the following sections.

Here yoy' denotes the Abelian group of loops product

[14,15. It is worth recalling that an Abelian loop is an IIl. PROCA THEORY IN THREE DIMENSIONS
equivalence class of closed curves, defined as follows. The ) )
curves y; and v, are equiva'ent if their form factors In order to preserve gauge invariance, we start from La-

TH(X,77) andTi(X, y,), with grangian of the Proca model in the Skelberg form,

- RSP L=—3F, F*+3m?(A,+3,0)(A*+4F). (2
T'(x,wzf dy 6®(x-y), (23 FrFram A o b
Y
It is a trivial matter to see that the equation of motion asso-
are equal. With this definition it is easy to see that the usuatiated with the auxiliar field is nothing but a consistence

composition of curves is lifted to a group product. requisite for the other equation, which is the relevant one.
The electric and magnetic fields may be obtained froniThis reflects the invariance of the Lagrangian deng2y)
W(vy) andQ(T") through the expressions under the gauge transformations
B'(x)=—i €A (OW(¥)],-0, (24) A, =d,A, (29)
iV i KA (e
100 =~ Au()QI)r—o, (25 S A 29
where we have made use of the loop derivatvg(x) of
Gambini-Trias[14], As in the Maxwell casef may be eliminated by choosinfy
L =0. To incorporate the dual formulation of the thed®y),
S Ajj(X)f(y)=T(Syey)—f(y), (26)  we take the master Lagrangian
|
m? m?
L'=me*"™d,A,By+ 7(BM+ 9,0)(B*+ 9 w)+ T(A#Jr 3, F)(A#+rf), (30)

which is first order in the Proca field, and the dual field we will get two decoupled self-dual Lagrangiafsee Eq.
B, . Besidesf we have introduced the Stkelberg fieldw,  (54) further] in Stickelberg form. Each of them describes a
associated witlB,,, to promote gauge invariance. massive mode with spir-1 for one mode and spir1 for

It can be seen that E¢30) corresponds to two self-dual the othef{10]. The invariance undd? andT transformations
models[8] with opposite spins. In fact, if we do the change is accomplished if we exchange the fiehnf§ andai (and so

with the fieldsf, andf,). In this sense we see that the field

I B, behaves as a pseudovector.
Au= E(alﬁaﬂ), The equations of motion that result after eliminating the
Stickelberg fields are
1 128 —
e*" g ,A, + mB*=0. (33
1
f= E(fl“LfZ)’ By substitution ofB* from Eq.(33) into Eq.(30) we obtain
the Proca Lagrangiaf27) (with f=0). Doing an analogous
1 procedure withA* from Eq. (32) we obtain the same Proca
w=——=(f;—f,), (31  Lagrangian, but this time in terms of the dual fiddq . In
V2 this sense, one says that the theory is self-dual, and the mas-
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ter Lagrangianl’ is a good starting point to explore the canonical fieldsA;, B;, f, andw areA;+¢;f andB; + J,w.

geometrical consequences of this duality. Hence, it is natural to introduce the nonlocal Wilson-like
Let us now quantize the theory. From thBF” term we operators

directly read the commutat¢i 3]

o 1 o W(yi’)zexp(ie x,dxi(Ai+(9if) , (40
[Ai(x),€49B;(y)] =i 82 (x—y). (34) "
The Hamiltonian results to be Iy )ZeXP< iefry,dxi(3i+ﬂiw)>, (41)
y
2 ’ oo, . .
H:f d2x iwi+iwf2+ m—(Bi-Fo"iw)(Bi-i-é’iw) whgrey§ (I'y) is an open curve ||R2,'start|_ng ab/<2(y) and
2m? 2 2 ending atx’ (y') andeis a constant with units ~ 2. These
2 operators play the role of the Wilson loop and its dEds.
A+ A+aF) —A +méioB. (16) and (17)] in the four-dimensional Maxwell theory. In
2 (A AT (AF GT) = Ag(m+meldB)) virtue of the constraint$36),(37) the introduction of nonlo-

cal operators associated with and,, would be redundant.

(35) In fact, the exponential dftimes the integral ofr, over the
region of R 2 bounded by a closed contodris equivalent to
W(C). A similar argument holds fofr; and ().

- Bo( m,+ I'T‘IEij ﬂIA])

where ,, and 7; are the momenta conjugate t® and f, It is simple to show that the operata(0),(41) obey
respectively. We did not consideék, and B, as canonical (EMNG.T)
variables since their role as Lagrange multipiers is clear. W(y)Q(I')=e 7HQC)W(y), (42
They are associated with the first class constraints
where
mi+me'g;B;~0, (36) P
“ N [ ay [ ddel sy,
7,+melA;~0, (37 vy JT
that generate the time independent gauge transformations of =f dxl el Ti(x,7),
the theory. At this point we can compare E§5) with the r
Hamiltonian of the Proca theory obtained from the standard o
action. Starting from Eq(27) with f=0, and following the =f dx'e'TI(x,I), (43
canonical quantization procedure one obtains the Hamil- Y
tonian is the oriented number of intersections between the cupves
1 m2 1 andI'. This topological quantity obeys the relations
— | d?x| ZE. F.. + — AA. + — 77 71
Hproca—J d X(4F,]F|J+ 5 AA+ 277,77, N(y,T)=—N(T,7), (44)
1 - N(y1,7273) =N(y1,72) +N(y1,73). (49
+—(a7)?], (39)
2m Equation (42) is the dual algebra for th®=2+1 Proca

) ) o _ theory. As was pointed out in the Introduction, its topological
after solving the second class constraint to eliminate the timestycture constant” involves the intersection index of the
component of the vector field. In E¢38), A; and 7' are  cyryes that enter in the definition of the nonlocal operators,
canonically conjugate. On the other hand, in the gaugemstead of linking numbers, which are the objects that appear
invariant model the Hamiltoniarl may be expressed as in the DA of massless theori¢s].

Our next step will be to realize the D?2) in an appro-
H= J dz)'(’(l(eija_A_)Z_l_ l(eija_B_)z priate geometrical representation. To this end we employ the
2 i 2 l Abelian open-path representation, which has been discussed
2 2 in Refs.[16,17. The main features may be summarized as
+—(Bj+d;0)(Bi+ d,0)+ — (A + a, ) (A +a,) . follows. One groups the pi2e_cewis¢ continugaad not nec-
2 2 essarily closedcurves ofR“ in equivalence classes charac-
(39)  terized by the equality of their form factoTs{i, v). Then the
usual composition of curves turns into a group product. It is
The equivalence of the two formulations is clear after fixinga trivial matter to show that the Abelian group of loops is a
f=0, =0 and identifyingz' with me"B; . subgroup of the Abelian group of open paths. In addition to
Examining the first class constraints one realizes that théhe loop derivative Eq(26), one can define the path deriva-
gauge-invariant combinations that can be formed from thdive [16,18
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i S(X)W(y) =W (Syoy)—¥(y), 46 m m?
(OW(y)=T(5y°7)~¥(¥) (46) SAD:Jdsx(_zgwwAﬁ?AﬂAu (54
which computes the variation of a path-dependent function

when an infinitesimal open patﬁyﬁ*“ going fromx to x provide locally equivalent descriptions of spin 1 massive

+h (h—0) is appended to. It is related to the loop de- particles in 2+1 dimensiond10], although they exhibit dif-

rivative through the expression ferent global behaviors depending on the topological proper-
) R R ties of the space-time where they are defin&®,20.
Ajj(X)=d; 6j(X) = 9; 5i(X). (47) The local equivalence between these models may be

_ viewed by noticing that they are dual, in the sense that both
The DA (42) may be realized onto open-path-dependeninay be obtained from the master actidi]
wave functionals in the form

m 3 1
WY)W (y)=V(yeyy), (48) SM:EJ d°x C)\+§A)\

£#NF L (A) +mC,C*

(59

Q)W (yy) =€/ EMNTID (), (49)
whereF,,=d,A,—d,A,. We shall takeg,,=diag(1,-1,
As in the Maxwell case, we have chosen a geometric repre—1). The equations of motions, obtained by varying the
sentation in which the nonlocal operator associated with théndependent fieldé,,,.C,, , are
“direct” field, i.e., the Wilson path, produces a “translation”
in path space, while that associated with the dual field is e""™d,(Cy+A,)=0, (56)
diagonal. One could also interchange these roles. Since the
theory is self-dual, the dual geometric representation results
to be a path representation too.
With the use of the derivativel6), the basic local observ-
ables of the theory may be obtained from the nonlocal du

g™ A +mCH=0. (57)

Using Eq.(56) to eliminate A, in Eq. (57) we obtain the
quations of motion for the SD model. In other direction,
rom Eq.(57) we can eliminateC , in Eq. (56) to obtain the

operators, equations of of motion of the TM model. This proves the
5(%) local classical equivalence.
A+ f=—i —=W(y) ' (500  Asin the previous sections, thef,‘_z" term spoils gauge
e y=0 invariance. We remedy this fact by introducing an auxiliary
Stickelberg fieldw,
B~+ﬁ~w=—iMQ(F) (51 m 1
o e oo sgﬂzgf d3x| e**F ,,(A)| C\+ EA)\)
As we show in the Appendix, the program developed in
this section can also be carried out for masgivlerms in +m(C,+d,0)(CH+ i w)|. (58
arbitrary dimensions. InD dimensions, Abelian massive
theories ofp, andp, forms are dual fop; +p,=D—1. This action is invariant under the simultaneous gauge trans-
For instance, the four-dimensional Proca theory is dual t@grmations
the massive Kalb-Ramond model. On the other hand, mas-
sive p-form theories are associated with generalized Wilson OA,=3d,§, (59
surfacesW(Z ), where2 , is an openp surface. Then the
dual algebra generalizes to 6C,=d,¢, (60)
W(E,)Q(3,)=e Mo )3, )W(E,), (52 So=—{. (61)

From Eq.(61) we see that the fieldo is pure gauge, as
corresponds to the Stkelberg formulation.
Now we apply the canonical procedure of quantization to
the master model. First, we decompose the acti@) into
IV. SELF-DUAL AND TOPOLOGICALLY spatial and temporal parts,
MASSIVE THEORIES

whereN(Epl,Epz) is the intersection index of the open sur-
faces; andX, .

. 1 m . 1
mSJFOi Cj+§Aj +ESJF” CO+§AO

A. Master Lagrangian and canonical quantization Su= f d3x
It is well known that the topologically massiy8],

m . m
+E(c0+w)2—E(ci+aiw)(ci+aiw) } (62

3 1 v m VA
Stu= | | = ZF L F* "+ e F L (AA ], (53

The canonical momenta conjugate to the dynamical variables
and self-dual theorie8] A, Ci, andw are
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Wk:msij(Cﬁ%Aj), (63) and it is seen that no further secondary constraints arise.
Substituting the multipliers into the Hamiltonian yields

me=0, (64) 1 m2
: F|=J dzi(—zwfu+—(Ci+aiw)(ci+aiw)+Ao<p1
7, =M(Co+ w). (65) 2m 2

We consider the field$\, and C, as nondynamical. They
will appear in the next step as Lagrange multipliers. Equa-
tions (63) and (64) are just primary constraints among the

+Copyrt+ ,LLsij(Cj-i-z?jw) ¢f‘—,u,8ij(Cj+z9jw)¢iC ,

phase-space variables (76)
‘ ) 1 where
lpﬁzw;\—ms”(c#EAj)%o, (66) .
_ @15_(9i‘/’iA+91:_3i77;\_Eeijé’iAj,
Yy =mc~0, (67)

. : - : =—Gf+ 0= — dme—m,—me' A,
while Eq. (65) allows us to obtain the velocities associated $2 Wit 0 1™ Mo e AR

with . Thus, the Hamiltonian on the manifold defined by

the primary constraints is given by result to be the first class constraints of the theory.
The matrix associated with the second class constraints

W= (y2,yF) may be written as

(77

29 1 2 m2 2
H= | d°x ﬁﬂ'uﬁ-?(Cﬁ-&iw) +A001+0002
N - N (1 1 N
(€8) cab(x.y>z{~lfa<x>,wb<y>}=—mS”(1 0)5(2)“_”'
where (78)

01=—melg(Aj+C)), O,=—ms'lgA—m,. (69 Itsinverse is given by

Following the scheme of quantization of Dirac, we extend Cap (X,Y)={W4(x), Py(y)}
the Hamiltonian to the whole phase space, 1 1
= gl SD(x—v 7
~ 1 5 m2 ms (1 -1 (X Y): ( 9)
H= f d?x —2770)+7(Ci +0;w)(Ci+ djw)+Ayb,
2m and allows us to define the Dirac brackets
+C002+>\k<%*+ki:¢ic)- (70 {F,G}*E{F,G}—f d2Xd?y{F, W o(X)}CoH(X.Y)
At this point we observe that the variablég andC, are the X{Wy(y),G}. (80)

Lagrange multipliers associated with the “secondary” con- ] ) ) )
straints@, and 6,, respectively. Now, we define the Poisson Recalling that Dirac brackets are consistent with second class

brackets among the canonical variables by constraints, we can eliminate,, and 7. from now on, em-
ploying the constraintsV',. The brackets between the re-
{A(X), Th(y)}= 8 6D (x—y), (77  duced phase-space variables are then
[CR), mh()} = 86D, 72 A0 AW =0 (&
- - 1 .-
{o(X)7,(y) = 6@(x—y) (73) {AI(X),Ci(y)}* = — el 6P (x—y), (82)

(the remaining Poisson brackets vanisimd proceed to re- 1

quire the preservation in time of the constraints, taktihgs {Ci(x),Ci(y)j* =~ —¢" 5 (x—y), (83
the generator of time translations. This leads to determine the

Lagrange multipliers associated with the primary constraints - - - -

(63) and (64), {o(x),m,(y)}* =P (x—y). (84)

Once the phase space has been reduced, the first class con-

i i(C.a g
Aa= iAo+ me! (Cj+djw), (74) straints become

Ne=0d,Co—me! (Cj+djw), (79 0,~0. 6,~0, ®9
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and it can be seen that the time independent gauge transfor- Q(8y)=1+ieddE; +0O(0?) (96)
mations generated by these constraints on the reduced phase- ! '

space variables are given b ~ -
P g y whereF;;=4,C;—4,C;. In a similar way, the local gauge-

SAI(X)= ;& (86) invariant operatorF;;=,A;— d;Aj=¢;B and the Wilson
! e loop are related through

8Ci(X)=d;¢, (87)

W(Sy)=1+iedo' ;B+0O(50?), (97)
dw(x)=—¢, (88) wheredvy is an infinitesimal loop. From the latter expansions
5.0, (89) it is straightforward to see that
i
as expected. o _ Ci+diw=——86(X)Q(y) , (99)
The next step in the quantization procedure is to promote € y=0
the fields to operators acting on a Hilbert sp&¢eobeying
commutation relations given by -,-}*, and ask the physi- i .
cal vectors|y) to belong to the kernel of both first class B=— g€’ A;(OW(C) (99
C=0

constraint operatorsi;|/)=0 and#,|#)=0. The basic ob-
servables(in the sense of Dirg¢ from which all relevant ) ) ] )
gauge-invariant information of the theory can be recovered, Finally, the evolution of the physical states is governed by
are the operators-€!9,A;, Ci+dw, and m,. It is then the Schradinger equation

natural, within the spirit of the previous sections, to intro-

d -1
duce the nonlocal operators '&W’(t»:f d2x(582+m2(ci+&iw)2)Iw(t)>.
W(C)Eexp( ie ngidxi), (90) (100
c
B. Geometrical representation and the dual algebra
Q(yi')sexp( ie X,(Ci+¢9iw)dxi). (91 The algebra of nonlocal operatdi®2)—(94) may be real-
Yx ized on the space of open-path-dependent functioféld

. L o . of Sec. lll, if we prescribe
In this expressioreis a constant with dimensiors 2. The P

Wilson loop (W) and Wilson path ) operators depend on e?
the closed and open patfisand y, respectively. It is easy to W(C) ( V)EGX% FN(C, 7)) (), (10D
see from Eqs(81)—(84) that these operators obey

ry — ' 2
WOWIE)=WIETWLO), 92 Q) wzexp( i f—mmr,y)) #(Toy). (102
W(O)Q () =€ EIMNENQ(y)W(C), 93
For instance, using Eq102) one has
Q(y) Q)= EMNODAT) (), (94)

Q)T ) ()
whereN(vy,I'), the oriented number of intersections between o, ,
y andT', was defined in Eq43). =Q(I)[e (PMNT (T 7o) ]

One could also introduce a nonlocal operator associated
with 7, : the exponential of times the integral ofr,, over
the region ofR 2 bounded by a closed contodr However,
in virtue of the first class constraim,~0, this operator
would be just another representation for the Wilson 162/
when restricted to the physical space of states, so we do n
gain anything with its introduction.

It should be remarked that, as in the previous cases, t
local gauge-invariant operators may be obtained from th
nonlocal ones. In fact, the local operatGf+ d;w can be
recovered from the Wilson path by considering an infinitesi-
mal open pathdy, i.e.,

= g 1(P2ZMN(T ) g =i(#2MN(I.T>9) o[ "o )
:ei(eZ/m)N(r,r’)Q(pf)Q(r)¢( Y), (103

in agreement with Eq94). In addition to realizing the non-
ocal algebra, we have to consider the restrictions that the
first class constraints impose onto the path dependent states.

he constraintd, is automatically satisfied if the nonlocal
operator associated with, [see comment after E¢94)] is
realized agessentially the Wilson loopW. So it remains to
study the constrainé,

Q(8y)=1+ie6y (Ci+d,w)+O(5y?). (95) €19,(A;+Cj)=~0, (104
On the other hand, 6y is closed, we have which may be imposed onto the states as
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) ~ 4 : 2 [ (X= i) (Xj—aj)
ex |e3£<Ai+ci>dx')|w> —is fdxleu AL
o4, O 2 | R
1 A 2
=exp — = dx'dy'[Ai(x),C. W(C)Q(C)| ), _- i
F{ 5 fﬁc jgc YIAI(X),Ci(y) ] |W(C)QO) | 4) =—i7——A0(y), (117
=W(O)QO)|¢), with A® () being the algebraic sum of the angles subtended
=), (105 by the pieces ofy, measured from their ending poinﬁs
minus that measured from their starting poi&ts
or, in other words, The path-dependent functigr(y) is ill defined due to the
ambiguous definition of the angle subtended by a path when
W(C)~Q(5), (106) it is measured from their own ending points. In fact, when

the point from which the angle is measured coincides with

within the physical sector of the Hilbert space. To obtain thisPn€ Of the extremes of the path, one loses the straight line
result we used thal(C;,C,)=0 for closed path€;, C,. connecting that point with the extreme, which would serve as
Equation(106) states that instead of a pair of “Wilson” op- & ref_erence_ to compute the desired angle. We can replace that
erators just one of them suffices, namelyy), that simul- f|dut|gl strz_ilght Ilng by the tangent to the path at the prob-
taneously plays the role of “coordinate” and “momentum.” lematic point. For mstancg, if we want to compute 'Fhe angle
That N(C;,C,) vanishes when the curves are closed alsgubtended by the path, given as a map from the interval
matters to see that when E4.06) holds(i.e., on the physical [0,1] to R3, measured from its starting poig{0)=a, we
sectoj, Eq. (94) already implies Eqs(92) and (93). There-  can take the prescription
fore, it is just EQ.(94) which corresponds to the dual alge- . _ 1odyi(t) . (Yt —ad)
bras of the previous sectiofi§gs.(19) and(42)], with which O(y,@)= lim f dt—g; el ———.
it should be compared. a—ot”@ ly—al

So far, it remains to study how Eq@l06) restricts the
space of states. Combining EGL0O6) with Egs. (101) and
(102), one obtains

(112

It may be seen that this prescription is consistent with the

fact that x(y) must be a path-dependent function, and not

merely a curve-dependent one.

o It is worth noticing, from Eq(110), that the path depen-
Y(Coy)=eETPMNCEA (), (1079 dence of the wave functionals is realized through the bound-

ary points of the paths, and through the way they wind

Taking C to be an infinitesimal closed path we can see thakround these points. Hence, we see that in this case not only

this equation is just the nonlocal version of the differentialthe DA shows a topological character, but also the geometri-

constraint recently obtained in a study of the path-spaceal representation of the algebra carries a topological con-

quantization of the Maxwell-Chern-Simons the¢iyg] tent.

Equations(95)—(97), together with the realizationd.01)
and (102 for the DA, allow us to see that the gauge-

- m . .
p(X,)’)—lgeuAij(X) ¥(y)=0, (108 jnvariant operator8(x) andC;(x) + d;w(X) are realized as
- e’ .
where B(X)— —i mp(x,’y), (113

()=~ 4TI (%y) = — S [~ Bo) — (%= a9)] G0 w69 = =IO
S 2
(109 =—i8(X)— :—me”TJ’(i, y), (114

Is a func.tional that depends on t.he boundaay.ﬂ) of thf whose action on gauge-invariant functionals can be seen to
pathy. Since the path may comprise several piezémtha  respect the form given in Eq110) [18]. The same is then
and B denote the set of starting and ending points, respedtue for the nonlocal operatd2(y), in view of its definition

tively. It can be said then thai(x,y) is the “density of (91

extremes” of the pathy. The solution to Eq(108) was found Now, let us quote the path-representation expressions for
to be[18] the Poincaregenerators of the theory:
. .. mo (- S
W(y)=eXNd(a,p), (110 HZ;J d“x _Aij(X)Aij(X)_EDi(X)Di(X) , (119
s . _ o N ) )
wpeje ®(a,B) is an arbitrary functional of the boundary pi— dZXEJkA]-k(X)iDi(X), (116
(a,B) and 2e?
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gument of the gauge-invariant operators. This algebra, the
dual algebra, may be realized in a basis of wave functionals
depending on open paths, psurfaces, according to the rank

. o of the forms involved. In general, for any pair of dual theo-
It can be shown that the operat (J) generates rigid trans- ries; there is also a pair of dual geometric representations.
lations (rotationg of the pathy appearing in the argument of Thjs situation degenerates in the case of self-duality, since
the wave functionaly(y), as should be expected. Since then the “direct” and the “dual” theories are equivalent.
x() is invariant under both translations and rotations, the Regarding the study of the TM and SD case theories in
above result does not contradict the fact tRatandJ are  2+1 dimensions, we found that, as in the Proca model in
gauge-invariant operators. In other words, one has, for a@+ 1 dimensions, the topological quantity that characterizes
infinitesimal translation along', the DA is the number of intersections of two paths. However,
- i) - - unlike the Proca’s case, these paths are different arguments
(L+UPHg(y)=e7(1+uP)d(a,B). of the same operator. Another important difference is that in
i I ) the TM and SD models, the open paths involved fall into
Thus, P’ translates the boundaryx(B) of the path while o4 ivalence classes labeled by their boundayyand their
maintaining the form of the wave functional given by EQ. \yinging properties described ly® (). One could say that
(110, which is dictated by gauge invariance. A similar argu-i, this™ case the geometric representation corresponds to
ment holds for infinitesimal rotations. “rubber bands with fixed ends” and not to a path represen-
tation.
The results of this study could contribute to put both
5nassless and massive Abelian gauge theories under a com-
mon scope, regarding their geometrical properties. It remains

the point of view of the geometrical representations that, irf© explore whether or not these ideas find a suitable exten-

each case, generalize the loop representation of Maxwefion to the non—Angian case. Also, it would be interesting to
study how the equivalence between the Proca model and two

theory. We found that in the cases without topological terms; | . L . .
and within the physical sector of the Hilbert space, the Ca_self-dual_ models with Opposite spins Is manifested in the
nonical algebra of local operators can be translated into §€0Metrical representation.
nonlocal algebra of a pair of gauge-invariant operators, that
exhibit an interesting geometrical content, and that is char-
acterized by a topological quantity, namely, the intersection This work is supported by Project G-2001000712 of

index between the geometrical objects that constitute the aFONACIT.

(119

V. DISCUSSION

We have studied the duality symmetry between massiv
Abelian p forms, with and without topological terms, from
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APPENDIX: CONVENTIONAL MASSIVE THEORIES

In this appendix we discuss briefly how to extend the results of Sec. Ill to the general case of duality between massive

Abelian formsAMl...Mp and Buyup py forp=0,1,... D—1, in D space-time dimensions. We start from thecgalberg
form of the master action, i.e.,
g(—=1)P°
(p'D)_ D ViV
' _fd X (p+1)!(D—p—1)! € TRy (AIB g
g(—1)P , 9(—1)Pu? )
_ —2(D—p—1)! [ u1~--uofp71+ FMl_..Mofpfl(C)] - —2p! [Aﬂl.._ﬂp+ Fﬂl__.ﬂp(w)] , (A1)

with F(f)=df for any formf. Here,w and C are auxiliary Stakelbergp—1 andD—p—2 forms, respectively. From the
space-time decomposition of the master actidh), which is given by

1 1
(p.D) — Dyl ——  TIB. . S R —— - T
lM fd X(Z(D—p—Z)![BOII"IDp2+F0|1"'IDp2(C)] 2(D_p_1)|[BI1 _p—

2 2

+F

i1-+ip_p-1

(O

M M
+W[AOil"'ip—1+FOil"'ip—l(w)]z_ Z—D![Ail...ip-FFil...ip(w)]z
9(=DP® e
p!(D_p_l)!ell Ipl1 JD_p_lAi1~--iijlmjD,p,l
g(—1)PP i
— (p_l)l(D_p_l)lell pl1 JDipilaizAOiZ'"ip—lle"'jD—p—l
_ 9(— D" —1)Pel1ipriiiip-p-29. A B A2
m( )Pe P P &il g +ipr1P0i1+ip_p-2]" ( )
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we can read the fundamental Poisson bracket
{Ail"'ip()_())’le"'ijp . } 96'1 ~ip—p- 15(d)(x y) (A3)

and obtain the Hamiltonian as

1 . 1 1
( 1+ Ip—p- ip-1
HiR® Jdd[ >D_p_2y' ™ " 9+ 2(p—1)! (my P 2D —p=D)1 Birip pa T Figrip o (€ )12

+2—p![Ail_,,ip+Fi1,_.ip(w)]2+BOil__,iD_p_zIll""D*P*2+COil,__iD_p_3®'21'~.ID—D*3+wOil,,_ip_2®'31-.~lp*1
+Aoi1~..ipl®i1'”‘n1]. (A4)
In this equation, the quantities
1o -ip—p-2_ 1 i1--ip—p-2 (_1)p(D+1) j1-dpaqin i
0, =T D-p-2) me + ol e dpralirioop-2g; Ay SHT
@1 b-p-3— _ 1 gori1iD=p-3
2 (D—p-3)1"'"c ’
@1 b2 _ 1 iilmip,z (A5)
3 (p-2)1" ’
il"'ipfl_ 1 'l'p*l g(_l)p(D+1) [ i1
8 T o™ T T e & T T B o) (A6)
are the secondary first class constraints associated with the Lagrange mulBglie€Cs, wg, andA,, respectively.
The nonlocal and gauge-invariant “Wilson operators” of this theory are
W(Ep)=exp<if (A+dw) |, (A7)
Ep
S)(ED_,J_l):ex%if2 (B+dC)). (A8)
D 1
They obey the dual algebra
W) Q(Spp-1)=exd —iN(Zp,Spp-)]1Q(Zpp ) W(Ep), (A9)

whereN(Z,,%p_,-1) is the oriented number of intersection between the hypersurligesd>_,_;. This model admits
two dual geometric representations. In one of th#viX.,) appends @ surfaceX , to the argument of the surface-dependent
functional W () on which it acts, whileQ (2, ;) counts { times the exponential phow many timesS, and>p _ ;
intersect each other. In the “dual” geometric representation, on the other hand, these roles are interdhaappends
2p-_p-1 surfaces whileW counts intersection numbers. This result should be compared with e @se discussed in

Sec. Ill.
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