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Non-Abelian fluid dynamics in Lagrangian formulation

B. Bistrovic and R. Jackiw
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

H. Li and V. P. Nair
Physics Department, City College of the City University of New York, New York, New York 10031

S.-Y. Pi
Physics Department, Boston University, Boston, Massachusetts 02215
(Received 16 October 2002; published 27 January 2003

Non-Abelian extensions of fluid dynamics, which can have applications to the quark-gluon plasma, are
given. These theories are presented in a symplectic or Lagrangian formulation and involve a fluid generaliza-
tion of the Kirillov-Kostant form well known in Lie group theory. In our simplest model the fluid flows with
velocity v and, in the presence of non-Abelian chromoelectric or magrEEd8? fields, the fluid feels a
Lorentz force of the fornQ,E®+ (v/c) X Q,B?, whereQ, is a space-time local non-Abelian charge satisfying
a fluid Wong equatiofi(D,+Vv-D)Q],=0 with gauge covariant derivatives.
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[. INTRODUCTION tions derived within kinetic theory is likewise limited. How-
ever, fluid dynamical equations can also be derived from
When different species of particles compose a fluid, itvery general principles, showing that they have a much
may be that the collective variables describing the fldien- ~ wider regime of validity, and, indeed in practice, we apply
sity p, velocity v in an Eulerian formulation and the dy- the_:m over s_uch a wider range. This is the “universality” of
namical equations that govern them, can reflect the compdluid dynamics. ) ) )
sitional variety. In this paper we develop models for fluids I the context of a non-Abelian plasma, in analogy with
where the variety of constituents arises from an internal symthe ordinary fluid mechanics, we may therefore ask foman
metry group. We envision applying our theory to high den-Priori derivation of a non—_Abellan fluid mechanics, Whlch
sities of non-Abelian quarks, with or without additional in- incorporates the non-Abelian degrees of freedom, coupling
teraction to a dynamical gauge field. to a non-Abelian gauge field, etc. Th_|s theory may be valid
High energy collisions of heavy nuclei can produce afor depse, nonperturbatlve and n_ondllute sy_stems. Further, a
plasma state of quarks and gluons. This new state of matt&@nonical or symplectic formulatioat least in the conser-
has recently been of great interest both theoretically and ifative limit) is important for quantization. At the same time,
experiments at the Relativistic Heavy lon Collid@®HIC) the analys[s based on the kinetic equgtlons remains usefu] to
facility and at CERN. Most of the theoretical work in this US as a guide for arriving at a Lagrangian, canonical descrip-
area has been based on perturbative quantum chromodynaHQn- ] ) ) ) ]
ics at high temperatures with hard thermal loop resumma- Our goal is to provide plausible equations that generalize
tions and other improvemenfd]. This can be a good de- tO the non-Abelian situation the continuity
scription at high temperatures and for plasma states that are
not too far from equilibrium. An alternative approach, which dp(t,r)+V-(p(t,r)v(t,r))=0 1)
may be more suitable for nondilute plasmas or for situations
far from equilibrium, would be to use a fluid mechanical and Euler equations
description.
It is well known that the equations of fluid mechanics can div(t,r)+v-Vv(t,r)=force (2
be derived from particle dynamics by taking suitable aver-
ages of Boltzmann-type equations. Specifically for thewhich govern conventional Eulerian perfect fluids. In E2).
quark-gluon plasma, some work along these lines was donfrce denotes forces acting on a unit volume of the fluid. The
many years ago using single particle kinetic equatidtis  above four equations or their relativistic versions can be
These kinetic equations form a hierarchy, the so-callecequivalently presented as the four conservation laws for the
Bogoliubov-Born-Green-Kirkwood-YvonlBBGKY) hierar-  energy and momentum densitiésither nonrelativistic or
chy, involving higher and higher correlatédparticle distri-  relativistic).
bution functions. To be able to solve them, one needs to In the non-Abelian generalizations one must first fix the
truncate the hierarchy, very often at just the single particlegroup transformation law for the collective variables and the
distribution function. Therefore, the feasibility of solving covariance properties of the equations, which now may num-
these equations limits the kinetic approach to dilute systember more than four, and cannot be comprised solely in
near equilibrium, where the truncation can be justified. Weenergy-momentum conservation. An obvious additional
might therefore expect that the regime of validity of equa-equation is thécovariani conservation equation for the non-
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Abelian current, but the relation of this current to the collec-The energyé and momentuntP densities carried by the
tive variables needs to be established. fields are
Our constructions begin by postulating collective variable

Lagrangians that are invariant against space-time translations = } 2,y 10
and internal symmetry transformations. Thus energy- L (10
momentum conservation and current conservation are as-

sured by Noether’s theorem, while the Euler-Lagrange equa- P=pV. (17

tions describe the temporal evolution of the collective
variables. In Sec. Il we review the Lagrangian as well asThese satisfy continuity equations as a consequenderof
other aspects of nonrelativistic and relativistic Abelian fluids.equivalent to Egs. (1) and(2).
This is done to motivate and contrast our non-Abelian con- Interaction with electromagnetic fields is accommodated
structions, which we develop in Secs. Il and IV. Derivationsby including the Maxwell Lagrange density and adding the
are postponed to the Appendixes; in the text only results arelectromagnetic vector potential ®,, whereuponj* be-
presented and discussed. comes the electromagnetic current. This gives rise to the Lor-
entz force in the Euler equations, thereby producing magne-
tohydrodynamics. Note that in this model the mass density
moves with the same velocity as the charge density as is seen
Equations(1) and(2) can be found as the Euler-Lagrange py inspecting andj.
equations for the Lagrange densijgj An interesting realization of the above equations is pro-
vided by Madelung’s “hydrodynamical” rewriting of the
Schralinger equation5]

Il. REVIEW OF ABELIAN FLUIDS

” 1,
L=—] aﬂ+§pv -V 3

ﬁZ
where our coordinates ar¢ = (ct,r). The various quantities i dpp(t,r)=— ﬁvzw(t,r) (12
are defined as
j#=(cp,pv) 4) where the wave function is presented as
a,=d,0+ad,B 5) Y(t,r)=\p(t,r)emrenin, (13
2 1 2

The imaginary part of Eq(12) reproduces the continuity
equation(1), whenV @ is identified as the velocity, with
vanishing vorticity VXv=0. Also the quantum current
(A/m)Im ¢* Vs becomespv. The real part of Eq(12) gives
the Bernoulli equation withr and 8 set to zero and with a
“quantum” force derived from

andV is a p-dependent potential that gives rise to thece
(In the usual theoryV depends only orp, but we allow
dependence on derivatives @f as well) The canonical
1-form is determined by the first contribution towhile the
dynamics is encoded in thgpv?—V term. Specifically,
variation ofv shows thatv is given by the Clebsch param-
etrization[4] 12 (Vp)?

V: -
8m? p

hZ
V=V 0+aVa. ©) o2 (Ve)?= (14

A variation of 0 results in Eq.(1), while a variation of the

] a | The Euler equatioii2) follows by taking the gradient of the
Clebsch potentialsd«, 8) produces subsidiary equations

Bernoulli equation.
The Lagrange density for a relativistic fluid is chosen as

@) (3]
j#9,B=p(dp+Vv-VB)=0 L£=—j*a,—f(n),

j#0,a=p(da+v-Va)=0

n=\/j#j,/c%

®he canonical 1-form is as in the nonrelativistic ctde (4),

(15

which are needed in the subsequent derivation of the Eul
equation. Finally, the “Bernoulli” equation emerges by vary-

ing p:

Ve 5fd v
o”t6+ao"t,8+§——5—p rv.

tS)
[(8/8p)fdrV is just the Euler-Lagrange derivative ®f]
The Euler equatioi2) then follows by taking the gradient of
Eq. (8) and using Eq(7). The force on the right of Eq2) is
now seen to be

o
force=—V—J drV. 9
op

(5) and nowj* is written in the Eckart fornj6]

j“=nu*,  utu,=c?  ut=(c,v)/\1-0v?/c?,
n=p\/1—vz/Cz. (16)

f(n) encodes the dynamics; for the free thedtyn) =nc?.
Variations of6, « and g still produce Eqs(1) and(7) while
a variation ofj* evaluatesa,,

a,=——2f'(n) a7

C
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where the prime denotes differentiation with respect to thénay be chosen to coincide witk att=0. The relation be-

argument of the function. We callL7) the relativistic Ber-

tween Euler and Lagrange variables is the following. For the

noulli equation, which leads to the Euler equation with thedensity we have

following steps. The curl of Eq17) reads
uﬂ ’ u, ’
d,a,—d,a,=d, ?f (n)|—d, ?f (n)]. (18

Since according to Ed6) the left side is equal t@,ad,
—d,ad,B, it vanishes by Eq(7) when projected oru”.
Thus there remains the relativistic Euler equation

u# u#
?a#(uvf’(n))_ ?ﬁv(u,u,f ’(n))

o

zli—zaﬂ(uvf’(n))—&vf’(n)zo. (19

It is easy to show that in the nonrelativistic limit, with

1 -
n~p-— 2—C2pV (20
ut~(c,v) (21
and
f=nc®+V(n), (22

the Lagrange densit{l5) passes to Eq(3) (apart from an
irrelevant term— pc?) and the spatial component of E4.9)
reproduces the Euler equatié®).

The energy-momentum tensor for E¢5) reads, aftea,,
is eliminated with Eq(17) [7]

u“u”

T#=—g*’[nf'(n)—f(n)]+

nf'(n). (23

CZ
Its divergence’,, T#" can be expressed as

u’f’(n) ur e e
2 +n ?aﬂ(u f'(n))—2a"f'(n)

3, TH'=4,(nu*)

(29)

p(t,r)=f dx 8(X(t,x)—r) (25)

which is normalized to unity @t=0. (The integral and thé
function follow the dimensionality of spageEvidently, in
the course of the integral, thed function evaluatex at an
expressiony(t,x) such thatX(t, x(t,r))=r, i.e., x is the in-
verse ofX. There is also a Jacobian. Thus

1 X!
—=det— (26)
P oxi|
X=x
The Euler velocity is given by
V=0 X[y y (27)

or
p(t,r)v(t,r):fdxatX(t,x)é(X(t,x)—r). (28)

A simple calculation shows that the densityand currenf
=pv defined by these equations satisfy the continuity equa-
tion (1). [The Euler equation follows by differentiating Eq.
(28) with respect to time, positing a force that determines
#°X/at%, and performing the correspondingintegral; we
shall not need this her.

III. NON-ABELIAN MODELS BASED ON A PARTICLE
SUBSTRATUM

A. Non-Abelian current

Before presenting a specific model, we give a general
analysis of the non-Abelian curredf = (cp,,J,). The con-
ventional formula for the current of a single, non-Abelian
point particle, moving in a 4-dimensional space-tifitg},
along a space-time patk“(7) (7 parametrizes the patls

The first term on the right-hand side vanishes by the virtue off is is covariantly conserved,

the continuity equatiofl) and the second term vanishes by
the relativistic Euler equatiofil9), or vice versa: since the

two terms in Eq.(24) are linearly independerithe first is
parallel tou” and the second is orthogonal tg, itonserva-

tion of T#” implies Egs.(1) and (19). Relativistic magneto-
hydrodynamics is achieved, as in the nonrelativistic case, by

adding the electrodynamical potentialdd.

dXA(T)
Jg‘(t,r)=cjera(T) i S(XO(7)—ct)8(X(7)—r).
(29)
3,3+ T ap AL JE=(D,J"),=0, (30)
provided thatQ, satisfies the Wong equati¢8]
dQa(7) d
2T oo XH(DALX(1)Qu(1) =0, (3D

Finally we record one fact, which we shall use below,
about the alternative, Lagrange, formulation of fluid mechanfor several particle®, and X* are indexed by a discrete
ics. Here one describes the fluid with co-moving coordinategarticle labeln, which is summed in the definition of the
X(t,x) wherex is a(continuously varying particle label. It currentJ4 . In a continuum limith—x we have
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IXH(7,X)
JE(t,r)= Cf dxdr Q,(, X)—

X 8(XO(7,x) —ct) 8(X(7,X)—r) (32

d d
—2Qa(7.X) + Fape XM (T X) AL (X(7,%)) Qe(7.X) = 0.
(33

[Notice that, since we replace a sum owewith an integral
overx, Q,(7,X) is now a charge densifyThe parametriza-
tion may be fixed aX°(7,x)=cr so that the equations read

pa(t,r)= fdx Qa(t,x) S(X(t,x)—r)

(34)
Ja(t,r)= jdx Qa(t,%x) 3 X(t,X) S(X(t,X)—r)
3 Qalt,X) + fapd CAY(t,X(1,X))
+ X (t,%) - AP(t, X (1,%))] Q(t,X)=0.  (35)

Observe that just as in the Abelian case discussed above, t
X integration evaluates at x(t,r), the inverse o, and the
Jacobian factor (dek'/9x)) ! is just the Abelian charge
densityp [see Eq(26)]. Thus

Pa(t,1)=Qa(t,r)p(t,r)
Ja(t,r)=Qa(t,r)p(t,r)v(t,r) (36)
or
JE(tr) =Qalt,n)j(t,r), (37)
where
Qalt,r) = Qa(t,X)|x=y (38)
p(t1)Qa(t,r) = fdxgau,x)é(xu,x)—r) (39)

Moreover, differentiating Eq(39) with respect to time and
using Egs(1) and(35) results in an equation fa?Q?/at,

atQa(tlr)+V(t!r) : VQa(t!r)

— FapdCAQ(L,I) + V(1) - AP(1,1)Qq(t,r)  (40)
which can also be written as
j*(D,Q)a=0 (41

This is analogous to the Abelian equatiof®. Equations
(40) and(41) can be understood from the fact that the cova-
riantly conserved current30) factorizes according to Eq.
(37) into a group variabl®, and a conserved Abelian cur-
rentj*. Consistency of Eqg1), (30) and(37) then enforces
Eq. (41).

PHYSICAL REVIEW D67, 025013 (2003

We recognize that formula€32) and (34) are the non-
Abelian version of the Lagrange variable—Euler variable cor-
respondencésee Eqgs(25) and (28)]. Also, Egs.(35), (40)
and (41) are the field generalizations of the particle Wong
equation(31), with Eq. (35) being presented in the Lagrange
formalism and Eqs(40), (41) in the Euler formalism. The
decomposition of the non-Abelian current in E§7) is the
non-Abelian version of the Eckart decomposititk6) [2].
Indeed, Eq(37) may be further factored as in E(L6)

JE(t,r)=Qu(t,r)n(t,r)u(t,r).

In the remainder of Sec. Ill, we are guided in our construc-
tion of a dynamical model for non-Abelian fluid mechanics
and “color” hydrodynamics by the above properties of the
non-Abelian current, which follow from the very general ar-
guments, based on a patrticle picture for the substratum of a
fluid. In Sec. IV we present a different model, based on a
field-theoretic fluid substratum.

(42

B. A model for non-Abelian color hydrodynamics

The model that we present is based on a group with group
elementsg, and anti-Hermitian Lie algebra elements with

BesisT?,

[T2,TP]=fabeTe (43)

1
tr(ToT?) = — 5 6%, (44)
The Lagrange density for an Eulerian fluid built on such a
group is taken to be the following generalization of the Abe-

lian expression(15):
(45

Herej* is an Abelian vector fieldcurren) which can also be
decomposed as in E¢L6)

L=j#*2tr[Kg™'D,g]—f(N)+ Lyauge-

j#=(cp,pv)=nu¥, uku,=c% (46)
The covariant derivative
D,9=4d,9+A,0 (47

involves a dynamical non-Abelian gauge potentid,
=A2Ta whose dynamics is provided i, 4e- K is a fixed,
constant element of the Lie algebra. The first terntioon-
tains the canonical 1-form for our theory and determines the
canonical brackets, whilg(n) describes the fluid dynamics.
The theory is invariant under gauge transformations with
group element

g—U"'g
B (48)
A,—U YA, +3,U.

According to Eq.(45), the currentl¥ to whichA‘; couples is
of the Eckart form(42)

Ja=Qal* (49

025013-4
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with Apart from the gauge field contribution, the energy-
momentum tensor for the Lagrange deng#$) is the same
Q=Q,T*=gKg . (50) as in Eq. (23) when Eg. (52 is used to eliminate
trkg~'D,g
For consistency of the gauge field dynamits&=J;T?
must be covariantly conserved. To satisfy the general argu- uku?
ments of Sec. Il Aj* must be divergenceless and then the T#=—g*’[nf'(n)—f(n)]+ 5
Wong equatior{41) will follow. In Appendix A we show that ¢
both conservation laws are a consequence of invariance of ) ) ) .
the action with respect to variations of the group elenggnt JuSt as in the Abelian case, the divergencg‘df entails two
arbitrary variations ofy lead to covariant conservation independent parts: one proportionalut and the other or-
in Eq. (30) while the particular variatiodg=gK\ ensures thogonal to it:
thatj* is conserved as in Eql). Therefore the Wong equa-
tion (41) is also a consequence. Tuv— u
Thus our model reproduces all the equations satisfied by‘?# = du(nu) c2
the current that were established in Sec. Ill A from general
principles. Indeed the canonicdirst) term of the Lagrang- (57
ian in Eq.(45) is like a Kirillov-Kostant 1-form, which has The first vanishes by the virtue of E@l) and the rest is

been previously used to give a Lagrangian for the point parevaluated from Euler equatid5), leaving
ticle Wong's equation(31) [9]. Moreover, as we show in

nf’'(n). (56)

u’f’(n) us

n ?&M(qu'(n))—ﬁ”f’(n) .

Appendix B, the canonical brackets implied by the canonical a,TH'=2t[J,F*"] (58
1-form ensure that the charge density algebra is represented
canonically which is canceled by the divergence of the gauge-field

energy-momentum tensor
{Pa(tar)rpb(tar,)}:fabcpc(tar)g(r_r,)- (51)

It remains to derive the Euler equation. This is accomplished

by varyingj#; stationary variation requires Thus energy-momentum conservation reproduces Abelian
current conservatiorfl) and the non-Abelian Euler force
_ U, ., equation(56), but the Wong equatio®1) has to be enforced
2u[Q(D,9)9 1= C_I;f (n) (52 agditionr;(llly.) This is achie\glledqby omf:l L)agrangi(adzﬁ).
We record the nonrelativistic limit of E¢55); using Egs.
which we call the non-Abelian Bernoulli equation. The Euler (20—(22), we find that the nonrelativistic limit for the spatial
equation then follows, as in the Abelian case, by taking th&omponent of Eq(S5) gives the Euler equation with a non-

3, Tl o= — 2 r[J,FH7]. (59)

s

curl Abelian Lorentz force
=1 _ -1 \V
(9#{2 tr[Q(DVg)g ]} (91,{2 tr[Q(D,u,g)g ]} (9tV+V' Vv=force+ QaEa+ E X QaBa (60)
—a,| =t =%
= 2 (n) =4, o2 (n)]. (53 Wwhereforceis the pressure force coming from the potenvial

(and is therefore Abelian in natyrevhile non-Abelian force

In Appendix C we show that manipulating the left-hand sideterms involve the chromoelectric and chromomagnetic fields
allows rewriting Eq.(53) as

i _ a i_ E a
21r[(D,Q)(D,9)g 1]+ 2tr[QF,,] Ea=cFoi, Ba=— e (61
—J &f'(n) . ﬁf’(n) (54) It is seen that our non-Abelian fluid moves effectively in a
ey "\ ¢2 ' single direction specified byy=pv. Nevertheless, it experi-

ences a non-Abelian Lorentz force. In the next section we
Finally, contracting withj“*=nu* and using Eq(41) pro-  Ppresenta generalization wherein the non-Abelian fluid devel-
duces the relativistic, non-Abelian Euler equation ops several independent directions of motion.

nu* Wt () F (M) =2 t{ J4F ] 55 C. Generalization
—d,(u,f’ (n))—nag f'(n)= _
ct " " A generalization of our Lagrange densi¥5) that will

give rise to several fluid components carrying various densi-
The left-hand side is as in E¢L9) while the right-hand side ties and moving with various velocities is obtained by choos-
describes the non-Abelian Lorentz force acting on theing several directions in the Lie algebig , and coupling
charged fluid. to different Abelian currentg10]
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r

Neg U7
RN - €) v v
5_321 Jé)z tr[Ks9 1D,ug] Z—Z(S)ﬁﬂ(u(s)f(s))_n(s)é £
—t(N@) N2 -+ N+ Lgauge =21tr[jf4(D,Qs)(D*9)g ]
i{9=(Cp(s) p(9V(s) = N(9)U(s) (62) +21r[] 49 Qe F*"1- (68)
u o However, unlike in the single channel case, the right-hand
UigUen=¢ side does not simplify sincg,5Q(s) cannot be replaced by

J,, because the latter requires summing osteklso the first

N(s)= \/jf‘s)j(s)ﬂlcz. right-hand term in Eq(68) does not vanish since E¢65)

requires summation ovex

(Sums oves are indicated explicitly; the summation conven- ~ The energy-momentum tensor is
tion does not apply te.) Evidently the current which couples

to the gauge potential is now UfsUes)

r r
THY = _gl“’( 2 n(s)f(s)_f + E —2 n(s)f(s).
s=1 s=1 C

S _ » (69)
J“:gl Quifsy, With Q=gKig " (63

Its divergence of course reproduces E&j)

Arbitrary variation ofg ensures that the expression in Eq. r TR
(63? is coyarﬁantly c.onserv_ed., but we also need the conser- 9,TH'= > [(%(n(s)ué)))%
vation of individualj(s . This is achieved by choosing spe- s=1 c
cial forms for &5g=gKsA(s Which will work provided u
: ; u
that differentk ) commute(see Appendix A Therefore, we N 8, (U @)= g7 | | (70)
choose th& ) to belong to the Cartan subalgebra of the Lie 2 M

algebra and the total number of different channels equals the
rank r of the group. With this choice for thK ), special  The first term in the curly brackets vanishes according to Eq.
variations ofg ensure (64) and the remainder is evaluated from E@8) as

b=t V- =0. 64 '
Hia=deetV-(Pate) Y 2 (2W1(P,Q)(D*9)g 1+ 2] 9 QoF*"])-

The Wong equation which follows from the conservation of
the non-Abelian current now reads Since now we are summing over all channels, it follows from
Egs.(63) and (65) that, as before,

,
2, i(5P Q=0 (65) 3, TH'=2tr[J,F#"]. (71)
S=

A more transparent picture of what is happening is given
Varying the individualj (s produces the Bernoulli equations if the dynamical potential separates

r
u
2tr[Q(g(D,9)g ™ '1= C—’Z‘f(s’ f(nay, - ,n(r))=s§=:l fo(N(s) (72)
o 7 fO=1. (73)
where f®=——Ff(ny,Ny, ... Np).
N (N Nez) ) Then the left-hand side of E¢68) refers only to variables

(66)  |abeleds, while the right-hand side may be rewritten with the
help of Egs.(62) and(65) to give
Again, the curl of the above can be cast in the form

N¢g U
(s) (s) ’
2 9u(Ui9f(9) Nty

1 v £(s) v (s)
;W”(U(s)f )= 9" (ufy)f)}

r

=21tr[(D*Q(s))(D*g)g~ 1]+ 2 tr[Q(sF#"]. (67) :2”[‘]#':#”]_2% tr{] u(sn[ Qs F*”
S S
When contracted withi() = n(s)Ufs, , this leaves +(D“Q(Sr))(D”g)g‘l]}. (74

025013-6
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Thus in addition to the Lorentz force, there are forces arisingf course, the singlet current
from the other channels’ #s. Note that for separated dy-

namics as in Eq(72), the energy-momentum tensor also . ) + . h +
separates i#=(cp.j), p=y'y, j=ImyVy (80)
Thav— i Tav is also conserved. For definiteness and simplicity, we shall
& henceforth assume that the grouSis(2) and that the rep-
r resentation is the fundamental onE?=¢?%/(2i), {T3,T"}
B o ) Ufy)Us) , =—5%%/2. We shall also set the massand Planck’s con-
_521 =" Ny —Te(ne) ]+ Tn(S)f(s) stant# to unity. The non-Abelian analog of the Madelung

decomposition(13) is
(79

= u 81
but the divergence of individual{ does not vanish. This v \/;g 81

reflects that energy is exchanged between the different Chao\iherep is the scalans’, g is a group element, andis a
nels and with the gauge field, as is also evident from the,,ngant vector that points in a fixed directipe.g., for
equation of motior(74). It is clear that this fluid moves with SU(2) u could be é) then iuTau=6°%/2]. The singlet

r different velocitiesvq, . o . . ..
(s)
The single-channel Euler equatidB5) is expressed in density isp, while the singlet currentis

terms of physically relevant quantitiggurrents, chromo-
magnetic fields the many-channel equatiai$8) involves,

additionally, the gauge group elemegntOne may simplify
that equation by going to special gauge, for exangstd , so

that the right-hand side of E¢68) reduces to

j=pv, v=—iutg~Vgu. (82
With the decompositioi81), the color density79) becomes

pa=Qap, Qa:iuTgilTag U:iRabUTTbU:Rabtb/Z

. _ . 83
241} ,9(D*Qe)(D,)g 1+ 2 tr [ Q(F ] 83
=2r[K(9jfy(7.A,~3,A,)] (76)  WhereRy; is in the adjoint representation of the group and
. . the unit vectort? is defined ag®2=iu’T2u. On the other
while the Wong equatiofi65) becomes hand, the color current reads
o =2 0R u'(TPg~'vg+g Vg T)u (84)
521 ity[AL Kgl=0. (77) a=5PRapU(TPg7"Vg+g™ Vg T)u,
It is interesting that in this gauge the non-linear termf4t ~ which with the introduction of
disappear.
g 'Vg=—-22T? (85)
IV. NON-ABELIAN FLUIDS WITH A FIELD SUBSTRATUM
v=Vv3t? (86)

In the Abelian case, the Madelung parametrizatit®) of
the Schrdinger equation gives the conventional nonrelativ-pacomes
istic Euler equatiopeven while the forces are derived from a
potential that depends on density ahconventionally on
its derivative$ (see Sec. )l We are therefore led to examine J,= BRabe- (87)
a Madelung-like construction for a non-Abelian, “colored” 2

Schralinger equation _ ) S o
Unlike the Abelian model, the vorticity is nonvanishing
2

. h
i == 5=V 2. (78) VX VA= €00 vE, (89

We consider only the free, nonrelativistic case, and the “non- A difference between the Madelung approach and the pre-

Abelian” structure resides solely in the fact that titeis a  VIOUS particle based one is that the color current is not pro-

multi-component object, transforming under some represerROrtional to the singlet current. Equatigi/) may be written

tation of a group. The color degrees of freedom also lead t&S

the conserved color current

p

ﬁ Ja=QapV+ 5 RapV? (89)

Ji=(cparda), pa=ig T2, Jo=—Rey ToVy.
(79  where the “orthogonal” velocitw? is defined as
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V3 = (53— t3tP)\P, (90) L£%=p2 t{Kg ta,g]+pv-2 t{Kg Vg]— Vp?(c®—v?)

Equation(88) shows that color current possesses components
that are orthogonal to the singlet current.

In Appendix D we derive for th&U(2) case the decom-
position of the Schrdinger equation with the parametriza-
tion (81). Two equations emerge: one regains the conserva-
tion of the Abelian current(1) and the other is the
“Bernoulli” equation

1
~p2 t{Kg~*ag]+pv- 2 t{Kg™Vg]—pc?+ 5 pv?
1
=p2t{Kg~*ag] - 5 pv®—pc? (98)

where we have uses=—2 t{Kg 1Vg], which follows

v2\p 1 upon the variation of, in the next-to-last equality above.
(97 1a,9)3=| VP-vP— 2+ =V (pePVPtc). Thus the canonical 1-form is the same for both models while
\/; p the difference resides in the velocity dependence of their

(91 respective Hamiltonians. Only the singletenters Eq.(98)
while the Madelung construction uses the group veefor
Finally, note that while the Euler equation, which emerges
hen Eqs(91) and(92) are combined, intricately couples all
irections of the fluid velocitw?, it does admit the simple
solutionv®=vt?, with v obeying the Abelian equations that
arise from Eqs(12)—(14).

It is further verified that the covariant conservation of the
color current is enforced by both Ed4) and(91). However,
there is no Wong equation because the color current is n
proportional to the conserved singlet current. Finally, usin
the identity, which is a consequence of the definitiBB)

9 a:_EV —1(9 )a+ abcvb —1(9 )c (92)
WVi=— 5 V(g Tag) V(g Tag
V. DISCUSSION

one can deduce an Euler equation #u® from Eq. (91). In this paper we have presented in Sec. Ill two distinct
We record the energy and momentum density non-Abelian generalizations of ordinary particle based Abe-
lian fluid dynamics. Both versions use a fluid generalization
= EVW‘ V= EpVa_VaJr Vp-Vp (93) of the KiriIIov—Kostanfn for.m that naturally gncodes thg alge-

2 2 8p bra of charge densities in E¢51), which is needed if the

charge density is to be identified as the generator of non-
I Abelian symmetry transformations. In Sec. Il C we general-
P= E(V’ﬂw— YV =pv. (94 ized the first version, given in Sec. Il B so that the density is
specified in terms of a set of Abelian densities equal in num-
Both parallel and orthogonal components of the velocityber to the rankr of the Lie algebra, rather than a single
contribute to the energy density but only the parallel compo-<density as in the first version. Since the charge density at a
nentv contributes to the momentum density. It is clear thatpoint in the fluid is an element of the Lie algebra, diagonal-
within the present approach the fluid color flows in everyization shows that an invariant specification must vss-
direction in the group space, but the mass density is carriedenvalues. Alternatively, we may use th€asimir invariants
by the unique velocityw. This is in contrast to our previous of p, at a point to characterize it. Therefore the appearance
approach where all motion is in a single directi@ec. Il B) of r Abelian currents in the Lagrangian is entirely natural.
or at most in the directions of the Cartan elements of the Li€This is also in accord with what happens with the Kirillov-
algebra(Sec. Il O. Kostant form where ourjf; are replaced by the fixed
The difference between the two approaches is best seeameights of a representation of the Lie algebra and lead to that
from a comparison of Lagrangians. For the color Sehro representation upon quantization.
dinger theory in the Madelung representation The two versions also differ in the formula for the current.
Our first version, which is mathematically more concise,
gives the non-Abelian Eckart decomposition, Ep), while
the second version does not allow the factorization of the
current into a non-Abelian charge density and an Abelian
(Vp)? velocity, rather it is a sum of such factorized expressions—a
8p (96) generalized Eckart decomposition as in Eg)). The Eckart
decomposition shows that we can choose a local Lorentz
frame for which a given fluid element can be brought to rest.
With u@u'=1/2—2iK, the free part of the above reads The charge density is then related to the charge carried by
this element. By contrast, in the second version, with a gen-
0 _ eralized Eckart decomposition, we see that even if we choose
L scniatinger— P2 MKQ tag]— §PVa'Va- 97 3 frame where one Liepalgebra component of the velocity is
zero, the other color velocities need not be. Thus the latter
On the other hand, the free part of the Lagrange deii¢By  applies to a situation where color separating flows can occur.
in the nonrelativistic limit is Physically, it is not yet clear what kinematic regimes of a

— I T T 1 T
LSchi‘m!inger_E((ﬂ = oy lﬂ)_ivw 'V‘ﬂ (95

T S| 1
=ipu'g atgu—zpva-va—
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quark-gluon plasma, for example, would admit or require

r
such flows. 6I°=—f dtdrY, (9,if)2 rKgg o9
We note that the currents we have obtained are the non- s=1

Abelian analogues of the irrotational part of the Abelian cur- +ik2tfa D g.K -1 A5
rent, even though the vorticity is nonvanishing. The other J92t19 D.0.K9lg"00). (A5)
components can be easily incorporated, if needed, by genconsidering first arbitrary variations: the vanishing &f
eralizing the Lagrangian in E¢62) as requires

r r

L:;l j4{2 1K 99 D ,g]+a,} 321 (9,0t5K9+i[97'D,9.Kg))=0  (AB)
—f(N@).ne2), - )+ Lgauge (99 or, after sandwiching the above betwegn. .g™?,

wherea,, ) is given by

r
> {0, Qe+ik[(D,9)a LQl=0. (A7)
8,(5)= ()9 uBs) - (100 s=1

The final fluid equations remain unchanged. Finally we verify that
We have also derived in Sec. IV a field-based fluid me- 1 _

chanics by extending the Madelung construction to the non- (0,99 " Q91=D.Q, (A8)

Abelian situation. Here the “Euler” equations are much lessgq that the desired result80) and (65) follow

appealing because they involve velocities in all group direc-

tions. We know of no compelling physical reason for prefer- r r

ring this field-based model over the particle-based one, even 2 (9,(9Q9Ti(5DuQs) = DM( jf‘s)Q(S))

though in the Abelian case it coincides with the particle- s=1 s=1

based construction. =D,J#=0. (A9)

ACKNOWLEDGMENTS Next we consider the specific variatioA2) and separate the

. . sum (A5) into the terms=s’' ands#s’. After a rearrange-
This work was supported in part by DOE grants NOS.ment of the last term in EqA5), we get
DE-FC02-94-ER40818, DE-FG02-91-ER40676, by NSF

grant number PHY-0070883 and by a PSC-CUNY grant. 0 »
5' :_J dtdr(ﬂﬂj(s,)Z trK(Sr)K(S/))\
APPENDIX A: VARIATIONS OF g

. o +J(en2trg D ,alK sy, K(snIN)
We determine the variation of

r + z/ (c?ujf‘s)Z trK(S)K(sr))\
|0=f dtdr;1 jt52 K99 'D,g (A1) s#s
+{921rg D ,9[K (). K(syIN). (A10)

wheng is varied either arbitrarily or in the specific manner The first commutator vanishes: so does the second When

g—lég:K(S,))\ (A2) and Ky commute, i.e., when they l:elong to the C.artan

subalgebra. Also 2 oK s)= —K?S)K(S,); for s’ =s this

where \ is an arbitrary function on space-time. This will is constant, while fois’ #s it vanishes when it is arranged

provide the needed resulty) and(30) for the single channel that distinct elements of the Cartan algebra are selected. Thus

situation as well a$64) and(65) for many channels. for stationary variationg(;, must be conserved, and Eqd,)

Recall the definitionsQ(sfng(s)g*l and D,9=4,9 as well as Eq(30) are validated.
+A,0, WhicrllimpligsDﬂg‘ faﬂg‘l—g‘lA#. First, the
variation ofg™ "D g is established APPENDIX B: CHARGE DENSITY ALGEBRA

5(9*1D”g)= —g’légg’lDMg—l—g’lDM&g. (A3) The portion of the Lagrange densi@5) that determines
the Poisson bracket is

To evaluate the last term, note that,5g=D ,(gg '6g) B B
=(DM9)9_15g+gDM(g‘1ég). Thusatﬂ g Lcanonica p2 trkg~ta,g=p2trQa,gg™".  (B1)

5(9_1Dﬂg)=ﬂﬂ(g_lég)+[g_1DMg,g_1ﬁg]. (A4) W|thaa parametrization of the group element, egyp)
=e' %, one sees that 9g)g~! has the form
Inserting Eq.(A4) into the variation ofi® in Eq. (Al), inte-  — d,¢,C2(¢) TP, where the non-singular matr@3(¢) is de-
grating by parts, and rearranging the trace viifg,, gives fined by
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39( @) APPENDIX C: MANIPULATING EQ. (53
a b_ _ -1
(@) T°= g9 (¢). (B2) . .
JPa Observe that the first term in Ep3) equals
Thus 9,2t{Q(D,g9)g ]
Lcanonica™ P9 aCpQb= 31¢aChpp (B3) =2t{(D,Q)(D,9)g"*+Q(D,D,g)g
and the momentum conjugate &g is —-Q(D,9)g"*(D,9)g '] (CY)
2= C2p, . (B4) The first term on the right-hand side is rewritten with the

help of Eq.(A8) and combined with the last term, leaving

With the inverse taC? defined as?, _ _ _
b a 2t{Q(D,D,9)g”*-Q(D,9)g *(D,g9)g"*].

a
pa=Cpll”. (BS) After antisymmetrization in &, »), the left-hand side of Eq.
(53) reads
The non-Abelian charge densipy, is a function of €,r)
and for Eq.(51) we need the bracket with another density ~ 2trQ{([D,,D,]g)g *~[(D,9)g %,(D,9)g 1}
evaluated att(r’). Since the dependence of on ¢ in-

— _ -1 -1
volves no spatial derivatives @, it is clear that the brackets =2t{QF,,~[Q.(D,9)g""1(D,9)g" "} (€2
Vl_\illl be local inr—r’, just as is the bracket betwegnand When Eq.(A8) is used again, E4C2) becomes the left-hand
' side of Eq.(54).
Ca
{Pa(t'r),Pb(tar,)}:(Cg' . Ha'—a<—>b) s(r—r’) APPENDIX D: NON-ABELIAN MADELUNG
Ipr PARAMETRIZATION
b a aCE,’, N When Eq.(81) is inserted into Eq(78), and use is made
— a .l . .
=| ~CpCer i Co II* —acb of the definition(85), we find in theSU(2) case
b!
oy 1
*Ar=r) 519w u+ip(g~',9)*T?u
o oo %% b|s 1 1
=| —c.,Cc.,——ps—a r—r’.
P Gy por—acb ol ) 2—5\/;V2 pu+V(pv®T3u+ Epva~vau.

(B6) (D1)

To evaluate the derivative with respect ¢g return to Eq.

(B2) and observe Next Eq.(D1) is premultiplied byu, where it implies

” 19ip+p(g™109)*t= = JpV2p =iV (pVt?) +pv2-v2.

2tr ngC"> D2
aQDCr ( )

C!
Co 49

Iy Iy
The imaginary part reproduces the continuity equation for

(92 4 ’ ! " ” i i H
=2 tf(—ggl—CZ,Td CE,,T" <. (B7) the singlet curren(82), while the real part gives
(7(,Dbr(9gDcr 1
The first term in the parentheses is symmetric liri,¢’); (g7 10,9)%%= - \/—;Vz\/;+va'va- (D3)

when inserted in EqB6) it produces a symmetric contribu-
tion in (a,b) and does not contribute when antisymmetriza-
tion in (a,b) is effected. What is left establishes E¢b5):

{pa(tir)vpb(tvr’)}

=(cP,c?,C5Cl 2 tr T TV T p—acsb) S(r—1)

To obtain further information, we premultiply E¢D1) with
u'T®. This gives

apt’—ip(g~19,9)°+ p(g~10,g)%€*2%°
=iVpV2\pt* = V- (pv®) =iV (pv?)
=—(2 tI’TaTbTC"pcn—aHb)5(r -r') X ebactc— ipVa~Vatb. (D4)

_ abddoc” _ 1\ — fabc Y
=2 por3(r =) =12 pe(tr) S(r =) The imaginary part gives E¢g91) while the real part is iden-
(B8) tically satisfied by virtue of Eq91) and (91).
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