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1Õ4 BPS dyonic calorons
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We explore the 1/4 Bogomol’nyi-Prasad-Sommerfield~BPS! configurations of the supersymmetric gauge
theories on R1133S1. The BPS bound for energy and the BPS equations are obtained and the characteristics
of the BPS solutions are studied. These BPS configurations describe electrically charged calorons, which are
constituted of dyons and carry linear momentum along the compact direction. We carry out various approaches
to the single caloron case in the theory of the SU(2) gauge group.
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I. INTRODUCTION

It has been known for some time that instantons on3

3S1, or so-called calorons, can be considered to be mad
magnetic monopoles when there is a nontrivial Wilson lo
which breaks the gauge symmetry to its Abelian subgro
@1–3#. For the SU(N) gauge group, there areN different
kinds of fundamental monopoles, each corresponding
roots in the extended Dynkin diagram. The relation betwe
instantons and magnetic monopoles can also be unders
by exploring the five-dimensional Yang-Mills theories whic
appear as the low energy Lagrangian on parallel D4-bra
and itsT-dual version. In theirN54 supersymmetric version
on R1133S1, instantons appear as 1/2 Bogomol’nyi-Prasa
Sommerfield~BPS! objects. The low energy dynamics of ca
orons or instantons is given by the metric on the mod
space of caloron solutions.

There has been some work done some time ago on
BPS dyons onN54 supersymmetric Yang-Mills theories o
R113, which can arise when several Higgs fields take exp
tation values@4,5#. In the five-dimensional Yang-Mills theo
ries, there are five Higgs fields and they can take nontri
expectation values, in addition to the nontrivial Wilson lo
along the compact circle. In these theories the 1/4 BPS
non-BPS configurations are also possible. In this paper
explore these 1/4 BPS configurations. In particular, we w
out a single 1/4 BPS dyonic caloron case in the SU(2) ga
theory.

More recently there has been some work on dyonic
electrically charged instantons in five-dimensional fie
theory @6–8#. As in the four-dimensional theory, these d
onic instantons are 1/4 BPS instead of 1/2 BPS as in
Yang-Mills theories with 16 supersymmetries. These dyo
instantons also carry nontrivial angular momentum. They
come calorons when the space is compactified. As we
show in this paper, BPS calorons come with richer char
teristics.

Usually we consider a BPS configuration to be at re
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However, they remain BPS when the configuration is L
entz boosted. As our space is compactified along a circl
BPS configuration can carry nonzero linear momentum al
the circle. However, the linear momentum is not topologi
and cannot be expressed as a boundary term in general

The 1/4 BPS dyons can be understood as a planar we
fundamental strings and D-strings connecting parallel D
branes in type IIB theory@9#. Similarly, the 1/4 BPS dyonic
calorons have the string web picture. We explore this in
simple model.

The low energy dynamics of magnetic monopoles can
approached by moduli space dynamics. When an additio
scalar field is turned on, its effect can be incorporated a
potential term. It was shown in@10# that the BPS configura
tion of this low energy dynamics corresponds to the 1/4 B
dyonic configurations. From this correspondence one
read the electric charge of dyons for a given set of mod
parameters. This result can also be found directly from
field theory analysis. We consider the low energy dynam
of 1/4 BPS dyonic calorons and work out these results
detail in the SU(2) case.

The plan of this paper is as follows. In Sec. II, we find t
BPS bound on the energy functional. In Sec. III, we find t
BPS equations that are satisfied by the configurations s
rating the BPS bound. In Sec. IV, we find the BPS calor
configurations, which can be regarded as composed of mo
poles and dyons. In Sec. V, we study the SU(2) gauge gr
case in detail. In particular, we relate our 1/4 BPS config
ration to the string web picture. In Sec. VI, we conclude w
some remarks.

II. THE BPS BOUND

The underlying spacetime is chosen to be five dim
sional, with one of the space dimensions being compacti
to a circle. The coordinatesxM whereM50, . . . ,4 aresplit
into the time coordinatex0 and space coordinatesxm with
m51,2,3,4. The compactified coordinatex4 has the finite
range

0<x4,b. ~1!
©2003 The American Physical Society12-1
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We consider only the periodic gauge and scalar fields.
allowed gauge transforms are those which leave the ga
fields periodic: small gauge transformations whose ga
functions are periodic, and large gauge transformati
whose gauge functions are multivalued. While our consid
ations can easily be generalized to an arbitrary semisim
gauge group, we focus on the SU(N) gauge group for sim-
plicity. We consider the Hermitian generatorsTa in the
N-dimensional fundamental representation with normali
tion trTaTb5dab/2. The gauge field is thenAM5AM

a Ta.
The Lagrangian we start with is

L5
1

e2
tr S 2

1

2
FMNFMN1DMf ID

Mf I

2(
I ,J

~2 i @f I ,fJ# !2D , ~2!

where DMf I5]Mf i2 i @AM ,f I # and e2 is a five-
dimensional coupling constant of length dimension. We
compose the Higgs field into one component and the res

f I5aIf1z I , ~3!

where aI is a unit vector in five dimensions andz I is or-
thogonal toaI . The Gauss law is

DiEi1D4F042 i @f,D0f#2 i @z I ,D0z I #50, ~4!

whereEi5F0i with i 51,2,3.
The energy density is given by

E5
1

e2
tr ~Ei

21Bi
21F04

2 1Fi4
2 1D0f21Dif

21D4f2!1Ez ,

~5!

whereBi5
1
2 e i jkF jk and

e2Ez5tr S ~D0z I !
21~Dmz I !

22(
I

@f,z I #
22(

I ,J
@z I ,zJ#

2D .

~6!

The energy density can be written as

E5
1

e2
tr $~Ei1F4i sina2Dif cosa!21~Bi2F4i cosa

2Dif sina!21~F042D4f cosa!21~D0f

1D4f sina!2%12 cosa@ tr BiF4i1] i tr ~Eif!#

12 sina$] i tr ~Bif!2tr ~EiF4i1D0fD4f

1D0z ID4z I !%1 Ẽz , ~7!

where
02501
e
ge
e
s
r-
le

-

-

e2Ẽz5tr ~D0z I2 i @f,z I #cosa1D4z I sina!2

1tr ~D4z I cosa1 i @f,z I #sina!21~Diz I !
2

2(
I ,J

@z I ,zJ#
2. ~8!

In the above we have used the Gauss law and the sin
valuedness of the fields inx4.

We introduce four conserved charges:

QE5
2

e2E d4x] i tr ~Eif!, ~9!

QM5
2

e2E d4x] i tr ~Bif!, ~10!

P452
2

e2E d4x tr ~EiF4i1D0fD4f1D0z ID4z I !,

~11!

T 5
8p2

e2
nP , ~12!

where d4x is the volume element of the four-dimension
space. The linear momentum along the circleP4 is conserved
but is not topological. The rest of them are topological.
particular,T is related to the Pontriyagin index by

nP5
1

8p2E d4x2 tr ~BiF4i !. ~13!

The bound on the energy functionalH5*d4xE is then

H>~T 1QE!cosa1~QM1P4!sina ~14!

for any anglea. The maximum possible value of the righ
side is obtained when

cosa5~T 1QE!/A~T 1QE!21~QM1P4!2, ~15!

sina5~QM1P4!/A~T 1QE!21~QM1P4!2. ~16!

Then the strictest energy bound is

H>Z65A~T 6QE!21~QM6P4!2, ~17!

which is the so-called BPS energy bound.Z2 is obtained by
changing the sign of thef field.

III. BPS EQUATIONS

This energy bound is saturated, say,H5Z1 , by the con-
figurations that satisfy the following BPS equations:

Bi5F4i cosa1Dif sina, ~18!

Ei52F4i sina1Dif cosa, ~19!
2-2



r

o
in
us

.
f 1

e
o

u

e-
ng

S
-

e

rm

that

e

ate

rt
t
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F045D4f cosa, ~20!

D0f52D4f sina, ~21!

and the Gauss law~4!. In addition, there are conditions fo
the z I field,

D0z I2 i @f,z I #cosa1D4z I sina50, ~22!

D4z I cosa1 i @f,z I #sina50, ~23!

Diz I50, ~24!

@z I ,zJ#50. ~25!

The above BPS equations seem complicated to solve. H
ever, a considerable simplification can be made by notic
that Eq.~18! can be written as a self-dual equation. Let
introduce a new coordinate

x̃45
1

cosa
x4, ~26!

and a new fourth component gauge field

Ã45A4 cosa2f sina. ~27!

Then Eq.~18! becomes

Bi5 ]̃4Ai2DiÃ45F̃4i . ~28!

This is the self-dual equation for calorons on R33S̃1, where
x̃4P@0,b/cosa#. Since the fields are periodic underx4, they
are period underx̃4. If a5p/2, the above method fails
However, the BPS equations in this case become those o
BPS monopoles with a single scalar fieldf and have been
studied extensively.~Not all 1/4 BPS configurations of th
theory are described by the above BPS equation. For th
configurations, two Higgs fields are involved andA450, and
so the compactified direction does not play any role.!

Introducing

D̃45 ]̃42 iÃ4 , ~29!

Eq. ~20! becomesF045D̃4f and Eq.~21! becomesD0f5

2D̃4f tana. Taking the covariant divergence of Eq.~18!,
we get

DiF4i cosa1Di
2f sina50. ~30!

Using the above relations with Eqs.~22!,~23!, Eq. ~19! and
the Gauss law~4! can be put in a single equation,

Di
2f1D̃4

2f2@z I ,@z I ,f##50. ~31!

Equation~23! can be put in the formD̃4z I50. Since we are
interested in the 1/4 BPS configuration such that the vacu
expectation values ofz I vanish (̂ z I&50) and Diz I5D̃4z I
50, z I should vanish. Hence, we can drop thez I fields from
the further discussion. Thus, Eq.~31! becomes
02501
w-
g

/2

se

m

Di
2f1D̃4

2f50. ~32!

The topological charge of the new variables

T̃ 5
2

e2E d4x̃ tr BiF̃4i5T 2QM tana. ~33!

Note thatT̃ andT need not be integer numbers for the g
neric configuration. Another topological quantity appeari
naturally here is

Q̃E5
2

e2E d4x̃]̃m tr fD̃mf5QE1QM tana ~34!

for BPS configurations.

A. The case whereaÄ0

What is the reason behind this simplification of BP
equation? Let us first consider thea50 case. The BPS equa
tions are considerably simplified:

Bi5F4i , ~35!

Ei5Dif, ~36!

F045D4f, ~37!

D0f50. ~38!

In the gaugeA052f, the field configurations become tim
independent. In particular, Eqs.~37! and ~38! are automati-
cally satisfied. The fieldsAm satisfy the self-dual equation
and the Gauss law constraint can be put in the simple fo

Dm
2 f50. ~39!

From the above simplified BPS equations, we can see
P452QM from Eqs.~11!,~10!, which is consistent with the
a50 picture in the BPS bound~17!.

B. Lorentz boost alongx4

Let us start with thea50 case. We call its spacetim
coordinatesx̃M and its BPS field configurationsÃM and f̃.
We can Lorentz boost this coordinate to get a new coordin
(x4,t) such that

t̃ 5
t

cosa
2x4 tana, ~40!

x̃452t tana1
x4

cosa
. ~41!

Note that 1/(cosa)22(tana)251 so that it is a Lorentz
boost. The spatial coordinatesxi remain unchanged. We sta
with the compact radius 0, x̃4,b/cosa, and so the compac
radius ofx4 becomesb.

The A0 andA4 fields transform as
2-3
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Ã05
A0

cosa
1A4 tana, ~42!

Ã45A0 tana1
A4

cosa
, ~43!

and thef andAi fields are invariant. We work in the gaug
Ã05f̃5f. The BPS equations~35!–~38! of the a50 case
become the old BPS equations~18!–~21! in terms of the new
variables.

What is interesting about this Lorentz transformation
that T 1QE is like the rest mass andP41QM is like the
four-momentum of the Lorentz boost.@The Lorentz boost
interpretation of Eqs.~33! and ~34! shows that whileT and
QE transform nontriviallyT 1QE remains invariant like the
rest mass.# Thus whena50 the momentumP41QM50 as
noted before. Of course our Lorentz boost is not an ex
symmetry as the interval of space changes and is a kin
combination of a Lorentz boost and rescaling of thex4 co-
ordinate. However, this shows that the BPS configurat
with nonzeroa can be obtained from the BPS configuratio
with a50. This is exactly what we have seen in Eqs.~28!
and~32!. While the BPS configuration of thea50 case can
be chosen to be time independent, this is not true for thos
a5” 0.

IV. MONOPOLES AND CALORONS

The solutions of the primary BPS equation~28! are iden-
tical to the self-dual equations for the caloron. Since we
interested in the case wherea5” p/2 and it can be obtained
by a Lorentz boost from the casea50, we focus mainly on
thea50 case. The first one~35! is the self-dual equation o
Am on R33S1. The second BPS equation is the zero eig
value equation~39! for f, around the solution of the firs
BPS equation.

Let us first consider the solution of the primary BPS eq
tion. This is the BPS equation for the 1/2 BPS configuratio
First of all we need the boundary condition forA4. The
vacuum expectation value ofA4 is single valued and take
the form

^A4&5diag~h1 ,h2 , . . . ,hN!5h•H, ~44!

where(aha50 and by gauge choice

h1,h2,•••,hN,h11
2p

b
. ~45!

This leads to a nontrivial Wilson loopP exp(i*dx4A4) and the
symmetry is spontaneously broken to U(1)N21. If any of
two ha’s coincide, the gauge symmetry will have unbrok
non-Abelian symmetry. While this possibility is quite inte
esting by itself, we will not pursue this direction in th
present paper.

As shown in Ref.@1#, the general solutions of the sel
dual equation~35! describe the superpositions ofN funda-
mental monopoles corresponding to the simple rootsbi ,i
51, . . . ,N21 and the lowest negative rootb0. These roots
02501
ct
of

n

of

e

-

-
.

form the extended Dynkin diagram. The topological cha
nP of each type of monopole is fractional and takes the fr
tional value

m r5
b

2p
~hr 112hr !, r 51, . . . ,N21,

~46!

m0512
b

2p
~hN2h1!.

While all monopoles are on an equal footing, the magne
monopoles ofb0 are called Kaluza-Klein monopoles as the
have intrinsicx4 dependence on the gauge~45!.

Thus the general solution of the primary BPS equation
characterized by theN nonnegative integersnr , each of
which is the number ofbr monopoles. The total topologica
charge is then

nP5 (
0

N21

nrm r , ~47!

and the magnetic charge obtained from the asymptotic
Bi5(r i /r 3)g•H is given by

g54p (
0

N21

nrbr . ~48!

The topological charge and the magnetic charge areN
charges together and so determine the monopole num
nr , r 50, . . . ,N, uniquely. The total number of partons o
monopoles is

Nm5 (
0

N21

nr , ~49!

and the total number of zero modes of the first BPS equa
is 4Nm . A single caloron or instanton can be regarded
composed ofN distinct fundamental monopoles, whose t
pological charge is 1 and whose magnetic charge is equa
zero. The number of zero modes of a single instanton is t
4N, as expected from the index theorem. For a given
$nr% of monopoles, the solution of the first BPS equation
uniquely determined by the moduli parameters. The dim
sion of the moduli space of these configurations is 4Nm . The
general method to solve the first BPS equation is the Atiy
Drinfeld-Hitchin-Manin-Nahm ~ADHMN ! construction, as
detailed in Ref.@3#. Thus, the solutions of the primary BP
equations are identical to 1/2 BPS configurations.

The secondary BPS equation can be regarded as the g
zero modes of the primary BPS equation. The linear fluct
tionsdAm should satisfy the linearized BPS equation and
gauge fixing condition

e i jkD jdAk5D4dAi2DidA4 ,
~50!

DmdAm50.

When the linear fluctuation is due to the gauge zero mo
dAm5DmL, the linearized BPS equation is automatica
satisfied and the gauge fixing condition becomes
2-4
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Dm
2 L50, ~51!

which is identical to the secondary BPS equation~39!. Since
there areN21 unbroken U~1! symmetries, there will beN
21 linearly independent solutions of the second BPS eq
tion. The general method for solving the second BPS eq
tion is given in the Appendix of Ref.@4#.

The BPS equation~39! gives the electric field in terms o
the solutionf. The solution of the second BPS equation
again uniquely determined for a given monopole backgro
and the asymptotic value

^f&5~a1 ,a2 , . . . ,aN!5a•H, (
i 51

N

ai50. ~52!

Thus, the moduli of the 1/2 BPS configurations determ
the solution of the secondary BPS equation uniquely. Fr
the asymptotics of the fieldf

f5^f&1
1

4pr
q•H1OS 1

r 2D , ~53!

we can read the electric field and so the electric chargeQE.
However, the story is more complicated. There areN dis-

tinct monopoles, each of which can carry its own elect
fields. Thus for a group ofbr monopoles there will be tota
qrbr electric charge and the electric charge is determined
the asymptotics of thef field as

q5 (
0

N21

qrbr . ~54!

Similarly to the magnetic charge, the asymptotics alone c
not decide eachqr sincebr is not independent although
determines the relative electric charges. The electric charq
is determined by the moduli parameters of the magn
background and the asymptotic valuea.

In addition to theN21 global U(1) Abelian symmetries
of the gauge group SU(N), there is an additional U(1) re
lated to the translation along thex4 direction. Thus there are
N global U(1) charges, theN21 electric charge and th
linear momentumP4, which in turn determines theN param-
etersqr . The linear momentumP4 is not topological and so
it is hard to see its relation toqr explicitly. When the con-
stituent monopoles are well separated from each other,
may be able to assign electric charge and linear momen
to each monopole. In particular, whena50, the linear mo-
mentum ~11! for very isolatedb r monopoles of electric
chargeqr carries linear momentumqrm r . Then the total lin-
ear momentum becomes( rqrm r , which should be2QM

due to Eq.~16!. This leads to an additional relation betwe
qr ’s. The configuration with nonzeroa can be obtained from
the Lorentz boost of the above case.

V. LOW ENERGY DYNAMICS OF CALORONS

From the consideration in the previous sections, one
see that 1/4 BPS dyonic calorons can be constructed of
damental dyons. The low energy dynamics of 1/4 BPS c
02501
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figurations has been explored in recent years@10,11#. It was
shown that low energy dynamics is possible for 1/2 B
configurations. The kinetic energy is given by the mod
space metric of the 1/2 BPS configurations. The additio
Higgs field appearing in the 1/4 BPS configuration contr
utes to the potential in the low energy Lagrangian. The fo
of the potential is given by the sum of the square norm of
Killing vectors. For the low energy dynamics of fundamen
objects one has to specify what class of 1/2 BPS configu
tions one starts with. For example, one can start from
case wherêA4&5” 0 and^f&50. In this case one starts wit
the constituent fundamental monopoles of calorons. Then
consider the low energy dynamics of monopoles with sm
but nonzerof expectation value. This is the case we w
focus on in this work.

There are other cases which we will not explore he
With ^A4&50 and ^f&5” 0, one start with the the 1/2 BPS
monopoles without any Kaluza-Klein monopoles, whi
would make calorons. It would be interesting to consider
low energy dynamics of these monopoles with small b
nonzero ^A4&. One could consider more complicated 1
BPS configurations witĥ A4&}^f& but without Kaluza-
Klein monopoles.

The moduli space dynamics of dyonic instantons onR4

has been studied before in Refs.@16,17#. It is somewhat sim-
pler than our case as there is no symmetry breaking du
the A4 expectation value.

A. Caloron moduli space

We start with the caloron case witĥf&50. Its low en-
ergy dynamics can be described by the caloron moduli sp
metric. The kinetic energy due to the spatial motion and el
tric charge are much smaller than the rest mass of the mo
poles. We consider the modification of the low energy d
namics when̂ f&5” 0 but very small. Thus the anglea is
very small. Thea5” 0 case can be obtained by the Loren
transformation and rescaling of thex4 coordinate. Asa is
very small, it will become an infinitesimal Galilean transfo
mation along thex4 direction. Under this transformation th
electric field transforms in a more complicated way as o
can see from Eq.~19!. The moduli space metric gets spl
into that for the center of mass motion and that for the re
tive motion. Thus we just focus on the casea50.

In this case the solution of the primary BPS equation
identical to the 1/2 BPS caloron solutions. We assume tha
nr are positive and so all constituent monopoles are inter
ing. In this case, the 1/2 BPS configuration has an intrin
x4 dependence which cannot be gauged away.

The dimension of the moduli space is 4Nm and the moduli
space coordinates arezM with M51, . . . ,4Nm . The moduli
space metric can be obtained from the study of the lin
fluctuations around the 1/2 BPS configurationsAm(x,z),

dMAm5
]Am

]zM
2DmeM , ~55!

which satisfies Eq.~50!. The moduli space metric is
2-5
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gMN~z!52E d4x tr ~dMAmdNAm!. ~56!

For instanton or caloron solutions of SU(N) gauge theory,
the moduli space is 4N dimensional and has orbifold singu
larity at the point where all monopoles come together and
caloron collapses. This moduli space metric was obtai
using the constituent monopole picture and the nature of
singularity is identified as R4N/ZN @1#. It is also known that
the singularity is resolved if we turn on the noncommutat
ity @12#.

The effective Lagrangian for the low energy dynamics c
be generically written as

LK5
1

2e2
gMNżMżN. ~57!

There is a naturalN54 supersymmetric generalization of th
above Lagrangian. Since there areN fundamental monopole
in calorons, instead ofN21 for SU(N) gauge theory, there
areN conserved U(1) symmetries, each leading to theqrbr
electric charges onbr monopoles. This matches the fie
theoretic symmetries;N21 of them are made of unbroke
Abelian subgroups of SU(N) and one is for the translatio
along thex4 direction.

To understand the dynamics better, let us split the ce
of mass motion and the relative motion. The Lagrangian~57!
becomes the sum of the LagrangianLK c.m. for the center of
mass motion andLKrel for the relative motion.

As the position of individual monopole is not well define
when two identical monopoles come together, it is hard
express the center of mass position in general. However
can argue that the charge for the central U(1) should be

qc.m.5
1

nP
(
r 50

n

qrm r . ~58!

This is true at large separation.~See, for example, Ref.@13#.!
Also qc.m. should be a linear combination ofqr and is con-
served, and so the coefficient should be independent of
monopole positions. We would like to identifyP4
5(2p/e2)nPqc.m. at large separation. As we consider t
a50 case, the center of mass charge is constrained t
2QM52(1/e2)a•g. The nonzeroa case is obtained by a
infinitesimal Galilean transformation along thex4 direction.
Equation ~16! implies P41QM5(8p2/e2)nPa with nP in
Eq. ~47!. The Killing vector on the moduli space correspon
ing to thex4 translation isKc.m.5]/]cc.m. with the center of
mass angle variablecc.m. .

The relative charges arise as the Noether charges for
N21 Killing vectors Kr

M]M with r 51,2, . . . ,N21 on the
moduli space, which correspond to theN21 unbroken gen-
erators of SU(N). For each of these Killing vectors, there
a cyclic coordinatec r .

We can separate the moduli space coordinateszM into
(r c.m. ,cc.m.) for the center of mass motion and (yi ,c r) with
r 51,2, . . . ,N21 for the relative motion. The kinetic energ
~57! also get split intoLc.m.(r c.m. ,cc.m.) for the center of
mass motion andLrel(yi ,c r) for the relative motion. The
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center of mass motion is free and trivial. The relative p
Lrel is independent of the cyclic coordinatesc r and can be
expressed as

Lrel5
1

2e2
hi j ~y!ẏi ẏ j1

1

2e2
Lrs~y!@ċ r1wi

r~y!ẏi #@ċs

1wj
s~y!ẏ j #. ~59!

The N21 conserved Abelian charges of the above Lagra
ian are

t r5
1

e2
Lrs~y!@ċs1wi

s~y!ẏi #. ~60!

B. The potential

For a given 1/2 BPS caloron background specified by
moduli parameters, we introduce the scalar fieldf which
takes a nonzero but very small expectation value. The sc
field takes the lowest possible energy when it satisfiesDm

2 f
50. This scalar field in turn modifies the caloron dynam
at the second order inf. In particular, its asymptotic behav
ior is given by Eqs.~52! and ~53!; especially q5( r(qr

2q0)br5( r 51qr
relbr depends ona and the caloron modul

parameterszM. At this moment q•H is not the electric
charge but simply the 1/r piece of the asymptoticf.

The solution ofDm
2 f50 depends on the caloron modu

parameters. Asf satisfies the same equation~51! as the glo-
bal gauge transformation parameters, we can interpret

Dmf5a•K MdMAm ~61!

whereKm]M5( r 51
N21brKr

M]M are N21 Killing vectors for
theN21 U(1) gauge generators. As the global gauge tra
formations change the cyclic coordinatesc r of the relative
motion, we choose these cyclic coordinates such that

Kr
M ]

]zM
5

e2

b

]

]c r
. ~62!

Then the part of the relative moduli space metric becom
Lrs(y)5(e4/b2)gMNKr

MKs
N . The induced potential energ

@14,10# is then given by

U5
1

e2E d4x tr ~Dmf!2

5
b

2e2
q•a

5
1

2e2
gMNa•K Ma•KN

5
b2

2e6
Lrsa

ras ~63!
2-6
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where a5( ra
rlr with the fundamental weights satisfyin

lr•bs5d rs . The Tong formula@14# fixes the asymptotic
valueq explicitly in terms of the moduli space metric and th
asymptotic value

bq5gMNa•K MKN ~64!

5
b2

e4
Lrsa

rbs . ~65!

The HamiltonianHrel5Lrel1U has a BPS bound because

H5
1

2e2
hi j ~y!ẏi ẏ j1

e2

2
Lrs~y!S t r7

b

e4
Lrr 8a

r 8D
3S ts7

b

e4
Lss8a

s8D 6
b

e2
qra

r , ~66!

which is saturated whenẏi50 and

t r5qr
rel[

b

e4
Lrsa

s. ~67!

The energy for the BPS configuration is then

b

e2
arqr

rel5
b2

e6
Lrs~y!aras. ~68!

The above results for the electric charge and energy for
BPS configuration match exactly those from field theory@Eq.
~54!# with a50, and also the above BPS energy plus the r
massT becomes the field theoretic BPS energy~17!.

VI. THE SU „2… CASE

We explore in more detail the SU~2! case. This shows the
above description of 1/4 BPS configurations in a more c
crete form. The first BPS equation describes the self-d
calorons, and can be solved by the ADHMN method. T
calorons in the SU~2! case have been studied in detail befo
@3,2#. Using the small and large gauge transformations,
choose the expectation value

^A4&52
v
2

s35diag~h1 ,h2! ~69!

with 0,v<p/b. There are two fundamental monopoles
opposite magnetic charge. One is the ordinary BPS mo
pole of topological chargem15bv/2p. Another is the
Kaluza-Klein KK monopole of opposite magnetic charge a
topological indexm0512m1. There is no force betwee
these distinct monopoles as the magnetic attraction is
celed by the Higgs repulsion. A single caloron of a unit Po
triyagin index is made of one of these monopoles, so that
net magnetic charge is equal to zero. A single caloron c
figuration has been obtained explicitly. This complicat
configuration describes a nonlinear superposition of two
tinct monopoles.
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Consider thea50 case. The solution of the first BP
equation is characterized by the two non-negative integ
(n0 ,n1). The lowest root isb052b1 and so the magnetic
charge is

g54p~2n01n1!b1 ~70!

and the total topological charge is

nR5n0m01n1m1 . ~71!

For a single caloronn05n151, the solution of the primary
BPS equation has been found by the ADHMN method a
was shown to be a superposition of two these monopo
Furthermore, the moduli space of the 1/2 BPS configurati
was shown to be eight dimensional such that the cente
mass part is flat space and the relative part is Tau
Newman-Unti-Tamburino~NUT! space.

A. Second BPS equation

The secondary BPS equation around the first BPS eq
tion can also be found explicitly by the method summariz
in the Appendix of Ref.@4#. Here we briefly outline the so
lution following that reference. The Nahm data for the SU~2!
one-caloron case are given by@3,2#

T052a0 , T152a1 , ~72!

wherea0,1 are constant vectors representing the positions
constituent monopoles. We can puta0,1 by spatial rotation
and translation at thez axis such thata0

i 52(R/2)d i3,a1
i

5(R/2)d i3. In ADHMN formalism the covariant Laplacian
for the adjoint scalar fieldf is replaced by the equation fo
the functionp(t):

p̈~ t !2W~ t !p~ t !1L~ t !50, ~73!

whereW(t) andL(t) are given by

W~ t ![tr2(
a51

2

d~ t2ha!wa
†wa ,

~74!

L5tr2(
a51

2

d~ t2ha!wa
†^f&wa .

For the given Nahm data,w1,2 are

w15~A2R,0!, w25~0,A2R!, ~75!

which is determined by the jumping condition

T~ha1 !2T~ha2 !5
1

2
tr 2~s iwa

†wa!. ~76!

The solution of Eq.~73! for these data and the bounda
value of the adjoint scalar fieldf

^f&52
h

2
s35a•H, a[hb1 ~77!
2-7
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is given by

p~ t !5H p0~ t1p/b!, tP@2p/b,2v/2#,

p1t, tP@2v/2,v/2#,

p0~ t2p/b!, tP@v/2,p/b#,

~78!

p052h
~b/2p!vR

11@12~b/2p!v#vR
, ~79!

p15h
@12~b/2p!v#R

11@12~b/2p!v#vR
. ~80!

Then we can construct the adjoint scalar field by

f5N21/2^f&N21/21N21/2E dtu†p~ t !uN21/2, ~81!

whereN and u(t) are the functions given in Ref.@3#. It is
straightforward to obtain thef field in terms of the functions
given in Ref.@3# and extract the asymptotic behavior off.

From the asymptotic behavior, we get

f52h
s3

2 S 12
R

r

b

b12pm0m1RD1OS 1

r 2D , ~82!

and thus the electric charge is given by

QE5
4p

e2

h2b2R

b12pm0m1R
. ~83!

B. Moduli space metric and Tong’s method

The moduli space of the SU~2! one caloron is eight di-
mensional and this eight-dimensional moduli space can
split into the center of motion space and the relative mot
space, and their metrics are given by@1–3,16#

dsc.m.
2 58p2$~dX!21~dxc.m.!

2%, ~84!

dsrel
2 58p2m0m1H S 11

r̄

r
D dr21 r̄ 2

3S 11
r̄

r
D 21

@dc1w~r !•dr #2J , ~85!

wherer̄ 5b/2pm0m1. The relative metricdsrel
2 is the one for

the well-known Taub-NUT space. For this case

b

e2
q5

1

e2
gcc~a•Kc!Kc. ~86!

Sinceqc5q12q0 ,q5qcb1, andKc5b1, one can see tha
02501
e
n

b

e2
qc5

1

e2
gcc~a•Kc!5

h

e2
gcc ~87!

5
4p

e2

hb2R

b12pm0m1R
. ~88!

This gives us the electric chargeQE

QE5
b

e2
a•q5

4p

e2

h2b2R

b12pm0m1R
, ~89!

which is the identical expression with that obtained in t
previous section.

The low energy dynamics of this configuration is d
scribed by the free c.m. part and the relative Taub-NUT m
ric with potential termU5 1

2 QE. Note that the field theory
BPS energy bound~17! is saturated byT 58p2/e2 and the
aboveQE.

C. String picture

A dyon in maximally supersymmetric four-dimension
Yang-Mills theory appears as fundamental and a D-str
composition connecting D3-branes. The positions of D
branes are specified by the adjoint scalar vacuum expecta
values and the total energy of strings connecting D3-bra
matches the field theoretic energy of dyons@9#. In the cal-
oron case the string picture appears after theT dual is taken
and then the vacuum expectation value ofA4 specifies the
position of D3-branes.

With the tension for a single fundamental stringT
51/2pa8, the tension for the D-string isgT with g
54pb/e2 in terms of the field theory parameters. The te
sion ofs5bq/e2 fundamental strings on a single D-string
Ag21s2T, whereq is the field theory electric charge.

A single dyonic caloron in the SU~2! gauge group can be
represented in the string picture by theT-dual transforma-
tion. Both A4 and f expectation values denote the positio
of the D3-branes in the compact dual space and transversx5

direction given by thef field. The detail of the string picture
of this configuration is given in Fig. 1.

FIG. 1. String web picture of SU~2! single caloron case.
2-8
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This string configuration is 1/4 BPS when there is a te
sion balance at the string junctions@15#, which implies that

sinu15
g

Ag21s1
2

, ~90!

sinu05
g

Ag21s0
2

, ~91!

wheresi5(b/e2)qi .
Let us consider the total energy of the above string c

figuration, which is the sum of the energy, that is, the tens
times the length, of the individual string segments. The to
string energy is then

E5~s12s0!T~D2L !1Ag21s1
2T

L

cosu1

1Ag21s0
2T

L

cosu0
. ~92!

This can be written as

E5gTL~ tanu11tanu0!1~s12s0!TD ~93!

which is what we expect for the BPS energy from fie
theory since we can identify the string theory paramet
with the field theory ones asTD5h, bTL tanu i
52pm i ( i 50,1). The critical charge appears whenL5D or

Dq̃c[~s12s0!c5
bT

2pm1m0
gD, ~94!

which is identical with limR→`(q12q0)b/e2 from the field
theory result~89!.

VII. CONCLUSION

In this paper we investigated the 1/4 BPS configuration
R3113S1 in N54 supersymmetric Yang-Mills theory. Th
generic BPS bound and BPS equations are obtained w
,

rg
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P4, QE, QM, andT are turned on. The BPS equations a
more complicated than for the 1/4 BPS configuration
R311. Nevertheless, BPS equations can be simplified b
suitable transformation, resulting in two equations. Then,
static solution for the 1/4 BPS configuration can be obtain
by solving first the primary equation, which is the muc
studied 1/2 BPS caloron equation on R33S1 and next the
secondary equation on this 1/2 BPS caloron backgrou
This is quite similar to the approach for the 1/4 BPS dyo
state in four-dimensional field theory@12#.

A new feature in the 1/4 BPS dyonic caloron case co
pared to the 1/4 BPS dyon is the appearance of a topolog
chargeT and a four-momentumP4 in the BPS bound. In the
theory of the SU~2! gauge group, there are no 1/4 BPS dyo
in four dimensions but there are 1/4 BPS caloron configu
tions in five dimensions. In the infiniteb limit these dyonic
calorons become the dyonic instantons that were studied
fore @6,7#.

We also considered the low energy dynamics of this
BPS configuration and it turns out that it is described by
same type of nonlinears-model Lagrangian with 1/4 BPS
dyons. But the potential term is more complicated becaus
the existence ofP4 andQM.

There are several directions for further study. First,
would be interesting to understand thea5” 0 case from the
low energy dynamics viewpoint. We argued that it is relat
to the center of mass motion of the low energy Lagrangi

Second, it would be interesting to study the quantu
spectrum of this configuration. After quantization the tran
lational generator along thex4 direction takes discrete inte
ger values. However, the momentumP4 can take a fractiona
value. Thus, it would be interesting to elucidate this poin
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