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Bosonization and duality in arbitrary dimensions: New results
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A generic massive Thirring model in three space-time dimensions exhibits a correspondence with a topo-
logically massive bosonized gauge action associated with a self-duality constraint, and we write down a
general expression for this relationship. We also generalize this structure tod dimensions, by adopting the
so-called doublet approach, recently introduced. In particular, a nonconventional formulation of the bosoniza-
tion technique in higher dimensions~in the spirit ofd53) is proposed and, as an application, we show how
fermionic ~Thirring-like! representations for bosonic topologically massive models in four dimensions may be
built-up.
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I. INTRODUCTION

This paper has a twofold purpose: to establish b
bosonic first-order ~gauge noninvariant! and fermionic
Thirring-like formulations for very general topologicall
massive theories@1–3# in arbitrary dimensions. We show
these correspondences by extending the techniques typi
used for duality and bosonization in three-dimensional m
els via the doublet formalism@4,5#, which appear insensitive
to the space-time dimensionality.

Duality has a fundamental importance in our understa
ing of various nonperturbative aspects of point-particle a
string theories.

Some years ago@6#, Deser and Jackiw developed the co
cept of the parent action approach@7# and showed the duality
between the so-called self-dual~SD! theory @8# in three di-
mensions and the topologically massive gauge theory,
ferred to as Maxwell-Chern-Simons~MCS! theory. Further-
more, it was shown@9# that the SD model is connected, v
the so-called bosonization technique, to the Thirring mod

S( f erm)~c,c̄ ![E d3xS c̄~ i ]”2m!c2
g2

2
j m j mD ,

j m[c̄gmc. ~1!

Bosonization is the mapping of a quantum field theory
interacting fermions onto an equivalent theory for interact
bosons@10#.

Recently, Tripathy and Khare@11# considered a modifica
tion of this model by replacing the Maxwell term b
A12F2, the Born-Infeld Lagrangian@12#. Bosonization and
dual-correspondences of its topologically massive vers
the Born-Infeld-Chern-Simons theory@13,14#, have recently
been studied motivated by the fact that these theories n
rally appear in the context of Dp-branes@15# whose dynam-
ics is described by Born-Infeld-Chern-Simmons-actions
d5(p11) dimensions. In particular, the D2-brane is d
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scribed by the 3D-Born-Infeld-Chern-Simmons model. Th
result is one of the main motivations for the study carried
in our paper, whose purpose is precisely the extension of
above result to a general dimensiond. Despite the notion of
self-duality in arbitrary dimensions introduced in Ref.@4#,
which has proven to be a crucial hint in order to establ
dual correspondences@5#, this extension is not set in a
straightforward way. This becomes clearer mainly in Sec.
where nonconventional fermionic currents must be int
duced in order to describe topologically massive models
purely fermionic theories. Indeed, we succeed in setting
fermionic representations for the topologically mass
Cremmer-Scherk-Kalb-Ramond model in four space-time
mensions and also for more general gauge models, for
stance involving a Born-Infeld theory topologically couple
to a Kalb-Ramond field~this theory shall be referred to a
Born-Infeld-Kalb-Ramond!. Some interesting technical pa
ticularities also appear when the bosonization procedure,
tially thought ford53 @9#, is reproduced ford54.

The main goal of this paper is thus to focus all the
issues in a more general context.

We shall construct this generalized framework by inves
gating two principal types of extension for this structure:
consider arbitrary~d! dimensions and more general nonli
earities~arbitrary functions of the squared field strength!.

This work is organized as explained below. In Sec. II, w
briefly review the bosonization of the Thirring model in thre
dimensions into a SD model and the SD-MCS duality.
Sec. III, we generalize this to arbitrary nonlinearities in t
Maxwell term: we show that this is always equivalent to
SD model in a generalized sense and find a formula to re
the theories of this correspondence. Afterwards, we us
direct procedure to bosonize a generic Thirring model w
an arbitrary current-current coupling and connect it to
nonlinearity of its bosonic representations.

Generalization of this structure to higher dimensions
the matter of Sec. IV. We shall show in this section~for the
particular cased54, but indicating the way for generalizin
to higher dimensions elsewhere!, that bosonization may be
implementedin the same wayas in 3D, via the recently
introduced doublet formalism@4,5#, resulting in an alterna-
tive formulation of the bosonization technique in four dime
©2003 The American Physical Society16-1
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sions @16#. Such as in the 3D case, fermionic mode
bosonize to topologically massive ones; in particular,
concentrate our discussion in specially interesting topolo
cally massive gauge theories in four dimensions: Bo
Infeld-Kalb-Ramond and Cremmer-Scherk-Kalb-Ramo
@1–3#.

Finally, in Sec. V, we draw our general conclusions a
emphasize the aspects that concern generalization to
trary dimensions.

II. A SHORT INTRODUCTORY REVIEW

Let us briefly review how the low-energy sector of
theory of massive, electrically charged, self-interacting f
mions ~the massive Thirring model! in ~211!-dimensions
may be bosonized into a gauge theory, the Maxwell-Che
Simons gauge theory@6,9#.

A. SD-MCS duality

In 211 dimensions, one currently defines the Hodg
Duality operation by

!am5
1

m
emnl]nal, ~2!

wherem is a parameter that renders the! operation dimen-
sionless.

We refer toself(anti-self)-dualitywhenever the relations
!a51a, 2a are, respectively, satisfied. Throughout th
paper, we shall introduce a parameterx561 to express this
self/anti-self-duality.

The so-called self-dual model~Townsend, Pilch, and van
Nieuwenhuizen@8#! is described by the following action:

SSD~a!5E d3xS x

2m
emnlam]nal2

1

2
amamD . ~3!

The equation of motion is the self-duality relation:

am5
x

m
emnl]nal. ~4!

This model is claimed to be chiral, and the chirality resu
defined precisely by this self-duality.

On the other hand, the gauge-invariant combination o
Chern-Simons and a Maxwell term,

SMCS@A#5E d3xS 1

4m2
FmnFmn2

x

2m
emnlAm]nAlD ,

~5!

is the topologically massive theory, which is known to
equivalent@6# to the self-dual model~3!. Fmn is the usual
Maxwell field strength,

Fmn@A#[]mAn2]nAm52] [mAn] . ~6!
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This equivalence may be verified with the parent act
approach@7#. We write down the general parent action pr
posed by Deser and Jackiw in@6#, which proves this equiva-
lence:

SParent@A,a#5xSCS@A#2E d3x@emnlFnl@A#am1mamam#,

~7!

where

SCS@A#[E d3xemnl~Am]nAl!, ~8!

is the Chern-Simons action@17#.1

B. Bosonization and Thirring-MCS correspondence

On the other hand, the~Euclidean! fermionic partition
function for the three-dimensional massive Thirring reads
below:

Z( f erm)5E Dc̄Dce2*(c̄(]”1m)c2(g2/2) j m j m)d3x, ~11!

with the coupling constantg2 having dimensions of inverse
mass andm is the fermion mass.

It is well-known that this model can be bosonized to t
self-dual model@9#,

Z( f erm)'ZSD, ~12!

in the low-energy limit.
Thus thanks to the equivalence between Eqs.~3! and~5!,

one can establish the following bosonization identity:

Z( f erm)'ZMCS. ~13!

This equation, together with Eq.~12!, both connected by
SD-MCS duality~7!, constitutes the kernel of this work. Ou
main purpose is to actually study the generalizations of
structure along twoindependentlines: for Thirring-like mod-
els with an arbitrary current-current coupling: correspo
dence rule with self-dual and nonlinear topologically ma
sive theories; for arbitrary dimensions: fermionic Thirrin
like models in general dimensions correspond
topologically massive theories, such as in 3D.2 Clearly, both
generalizations are suitable to be connected to one anot

1In fact, varying this action with respect tof, and eliminating this
in the action from the equation of motion, one getsSSD(am). Vary-
ing SParentwith respect toa, we obtain

am52
1

2m
emnl Fnl@A#; ~9!

plugging this back into Eq.~7! and using

emnaemnl52 dl
a , ~10!

we recover the MCS action, Eq.~5!.
2In general dimensions, the Abelian gauge field generalizes

pair of field forms.
6-2
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III. DUALITY BETWEEN NONLINEAR SELF-DUAL
AND TOPOLOGICALLY MASSIVE MODELS

IN THREE DIMENSIONS

In this section, we shall generalize the corresponde
SD-MCS to account for arbitrary nonlinearities. We w
show here that the TM model with nonlinearity described
a functionU(F2),3

SU(F2)@A#5E d3x „U~FmnFmn!2xemnlAm]nAl…,

~14!

corresponds to the also general nonlinear self-dual mo
with nonlinearity given by a potentialV(a2):

SV(a2)@a#5E d3xV~amam!2xSCS@a#, ~15!

which is the nonlinear version of the self-dual action intr
duced in@8#. We shall refer to this theory as nonlinear se
dual model.

It is useful to briefly clarify why the property of self
duality can be attributed to this model. The equations
motion derived from Eq.~42! are given by

am5
x

2 V8
emnl]nal, ~16!

where the prime denotes a derivative with respect to the
gument. This nonlinear SD model possesses a well-defi
self-dual property in the same manner as its linear coun
part. This can be seen as follows. Define a field,!am , dual to
am as

!am[
1

2 V8
emnl]nal, ~17!

and repeat this dual operation to find that, as a consequ
of the equations of motion~16!,

!~ !am!5am . ~18!

Dual correspondences for this type of nonlinear syste
have recently been studied in the particular case of Bo
Infeld @14# and also in other specific cases in Ref.@18# @for
instance, a power lawU(z)5zr , r eQ]; which use a method
recently proposed@19# based on the traditional idea of a loc
lifting of a global symmetry that may be realized by iterati
embedding Noether counterterms.

These approaches treat the nonlinearities by introduc
auxiliary fields. In this section, we are going to confirm t
previous results by adopting the parent action approach
generalize them furtherwithout introducing auxiliary fields;
of course, this enforces the evidence in favor of this so-ca
gauging Noether method@19# as a useful dualization proce
dure.

3WhenU is linear the theory is commonly referred to as MCS
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To derive our results, we consider the following nonline
generalization of the Deser-Jackiw parent action@6#:

SParent@A,a#5xSCS@A#2E d3x @emnlFnl@A#am

1V~amam!#. ~19!

Varying it with respect toA,

emnl]n@Al2al#50, ~20!

we write its solution as

Al5al1Dl, ~21!

where Dl5]lD is pure gauge. Putting this back into E
~19!, we recoverSV(a2)@a#, Eq. ~15!.

Now, strictly following the standard program of the ma
ter action approach@7#, we must vary the parent action wit
respect toA, and use the resulting equation to solveA in
terms of the other field,a. Finally, one shall eliminateA from
the parent action.

Varying SParentwith respect toa, we obtain

22V8~a2!am5emnlFnl@A#, ~22!

from which it follows that

22a2V8~a2!5amemnlFnl@A# ~23!

and

emnlFnl@A#emraFra@A#52F254a2@V8~a2!#2. ~24!

Formally, one can solve this fora2 in terms ofF2@A#, and
put the result back into Eq.~19! to express this action in
terms of the fieldA, which results to be a TM theory. Defin
ing a functionW trough its inverse~whenever it exists!,

W21~v ![2v@V8~v !#2, veR, ~25!

and substituting in the parent action by Eq.~23!, we recover
the generalized nonlinear topologically massive theory;
gauge invariant combination of a Chern-Simons with a n
linear Maxwell term

SMCS@A#5E d3x„U~FmnFmn!2xemnlAm]nAl…, ~26!

where the functionalU is related toV ~that characterizes the
nonlinearity of the self-dual model! by the formula:

U~q!522W~q!V8@W~q!#1V@W~q!#, ~27!

with qeR1.
At the end of the next section, we shall mention som

more relevant examples of solutions to this equation.
6-3
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Bosonization of Thirring models with arbitrary
„current-current … coupling in dÄ3

In this section, we are going to find bosonization identit
for the most general Thirring~fermionic! model, i.e., with an
arbitrary dependence on the current-current coupling; this
markably corresponds to a version of the MCS withthe same
dependence on the square of the field strength@20#. We use a
direct procedure such as in the traditional case@Eq. ~11!#.

The particular case of Born-Infeld-Chern-Simons has
ready been studied in@11,14#; clearly, these results are con
tained in the scheme presented here.

In fact, consider a generalization of the Thirring model
have a term depending arbitrarily onj m. By relativistic in-
variance, the only possibility is the generalized nonline
model:

ZT( j 2)
( f erm)

5E Dc̄Dc e2*„8p c̄(]”1m)c2T( j m j m/2)…d3x, ~28!

where the functionT is analytic and real-valued.
Next, we eliminate the nonlinear interaction by introdu

ing a vector field,am, and using the identity:

e*d3xT( j m j m/2)5E Dame2*d3x tr[V(amam)1 j mam] , ~29!

whereV is related toT. We shall find this relation varying the
exponent of the right-hand side with respect toa to obtain

22V8~anan!am5 j m, ~30!

from which there follow the relations

22a2V8~a2!5am j m ~31!

and

j m j m54a2V8~a2!. ~32!

In principle, one can solve fora ~or a2) from Eq. ~32! in
terms of j 2, and put the result back into Eq.~29! to express
this action in terms of the currentj, and recover the nonlinea
Thirring model. Let us define again the functionW through
its inverse, assuming it to be

W21~v !52v@V8~v !#2, ~33!

thereforeW(q)5v. Plugging these equations back into E
~29!, we recover the generalized nonlinear Thirring Mod
Eq. ~28!, whereT is given by

T~q!522W~q!V8@W~q!#1V@W~q!#, ~34!

Notice that, by virtue of Eq.~33!, Eq. ~34! coincides with
Eq. ~27!; then, one obtains

T~q!5U~q!, qeR1, ~35!
02501
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in agreement with the formal correspondence rule@20#, j
→* F.4 This shall provide us with a general corresponden
bosonization identity for very general Thirring-like mode
and topologically massive gauge theories.

So, thanks to these results, one can represent the Thi
model as

ZT( j 2/2)5E Damdet~ i ]”1m1a” !e2*d3xV(amam). ~36!

Now, we proceed in the same way as in the typical c
@T( j 2/2), linear# to evaluate the determinant. The determ
nant of the Dirac operator is an unbounded operator
requires regularization.

For d53, the actual computation of this determinant w
give parity-breaking and parity-preserving terms that
computed in powers of the inverse mass,

ln det~ i ]”1m1a” !5
x

16p
SCS@a#1I PC@a#1O~]2/m2!.

~37!

Here,SCS is given by

SCS@a#5E d3xiemnl~Fmnal!, ~38!

it is the Abelian Chern-Simons action, and the pari
preserving contributions, to first-order, lead to the Maxw
action

I PC@a#52
1

24pm
trE d3xFmnFmn . ~39!

In the low-energy regime, only the Chern-Simons acti
survives yielding a closed expression for the determinan

ln det~ i ]”1m1a” !5
x

16p
SCS@a#1o~m21!. ~40!

Using this result, we may write

lim
m→`

Z T( j 2)/2
( f erm)

5E Damexp~2SV(a2)@a# !, ~41!

whereSV(a2) is the nonlinear version of the self-dual actio
introduced in@8#,

SV(a2)@a#5E d3xV~amam!2xSCS@a#. ~42!

Therefore, to the leading order in 1/m, we have established
the identification with the nonlinear self-dual theory:

Z T( j 2)/2
( f erm)'ZV(a2) . ~43!

Finally, recalling that the model with dynamics defined
the nonlinear self-dual action (SV(a2)) is equivalent to a non-

4()* is the usual Hodge’s operation.
6-4
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linear Maxwell-Chern-Simons theory (SU(F[a] 2)), we use the
relation~35! to establish the bosonization identity of the no
linear massive Thirring model with the topologically massi
theory along with the remarkable identification of the pote
tials, as

Z U( j 2/2)
( f erm) 'ZU(F2) . ~44!

In some cases, it is relatively simple to solve Eq.~33! @or, by
virtue of Eq. ~35!, Eq. ~27!#. Let us illustrate this by men
tioning some relevant examples: Taking a Thirring mo
with current-current interaction described by a functi
T( j 2)}( j m j m)k, then, it is equivalent to a self-dual mod
with nonlinearity described by another power law:V(a2)
}(amam)k/(2k21), and by virtue of Eq.~35!, the correspond-
ing model has a Maxwell term substituted byU(F2)
}(FmnFmn)k. A simple inspection shows that this resu
agrees with the one obtained in@18#, which enforces the
validity of the method proposed there.

The Born-Infeld-Chern-Simons example sets a spe
case since, as it can be directly verified from Eq.~27!, the
functional forms of the three models,coincide @11,18,19#;
i.e., T(q)5U(q)}V(q)}A12(const3q2), for all qeR.

IV. GENERAL DIMENSIONS:
BORN-INFELD-KALB-RAMOND

AND CREMMER-SCHERK-KALB-RAMOND
GAUGE THEORIES

In this section, by considering doublets of field-forms, w
show how the structure described above may also be es
lished ind dimensions.

For general dimensions, it is possible to define self-~and
anti-self-! duality for pairs~doublets! of form-fields with dif-
ferent ranks@5#, close in spirit to the self-duality in (211)
dimensions due to Townsend, Pilch, and van Nieuwenhu
@8#. Remarkably, as it has been shown in Ref.@5#, the actions
which describe this doublet-self-duality result to bedual-
equivalentto topologically massive theories ind dimensions,
which involve BF terms~topological coupling between dif
ferent Abelian gauge forms@1,3#!; in the same way as th
SD-MCS duality@in (211)].

In this work, this parallel shall be enforced and gener
ized with novel consequences on bosonization in high
mensions; besides, new dualities between theories sha
established.

Let us consider ad-dimensional space-time with signatu
s:5 we consider the tensor doublet,

Fª~ f m1•••mp
,gm1•••md2p21

!, ~45!

wheref is ap(,d)-form @a totally antisymmetric tensor typ
(0;p)], and g is a (d2p21)-form. F is an element of the
spaceDp[Lp3Ld2[ p11] .6

5That is, this is the number of minuses occurring in the metric
6A more detailed discussion on this construction and its moti

tions may be found in Refs.@4,5#; however, the notion presente
here is sufficient to make this paper self-contained.
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There is a well-defined notion of self-~and anti-self-! du-
ality for the objects in this space based on the stand
Hodges operation, ()* 7 in a fashion extremely similar to the
(211)-dimensional case described above. Consider the
tion with topological coupling:

SDSD@F#[E dxdF21

m
gm1•••md2p21

em1•••md]md2p

3 f md2p11•••md
1r~F!G , ~47!

wherer(F) collects the explicit mass terms as

r~F![
1

2
~@p11#!gm1•••md2p21

gm1•••md2p21

1~21!s@d2p#! f m1•••mp
f m1•••mp!. ~48!

For a more concise notation, in terms of forms, consi
the following definitions:d( f ,g)[(d f ,dg), and

* ~d f , dg![@* dg,~21!p11 Sp11 * d f#, ~49!

whereSq is a number defined by the double dualization o
eration, for aq-form A: * (* A)5SqA, this depends on the sig
nature~s! and dimension of the space-time in the formSq
5(21)s1q[d2q] .

Notice that* applied to doublets is defined such that
components are interchanged with a supplementary cha
of sign for the second component.

In so doing, the equations of motion derived from t
action ~47! read as

F5
1

m
* dF, ~50!

wherem is a mass parameter introduced for dimensional r
sons. It may trivially be verified that these equations requ
that F satisfies a Proca equation with massm.

Notice that Eq.~50! looks like Eq.~4!. In that sense, we
state thatSDSD describesdoublet-self-duality.

In the previous section, we considered nonlinear gener
zations of SD models; in the same sense, we may replar
by V(r) in the action~47! and obtain nonlinear generaliza
tions of the model. Below, we are going to prove that the
theories are dual equivalent to also nonlinear topologica
massive ones. The form of this correspondence shall re
the same as to the 3D case@Eq. ~27!#, which constitutes an
additional motivation to interpretate Eq.~47! as a self-dual
system.

-

7For a genericq-form, A, the Hodge dual is defined by

~*A!mq11•••md5
1

q!
em1•••mdAm1•••mq

. ~46!
6-5
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Consider the doublet of gauge fields A
[(am1•••mp

,bm1•••md2p21
) in addition to F

5( f m1•••mp
,gm1•••md2p21

); we now propose the following
parent action:

SP@A,F#5SBF@A#2E dxd em1•••md@bm1•••md2p21
]md2p

3 f md2p11•••md
1gm1•••md2p21

]md2p
amd2p11•••md

#

1V@r~F!#, ~51!

where

SBF@A#[E dxd@bm1•••md2p21
em1•••md]md2p

amd2p11•••md
#

~52!

is theBF action.
Varying SP with respect toF, we obtain

F52
1

V8~r!
* dA, ~53!

which looks like nonlinear self-duality, Eq.~16!. Plugging
this relation back into Eq.~51!, we recover the generalize
~nonlinear! topologically massive action:

STM@A#5SBF@A#2E ddxU~u!, ~54!

whereu encodes the Maxwell-type terms:

u[
1

2
„~21!s@d2p21#! ~] [mam1•••mp] !

2

1@p11#! ~] [mbm1•••md2p21] !
2
…. ~55!

Thus the same algebraic manipulations in the 3D c
lead to relatingU andV again in terms ofV by Eq. ~27!.

We shall observe that this is invariant under the gau
transformations;A→A1dD, where dD is a pure gauge
doublet, i.e., it is a pair of exact differentials of (p21,d
2p22)-forms.

Now, we varySP with respect toA and obtain:

* d~A2F!50, ~56!

or in components,

* d~a2 f !50,

* d~b2g!50. ~57!

This implies that the differencesa2 f andb2g may locally
be written as exact forms; therefore it is possible to expr
the solution to these equations as

A5F1dD. ~58!

Putting this back into the action~51!, we recover the gener
alized SD theory up to topological terms:
02501
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SDSD@F#[E dxdF2
1

m
gm1•••md2p21

em1•••md]md2p

3 f md2p11•••md
1V@r~F!#G . ~59!

Whenever V ~or U) is linear, we get the so-called
Cremmer-Scherk-Kalb-Ramond-type models, and
present result reproduces the dual correspondence obta
by Harikumaret al. in the recent work of Ref.@21# for d
5311, recently generalized, in@5#, to arbitrary dimensions
and all possible tensorial ranks.

A. More general nonlinearities

It is not a general fact thatV5V@r(F)#. Besides the re-
quirement of Lorentz invariance, one may also require t
the two gauge forms which compose the doublet do not
teract with one another, apart from the interaction due to
BF term.

ConsiderF[( f 1 , f 2) and A[(a1 ,a2), both in Dp , and
the nonlinearity given by

V5V1@N2 ~ f 1!2#1~21!sV2@N1 ~ f 2!2#, ~60!

whereNi[@pi11#!/2, i 51, 2 andpi denotes the rank off i
(p11p2115d).8

Then, the variation of Eq.~51! with respect toF yields

~V18@N2~ f 1!2# f 1 ;V28@N1~ f 2!2# f 2!52* dA. ~61!

Thus, by repeating the previous calculations, we can rea
check the duality between

SV1 ,V2
@F#5SBF@F#1E ddx~V1@N2 ~ f 1!2#1V2@N1~ f 2!2# !

~62!

and

SU1 ,U2
@A#5SBF@A#2E ddx~U1@p2! ~da1!2#

1U2@p2! ~da2!2# !. ~63!

Thus we come to the known relation

Ui~q!522Wi~q!Vi8@Wi~q!#1Vi@Wi~q!#, qeR1,
~64!

where the functionsWi are again defined by

Wi
21~v ![2v@Vi8~v !#2 veR1. ~65!

In d5311, an interesting duality can be established
applying this result to a topologically massive combinati
of a Born-Infeld with a~rank two! Kalb-Ramond field.

8( f i)
2 denotesf m1•••mp

f m1•••mp
.

i i
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The Born-Infeld-Kalb-Ramond~BIKR! theory9

SBIKR~A!5E d4xS b2AF12
2

b2
] [rAm]]

[rAm] G
2] [rBmn]]

[rBmn]1mBmnermns]rAsD ,

~66!

for the doublet of gauge fieldsA5(Am ,Bmn),10 is dual-
equivalent to the first-order model:

SDSD@Ã[~Ãs ,B̃mn!#5E d4xS 2b2AF11
1

b2
ÃsÃsG

1B̃mnB̃mn1
1

m
Ãsesrmn] [rB̃mn] D , ~67!

which is a gauge noninvariant theory, also associated
nonlinear doublet-self-duality constraint.

B. Bosonization in „3¿1…-d

Here, we present a novel approach to bosonization id
5311, valid for length scales long compared with th
Compton wavelength of the fermion.

In a four-dimensional massive fermionic model wi
U(1) charge; just like in the 3D case, one defines a curr
j m[c̄gmc, wherec areNf four-component Dirac spinors.11

However, one can also define a rank-two current,j mn

[c̄g5@gm,gn #c; let us now define the doublet-current:

J5~ j m, j mn!. ~68!

The appearance of theg5 matrix in j mn follows from requir-
ing that j mn as well asj m are both odd under charge conj
gation: c̄g5@gm,gn #c52c̄Cg5@gm,gn #cC. Notice thatJ
is a well-formed doublet (J e Dp).

Now, we can write a nonconventional~Euclidean!12 mas-
sive Thirring model in a similar fashion to the 3D case:

Z ( f erm)[E Dc̄Dc

3e2*„c̄(]/1m)c2(g2/2Nfm)[2 j mn j mn2 j m j m] …d4x,

~69!

wherem is the fermion mass andg a coupling constant of the
model, such thatg2 have dimensions of inverse mass.

9Here, Born-Infeld means that the free action is proportiona
A12const3FmnFmn.

10b is a parameter introduced for dimensional reasons.
11In this calculation,Nf will be simply considered as a paramete
12In an Euclidean space-time,j mn is purely imaginary; thus, in

order to render it real, we may redefine this bilinear by multiplyi
it by an i.
02501
a
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We are going to show that this bosonizes into the CS
model, a gauge, topologically massive theory.

Such as in the 3D case, we get the identity,

e2(g2/2 Nfm)E d4x[2 j mn j mn2 j m j m]

5E DA e*d4x tr„1/2[1/2bmnbmn2amam] 1(g/AmNf )[bmn j mn2am j m] …,

~70!

which introduces the doublet of bosonic fieldsA
[(am ,bmn).

Defining the doublet-slash by

A” [gmam1g5@gm,gn #bmn , ~71!

the partition function reduces to

Z ( f erm)5E DA det~ i ]”1m1A” !e1/2*d4x[1/2bmnbmn2amam] .

~72!

Next, we must evaluate this determinant.
A straightforward perturbative expansion yields

Se f f@A” ,m#5Nf tr@ ln~]”1m!#1Nf

g

ANfm
trS 1

]”1m
A” D

1
Nf

2 S g2

Nfm
D trS 1

]”1m
A” 1

]”1m
A” D1•••.

~73!

The first term is just the free (A50) case, which is sub-
tracted, while the second term is simply two tadpoles acco
modated in the doublet. Thus we draw our attention to
quadratic term~in the bosonic fieldsA) in the effective ac-
tion. In momentum space, this reads

Se f f
quad@A,m#5

g2

2m
trE d4p

~2p!4

d4k

~2p!4

3FA” ~2p!
ip”1 ik”2m

~p1k!21m2
A” ~p!

ik”2m

k21m2G .

~74!

Terms of the formA” (2p)k”A” (p)k” and A” (2p)p”A” (p)k” in
the numerator of the integrand will contribute at most
second order inpm .13 Since we are seeking for the low en
ergy limit, like in the 3D case, we can approximate this b

o

13They also cancel the terms tr@m2A” (2p)A” (p)# that appear in
the numerator.
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Se f f
quad@A,m#' i

g2

2m
trE d4p

~2p!4

d4k

~2p!4

3FA” ~2p!
~p”1k” !A” ~p!2A” ~p!k”

@~p1k!21m2#@k21m2#
G ,

~75!

using also the fact that the trace of an odd number
gamma-matrices is zero. We obtain only a topological c
tribution:

Se f f
quad@A,m#'

g2

2 E d4p

~2p!4@am~2p!Gmna~p!bna~p!#,

~76!

where, by virtue of the special property of the gamma ma
ces~here, Euclidean! in (311)-d,

tr~gmgng5@gr,ga #!528emnra, ~77!

the kernel takes the form:

Gmna~p,m!5emrnaprP~p2,m!, ~78!

whereP(p2,m) is the contribution corresponding to the on
fermion-loop self-energy diagram. For the sake of comput
the loop integral and factoring out the divergent part, we
over tod542e-dimensions, following the procedure of d
mensional regularization~see Ref.@22#!:

P~p2,m!5~m!eE ddk

~2p!d

1

@~p1k!21m2#@k21m2#

5
1

~4p!2 F2

e
2g2 ln

p2

m2
2I S p2

m2D G1o~e!,

~79!

m is a parameter and the finite part reads as below:

I S p2

m2D 5a ln a2~a21!ln~a21!

1b lnubu1~12b!ln~12b!22, ~80!

where

a5
1

2 F16A114
m2

p2 G ,

b5
1

2 F16A124
m2

p2 G . ~81!

In the long wavelength (p→0) and large mass (m→`)
limit, a→`, b→2`; thus it is easily verifiable thatI→
22. Therefore we find the finite part of the kernel:

Gmna~p,m!;
2

~4p!2
emrnapr . ~82!
02501
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Inserting the leading term into the quadratic effective a
tion ~76! and going back to configuration space~Lorentzian!,
we find an inducedBF term

Se f f528
g2

~4p!2E d4xemnraam]nbra

528
g2

~4p!2
SBF~A!. ~83!

Putting this result back into Eq.~36!, we obtain

Z ( f erm)'E DA eSBF(A)11/2*d4x[1/2bmnbmn2amam] , ~84!

which, via the correspondence proven before, is equiva
to the gauge invariant Cremer-Sherk-Kalb-Ramond mo
which describes a massive spin-one~bosonic! particle. The
boson mass is given by the inverse of the factor in front
SBF in Eq. ~83!, mboson

21 ; g2/2p2.
Notice also that, if one rescales the doublet current

( j m, j mn)→(s jm,t j mn), the single effect of this is that the
boson mass results are rescaled asmboson→mboson/ (st).

Finally, afermionic representationfor the CSKR model is
given by the partition function:

Z ( f erm)5E Dc̄Dc

3e2*(c̄(]”1m)c2(g2/2 Nfm)[2 j mn j mn1 j m j m])d3x

'ZCSKR. ~85!

Now, by repeating the calculations of the previous s
tions, one may study nonlinear generalizations of the fer
onic model ~69!. In fact, substituting j mn j mn1 j m j m

→ U1( j mn j mn)1U2( j m j m) in the expression~69!, one can
bosonize this into a nonlinear SD theory given by Eq.~62!,14

whose nonlinearities are related toU1/2 by the expressions
~64!. And once more, for composing this with the duali
proven in Sec. IV B, this corresponds to a topologically m
sive gauge theory~so as in the Thirring-MCS correspon
dence! given by the action~63!.

In particular, we can write down the fermionic counterpa
of the Born-Infeld-Kalb-Ramond gauge theory. This may
cast as

ZBI2KR'E Dc̄Dc

3e2*(c̄(]”1m)c2(g2/2 Nfm)[2 j mn j mn1b2A12 j m j m/b2])d3x.

~86!

14For simplicity, we are discussing the cased54 and doublets in
D1.
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Let us conclude this section by mentioning that the ope
tor correspondence underlying this structure reads as

J→* dA. ~87!

V. FINAL REMARKS

We have presented here a new approach to study
bosonization of a model of interacting fermions in terms
topologically massive models, similar to what happens ind
53. In general, this involves two gauge fields with differe
tensorial ranks~BF-type theories!. We have actually dis-
cussed this point ford54, but we showed the road to repro
duce this construction in higher dimensions~one simply
should build up the currents as elements in someDp). These
results have been emphasized for theories which appear
very important in field theory and/or dynamics of Dp-branes
@Chern-Simons-Kalb-Ramond~CSKR! and BIKR theories#.

A comment is in order that regards the two-form curre
j mn, appearing in the Thirring model. It may look somewh
artificial, since it is not necessarily conserved. Neverthele
we try here to show that it is actually a natural piece of
formalism, since it is related to topologically massive gau
invariant models: it is crucial for the attainment of a boso
topologically massive theory in the large fermionic ma
limit. Bosonization in the case of nonconserved fermio
currents has already been contemplated by other aut
@23#.

We conclude this paper by stressing a motivation for
in
nd

ys
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proposed generalization of the self-duality tod.3, via dou-
blets @4,5#. It appears to be appropriate to highlight such
point, since, despite the use of the doublet procedure
posed here to bosonize a 3D-Thirring model, one recov
the well-known results in 3D, i.e., the doublet disappears
reduces to a single dynamic self-dual field. In fact, for
Thirring model in 3D, with aU(1) interaction, we can only
construct a current doublet inD1 , J5( j m, j m), where j m

[c̄gm c. After introducing, as usual, a bosonic doubletA
5(am ,bm), the partition function may be cast as

Z( f erm)[E Dc̄Dc DaDb

3e2*(c̄(]”1m)c2(g2/2) j m [am1bm] 2(a21b2)/2)d4x.

~88!

By changing coordinates tocm
6[(am6bm)/2, the fieldcm

1

appears decoupled fromcm
2 ~the latter without dynamics!,

whose action, induced by the fermionic model, is precis
given by a self-dual model@Eq. ~3!#, as expected. This fac
seems to be an additional motivation to think of the~current!
doublets as more general objects.
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