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Bosonization and duality in arbitrary dimensions: New results
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A generic massive Thirring model in three space-time dimensions exhibits a correspondence with a topo-
logically massive bosonized gauge action associated with a self-duality constraint, and we write down a
general expression for this relationship. We also generalize this structwralitoensions, by adopting the
so-called doublet approach, recently introduced. In particular, a nonconventional formulation of the bosoniza-
tion technique in higher dimensiortis the spirit ofd=3) is proposed and, as an application, we show how
fermionic (Thirring-like) representations for bosonic topologically massive models in four dimensions may be
built-up.
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[. INTRODUCTION scribed by the 3D-Born-Infeld-Chern-Simmons model. This
result is one of the main motivations for the study carried out
This paper has a twofold purpose: to establish bothin our paper, whose purpose is precisely the extension of the
bosonic first-order (gauge noninvariant and fermionic  above result to a general dimensidnDespite the notion of
Thirring-like formulations for very general topologically self-duality in arbitrary dimensions introduced in Rgd),
massive theorie$1-3] in arbitrary dimensions. We show which has proven to be a crucial hint in order to establish
these correspondences by extending the techniques typicalljual correspondencel$s], this extension is not set in a
used for duality and bosonization in three-dimensional modstraightforward way. This becomes clearer mainly in Sec. IV,
els via the doublet formalisii¥,5], which appear insensitive where nonconventional fermionic currents must be intro-
to the space-time dimensionality. duced in order to describe topologically massive models as
Duality has a fundamental importance in our understandpurely fermionic theories. Indeed, we succeed in setting up
ing of various nonperturbative aspects of point-particle andermionic representations for the topologically massive
string theories. Cremmer-Scherk-Kalb-Ramond model in four space-time di-
Some years ag6], Deser and Jackiw developed the con-mensions and also for more general gauge models, for in-
cept of the parent action approgd and showed the duality = stance involving a Born-Infeld theory topologically coupled
between the so-called self-dugD) theory[8] in three di-  to a Kalb-Ramond fieldthis theory shall be referred to as
mensions and the topologically massive gauge theory, reBorn-Infeld-Kalb-Ramonil Some interesting technical par-
ferred to as Maxwell-Chern-Simon1CS) theory. Further- ticularities also appear when the bosonization procedure, ini-
more, it was showii9] that the SD model is connected, via tially thought ford=3 [9], is reproduced fod=4.
the so-called bosonization technique, to the Thirring model:  The main goal of this paper is thus to focus all these
) issues in a more general context.
S(ferm)(w,E)Ef d?’X(E(ié?—m) _ g_jﬂjﬂ ' We shall C(_)ns_truct this generahze_d frameV\_/ork by investi-
2 gating two principal types of extension for this structure: to
. consider arbitrary(d) dimensions and more general nonlin-
jE= gy (1) earities(arbitrary functions of the squared field strength
This work is organized as explained below. In Sec. II, we
Bosonization is the mapping of a quantum field theory forbriefly review the bosonization of the Thirring model in three
interacting fermions onto an equivalent theory for interactingdimensions into a SD model and the SD-MCS duality. In
bosong10]. Sec. lll, we generalize this to arbitrary nonlinearities in the
Recently, Tripathy and Kharfel1] considered a modifica- Maxwell term: we show that this is always equivalent to a
tion of this model by replacing the Maxwell term by SD model in a generalized sense and find a formula to relate
J1—F?, the Born-Infeld Lagrangiafil2]. Bosonization and the theories of this correspondence. Afterwards, we use a
dual-correspondences of its topologically massive versiondirect procedure to bosonize a generic Thirring model with
the Born-Infeld-Chern-Simons theof$3,14], have recently an arbitrary current-current coupling and connect it to the
been studied motivated by the fact that these theories natuonlinearity of its bosonic representations.
rally appear in the context of pbraneq 15] whose dynam- Generalization of this structure to higher dimensions is
ics is described by Born-Infeld-Chern-Simmons-actions inthe matter of Sec. IV. We shall show in this sectidor the
d=(p+1) dimensions. In particular, the D2-brane is de-particular casel=4, but indicating the way for generalizing
to higher dimensions elsewhegrg¢hat bosonization may be
implementedin the same wayas in 3D, via the recently
*Email address: botta@cbpf.br introduced doublet formalisri¥,5], resulting in an alterna-
TEmail address: helayel@gft.ucp.br tive formulation of the bosonization technique in four dimen-
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sions [16]. Such as in the 3D case, fermionic models This equivalence may be verified with the parent action
bosonize to topologically massive ones; in particular, weapproach7]. We write down the general parent action pro-
concentrate our discussion in specially interesting topologiposed by Deser and Jackiw [ii], which proves this equiva-
cally massive gauge theories in four dimensions: Borndence:

Infeld-Kalb-Ramond and Cremmer-Scherk-Kalb-Ramond

[1_3] _ _ 3 2%

Finally, in Sec. V, we draw our general conclusions and SparertA8] = xScd Al d*x[e*F a[Ala,+ma,at],
emphasize the aspects that concern generalization to arbi- (7)
trary dimensions.

where
II. ASHORT INTRODUCTORY REVIEW
: . ScdAl= f d3xe*"™(ALd,A)), 8
Let us briefly review how the low-energy sector of a

theory of massive, electrically charged, self-interacting fer-, ) _ 1
mions (the massive Thirring modelin (2+1)-dimensions 1 the Chern-Simons actidi.7].

may be bosonized into a gauge theory, the Maxwell-Chern-
Simons gauge theor,9]. B. Bosonization and Thirring-MCS correspondence

On the other hand, théEuclidean fermionic partition
A. SD-MCS duality function for the three-dimensional massive Thirring reads as

In 2+1 dimensions, one currently defines the Hodge-2€'OW:

Duality operation b _
yop Y Z(ferm) J DyDyre [T MI—(@2J*,)d>  (17)

*aM=i €,nd’at, 2 _ _ _ _ _ _
m with the coupling constarg? having dimensions of inverse
mass andn is the fermion mass.

wherem is a parameter that renders theperation dimen- It is well-known that this model can be bosonized to the
sionless. self-dual mode[9],

We refer toself(anti-self)-dualitywhenever the relations
*a=+a, —a are, respectively, satisfied. Throughout this z(ferm < 7S (12)
paper, we shall introduce a parameter =1 to express this
self/anti-self-duality. in the low-energy limit.

The so-called self-dual modérownsend, Pilch, and van Thus thanks to the equivalence between Egsand (5),
Nieuwenhuizeri8)) is described by the following action: one can establish the following bosonization identity:

Sep(a) = X| Sm€nnd d’a — 588" . (3

This equation, together with Eq12), both connected by

. o ) ) SD-MCS duality(7), constitutes the kernel of this work. Our
The equation of motion is the self-duality relation: main purpose is to actually study the generalizations of this
structure along twandependenlines: for Thirring-like mod-

els with an arbitrary current-current coupling: correspon-
dence rule with self-dual and nonlinear topologically mas-
sive theories; for arbitrary dimensions: fermionic Thirring-

This model is claimed to be chiral, and the chirality resultslikeé models in general dimensions correspond to
defined precisely by this self-duality. topologically massive theories, such as in 3Dlearly, both

On the other hand, the gauge-invariant combination of g€neralizations are suitable to be connected to one another.
Chern-Simons and a Maxwell term,

X
a,;aew,xa"ak. (4)

1In fact, varying this action with respect fpand eliminating this

SMCS[A]ZJ d3x 1 FHUVE _Lewa a,A, |, in the action from the equation of motion, one g8¢g(a*). Vary-
4m? vy 2m mev iNg SparentWith respect taa, we obtain

5 1
© ==& FlAl €]
is the topologically massive theory, which is known to beplugging this back into Eq(7) and using
equivalent[6] to the self-dual mode(3). F,, is the usual e, 0 =2 &, (10)
Maxwell field strength, we recover the MCS action, E¢p).
2In general dimensions, the Abelian gauge field generalizes to a
FulAl=d,A,—d,A,=2d,A, . (6)  pair of field forms.
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[l. DUALITY BETWEEN NONLINEAR SELF-DUAL To derive our results, we consider the following nonlinear
AND TOPOLOGICALLY MASSIVE MODELS generalization of the Deser-Jackiw parent acfiéh
IN THREE DIMENSIONS

In this section, we shall generalize the correspondence s, [A a]= xS, S{A]_f d3x [e*"F ,[Ala
SD-MCS to account for arbitrary nonlinearities. We will pare ¢ . .
show here that the TM model with nonlinearity described by +V(a,a")]. (19)
a functionU(F?),3 #

Varying it with respect toA,
SU(Fz)[A]:f d3X (U(F#VF,LW)_XEMV)\A,U.(S’VA)\)!

(14) €m0 [A*—ar]=0, (20)

corresponds to the also general nonlinear self-dual model, we write its solution as
with nonlinearity given by a potential(a?):
Ar=atr+ AN, (21
= 3 my

Svenlal fd xV(@,a")~ xScdal. (19 where A=A is pure gauge. Putting this back into Eq.
. . . o (19), we recoverS, 2 al, Eqg.(15).
which is the nonlinear version of the self-dual action intro-  Now strictly following the standard program of the mas-
duced in[8]. We shall refer to this theory as nonlinear self- ter action approacfi7], we must vary the parent action with
dual model. respect toA, and use the resulting equation to solein

It is useful to briefly clarify why the property of self-  (arms of the other fielda. Finally, one shall eliminaté from
duality can be attributed to this model. The equations ofy,q parent action.

motion derived from Eq(42) are given by Varying SpaenWith respect toa, we obtain

) o . from which it follows that
where the prime denotes a derivative with respect to the ar-

gument. This nonlinear SD model possesses a well-defined —2a%V'(a?)=a,e"" F ,,\[A] (23
self-dual property in the same manner as its linear counter-
part. This can be seen as follows. Define a figll, , dual to and
a, as
L e“MF A[Al€,,aF al Al=2F2=4a7V'(a?)]%. (24
*aﬂs —Elw)\(?'}ak, (1 . 5 2
2V Formally, one can solve this fa“ in terms of F[A], and

put the result back into Eq19) to express this action in
and repeat t_his dual op_eration to find that, as a consequengerms of the fieldA, which results to be a TM theory. Defin-
of the equations of motiof6), ing a functionW trough its inversgwhenever it exists

(Tau)=a,. (18) W L(0)=20[V'(v)]?, veR, (25)

Dual correspondences for this type of nonlinear systems T .
have recently been studied in the particular case of Born‘:’md substituting in the parent action by EB3), we recover

Infeld [14] and also in other specific cases in Refg] [for the generalized nonlinear topologically massive theory; the
instance, a power lai(z) =2, r eQ]; which use a method gauge invariant combination of a Chern-Simons with a non-

recently proposefll9] based on the traditional idea of a locall linear Maxwell term
lifting of a global symmetry that may be realized by iterative
embedding Noether counterterms. :f 3 uv — M

These approaches treat the nonlinearities by introducing Sucd A= | EX(UFEF,,) = x e AL 0 A, (26
auxiliary fields. In this section, we are going to confirm the
previous results by adopting the parent action approach aﬁ&here the functional is related toV (that characterizes the
generalize them furthewithout introducing auxiliary fields; —nonlinearity of the self-dual modeby the formula:
of course, this enforces the evidence in favor of this so-called
gauging Noether method 9] as a useful dualization proce- U(q)=—2W(q)V'[W(a)]+V[W(a)], (27)
dure.

with geR™.
At the end of the next section, we shall mention some
SWhenU is linear the theory is commonly referred to as MCS. more relevant examples of solutions to this equation.
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Bosonization of Thirring models with arbitrary in agreement with the formal correspondence i{@6], |
(current-current ) coupling in d=3 —*F.% This shall provide us with a general correspondence

In this section, we are going to find bosonization identitiesP?0Sonization identity for very general Thirring-like models
for the most general Thirringfermionic) model, i.e., with an  @nd topologically massive gauge theories. .
arbitrary dependence on the current-current coupling; this re- S0 thanks to these results, one can represent the Thirring
markably corresponds to a version of the MCS vith same ~ Model as
dependence on the square of the field stref2fh We use a
direct procedure such as in the traditional cgs=g. (11)]. ZT(jzlz)Zf Da,,deti h+m+ d)e-IdxV@ta,)  (3g)

The particular case of Born-Infeld-Chern-Simons has al-
ready been studied if1,14]; clearly, these results are con-

tained in the scheme presented here. [T(j%/2), lineai to evaluate the determinant. The determi-

In fact, consider a generalization of the Thirring model t©0an¢ of the Dirac operator is an unbounded operator and
have a term depending arbitrarily gff. By relativistic in- requires regularization.

variance, the only possibility is the generalized nonlinear Ford=3, the actual computation of this determinant will

model: give parity-breaking and parity-preserving terms that are
computed in powers of the inverse mass,

Now, we proceed in the same way as in the typical case

! W - 7 . 3
Z-(l—(?%m):j Dl//Dl/i e S8 p(b+m)y T(]/‘]u/z))d X, (28)

Indeti 4+ m+ &)= %scga] Hlpdal+O(a2Im?).

where the functiorT is analytic and real-valued. (37)
Next, we eliminate the nonlinear interaction by introduc-
ing a vector fielda*, and using the identity: Here,Scsis given by
efd?’xT(j“jM/Z):J' Da#e—fd3xtr[v(a#aﬂ)+j”aﬂl, (29) ch[a]=f d3xie“”)‘(FMax), (39

) ] ) ) ) it is the Abelian Chern-Simons action, and the parity-
whereV is related toT. We shall find this relation varying the yreserving contributions, to first-order, lead to the Maxwell
exponent of the right-hand side with respectatto obtain action

—2V'(a’a,)a*=j*, (30

1
lpclal=— 5, — trf d3xFA'F . (39

from which there follow the relations
In the low-energy regime, only the Chern-Simons action

—2a%V'(a?)= a,i* (31  survives yielding a closed expression for the determinant:
and Indeti o+ m+ &)= é—wscs[aho(m‘l). (40)
P 2\ /1 2
J#jp=4atvi(@’). (32 Using this result, we may write
In principle, one can solve fa (or a?) from Eq.(32) in . (ferm) _ _
terms ofj?, and put the result back into E(R9) to express rL'anZ 22~ | Pauexp—Svazlal), (42)

this action in terms of the curreptand recover the nonlinear

Thirring model. Let us define again the functitvithrough  whereSy,2) is the nonlinear version of the self-dual action
its inverse, assuming it to be introduced in[8],

W v)=20[V'(v)]? 33

(v)=20[V'(v)] (33 Suanlal= f dBxV(a,ah) —yScdal. (42
thereforeW(q)=v. Plugging these equations back into Eg.
(29), we recover the generalized nonlinear Thirring Model,
Eq. (28), whereT is given by

Therefore, to the leading order inm/ we have established
the identification with the nonlinear self-dual theory:

(ferm) _ ,
T(@)= - 2W(QV' W) +V[W(@)], (34 Zrgoz™ v “3

Finally, recalling that the model with dynamics defined by

Notice that, by virtue of Eq(33), Eq.(34) coincides with  the nonlinear self-dual actiorS(,2)) is equivalent to a non-
Eq. (27); then, one obtains

T(q)=U(q), qeR", (35) 40)* is the usual Hodge’s operation.
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linear Maxwell-Chern-Simons theorys(r(4j2), We use the ~ There is a well-defined notion of selfand anti-self} du-
relation(35) to establish the bosonization identity of the non-ality for the objects_in this space based on the standard
linear massive Thirring model with the topologically massiveHodges operation, t)' in a fashion extremely similar to the
theory along with the remarkable identification of the poten-(2+ 1)-dimensional case described above. Consider the ac-
tials, as tion with topological coupling:

(ferm) __
ZU(j2/2)~ZU(F2) . (44) -1 r
—g, ... el Mdy
m “H#1 Fd-p-1 e

Soscl 71= [ o

d-p

In some cases, it is relatively simple to solve E2p) [or, by
virtue of Eq.(35), Eq. (27)]. Let us illustrate this by men-
tioning some relevant examples: Taking a Thirring model Xfﬂdfpﬂ...ﬂdep(f)
with current-current interaction described by a function
T(j9)e(j*j )% then, it is equivalent to a self-dual model
with nonlinearity described by another power law(a?)
x(a*a,)? 1 and by virtue of Eq(35), the correspond-
ing model has a Maxwell term substituted Hy(F?)
«(F#'F ). A simple inspection shows that this result
agrees with the one obtained jd8], which enforces the
validity of the method proposed there.

The Born-Infeld-Chern-Simons example sets a special
case since, as it can be directly verified from E2j7), the For a more concise notation, in terms of forms, consider
functional forms of the three modelspincide [11,18,19; the following definitionsd(f,g)=(df,dg), and

i.e., T(q)=U(q)=V(q)=+1—(cons qz), for all geR.

: (47)

wherep(F) collects the explicit mass terms as

1
p(F)= E([p+ 1]! ng,,_Md_p_lgﬂlwud—pfl

F(=DTd=pI o, F ). (48)

*(df, dg)=[*dg,(—1)P*! Sp1 *df], (49
IV. GENERAL DIMENSIONS:

BORN-INFELD-KALB-RAMOND whereS; is a number defined by the double dualization op-
AND CREMMER-SCHERK-KALB-RAMOND eration, for ag-form A: * (*a)=sia, this depends on the sig-
GAUGE THEORIES nature(s) and dimension of the space-time in the foSy
=(—1)statd—dl,

In this section, by considering doublets of field-forms, we
show how the structure described above may also be esta
lished ind dimensions.

For general dimensions, it is possible to define selftd
anti-selfy duality for pairs(doubletg of form-fields with dif-
ferent rankg 5], close in spirit to the self-duality in (21)
dimensions due to Townsend, Pilch, and van Nieuwenhuizen
[8]. Remarkably, as it has been shown in RBl, the actions e i*d]—' (50)
which describe this doublet-self-duality result to Heal- m '
equivalentto topologically massive theories thdimensions,
which involve BF terms(topological coupling between dif- \heremis a mass parameter introduced for dimensional rea-
ferent Abelian gauge formgL,3]); in the same way as the sons. It may trivially be verified that these equations require
SD-MCS duality[in (2+1)]. that F satisfies a Proca equation with mass

In this work, this parallel shall be enforced and general- Notice that Eq.(50) looks like Eq.(4). In that sense, we
ized with novel consequences on bosonization in high distate thatSysp describedoubletself-duality.

menSionS; bESides, new dualities between theories shall be In the previous Section, we considered nonlinear genera”_

b- Notice that* applied to doublets is defined such that its
components are interchanged with a supplementary change
of sign for the second component.

In so doing, the equations of motion derived from the
action(47) read as

established. _ _ _ - zations of SD models; in the same sense, we may replace
5Let us consider @-dimensional space-time with signature py v/(p) in the action(47) and obtain nonlinear generaliza-
s> we consider the tensor doublet, tions of the model. Below, we are going to prove that these

theories are dual equivalent to also nonlinear topologically
massive ones. The form of this correspondence shall result
the same as to the 3D caleq. (27)], which constitutes an
additional motivation to interpretate E47) as a self-dual
system.

F=(F a1 (45)

wheref is ap(<d)-form [a totally antisymmetric tensor type
(0;p)], andg is a (d—p—1)-form. F is an element of the
spaced ,=A, X Ag_ps1.°

7 . . .
5That is, this is the number of minuses occurring in the metric. For a generiay-form, A, the Hodge dual is defined by

®A more detailed discussion on this construction and its motiva- 1
tions may be found in Refg4,5]; however, the notion presented (FA)Ha+1 = —Ieﬂl"'“dAMl,,,”q. (46)
here is sufficient to make this paper self-contained. &
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Consider the doublet of gauge fields A

E(aﬂl._.ﬂp,bﬂl..,#d_p_l) in addition to F

:(fﬂl...ﬂp,gﬂl...Mdfpfl); we now propose the following

parent action:

SP[Aaﬂ:SBF[A]_j dx* E#lm#d[bul»--ud,p,laudfp
><f""dprrl"""‘d+g'“'l""“'dfpfla'“'dfpal“'dprrl'"'“'d]

+VIp(F)], (51)

where

Serl Al= J dXd[le' : '/-"d—p—lelul. ' 'Md(yrud—pa/"'d—p+1' : 'Md]

(52)
is the BF action.
Varying Sp with respect taF, we obtain
1
F=——""dA, (53
V'(p)

which looks like nonlinear self-duality, Eq16). Plugging
this relation back into Eq(51), we recover the generalized
(nonlineay topologically massive action:

Sl A=l Al- [ axu(, G4
where # encodes the Maxwell-type terms:
1
6=5((—1)Td—p- 1]!((9[,“';\#1...%])2
P+ (b oy, - (55)

PHYSICAL REVIEW D67, 025016 (2003

M1y
€ (9/"d

1
Ok .

Soso[f]EJ dx?

Xfﬂdpﬂ,..ﬂd-i-V[p(]:)]}. (59

WheneverV (or U) is linear, we get the so-called
Cremmer-Scherk-Kalb-Ramond-type models, and the
present result reproduces the dual correspondence obtained
by Harikumaret al. in the recent work of Ref[21] for d
=3+1, recently generalized, ir5], to arbitrary dimensions
and all possible tensorial ranks.

A. More general nonlinearities

It is not a general fact that =V[p(F)]. Besides the re-
quirement of Lorentz invariance, one may also require that
the two gauge forms which compose the doublet do not in-
teract with one another, apart from the interaction due to the
BF term.

Consider7=(f,,f,) and. A=(a;,a,), both inA,, and
the nonlinearity given by
V=Vi[Ny (f1)?]+(=1)°V,[N; (f2)?], (60)

whereN;=[p;+1]!/2, i=1, 2 andp; denotes the rank df;
(pi+pptl=d).’

Then, the variation of Eq51) with respect taF yields

(Vi[Na(f1)21f1;Vo[Ny(f2)?]f)=—*dA.  (61)

Thus, by repeating the previous calculations, we can readily
check the duality between

Svl,vz[]:]ZSBF[ﬂWLJ dX(Va[Nz (f1)?]+ V[ Ny(f2)%])

Thus the same algebraic manipulations in the 3D case

lead to relatingd andV again in terms oW by Eq. (27).

We shall observe that this is invariant under the gauge

transformations; A— A+ dD, wheredD is a pure gauge
doublet i.e., it is a pair of exact differentials ofp(-1d

—p—2)-forms.
Now, we varySp with respect ta4d and obtain:
*d(A-F)=0, (56)
or in components,
*d(a—f)=0,
*d(b—g)=0. (57)

This implies that the differences— f andb—g may locally

be written as exact forms; therefore it is possible to express

the solution to these equations as
A=F+dD. (58

Putting this back into the actiofbl), we recover the gener-
alized SD theory up to topological terms:

(62)
and
Sul,Uz[A]:SBF[A]_J dx(U4[p,! (day)?]
+U,[p,! (day)®]). (63)
Thus we come to the known relation
Ui(q)=—2Wi(@)V{[Wi(q)]+Vi[Wi(q)], qeR",
(64)
where the function®V, are again defined by
W, Y(v)=20[V/(v)]? veR". (65)

In d=3+1, an interesting duality can be established by
applying this result to a topologically massive combination
of a Born-Infeld with a(rank two Kalb-Ramond field.

8(f;)? denotesf, ..., f

A,./J_pl ,u_lA“#pl.
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The Born-Infeld-Kalb-Ramond@BIKR) theory We are going to show that this bosonizes into the CSKR

model, a gauge, topologically massive theory.
. ) Such as in the 3D case, we get the identity,
SBlKR(-A):f d*x| B
19PBEI+ mB, P49 A,

2 N2
1— Eo"[pAM]ﬁ A

e (0%2 me)f d*™X[2 j 0" =] .0"
_‘9[98

’

v,

(66) N f DA X rW2ALD, 0 —a,a"] + (gl TN [b,,, " ~a,,i])

for the doublet of gauge fieldst=(A,,B,,),'? is dual-
equivalent to the first-order model:

(70)
which introduces the doublet of bosonic fieldst
Y Ao 1 . =(3,,b,,).
SDSd:AE(AUaB;Lv)]:f d*| —pB 1+ EAUA” Defining the doublet-slash by

A= ’y'ua,u,—i_ 75[ 7M17V ]bp,lu (71)

~ = 1. ~
+B,,B*"+ EAUe"PWa[pB#,,]) , (67)
the partition function reduces to

which is a gauge noninvariant theory, also associated to a
nonlinear doublet-self-duality constraint. ferm _ f DAdetid+ m+A)e1/2fd4x[1/2bw,b“”—aﬂa“].
B. Bosonization in (3+1)-d (72

Here, we present a novel approach to bosonizatiod in . )
=3+1, valid for length scales long compared with the Next, we must evaluate this determinant.
Compton wavelength of the fermion. A straightforward perturbative expansion yields

In a four-dimensional massive fermionic model with

U(1)_charge; just like in the 3D case, one defines a current: g 1
j*=yy*, wherey areN; four-component Dirac spinors. Ser A, m]=Ngtr[In(#+m) ]+ Ny \/ﬁtr it
However, one can also define a rank-two currgrit, f
=yys[ v*,v" 1¢; let us now define the doublet-current: N 2 1
Pkl +7f (Ngm)tr ey el R
T=(#, ). (68) f
(73

The appearance of thgy matrix in j#” follows from requir-
ing thatj”" as well asj* are both odd under charge conju- g first term is just the freeA=0) case, which is sub-

gation: yrys[ y*,y" 1¢=— yCys[v*,y" 1y, Notice that7  tracted, while the second term is simply two tadpoles accom-
is a well-formed doublet{ € Ap). modated in the doublet. Thus we draw our attention to the

~ Now, we can write a nonconventionduclidean'? mas-  quadratic terrin the bosonic fields4) in the effective ac-
sive Thirring model in a similar fashion to the 3D case: tion. In momentum space, this reads

Z(ferm)Ef DED([/ 2 d4 d4k
SeFA M= S tr | oy —
_ 2m (2m)* (2m)

x @S A+ m) = (@PINgm)[2 %"= i #Ddx

©9 y ip+ik—m ik—m

(p+k)24+m? AlP) k2+m?|’
(74)

A(—p)

wheremi s the fermion mass angla coupling constant of the
model, such thag?> have dimensions of inverse mass.

Terms of the formA(—p)KA(p)k and A(—p)p.A(p)k in
%Here, Born-Infeld means that the free action is proportional toth€ numerator of the integrand will contribute at most to

[1-consF, F*. second order ip,, .12 Since we are seeking for the low en-
103 is a parameter introduced for dimensional reasons. ergy limit, like in the 3D case, we can approximate this by

Hn this calculationN; will be simply considered as a parameter.

2n an Euclidean space-timg¢~" is purely imaginary; thus, in
order to render it real, we may redefine this bilinear by multiplying **They also cancel the terms[tm?A(—p).A(p)] that appear in
it by ani. the numerator.
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Inserting the leading term into the quadratic effective ac-

SirA ml~ l—tf 2 2m)? tion (76) and going back to configuration spagerentzian,
)4 (2) ) ;
we find an inducedF term
(p+K).A(p)— A(p)k
A=P) +k)2+ m?][k2+m?] |’ ’
[(p+k)>+m’][k*+m?] Seri=—8—— f d'xet 0, a,b, .
using also the fact that the trace of an odd number of __g g Suc( A 83
gamma-matrices is zero. We obtain only a topological con- - (41)2 Br(A). (83

tribution:

STATUIEE f G AP (P, ()],
(76

Putting this result back into E¢36), we obtain

Z(ferm)%J’ DA eSB,:(A)-%—1/2fd4><[1/2b#,,b’“’—a,“a”] (84)

where, by virtue of the special property of the gamma matri-

ces(here, Euclideanin (3+1)-d,
tr(y y"ys[ ¥*,y* 1) = —8e*"P?, (77)
the kernel takes the form:

r#ve(p,m)=e“***p I1(p2,m), (79

wherell(p?,m) is the contribution corresponding to the one-
fermion-loop self-energy diagram. For the sake of computin
the loop integral and factoring out the divergent part, we go .
over tod=4- e-dimensions, following the procedure of di-

mensional regularizatiotsee Ref[22]):

s d% 1
H(p am)_(ﬂ) f (27T)d [(p+k)2+m2][k2+m2]
1 2 p2 p2
(477)2 ;— - HE—| - +0(e),
(79)

wu is a parameter and the finite part reads as below:

p2
'(_2) =alna—(a—1)In(a—1)
m

+blnlb|+(1-b)In(1—b)—2,  (80)

where
m2|
a==|1+ \/1+4—|,
2 p? |
1 m?|
b=>|1% \/1-4—|. (81)
P~

In the long wavelength d—0) and large massnf— «)
limit, a—«, b— —o; thus it is easily verifiable that—
— 2. Therefore we find the finite part of the kernel:

2
I'“*(p,m)~ ( €“’"p,,. (82

417)2

which, via the correspondence proven before, is equivalent
to the gauge invariant Cremer-Sherk-Kalb-Ramond model
which describes a massive spin-offmsonig particle. The
boson mass is given by the inverse of the factor in front of
Sge in EQ. (83), Myosor~ 9%/272.

Notice also that, if one rescales the doublet current as
(" ")) —(sj*tj#*"), the single effect of this is that the

gboson mass results are rescaledmssoi— Mposon/ (St)-

Finally, afermionic representatiofor the CSKR model is
given by the partition function:

Z(ferm): f DZD'TI/
@~ S WO+ m)p—(g%12 Ngm)[2 ,, i #"+ ] ,i#) dx
~ ZcskRr- (85)

Now, by repeating the calculations of the previous sec-
tions, one may study nonlinear generalizations of the fermi-
onic model (69). In fact, substituting j,,j*"+j,j*

— U1(J i*") +U(j ,j*) in the expression69), one can
bosonlze this into a nonlmear SD theory given by B&9),*
whose nonlinearities are related b, by the expressions
(64). And once more, for composing this with the duality
proven in Sec. IV B, this corresponds to a topologically mas-
sive gauge theoryso as in the Thirring-MCS correspon-
dence given by the action(63).

In particular, we can write down the fermionic counterpart
of the Born-Infeld-Kalb-Ramond gauge theory. This may be
cast as

Zg|-KR™ f DZDW

w @ S o m)p— (9212 N (2], #7+ B2\1 =] ,i#1 B2) dx
(86)

For simplicity, we are discussing the cabe 4 and doublets in
Aj.
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Let us conclude this section by mentioning that the operaproposed generalization of the self-dualitydo 3, via dou-

tor correspondence underlying this structure reads as blets[4,5]. It appears to be appropriate to highlight such a
. point, since, despite the use of the doublet procedure pro-

J—"dA. (87 posed here to bosonize a 3D-Thirring model, one recovers

the well-known results in 3D, i.e., the doublet disappears and

V. FINAL REMARKS reduces to a single dynamic self-dual field. In fact, for a

Thirring model in 3D, with aJ(1) interaction, we can only
We have presented here a new approach to study t%nstruct a current doublet i, J=(j*j*), where "
bosonization of a model of interacting fermions in terms of  —

topologically massive models, similar to what happens in =yy* . After mtrqqucmg, as usual, a bosonic doublét
=3. In general, this involves two gauge fields with different =(a.b,), the partition function may be cast as
tensorial ranks(BF-type theories We have actually dis-
cussed this point fod= 4, but we showed the road to repro- Z(ferm)Ej DyDy DaDb
duce this construction in higher dimensiofsne simply
should build up the currents as elements in sdrge These @~ SO+ M)y (%2)j* [a,+b,] ~ (a2+b2)/2)d
results have been emphasized for theories which appear to be '
very important in field theory and/or dynamics opfranes (89
[Chern-Simons-Kalb-Ramon@SKR) and BIKR theorieg

A comment is in order that regards the two-form current,By changing coordinates toiz(a#t b,)/2, the field c;
j*”, appearing in the Thirring model. It may look somewhatappears decoupled from, (the latter without dynamigs
artificial, since it is not necessarily conserved. Neverthelessyhose action, induced by the fermionic model, is precisely
we try here to show that it is actually a natural piece of thegiven by a self-dual moddEg. (3)], as expected. This fact
formalism, since it is related to topologically massive gaugeseems to be an additional motivation to think of tbarreny
invariant models: it is crucial for the attainment of a bosonicdoublets as more general objects.
topologically massive theory in the large fermionic mass
limit. Bosonization in the case of nonconserved fermionic
currents has already been contemplated by other authors
[23]. The authors express their gratitude to CNPq for the in-

We conclude this paper by stressing a motivation for thevaluable financial help.
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