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Non-Abelian fluid dynamics in Lagrangian formulation
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Non-Abelian extensions of fluid dynamics, which can have applications to the quark-gluon plasma, are
given. These theories are presented in a symplectic or Lagrangian formulation and involve a fluid generaliza-
tion of the Kirillov-Kostant form well known in Lie group theory. In our simplest model the fluid flows with
velocity v and, in the presence of non-Abelian chromoelectric or magneticEa/Ba fields, the fluid feels a
Lorentz force of the formQaEa1(v/c)3QaBa, whereQa is a space-time local non-Abelian charge satisfying
a fluid Wong equation@(Dt1v•D)Q#a50 with gauge covariant derivatives.
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I. INTRODUCTION

When different species of particles compose a fluid
may be that the collective variables describing the fluid~den-
sity r, velocity v in an Eulerian formulation!, and the dy-
namical equations that govern them, can reflect the com
sitional variety. In this paper we develop models for flui
where the variety of constituents arises from an internal s
metry group. We envision applying our theory to high de
sities of non-Abelian quarks, with or without additional in
teraction to a dynamical gauge field.

High energy collisions of heavy nuclei can produce
plasma state of quarks and gluons. This new state of ma
has recently been of great interest both theoretically an
experiments at the Relativistic Heavy Ion Collider~RHIC!
facility and at CERN. Most of the theoretical work in th
area has been based on perturbative quantum chromody
ics at high temperatures with hard thermal loop resumm
tions and other improvements@1#. This can be a good de
scription at high temperatures and for plasma states tha
not too far from equilibrium. An alternative approach, whi
may be more suitable for nondilute plasmas or for situati
far from equilibrium, would be to use a fluid mechanic
description.

It is well known that the equations of fluid mechanics c
be derived from particle dynamics by taking suitable av
ages of Boltzmann-type equations. Specifically for t
quark-gluon plasma, some work along these lines was d
many years ago using single particle kinetic equations@2#.
These kinetic equations form a hierarchy, the so-ca
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy, involving higher and higher correlatedN-particle distri-
bution functions. To be able to solve them, one needs
truncate the hierarchy, very often at just the single part
distribution function. Therefore, the feasibility of solvin
these equations limits the kinetic approach to dilute syste
near equilibrium, where the truncation can be justified.
might therefore expect that the regime of validity of equ
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tions derived within kinetic theory is likewise limited. How
ever, fluid dynamical equations can also be derived fr
very general principles, showing that they have a mu
wider regime of validity, and, indeed in practice, we app
them over such a wider range. This is the ‘‘universality’’
fluid dynamics.

In the context of a non-Abelian plasma, in analogy w
the ordinary fluid mechanics, we may therefore ask for aa
priori derivation of a non-Abelian fluid mechanics, whic
incorporates the non-Abelian degrees of freedom, coup
to a non-Abelian gauge field, etc. This theory may be va
for dense, nonperturbative and nondilute systems. Furthe
canonical or symplectic formulation~at least in the conser
vative limit! is important for quantization. At the same tim
the analysis based on the kinetic equations remains usef
us as a guide for arriving at a Lagrangian, canonical desc
tion.

Our goal is to provide plausible equations that genera
to the non-Abelian situation the continuity

] tr~ t,r !1¹•„r~ t,r !v~ t,r !…50 ~1!

and Euler equations

] tv~ t,r !1v•¹v~ t,r !5 force ~2!

which govern conventional Eulerian perfect fluids. In Eq.~2!
forcedenotes forces acting on a unit volume of the fluid. T
above four equations or their relativistic versions can
equivalently presented as the four conservation laws for
energy and momentum densities~either nonrelativistic or
relativistic!.

In the non-Abelian generalizations one must first fix t
group transformation law for the collective variables and
covariance properties of the equations, which now may nu
ber more than four, and cannot be comprised solely
energy-momentum conservation. An obvious additio
equation is the~covariant! conservation equation for the non
©2003 The American Physical Society13-1
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Abelian current, but the relation of this current to the colle
tive variables needs to be established.

Our constructions begin by postulating collective varia
Lagrangians that are invariant against space-time transla
and internal symmetry transformations. Thus ener
momentum conservation and current conservation are
sured by Noether’s theorem, while the Euler-Lagrange eq
tions describe the temporal evolution of the collecti
variables. In Sec. II we review the Lagrangian as well
other aspects of nonrelativistic and relativistic Abelian fluid
This is done to motivate and contrast our non-Abelian c
structions, which we develop in Secs. III and IV. Derivatio
are postponed to the Appendixes; in the text only results
presented and discussed.

II. REVIEW OF ABELIAN FLUIDS

Equations~1! and~2! can be found as the Euler-Lagrang
equations for the Lagrange density@3#

L52 j mam1
1

2
rv22V ~3!

where our coordinates arexm5(ct,r ). The various quantities
are defined as

j m5~cr,rv! ~4!

am[]mu1a]mb ~5!

andV is a r-dependent potential that gives rise to theforce.
~In the usual theory,V depends only onr, but we allow
dependence on derivatives ofr as well.! The canonical
1-form is determined by the first contribution toL while the
dynamics is encoded in the12 rv22V term. Specifically,
variation of v shows thatv is given by the Clebsch param
etrization@4#

v5¹u1a¹b. ~6!

A variation of u results in Eq.~1!, while a variation of the
Clebsch potentials (a,b) produces subsidiary equations

j m]ma5r~] ta1v•¹a!50
~7!

j m]mb5r~] tb1v•¹b!50

which are needed in the subsequent derivation of the E
equation. Finally, the ‘‘Bernoulli’’ equation emerges by var
ing r:

] tu1a] tb1
v2

2
52

d

drE dr V. ~8!

@(d/dr)*dr V is just the Euler-Lagrange derivative ofV.#
The Euler equation~2! then follows by taking the gradient o
Eq. ~8! and using Eq.~7!. The force on the right of Eq.~2! is
now seen to be

force52¹
d

drE dr V. ~9!
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The energyE and momentumP densities carried by the
fields are

E5
1

2
rv21V ~10!

P5rv. ~11!

These satisfy continuity equations as a consequence o~or
equivalent to! Eqs.~1! and ~2!.

Interaction with electromagnetic fields is accommoda
by including the Maxwell Lagrange density and adding t
electromagnetic vector potential toam , whereuponj m be-
comes the electromagnetic current. This gives rise to the L
entz force in the Euler equations, thereby producing mag
tohydrodynamics. Note that in this model the mass den
moves with the same velocity as the charge density as is
by inspectingP and j .

An interesting realization of the above equations is p
vided by Madelung’s ‘‘hydrodynamical’’ rewriting of the
Schrödinger equation@5#

i\ ] tc~ t,r !52
\2

2m
¹2c~ t,r ! ~12!

where the wave function is presented as

c~ t,r !5Ar~ t,r !eimu(t,r )/\. ~13!

The imaginary part of Eq.~12! reproduces the continuity
equation~1!, when¹u is identified as the velocityv, with
vanishing vorticity ¹3v50. Also the quantum curren
(\/m)Im c* ¹c becomesrv. The real part of Eq.~12! gives
the Bernoulli equation witha andb set to zero and with a
‘‘quantum’’ force derived from

V5
\2

2m2
~¹Ar!25

\2

8m2

~¹r!2

r
. ~14!

The Euler equation~2! follows by taking the gradient of the
Bernoulli equation.

The Lagrange density for a relativistic fluid is chosen
@3#

L52 j mam2 f ~n!, n[Aj m j m /c2. ~15!

The canonical 1-form is as in the nonrelativistic case~3!, ~4!,
~5! and nowj m is written in the Eckart form@6#

j m5num, umum5c2, um5~c,v!/A12v2/c2,

n5rA12v2/c2. ~16!

f (n) encodes the dynamics; for the free theoryf (n)5nc2.
Variations ofu, a andb still produce Eqs.~1! and~7! while
a variation ofj m evaluatesam

am52
um

c2
f 8~n! ~17!
3-2
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where the prime denotes differentiation with respect to
argument of the function. We call~17! the relativistic Ber-
noulli equation, which leads to the Euler equation with t
following steps. The curl of Eq.~17! reads

]man2]nam5]nS um

c2
f 8~n!D 2]mS un

c2
f 8~n!D . ~18!

Since according to Eq.~6! the left side is equal to]ma]nb
2]na]mb, it vanishes by Eq.~7! when projected onum.
Thus there remains the relativistic Euler equation

um

c2
]m„un f 8~n!…2

um

c2
]n„um f 8~n!…

5
um

c2
]m„un f 8~n!…2]n f 8~n!50. ~19!

It is easy to show that in the nonrelativistic limit, with

n'r2
1

2c2
rv2 ~20!

um'~c,v! ~21!

and

f 5nc21V~n!, ~22!

the Lagrange density~15! passes to Eq.~3! ~apart from an
irrelevant term2rc2) and the spatial component of Eq.~19!
reproduces the Euler equation~2!.

The energy-momentum tensor for Eq.~15! reads, afteram
is eliminated with Eq.~17! @7#

Tmn52gmn@n f8~n!2 f ~n!#1
umun

c2
n f8~n!. ~23!

Its divergence]mTmn can be expressed as

]mTmn5]m~num!
un f 8~n!

c2
1nFum

c2
]m„u

n f 8~n!…2]n f 8~n!G .

~24!

The first term on the right-hand side vanishes by the virtue
the continuity equation~1! and the second term vanishes
the relativistic Euler equation~19!, or vice versa: since the
two terms in Eq.~24! are linearly independent~the first is
parallel toun and the second is orthogonal to it!, conserva-
tion of Tmn implies Eqs.~1! and ~19!. Relativistic magneto-
hydrodynamics is achieved, as in the nonrelativistic case
adding the electrodynamical potential toam.

Finally we record one fact, which we shall use belo
about the alternative, Lagrange, formulation of fluid mech
ics. Here one describes the fluid with co-moving coordina
X(t,x) wherex is a ~continuously! varying particle label. It
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may be chosen to coincide withX at t50. The relation be-
tween Euler and Lagrange variables is the following. For
density we have

r~ t,r !5E dx d„X~ t,x!2r … ~25!

which is normalized to unity att50. ~The integral and thed
function follow the dimensionality of space.! Evidently, in
the course of thex integral, thed function evaluatesx at an
expressionx(t,x) such thatX„t,x(t,r )…5r , i.e., x is the in-
verse ofX. There is also a Jacobian. Thus

1

r
5det

]Xi

]xj U
x5x

. ~26!

The Euler velocity is given by

v5] tXux5x ~27!

or

r~ t,r !v~ t,r !5Edx ] tX~ t,x!d~X~ t,x!2r !. ~28!

A simple calculation shows that the densityr and currentj
5rv defined by these equations satisfy the continuity eq
tion ~1!. @The Euler equation follows by differentiating Eq
~28! with respect to time, positing a force that determin
]2X/]t2, and performing the correspondingx integral; we
shall not need this here.#

III. NON-ABELIAN MODELS BASED ON A PARTICLE
SUBSTRATUM

A. Non-Abelian current

Before presenting a specific model, we give a gene
analysis of the non-Abelian currentJa

m5(cra ,Ja). The con-
ventional formula for the current of a single, non-Abelia
point particle, moving in a 4-dimensional space-time$t,r%,
along a space-time pathXm(t) (t parametrizes the path! is

Ja
m~ t,r !5cEdt Qa~t!

dXm~t!

dt
d~X0~t!2ct!d„X~t!2r ….

~29!

This is covariantly conserved,

]mJa
m1 f abcAm

b Jc
m[~DmJm!a50, ~30!

provided thatQa satisfies the Wong equation@8#

dQa~t!

dt
1 f abc

d

dt
Xm~t!Am

b
„X~t!…Qc~t!50, ~31!

For several particlesQa and Xm are indexed by a discret
particle labeln, which is summed in the definition of th
currentJa

m . In a continuum limitn→x we have
3-3
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Ja
m~ t,r !5cE dxdt Qa~t,x!

]Xm~t,x!

]t

3d„X0~t,x!2ct…d„X~t,x!2r … ~32!

]

]t
Qa~t,x!1 f abc

]

]t
Xm~t,x!Am

b
„X~t,x!…Qc~t,x!50.

~33!

@Notice that, since we replace a sum overn with an integral
over x, Qa(t,x) is now a charge density.# The parametriza-
tion may be fixed atX0(t,x)5ct so that the equations rea

ra~ t,r !5EdxQa~ t,x!d„X~ t,x!2r …

~34!

Ja~ t,r !5EdxQa~ t,x!] tX~ t,x!d„X~ t,x!2r …

] tQa~ t,x!1 f abc@cA0
b
„t,X~ t,x!…

1] tX~ t,x!•Ab
„t,X~ t,x!…#Qc~ t,x!50. ~35!

Observe that just as in the Abelian case discussed above
x integration evaluatesx at x(t,r ), the inverse ofX, and the
Jacobian factor (det]Xi /]xj )21 is just the Abelian charge
densityr @see Eq.~26!#. Thus

ra~ t,r !5Qa~ t,r !r~ t,r !

Ja~ t,r !5Qa~ t,r !r~ t,r !v~ t,r ! ~36!

or

Ja
m~ t,r !5Qa~ t,r ! j m~ t,r !, ~37!

where

Qa~ t,r !5Qa~ t,x!ux5x ~38!

r~ t,r !Qa~ t,r !5EdxQa~ t,x!d„X~ t,x!2r …. ~39!

Moreover, differentiating Eq.~39! with respect to time and
using Eqs.~1! and ~35! results in an equation for]Qa/]t,

] tQa~ t,r !1v~ t,r !•¹Qa~ t,r !

52 f abc„cA0
b~ t,r !1v~ t,r !•Ab~ t,r !…Qc~ t,r ! ~40!

which can also be written as

j m~DmQ!a50. ~41!

This is analogous to the Abelian equations~7!. Equations
~40! and~41! can be understood from the fact that the cov
riantly conserved current~30! factorizes according to Eq
~37! into a group variableQa and a conserved Abelian cu
rent j m. Consistency of Eqs.~1!, ~30! and~37! then enforces
Eq. ~41!.
02501
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We recognize that formulas~32! and ~34! are the non-
Abelian version of the Lagrange variable–Euler variable c
respondence@see Eqs.~25! and ~28!#. Also, Eqs.~35!, ~40!
and ~41! are the field generalizations of the particle Wo
equation~31!, with Eq. ~35! being presented in the Lagrang
formalism and Eqs.~40!, ~41! in the Euler formalism. The
decomposition of the non-Abelian current in Eq.~37! is the
non-Abelian version of the Eckart decomposition~16! @2#.
Indeed, Eq.~37! may be further factored as in Eq.~16!

Ja
m~ t,r !5Qa~ t,r !n~ t,r !um~ t,r !. ~42!

In the remainder of Sec. III, we are guided in our constru
tion of a dynamical model for non-Abelian fluid mechani
and ‘‘color’’ hydrodynamics by the above properties of th
non-Abelian current, which follow from the very general a
guments, based on a particle picture for the substratum
fluid. In Sec. IV we present a different model, based on
field-theoretic fluid substratum.

B. A model for non-Abelian color hydrodynamics

The model that we present is based on a group with gr
elementsg, and anti-Hermitian Lie algebra elements wi
basisTa,

@Ta,Tb#5 f abcTc ~43!

tr~TaTb!52
1

2
dab. ~44!

The Lagrange density for an Eulerian fluid built on such
group is taken to be the following generalization of the Ab
lian expression~15!:

L5 j m2 tr @Kg21Dmg#2 f ~n!1Lgauge. ~45!

Here j m is an Abelian vector field~current! which can also be
decomposed as in Eq.~16!

j m5~cr,rv!5num, umum5c2. ~46!

The covariant derivative

Dmg5]mg1Amg ~47!

involves a dynamical non-Abelian gauge potentialAm

5Am
a Ta whose dynamics is provided byLgauge. K is a fixed,

constant element of the Lie algebra. The first term inL con-
tains the canonical 1-form for our theory and determines
canonical brackets, whilef (n) describes the fluid dynamics
The theory is invariant under gauge transformations w
group elementU

g→U21g
~48!

Am→U21~Am1]m!U.

According to Eq.~45!, the currentJa
m to whichAm

a couples is
of the Eckart form~42!

Ja
m5Qaj m ~49!
3-4
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with

Q[QaTa5gKg21. ~50!

For consistency of the gauge field dynamicsJm[Ja
mTa

must be covariantly conserved. To satisfy the general a
ments of Sec. III A,j m must be divergenceless and then t
Wong equation~41! will follow. In Appendix A we show that
both conservation laws are a consequence of invarianc
the action with respect to variations of the group elemeng;
arbitrary variations ofg lead to covariant conservation ofJm

in Eq. ~30! while the particular variationdg5gKl ensures
that j m is conserved as in Eq.~1!. Therefore the Wong equa
tion ~41! is also a consequence.

Thus our model reproduces all the equations satisfied
the current that were established in Sec. III A from gene
principles. Indeed the canonical~first! term of the Lagrang-
ian in Eq.~45! is like a Kirillov-Kostant 1-form, which has
been previously used to give a Lagrangian for the point p
ticle Wong’s equation~31! @9#. Moreover, as we show in
Appendix B, the canonical brackets implied by the canoni
1-form ensure that the charge density algebra is represe
canonically

$ra~ t,r !,rb~ t,r 8!%5 f abcrc~ t,r !d~r2r 8!. ~51!

It remains to derive the Euler equation. This is accomplish
by varying j m; stationary variation requires

2 tr @Q~Dmg!g21#5
um

c2
f 8~n! ~52!

which we call the non-Abelian Bernoulli equation. The Eu
equation then follows, as in the Abelian case, by taking
curl

]m$2 tr@Q~Dng!g21#%2]n$2 tr@Q~Dmg!g21#%

5]mS un

c2
f 8~n!D 2]nS um

c2
f 8~n!D . ~53!

In Appendix C we show that manipulating the left-hand s
allows rewriting Eq.~53! as

2 tr @~DmQ!~Dng!g21#12 tr @QFmn#

5]mS un

c2
f 8~n!D 2]nS um

c2
f 8~n!D . ~54!

Finally, contracting withj m5num and using Eq.~41! pro-
duces the relativistic, non-Abelian Euler equation

num

c2
]m„un f 8~n!…2n]n f 8~n!52 tr@JmFmn#. ~55!

The left-hand side is as in Eq.~19! while the right-hand side
describes the non-Abelian Lorentz force acting on
charged fluid.
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Apart from the gauge field contribution, the energ
momentum tensor for the Lagrange density~45! is the same
as in Eq. ~23! when Eq. ~52! is used to eliminate
tr Kg21Dmg

Tmn52gmn@n f8~n!2 f ~n!#1
umun

c2
n f8~n!. ~56!

Just as in the Abelian case, the divergence ofTmn entails two
independent parts: one proportional toun and the other or-
thogonal to it:

]mTmn5]m~num!
un f 8~n!

c2
1nFum

c2
]m„u

n f 8~n!…2]n f 8~n!G .

~57!

The first vanishes by the virtue of Eq.~1! and the rest is
evaluated from Euler equation~55!, leaving

]mTmn52 tr @JmFmn# ~58!

which is canceled by the divergence of the gauge-fi
energy-momentum tensor

]mTgauge
mn 522 tr @JmFmn#. ~59!

Thus energy-momentum conservation reproduces Abe
current conservation~1! and the non-Abelian Euler force
equation~56!, but the Wong equation~41! has to be enforced
additionally. This is achieved by our Lagrangian~45!.

We record the nonrelativistic limit of Eq.~55!; using Eqs.
~20!–~22!, we find that the nonrelativistic limit for the spatia
component of Eq.~55! gives the Euler equation with a non
Abelian Lorentz force

] tv1v•¹v5 force1QaEa1
v

c
3QaBa ~60!

whereforce is the pressure force coming from the potentiaV
~and is therefore Abelian in nature!, while non-Abelian force
terms involve the chromoelectric and chromomagnetic fie

Ea
i 5cF0i

a , Ba
i 52

c

2
e i jkF jk

a . ~61!

It is seen that our non-Abelian fluid moves effectively in
single direction specified byj5rv. Nevertheless, it experi
ences a non-Abelian Lorentz force. In the next section
present a generalization wherein the non-Abelian fluid dev
ops several independent directions of motion.

C. Generalization

A generalization of our Lagrange density~45! that will
give rise to several fluid components carrying various den
ties and moving with various velocities is obtained by cho
ing several directions in the Lie algebra,K (s) , and coupling
to different Abelian currents@10#
3-5
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L5(
s51

r

j (s)
m 2 tr @K (s)g

21Dmg#

2 f ~n(1) ,n(2) , . . . ,n(r )!1Lgauge

j (s)
m 5~cr (s) ,r (s)v(s)!5n(s)u(s)

m ~62!

u(s)
m u(s)m5c2

n(s)5Aj (s)
m j (s)m /c2.

~Sums overs are indicated explicitly; the summation conve
tion does not apply tos.! Evidently the current which couple
to the gauge potential is now

Jm5(
s51

r

Q(s) j (s)
m , with Q(s)5gK(s)g

21. ~63!

Arbitrary variation of g ensures that the expression in E
~63! is covariantly conserved, but we also need the con
vation of individual j (s)

m . This is achieved by choosing spe
cial forms for d (s)g5gK(s)l (s) which will work provided
that differentK (s) commute~see Appendix A!. Therefore, we
choose theK (s) to belong to the Cartan subalgebra of the L
algebra and the total number of different channels equals
rank r of the group. With this choice for theK (s) , special
variations ofg ensure

]m j (s)
m 5] tr (s)1¹•~r (s)v(s)!50. ~64!

The Wong equation which follows from the conservation
the non-Abelian current now reads

(
s51

r

j (s)
m DmQ(s)50. ~65!

Varying the individualj (s)
m produces the Bernoulli equation

2 tr @Q(s)~Dmg!g21#5
um

c2
f (s)

where f (s)[
]

]n(s)
f ~n(1) ,n(2) , . . . ,n(r )!.

~66!

Again, the curl of the above can be cast in the form

1

c2
$]m~u(s)

n f (s)!2]n~u(s)
m f (s)!%

52 tr @~DmQ(s)!~Dng!g21#12 tr @Q(s)F
mn#. ~67!

When contracted withj (s)
m 5n(s)u(s)

m , this leaves
02501
.
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n(s)u(s)
m

c2
]m~u(s)

n f (s)!2n(s)]
n f (s)

52 tr @ j (s)
m ~DmQ(s)!~Dng!g21#

12 tr @ j m(s)Q(s)F
mn#. ~68!

However, unlike in the single channel case, the right-ha
side does not simplify sincej m(s)Q(s) cannot be replaced by
Jm because the latter requires summing overs. Also the first
right-hand term in Eq.~68! does not vanish since Eq.~65!
requires summation overs.

The energy-momentum tensor is

Tmn52gmnS (
s51

r

n(s) f
(s)2 f D 1(

s51

r u(s)
m u(s)

n

c2
n(s) f

(s).

~69!

Its divergence of course reproduces Eq.~57!

]mTmn5(
s51

r H „]m~n(s)u(s)
m !…

u(s)
n f (s)

c2

1n(s)Fu(s)
m

c2
]m~u(s)

n f (s)!2]n f (s)G J . ~70!

The first term in the curly brackets vanishes according to
~64! and the remainder is evaluated from Eq.~68! as

(
s51

r

~2 tr@~ j (s)
m DmQ(s)!~Dng!g21#12 tr @ j m(s)Q(s)F

mn#!.

Since now we are summing over all channels, it follows fro
Eqs.~63! and ~65! that, as before,

]mTmn52 tr @JmFmn#. ~71!

A more transparent picture of what is happening is giv
if the dynamical potential separates

f ~n(1) , . . . ,n(r )!5(
s51

r

f (s)~n(s)! ~72!

f (s)5 f (s)8 . ~73!

Then the left-hand side of Eq.~68! refers only to variables
labeleds, while the right-hand side may be rewritten with th
help of Eqs.~62! and ~65! to give

n(s)u(s)
m

c2
]m~u(s)

n f (s)8 !2n(s)]
n f (s)8

52 tr @JmFmn#22 (
s8Þs

r

tr$ j m(s8)@Q(s8)F
mn

1~DmQ(s8)!~Dng!g21#%. ~74!
3-6
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Thus in addition to the Lorentz force, there are forces aris
from the other channelss8Þs. Note that for separated dy
namics as in Eq.~72!, the energy-momentum tensor als
separates

Tmn5(
s51

r

T(s)
mn

5(
s51

r H 2gmn@n(s) f (s)8 2 f (s)~n(s)!#1
u(s)

m u(s)
n

c2
n(s) f (s)8 J

~75!

but the divergence of individualT(s)
mn does not vanish. This

reflects that energy is exchanged between the different c
nels and with the gauge field, as is also evident from
equation of motion~74!. It is clear that this fluid moves with
r different velocitiesv(s) .

The single-channel Euler equation~55! is expressed in
terms of physically relevant quantities~currents, chromo-
magnetic fields!; the many-channel equation~68! involves,
additionally, the gauge group elementg. One may simplify
that equation by going to special gauge, for exampleg5I , so
that the right-hand side of Eq.~68! reduces to

2 tr @ j m(s)~DmQ(s)!~Dng!g21#12 tr @ j (s)
m Q(s)Fmn#

52 tr @K (s) j (s)
m ~]mAn2]nAm!# ~76!

while the Wong equation~65! becomes

(
s51

r

j (s)
m @Am ,K (s)#50. ~77!

It is interesting that in this gauge the non-linear terms inFmn

disappear.

IV. NON-ABELIAN FLUIDS WITH A FIELD SUBSTRATUM

In the Abelian case, the Madelung parametrization~13! of
the Schro¨dinger equation gives the conventional nonrelat
istic Euler equation@even while the forces are derived from
potential that depends on density and~unconventionally! on
its derivatives# ~see Sec. II!. We are therefore led to examin
a Madelung-like construction for a non-Abelian, ‘‘colored
Schrödinger equation

i\ ] tc52
\2

2m
¹2c. ~78!

We consider only the free, nonrelativistic case, and the ‘‘n
Abelian’’ structure resides solely in the fact that thec is a
multi-component object, transforming under some repres
tation of a group. The color degrees of freedom also lea
the conserved color current

Ja
m5~cra ,Ja!, ra5 ic†Tac, Ja5

\

m
Rec†Ta¹c.

~79!
02501
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Of course, the singlet current

j m5~cr,j !, r5c†c, j5
\

m
Im c†¹c ~80!

is also conserved. For definiteness and simplicity, we s
henceforth assume that the group isSU(2) and that the rep-
resentation is the fundamental one:Ta5sa/(2i ), $Ta,Tb%
52dab/2. We shall also set the massm and Planck’s con-
stant\ to unity. The non-Abelian analog of the Madelun
decomposition~13! is

c5Argu ~81!

wherer is the scalarc†c, g is a group element, andu is a
constant vector that points in a fixed direction@e.g., for
SU(2) u could be (0

1), then iu†Tau5da3/2]. The singlet
density isr, while the singlet currentj is

j5rv, v[2 iu†g21¹g u. ~82!

With the decomposition~81!, the color density~79! becomes

ra5Qar, Qa5 iu†g21Tag u5 iRabu
†Tbu5Rabt

b/2
~83!

whereRab is in the adjoint representation of the group a
the unit vectorta is defined asta/25 iu†Tau. On the other
hand, the color current reads

Ja5
1

2
rRabu

†~Tbg21¹g1g21¹ g Tb!u, ~84!

which with the introduction of

g21¹g[22vaTa ~85!

v5vata ~86!

becomes

Ja5
r

2
Rabv

b. ~87!

Unlike the Abelian model, the vorticity is nonvanishing

¹3va5eabcvb3vc. ~88!

A difference between the Madelung approach and the p
vious particle based one is that the color current is not p
portional to the singlet current. Equation~87! may be written
as

Ja5Qarv1
r

2
Rabv'

b ~89!

where the ‘‘orthogonal’’ velocityv'
a is defined as
3-7
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v'
a 5~dab2tatb!vb. ~90!

Equation~88! shows that color current possesses compon
that are orthogonal to the singlet current.

In Appendix D we derive for theSU(2) case the decom
position of the Schro¨dinger equation with the parametriza
tion ~81!. Two equations emerge: one regains the conse
tion of the Abelian current~1! and the other is the
‘‘Bernoulli’’ equation

~g21] tg!a5Fvb
•vb2

¹2Ar

Ar
G ta1

1

r
¹•~reabcvbtc!.

~91!

It is further verified that the covariant conservation of t
color current is enforced by both Eqs.~1! and~91!. However,
there is no Wong equation because the color current is
proportional to the conserved singlet current. Finally, us
the identity, which is a consequence of the definition~85!

] tv
a52

1

2
¹~g21] tg!a1eabcvb~g21] tg!c ~92!

one can deduce an Euler equation for] tv
a from Eq. ~91!.

We record the energy and momentum density

E5
1

2
¹c†

•¹c5
1

2
rva

•va1
¹r•¹r

8r
~93!

P5
i

2
~¹c†c2c†¹c!5rv. ~94!

Both parallel and orthogonal components of the veloc
contribute to the energy density but only the parallel com
nentv contributes to the momentum density. It is clear th
within the present approach the fluid color flows in eve
direction in the group space, but the mass density is car
by the unique velocityv. This is in contrast to our previou
approach where all motion is in a single direction~Sec. III B!
or at most in the directions of the Cartan elements of the
algebra~Sec. III C!.

The difference between the two approaches is best s
from a comparison of Lagrangians. For the color Sch¨-
dinger theory in the Madelung representation

LSchro¨ dinger5
i

2
~c†] tc2] tc

†c!2
1

2
¹c†

•¹c ~95!

5 iru†g21] tg u2
1

2
rva

•va2
~¹r!2

8r
. ~96!

With u^ u†[I /222iK , the free part of the above reads

L Schro¨ dinger
0

5r2 tr@Kg21] tg#2
1

2
rva

•va. ~97!

On the other hand, the free part of the Lagrange density~45!
in the nonrelativistic limit is
02501
ts
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L 05r2 tr@Kg21] tg#1rv•2 tr@Kg21¹g#2Ar2~c22v2!

'r2 tr@Kg21] tg#1rv•2 tr@Kg21¹g#2rc21
1

2
rv2

5r2 tr@Kg21] tg#2
1

2
rv22rc2 ~98!

where we have usedv522 tr@Kg21¹g#, which follows
upon the variation ofv, in the next-to-last equality above
Thus the canonical 1-form is the same for both models wh
the difference resides in the velocity dependence of th
respective Hamiltonians. Only the singletv enters Eq.~98!
while the Madelung construction uses the group vectorva.

Finally, note that while the Euler equation, which emerg
when Eqs.~91! and~92! are combined, intricately couples a
directions of the fluid velocityva, it does admit the simple
solutionva5vta, with v obeying the Abelian equations tha
arise from Eqs.~12!–~14!.

V. DISCUSSION

In this paper we have presented in Sec. III two distin
non-Abelian generalizations of ordinary particle based A
lian fluid dynamics. Both versions use a fluid generalizat
of the Kirillov-Kostant form that naturally encodes the alg
bra of charge densities in Eq.~51!, which is needed if the
charge density is to be identified as the generator of n
Abelian symmetry transformations. In Sec. III C we gener
ized the first version, given in Sec. III B so that the density
specified in terms of a set of Abelian densities equal in nu
ber to the rankr of the Lie algebra, rather than a sing
density as in the first version. Since the charge density
point in the fluid is an element of the Lie algebra, diagon
ization shows that an invariant specification must user ei-
genvalues. Alternatively, we may use ther Casimir invariants
of ra at a point to characterize it. Therefore the appeara
of r Abelian currents in the Lagrangian is entirely natur
This is also in accord with what happens with the Kirillo
Kostant form where ourj (s)

m are replaced by the fixed
weights of a representation of the Lie algebra and lead to
representation upon quantization.

The two versions also differ in the formula for the curren
Our first version, which is mathematically more concis
gives the non-Abelian Eckart decomposition, Eq.~49!, while
the second version does not allow the factorization of
current into a non-Abelian charge density and an Abel
velocity, rather it is a sum of such factorized expressions
generalized Eckart decomposition as in Eq.~50!. The Eckart
decomposition shows that we can choose a local Lore
frame for which a given fluid element can be brought to re
The charge density is then related to the charge carried
this element. By contrast, in the second version, with a g
eralized Eckart decomposition, we see that even if we cho
a frame where one Lie algebra component of the velocity
zero, the other color velocities need not be. Thus the la
applies to a situation where color separating flows can oc
Physically, it is not yet clear what kinematic regimes of
3-8
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quark-gluon plasma, for example, would admit or requ
such flows.

We note that the currents we have obtained are the n
Abelian analogues of the irrotational part of the Abelian c
rent, even though the vorticity is nonvanishing. The oth
components can be easily incorporated, if needed, by g
eralizing the Lagrangian in Eq.~62! as

L5(
s51

r

j (s)
m $2 tr@K (s)g

21Dmg#1am(s)%

2 f ~n(1) ,n(2) , . . . ,n(r )!1Lgauge ~99!

wheream(s) is given by

am(s)5a (s)]mb (s) . ~100!

The final fluid equations remain unchanged.
We have also derived in Sec. IV a field-based fluid m

chanics by extending the Madelung construction to the n
Abelian situation. Here the ‘‘Euler’’ equations are much le
appealing because they involve velocities in all group dir
tions. We know of no compelling physical reason for pref
ring this field-based model over the particle-based one, e
though in the Abelian case it coincides with the partic
based construction.
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APPENDIX A: VARIATIONS OF g

We determine the variation of

I 05E dtdr(
s51

r

j (s)
m 2 trK (s)g

21Dmg ~A1!

wheng is varied either arbitrarily or in the specific manne

g21dg5K (s8)l ~A2!

where l is an arbitrary function on space-time. This w
provide the needed results~1! and~30! for the single channe
situation as well as~64! and ~65! for many channels.

Recall the definitionsQ(s)5gK(s)g
21 and Dmg5]mg

1Amg, which impliesDmg215]mg212g21Am . First, the
variation ofg21Dmg is established

d~g21Dmg!52g21dgg21Dmg1g21Dmdg. ~A3!

To evaluate the last term, note thatDmdg5Dm(gg21dg)
5(Dmg)g21dg1gDm(g21dg). Thus

d~g21Dmg!5]m~g21dg!1@g21Dmg,g21dg#. ~A4!

Inserting Eq.~A4! into the variation ofI 0 in Eq. ~A1!, inte-
grating by parts, and rearranging the trace withK (s) , gives
02501
n-
-
r
-

-
-

s
-
-
en
-

.

dI 052E dtdr(
s51

r

~]m j (s)
m 2 trK (s)g

21dg

1 j (s)
m 2 tr@g21Dmg,K (s)#g

21dg!. ~A5!

Considering first arbitrary variations: the vanishing ofdI 0

requires

(
s51

r

~]m j (s)
m K (s)1 j (s)

m @g21Dmg,K (s)# !50 ~A6!

or, after sandwiching the above betweeng . . . g21,

(
s51

r

$]m j (s)
m Q(s)1 j (s)

m @~Dmg!g21,Q(s)#%50. ~A7!

Finally we verify that

@Dmgg21,Q(s)#5DmQ(s) , ~A8!

so that the desired results~30! and ~65! follow

(
s51

r

~]m j (s)
m Q(s)1 j (s)

m DmQ(s)!5DmS (
s51

r

j (s)
m Q(s)D

5DmJm50. ~A9!

Next we consider the specific variation~A2! and separate the
sum ~A5! into the terms5s8 andsÞs8. After a rearrange-
ment of the last term in Eq.~A5!, we get

dI 052E dt dr~]m j (s8)
m 2 trK (s8)K (s8)l

1 j (s8)
m 2 trg21Dmg@K (s8) ,K (s8)#l!

1 (
sÞs8

~]m j (s)
m 2 trK (s)K (s8)l

1 j (s)
m 2 trg21Dmg@K (s) ,K (s8)#l!. ~A10!

The first commutator vanishes; so does the second whenK (s)
and K (s8) commute, i.e., when they belong to the Cart
subalgebra. Also 2 trK (s)K (s8)52K (s)

a K (s8)
a ; for s85s this

is constant, while fors8Þs it vanishes when it is arrange
that distinct elements of the Cartan algebra are selected. T
for stationary variationsj (s)

m must be conserved, and Eq.~1!
as well as Eq.~30! are validated.

APPENDIX B: CHARGE DENSITY ALGEBRA

The portion of the Lagrange density~45! that determines
the Poisson bracket is

Lcanonical5r2 trKg21] tg5r2 trQ] tgg21. ~B1!

With a parametrization of the group element, e.g.,g(w)
5eTawa, one sees that (] tg)g21 has the form
2] twaCb

a(w)Tb, where the non-singular matrixCb
a(w) is de-

fined by
3-9
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Cb
a~w!Tb52

]g~w!

]wa
g21~w!. ~B2!

Thus

Lcanonical5r] twaCb
aQb5] twaCb

arb ~B3!

and the momentum conjugate towa is

Pa5Cb
arb . ~B4!

With the inverse toCb
a defined asca

b ,

ra5cb
aPb. ~B5!

The non-Abelian charge densityra is a function of (t,r )
and for Eq.~51! we need the bracket with another dens
evaluated at (t,r 8). Since the dependence ofcb

a on w in-
volves no spatial derivatives ofw, it is clear that the bracket
will be local in r2r 8, just as is the bracket betweenw and
P,

$ra~ t,r !,rb~ t,r 8!%5S cb8
b

]ca8
a

]wb8

Pa82a↔bD d~r2r 8!

5S 2cb8
b cc8

a
]Cc9

c8

]wb8

ca8
c9Pa82a↔bD

3d~r2r 8!

5S 2cb8
b cc8

a
]Cc9

c8

]wb8

rc92a↔bD d~r2r 8!.

~B6!

To evaluate the derivative with respect tow, return to Eq.
~B2! and observe

]Cc9
c8

]wb8

5
]

]wb8
S 2 tr

]g

]wc8

g21Tc9D
52 trS ]2g

]wb8]wc8

g212Cd8
c8Td8Cd9

b8Td9D Tc9. ~B7!

The first term in the parentheses is symmetric in (b8,c8);
when inserted in Eq.~B6! it produces a symmetric contribu
tion in (a,b) and does not contribute when antisymmetriz
tion in (a,b) is effected. What is left establishes Eq.~45!:

$ra~ t,r !,rb~ t,r 8!%

5~cb8
b cc8

a Cd8
c8Cd9

b82 trTd8Td9Tc9rc92a↔b!d~r2r 8!

52~2 trTaTbTc9rc92a↔b!d~r2r 8!

522 tr f abdTdTc9rc9d~r2r 8!5 f abcrc~ t,r !d~r2r 8!.

~B8!
02501
-

APPENDIX C: MANIPULATING EQ. „53…

Observe that the first term in Eq.~53! equals

]m2 tr@Q~Dng!g21#

52 tr@~DmQ!~Dng!g211Q~DmDng!g21

2Q~Dng!g21~Dmg!g21#. ~C1!

The first term on the right-hand side is rewritten with t
help of Eq.~A8! and combined with the last term, leaving

2 tr@Q~DmDng!g212Q~Dmg!g21~Dng!g21#.

After antisymmetrization in (m,n), the left-hand side of Eq
~53! reads

2 trQ$~@Dm ,Dn#g!g212@~Dmg!g21,~Dng!g21#%

52 tr$QFmn2@Q,~Dmg!g21#~Dng!g21%. ~C2!

When Eq.~A8! is used again, Eq.~C2! becomes the left-hand
side of Eq.~54!.

APPENDIX D: NON-ABELIAN MADELUNG
PARAMETRIZATION

When Eq.~81! is inserted into Eq.~78!, and use is made
of the definition~85!, we find in theSU(2) case

1

2
i ] tr u1 ir~g21] tg!aTa u

52
1

2
Ar¹2Ar u1¹~rva!Ta u1

1

2
rva

•va u.

~D1!

Next Eq.~D1! is premultiplied byu†, where it implies

i ] tr1r~g21] tg!ata52Ar¹2Ar2 i¹~rvata!1rva
•va.

~D2!

The imaginary part reproduces the continuity equation
the singlet current~82!, while the real part gives

~g21] tg!ata52
1

Ar
¹2Ar1va

•va. ~D3!

To obtain further information, we premultiply Eq.~D1! with
u†Tb. This gives

] trtb2 ir~g21] tg!b1r~g21] tg!aebactc

5 iAr¹2Artb2¹•~rvb!2 i¹•~rva!

3ebactc2 irva
•vatb. ~D4!

The imaginary part gives Eq.~91! while the real part is iden-
tically satisfied by virtue of Eqs.~1! and ~91!.
3-10
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