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1/4 BPS dyonic calorons
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We explore the 1/4 Bogomol'nyi-Prasad-SommerfiBPS configurations of the supersymmetric gauge
theories on R"3x S'. The BPS bound for energy and the BPS equations are obtained and the characteristics
of the BPS solutions are studied. These BPS configurations describe electrically charged calorons, which are
constituted of dyons and carry linear momentum along the compact direction. We carry out various approaches
to the single caloron case in the theory of the SU(2) gauge group.
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[. INTRODUCTION However, they remain BPS when the configuration is Lor-
entz boosted. As our space is compactified along a circle, a
It has been known for some time that instantons dn R BPS configuration can carry nonzero linear momentum along
X S, or so-called calorons, can be considered to be made dhe circle. However, the linear momentum is not topological
magnetic monopoles when there is a nontrivial Wilson loopand cannot be expressed as a boundary term in general.
which breaks the gauge symmetry to its Abelian subgroups The 1/4 BPS dyons can be understood as a planar web of
[1-3]. For the SUN) gauge group, there amd different  fundamental strings and D-strings connecting parallel D3-
kinds of fundamental monopoles, each corresponding t®ranes in type IIB theory9]. Similarly, the 1/4 BPS dyonic
roots in the extended Dynkin diagram. The relation betweergalorons have the string web picture. We explore this in our
instantons and magnetic monopoles can also be understo&édmple model.
by exploring the five-dimensional Yang-Mills theories which ~ The low energy dynamics of magnetic monopoles can be
appear as the low energy Lagrangian on parallel D4-branegpproached by moduli space dynamics. When an additional
and itsT-dual version. In theiN=4 supersymmetric version scalar field is turned on, its effect can be incorporated as a
on R'*3x S!, instantons appear as 1/2 Bogomol'nyi-Prasad{otential term. It was shown ifL0] that the BPS configura-
Sommerfield BPS objects. The low energy dynamics of cal- tion of this low energy dynamics corresponds to the 1/4 BPS
orons or instantons is given by the metric on the modulidyonic configurations. From this correspondence one can
space of caloron solutions. read the electric charge of dyons for a given set of moduli
There has been some work done some time ago on 1/arameters. This result can also be found directly from the
BPS dyons oN=4 supersymmetric Yang-Mills theories on field theory analysis. We consider the low energy dynamics
R1+3, which can arise when several H|ggs fields take expecof 1/4 BPS dyoniC calorons and work out these results in
tation valueg4,5]. In the five-dimensional Yang-Mills theo- detail in the SU(2) case.
ries, there are five Higgs fields and they can take nontrivial The plan of this paper is as follows. In Sec. II, we find the
expectation values, in addition to the nontrivial Wilson loop BPS bound on the energy functional. In Sec. Ill, we find the
along the compact circle. In these theories the 1/4 BPS anBPS equations that are satisfied by the configurations satu-
non-BPS configurations are also possible. In this paper weating the BPS bound. In Sec. 1V, we find the BPS caloron
explore these 1/4 BPS configurations. In particular, we workeconfigurations, which can be regarded as composed of mono-
out a single 1/4 BPS dyonic caloron case in the SU(2) gaugioles and dyons. In Sec. V, we study the SU(2) gauge group
theory. case in detail. In particular, we relate our 1/4 BPS configu-
More recenﬂy there has been some work on dyonic 0|ration to the String web picture. In Sec. VI, we conclude with
electrically charged instantons in five-dimensional fieldsome remarks.
theory [6—8]. As in the four-dimensional theory, these dy-
onic instantons are 1/4 BPS instead of 1/2 BPS as in the
Yang-Mills theories with 16 supersymmetries. These dyonic IIl. THE BPS BOUND

instantons also carry nontrivial angular momentum. They be- ¢ underlying spacetime is chosen to be five dimen-

come calorons when the space is compactified. As we Wilkjona| with one of the space dimensions being compactified
show in this paper, BPS calorons come with richer characg, 5 circle. The coordinate” whereM=0. ... 4 aresplit

teristics. _ _ _ into the time coordinate and space coordinates* with
Usually we consider a BPS configuration to be at restu:1,2,3'4_ The compactified coordinaxé has the finite

range

*Email address: klee@kias.re.kr
TEmail address: shyi@phya.snu.ac.kr 0=x*<p. (1)
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We consider only the periodic gauge and scalar fields. The —tr( oli—i[ b, ]cosa+ D¢, sina)?

allowed gauge transforms are those which leave the gauge

fields periodic: small gauge transformations whose gauge +1tr(D4g  cosa+i[ ¢, ¢ ]sina)?+(D;¢))?
functions are periodic, and large gauge transformations

whose gauge functions are multivalued. While our consider- _ 2 (4,612 ®)

ations can easily be generalized to an arbitrary semisimple

gauge group, we focus on the SWUY( gauge group for sim- _
plicity. We consider the Hermitian generatof@ in the In the above we have used the Gauss law and the single-

N-dimensional fundamental representation with normalizavaluedness of the fields ix.
tion trTeTP= 62%/2. The gauge field is theAy, = A T2. We introduce four conserved charges:
The Lagrangian we start with is

E 2 4
. . Q =2 d*xd; tr (E;¢), 9
EZ _Ztr( - EFMNFMN‘F DM¢|DM¢|
e
2
) QM=; f d*xa; tr(B;¢), (10
— — 2
2 (=il¢r. D) 2)
2
4_ 4
where Dyd =dudi—i[Ay,#] and € is a five- P __;f d*™xtr (EiF4i+Do¢Da¢+DodiDal)),
dimensional coupling constant of length dimension. We de- (11)
compose the Higgs field into one component and the rest:
872
d=ad+ ¢, ©) TZ?VP, (12

wherea, is a unit vector in five dimensions anfl is or-  \here d4x is the volume element of the four-dimensional
thogonal toa, . The Gauss law is space. The linear momentum along the cifefeis conserved
but is not topological. The rest of them are topological. In
DiEi+D4Fos—i[¢,Dop]—i[{,Dod1]=0, (4)  particular, 7 is related to the Pontriyagin index by

whereE;=Fg with i=1,2,3. 1 4
The energy density is given by vP=o 2 d*x2 tr(BiF4;). (13

1 5 The bound on the energy functiortdl= [ d*x¢ is then
&= ;tr(Ei + B2+ Fu+ F+Dop?+Dip?+Dy?) + &,

) H=(7+QF)cosa+ (QM+ P*sina (14
for any anglea. The maximum possible value of the right
whereB;= 2€|,ij|< and side is obtained when

cosa=(T+QF)/(T+QF)?+(QV+P*)?, (15)
o2 =tr| (Dof)?+(D,d)?= 2 [6.417= 2 [4,4)°

1<J

sina=(QM+ P,)/(T+QF)?+(QM+P%?2. (16)

(6)
. _ Then the strictest energy bound is
The energy density can be written as
H=Z.=(T+Q%*+(Q"=P*?, 17)
1
E= —Ztr{(Ei +F,i sina—D;¢ cosa)?+ (B;— F,; cosa which is the so-called BPS energy bouid. is obtained by
€ changing the sign of the field.
—Di¢sina)?+(Fos—Dy¢p cosa)®+(Doep
Ill. BPS EQUATIONS
+Dg¢p sina)?} +2 cosa[tr BiF 5+ d; tr (Ej¢)]

. This energy bound is saturated, skly=2Z. , by the con-
+2sina{d; tr(Bj¢) —tr (EiF 4+ Do¢D4o figurations that satisfy the following BPS equations:
+DoliDal)}+E;, (7) B,=F, cosa+D, ¢sina, (18)

where E;=—F, sina+D;¢ cosa, (19
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Fos=D4¢ cosa, (20) D2¢p+D3¢=0. (32)
Do¢p=—Dy¢sina, (2D The topological charge of the new variables
and the Gauss law4). In addition, there are conditions for 2 B
the ¢, field, T= _2J d*xtr B;F ;;=7—QM tana. (33
e
D0§|_i[¢,§|]COSQ+D4§| SinaZO, (22) -
_ _ Note that7 and 7 need not be integer numbers for the ge-
D4¢i cosa+i[¢,{]sina=0, (23 neric configuration. Another topological quantity appearing
naturally here is
Difi=0, (24)
e 2 ~ ~
[41,5,1=0. (25) 0% 459, 4B,0-Q%+ Qtana (34
e

The above BPS equations seem complicated to solve. How- ) )
ever, a considerable simplification can be made by noticindgor BPS configurations.
that Eq.(18) can be written as a self-dual equation. Let us

introduce a new coordinate A. The case wherea=0

B 1 What is the reason behind this simplification of BPS
x4=——nx* (26)  equation? Let us first consider the=0 case. The BPS equa-
coSa tions are considerably simplified:
and a new fourth component gauge field B,=F, (35)
A,=A,cosa— ¢ sina. (27 E,=D;o, (36)
Then Eq.(18) becomes
a Fos=D4¢, (37)
Bi=0,A—DiA,=Fy. 28
i 47 im4 4i ( ) DO¢:O' (38)

This is the self-dual equation for calorons oAXS!, where _ . ' . .

~4 ) ] o In the gaugeAy= — ¢, the field configurations become time
x*e[0,8/cosa]. Since the fields are periodic undef, they  jngependent. In particular, Eq&37) and (38) are automati-
are period undex®. If a=m/2, the above method fails. cally satisfied. The field\, satisfy the self-dual equation
However, the BPS equations in this case become those of 1&hd the Gauss law constraint can be put in the simple form
BPS monopoles with a single scalar fiefdand have been
studied extensively(Not all 1/4 BPS configurations of the
theory are described by the above BPS equation. For those
configurations, two Higgs fields are involved afg=0, and  From the above simplified BPS equations, we can see that

so the compactified direction does not play any jole. P*=—Qy from Egs.(11),(10), which is consistent with the
Introducing a=0 picture in the BPS boundL7).

D2 ¢=0. (39

D,=49,—iA,, (29 B. Lorentz boost alongx*

Let us start with thea=0 case. We call its spacetime

coordinatesxy, and its BPS field configuration&,, and ¢.
We can Lorentz boost this coordinate to get a new coordinate

Eq. (20) becomesFy,=D,¢ and Eq.(21) becomesD y¢p=
—D ¢ tana. Taking the covariant divergence of E(.8),

we get (x4,t) such that
D;F4 cosa+D?¢ sina=0. (30) ¢
_ , . t=———x*tane, (40)
Using the above relations with EgR2),(23), Eq. (19) and COSa
the Gauss law4) can be put in a single equation, .
~ X
~ 4= — + :
D2¢+D3p—[41.[4,411=0. (31) s Ttane e 49

Equation(23) can be put in the fornD ,¢,=0. Since we are Note that 1/(00&)2—(tana)2_=1 so that it is a Lorentz
interested in the 1/4 BPS configuration such that the vacuurhoost. The spatial coordinatgsremain unchanged. We start

expectation values of, vanish ({,)=0) andD;{,= Da¢ with the compact radius@x*< B/cosa, and so the compact

=0, ¢, should vanish. Hence, we can drop thdields from
the further discussion. Thus, E@1) becomes

radius ofx* becomess.
The Ay and A, fields transform as
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~ Ao form the extended Dynkin diagram. The topological charge
Ao= cosa +Astana, (42 vp Of each type of monopole is fractional and takes the frac-
tional value
By Agtana+ —3 (43) B
a—mo cosa’ me=5—(heea=he), r=1,... N-1,
and the¢ andA, fields are invariant. We work in the gauge B (46)
Ao=d=¢. The BPS equation&35)—(38) of the =0 case mo=1=5—(hy=hy).
become the old BPS equatiofis)—(21) in terms of the new
variables. While all monopoles are on an equal footing, the magnetic

What is interesting about this Lorentz transformation ismonopoles of8, are called Kaluza-Klein monopoles as they
that 7+ QE is like the rest mass anB*+ QM is like the  have intrinsicx? dependence on the gaugs).
four-momentum of the Lorentz boogfThe Lorentz boost  Thus the general solution of the primary BPS equation is
interpretation of Eqs(33) and (34) shows that while7 and  characterized by thél nonnegative integers,, each of

QF transform nontrivially7+ QF remains invariant like the  which is the number of8, monopoles. The total topological
rest masg.Thus whena=0 the momentunP*+Q"=0 as  charge is then

noted before. Of course our Lorentz boost is not an exact

symmetry as the interval of space changes and is a kind of

combination of a Lorentz boost and rescaling of #feco- VP % Ak (47
ordinate. However, this shows that the BPS configuration

with nonzeroa can be obtained from the BPS configurationsand the magnetic charge obtained from the asymptotic of
with a=0. This is exactly what we have seen in E@®8)  B,=(r;/r®g-H is given by

and(32). While the BPS configuration of the=0 case can

N—-1

N—-1
hosen ime in ndent, this is not true for th f
be chosen to be time independent, this is not true for those o g=4772 ng.. (48)
a#o. 0
IV. MONOPOLES AND CALORONS The topological charge and the magnetic charge Mdre
) ) ) ) charges together and so determine the monopole numbers
The solutions of the primary BPS equati(8) are iden- |, r=0,... N, uniquely. The total number of partons or

tical to the self-dual equations for the caloron. Since we ar?nrc;nopoles is
interested in the case wheoe# /2 and it can be obtained

by a Lorentz boost from the case=0, we focus mainly on

the =0 case. The first on5) is the self-dual equation of Nm= ; ne, (49
A, on R¥x S'. The second BPS equation is the zero eigen-

value equation(39) for 4, around the solution of the first anq the total number of zero modes of the first BPS equation

BPS equation. _ _ is 4N,,,. A single caloron or instanton can be regarded as
Let us first consider the solution of the primary BPS equatomposed ol distinct fundamental monopoles, whose to-

tion. This is the BPS equation for the 1/2 BPS configurationspo|ogica| charge is 1 and whose magnetic charge is equal to

First of all we need the boundary condition 8. The 619 The number of zero modes of a single instanton is then
vacuum expectation value &, is single valued and takes 4N, as expected from the index theorem. For a given set

N—-1

the form {n,} of monopoles, the solution of the first BPS equation is
(A)y=diaghy,h,, ... hy)=h-H, (44) uniquely determined by the moduli parameters. The dimen-

sion of the moduli space of these configurationshk4 The
where> ,h,=0 and by gauge choice general method to solve the first BPS equation is the Atiyah-

Drinfeld-Hitchin-Manin-Nahm (ADHMN) construction, as
2w detailed in Ref[3]. Thus, the solutions of the primary BPS
hy<h,<---<hy<h,+ B (45) equations are identical to 1/2 BPS configurations.
The secondary BPS equation can be regarded as the gauge
This leads to a nontrivial Wilson loop exp(/dx*A,) and the ~ zero modes of the primary BPS equation. The linear fluctua-
symmetry is spontaneously broken to UYT}. If any of  tions A, should satisfy the linearized BPS equation and the
two h,’s coincide, the gauge symmetry will have unbroken9@uge fixing condition

nor)—AbeIian symmetry.. While this possi_bility_ is quite_ inter- €j«D;OA=D46A~D;5A,,
esting by itself, we will not pursue this direction in the (50)
present paper. D,6A,=0.

As shown in Ref[1], the general solutions of the self-
dual equation(35) describe the superpositions Nffunda-  When the linear fluctuation is due to the gauge zero mode,
mental monopoles corresponding to the simple rg@td oA,=D A, the linearized BPS equation is automatically
=1,... N—1 and the lowest negative rof. These roots satisfied and the gauge fixing condition becomes
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D2A =0, (51  figurations has been explored in recent yda11]. It was
. shown that low energy dynamics is possible for 1/2 BPS
which is identical to the secondary BPS equatid®). Since  configurations. The kinetic energy is given by the moduli
there areN—1 unbroken W1) symmetries, there will b& space metric of the 1/2 BPS configurations. The additional
—1 linearly independent solutions of the second BPS equaHiggs field appearing in the 1/4 BPS configuration contrib-
tion. The general method for solving the second BPS equattes to the potential in the low energy Lagrangian. The form
tion is given in the Appendix of Ref4]. of the potential is given by the sum of the square norm of the

The BPS equatiof39) gives the electric field in terms of Killing vectors. For the low energy dynamics of fundamental
the solutione. The solution of the second BPS equation isobjects one has to specify what class of 1/2 BPS configura-
again uniquely determined for a given monopole backgroundions one starts with. For example, one can start from the
and the asymptotic value case wheréA,)#0 and(¢$)=0. In this case one starts with

N the constituent fundamental monopoles of calorons. Then we
B _ B consider the low energy dynamics of monopoles with small
(#)=(a1.82, ... .an)=a-H, Z‘l 3;=0. 52 pyt nonzero¢ expectation value. This is the case we will
focus on in this work.
Thus, the moduli of the 1/2 BPS configurations determine There are other cases which we will not explore here.
the solution of the secondary BPS equation uniquely. FronWith (A;)=0 and(¢)+0, one start with the the 1/2 BPS
the asymptotics of the fielgh monopoles without any Kaluza-Klein monopoles, which
would make calorons. It would be interesting to consider the
_) (59) low energy dynamics of these monopoles with small but
2]’ nonzero(A,). One could consider more complicated 1/2
BPS configurations with{A,)c(#) but without Kaluza-
we can read the electric field and so the electric ch@fe  Klein monopoles.

However, the story is more complicated. There ldreis- The moduli space dynamics of dyonic instantonsRsh
tinct monopoles, each of which can carry its own electrichas been studied before in Reff$6,17). It is somewhat sim-
fields. Thus for a group o, monopoles there will be total pler than our case as there is no symmetry breaking due to
q, B, electric charge and the electric charge is determined bjhe A, expectation value.
the asymptotics of the field as

N-1

q= ; ab; - (54)

1
¢=(#)+ 4 -4-H+O

A. Caloron moduli space

We start with the caloron case witl$)=0. Its low en-
ergy dynamics can be described by the caloron moduli space
Similarly to the magnetic charge, the asymptotics alone canmetric. The kinetic energy due to the spatial motion and elec-
not decide eacly, since B, is not independent although it tric charge are much smaller than the rest mass of the mono-
determines the relative electric charges. The electric cliarge poles. We consider the modification of the low energy dy-
is determined by the moduli parameters of the magnetimamics wher{ ¢)#0 but very small. Thus the angle is
background and the asymptotic valae very small. Thea#0 case can be obtained by the Lorentz

In addition to theN— 1 global U(1) Abelian symmetries transformation and rescaling of thé coordinate. Asa is
of the gauge group SW), there is an additional U(1) re- very small, it will become an infinitesimal Galilean transfor-
lated to the translation along tixé direction. Thus there are mation along thex* direction. Under this transformation the
N global U(1) charges, th&l—1 electric charge and the electric field transforms in a more complicated way as one
linear momentunP*, which in turn determines thd param-  can see from Eq(19). The moduli space metric gets split
etersq, . The linear momentur®* is not topological and so into that for the center of mass motion and that for the rela-
it is hard to see its relation tq, explicitly. When the con- tive motion. Thus we just focus on the cage=0.
stituent monopoles are well separated from each other, one In this case the solution of the primary BPS equation is
may be able to assign electric charge and linear momentunaentical to the 1/2 BPS caloron solutions. We assume that all
to each monopole. In particular, when=0, the linear mo- n, are positive and so all constituent monopoles are interact-
mentum (11) for very isolated 8, monopoles of electric ing. In this case, the 1/2 BPS configuration has an intrinsic
chargeq, carries linear momentum, u, . Then the total lin- x* dependence which cannot be gauged away.

ear momentum becomes, q,u,, which should be— QM The dimension of the moduli space islg and the moduli
due to Eq.(16). This leads to an additional relation between space coordinates ald with M=1, ... N,,. The moduli
g,'s. The configuration with nonzere can be obtained from space metric can be obtained from the study of the linear
the Lorentz boost of the above case. fluctuations around the 1/2 BPS configuratigng(x,z),
A,
V. LOW ENERGY DYNAMICS OF CALORONS 5MAM:&2_M — D#EM , (55

From the consideration in the previous sections, one can
see that 1/4 BPS dyonic calorons can be constructed of fun-
damental dyons. The low energy dynamics of 1/4 BPS conwhich satisfies Eq(50). The moduli space metric is
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center of mass motion is free and trivial. The relative part
gMN(Z):ZJ d*x tr (SuALSnAL). (56) L, is independent of the cyclic coordinatgs and can be
expressed as

For instanton or caloron solutions of SN gauge theory,
the moduli space isM dimensional and has orbifold singu- 1
larity at the point where all monopoles come together and the LreI:2_e2
caloron collapses. This moduli space metric was obtained
using the constituent monopole picture and the nature of the +wi(y)y']. (59)
singularity is identified as #/Zy [1]. It is also known that .
the[sin]gularity is resolved if we turn on the noncommutativ-tha N— 1 conserved Abelian charges of the above Lagrang-
ity [12]. ;

The effective Lagrangian for the low energy dynamics canIan are
be generically written as

hij (y)y'y!+ z—eers(y)[wr+wi’(y)y'][¢S

1 . .
1 te=— Ls(L#*+WY)Y']. (60)
e

Lk=——9gunz"z". (57)
K 2e29MN

. . . B. The potential
There is a naturall=4 supersymmetric generalization of the

above Lagrangian. Since there &téundamental monopoles ~ For a given 1/2 BPS caloron background specified by its
in calorons, instead dfl—1 for SU(N) gauge theory, there Moduli parameters, we introduce the Sf:alar figldwhich
areN conserved U(1) symmetries, each leading todhg, takes a nonzero but very small expectation value. The scalar
electric charges onB, monopoles. This matches the field field takes the lowest possible energy when it satidhiéss
theoretic symmetriesN—1 of them are made of unbroken =0. This scalar field in turn modifies the caloron dynamics
Abelian subgroups of SW() and one is for the translation atthe second order i. In particular, its asymptotic behav-
along thex* direction. ior is given by Egs.(52) and (53); especiallyg=2(q,
To understand the dynamics better, let us split the center do) B,=2,-10/°'8, depends ora and the caloron moduli
of mass motion and the relative motion. The Lagrang&m parametersz™. At this momentq-H is not the electric
becomes the sum of the Lagrangiag . ., for the center of charge but simply the fl/piece of the asymptotie.
mass motion andl e for the relative motion. The solution ofD2$=0 depends on the caloron moduli
As the pOSition of individual mOﬂOpOle is not well defined parameters_ Aaﬁ satisfies the same equaticﬁﬂ_) as the g|0_

when two identical monopoles come together, it is hard tgal gauge transformation parameters, we can interpret
express the center of mass position in general. However one

— M
can argue that the charge for the central U(1) should be Dyp=a-K oA, (61)
1 é 59 where KMy, =3=N"8.KMg,, areN—1 Killing vectors for
Ge.m.= Vp =0 Ar it - theN—1 U(1) gauge generators. As the global gauge trans-

formations change the cyclic coordinatgs of the relative
This is true at large separatiofSee, for example, Ref13].)  motion, we choose these cyclic coordinates such that
Also g, . should be a linear combination gf and is con-
served, and so the coefficient should be independent of the m 9 e?
monopole positions. We would like to identifyP, Ke = E
=(2mle?)vpQ. m at large separation. As we consider the
a=0 case, the center of mass charge is constrained to
—Qu=—(1/e?)a-g. The nonzerax case is obtained by an
infinitesimal Galilean transformation along tké direction.
Equation (16) implies P4+ Qy=(87%/€?) vpa with vp in
Eq. (47). The Killing vector on the moduli space correspond-
ing to thex* translation i i, =/ di m With the center of U= if d*xtr (D, ¢)?
mass angle variablé. ., . e? m

The relative charges arise as the Noether charges for the

N—1 Killing vectors KrMaM with r=21,2,... N—1 on the

J
-

(62

then the part of the relative moduli space metric becomes
Ls(y)=(e"B?)gunKMKY . The induced potential energy
[14,10 is then given by

moduli space, which correspond to tNe- 1 unbroken gen- = Eq‘a
erators of SUN). For each of these Killing vectors, there is
a cyclic coordinatey, . 1
We can separate the moduli space coordinatésinto = ggMN&KMaKN

(Fem »¥em) for the center of mass motion ang' (") with

r=1,2,... N—1 for the relative motion. The kinetic energy 2

(57) also get split intoL¢ m (re.m. ,¥cm) for the center of - 'B—Lr a'as (63)
mass motion and.,(y',¢") for the relative motion. The 2e6"°
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wherea=3X,a"\, with the fundamental weights satisfying  Consider thea=0 case. The solution of the first BPS
N Bs=6,s. The Tong formula[14] fixes the asymptotic equation is characterized by the two non-negative integers
valueq explicitly in terms of the moduli space metric and the (ng,n;). The lowest root igB,=— B; and so the magnetic

asymptotic value charge is
Bg=guna- KMKN (64) g=4m(—no+ny)py (70
_ ﬁ_z gy 5 and the total topological charge is
et T VR=Nopo T N1py . (71)

The HamiltonianH =L+ U has a BPS bound because For a single caloromg=n;=1, the solution of the primary
BPS equation has been found by the ADHMN method and
1 ST B o was shown to be a superposition of two these monopoles.
H= ghii(y)y y'+ 5 LEY) tr"‘gl—rr’a Furthermore, the moduli space of the 1/2 BPS configurations
was shown to be eight dimensional such that the center of

2

B mass part is flat space and the relative part is Taub—

teF—Lgo a3'> igqra’, (66)  Newman-Unti-TamburingNUT) space.

X
e4

L - A. Second BPS equation
which is saturated whey'=0 and g

The secondary BPS equation around the first BPS equa-
. B tion can also be found explicitly by the method summarized
tr=0r° = Lsa’ (67)  in the Appendix of Ref[4]. Here we briefly outline the so-
e lution following that reference. The Nahm data for the(3U

The energy for the BPS configuration is then one-caloron case are given §,2]

2 To=—ay, T1=—ay, (72
Ea’ rel='8—L (y)a'as. (68) . .
g2 T g8 ™ whereag ; are constant vectors representing the positions of
constituent monopoles. We can pay, by spatial rotation

The above results for the electric charge and energy for thand translation at the axis such thataio= —(F€/2)5‘3,ail

BPS configuration match exactly those from field thedy. = (R/2)&'3. In ADHMN formalism the covariant Laplacian
(54)] with =0, and also the above BPS energy plus the resfor the adjoint scalar fields is replaced by the equation for
mass7 becomes the field theoretic BPS enefdy). the functionp(t):

VI. THE SU(2) CASE p(t)—W(t)p(t)+A(t)=0, (73

We explore in more detail the §P) case. This shows the \yherew(t) andA(t) are given by
above description of 1/4 BPS configurations in a more con-

crete form. The first BPS equation describes the self-dual 2

calorons, and can be solved by the ADHMN method. The W(t)EtrzE 5(t—ha)wgwa,

calorons in the S(2) case have been studied in detail before a=1

[3,2]. Using the small and large gauge transformations, we 2 (74)

choose the expectation value
P A=tr2321 S(t—h)wi{d)w,.

v
___ 3_ 1
(Ag)= =z 0" =diaghy,h;) ©9  Eor the given Nahm datay, , are
with O<v=<m/B. There are two fundamental monopoles of w;=(vy2R,0), w,=(0,y2R), (75

opposite magnetic charge. One is the ordinary BPS mono-

pole of topological chargew,;=pBuv/27. Another is the Which is determined by the jumping condition

Kaluza-Klein KK monopole of opposite magnetic charge and

topological indexuo=1—u,. There is no force between _ _
ca ; o T(ha+)—=T(ha—)

these distinct monopoles as the magnetic attraction is can-

celed by the Higgs repulsion. A single caloron of a unit Pon-

triyagin index is made of one of these monopoles, so that théhe solution of Eq.(73) for these data and the boundary

net magnetic charge is equal to zero. A single caloron convalue of the adjoint scalar fielg

figuration has been obtained explicitly. This complicated

configuration describes a nonlinear superposition of two dis-

tinct monopoles.

1 it
= Etr S(T'wawy). (76)

($)=—mo°=aH, a=yp (77
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is given by
Po(t+ a/B), te[—wlB,—v/2],
p(t)=9 Pat, te[—v/2v/2],
Po(t—/B), telv/2,71p],
(Bl2m)vR

Po= = 11 1= (Br2m)u oR’

B [1-(BI27)v]R
Pi= 1 1= (BR2m)u oR’

Then we can construct the adjoint scalar field by

d): N*l/2<¢>N*l/2+ N*l/ZJ dtqu(t)uN*l/Z, (81)

whereN and u(t) are the functions given in Ref3]. It is
straightforward to obtain thé field in terms of the functions
given in Ref.[3] and extract the asymptotic behavior &f

From the asymptotic behavior, we get

03 R B
=g\ r

and thus the electric charge is given by

_Am 7°B?R
e? Br2mpuomiR’

E

B. Moduli space metric and Tong’s method

The moduli space of the SB) one caloron is eight di-
mensional and this eight-dimensional moduli space can be

1
W)*OH o

PHYSICAL REVIEW D 67, 025012 (2003
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FIG. 1. String web picture of S@) single caloron case.

B 1 7
gqu:;gwlp(a'Kw):?glpip (87)
4 R
e? Bt+2muom R
This gives us the electric chargF
B 4w 7B°R
QF==ag=— 25—, (89)
e e? B+2muomiR

which is the identical expression with that obtained in the
previous section.

The low energy dynamics of this configuration is de-
scribed by the free c.m. part and the relative Taub-NUT met-
ric with potential termU=3QE. Note that the field theory
BPS energy boundl?) is saturated by7=8x?/e? and the
aboveQE.

C. String picture

split into the center of motion space and the relative motion A dyon in maximally supersymmetric four-dimensional

space, and their metrics are given [iy-3,14

ds?  =872{(dX) 2+ (dxem)?,

r —
1+3dr2+r2

r -1
1+F [dy+w(r)-dr]?(,

dSrZeI: 8772#0#1[

X

wherer = /27 uou,. The relative metricis2, is the one for

the well-known Taub-NUT space. For this case

B 1
;q: ;gw(a- KY)KY.

Sinceq,=d1—do,q=0,B1, andK?= g, one can see that

Yang-Mills theory appears as fundamental and a D-string
composition connecting D3-branes. The positions of D3-
branes are specified by the adjoint scalar vacuum expectation
values and the total energy of strings connecting D3-branes
matches the field theoretic energy of dyd®$. In the cal-
oron case the string picture appears afterTrdual is taken
and then the vacuum expectation value/of specifies the
position of D3-branes.

With the tension for a single fundamental strifg
=1/2ma’, the tension for the D-string igT with g
=4z pBle? in terms of the field theory parameters. The ten-
sion of s= Bg/e? fundamental strings on a single D-string is
Jo%+ 2T, whereq is the field theory electric charge.

A single dyonic caloron in the S@) gauge group can be
represented in the string picture by thedual transforma-
tion. Both A, and ¢ expectation values denote the position
of the D3-branes in the compact dual space and transxerse
direction given by thep field. The detail of the string picture
of this configuration is given in Fig. 1.
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This string configuration is 1/4 BPS when there is a ten-p*4 QF QM, and7 are turned on. The BPS equations are
sion balance at the string junctiofis5], which implies that  ore complicated than for the 1/4 BPS configuration on
R3*1 Nevertheless, BPS equations can be simplified by a

sin g, = 9 (90) suitable transformation, resulting in two equations. Then, the
«/gz+sl’ static solution for the 1/4 BPS configuration can be obtained
by solving first the primary equation, which is the much
9 studied 1/2 BPS caloron equation orf>RS' and next the
sineo—z—, (91 secondary equation on this 1/2 BPS caloron background.
Vg°+sp This is quite similar to the approach for the 1/4 BPS dyonic

state in four-dimensional field theof{2].

A new feature in the 1/4 BPS dyonic caloron case com-
ared to the 1/4 BPS dyon is the appearance of a topological
harge7 and a four-momentur®* in the BPS bound. In the
heory of the SW2) gauge group, there are no 1/4 BPS dyons
in four dimensions but there are 1/4 BPS caloron configura-
tions in five dimensions. In the infinitg limit these dyonic
calorons become the dyonic instantons that were studied be-
cost; fore [6,7).

We also considered the low energy dynamics of this 1/4
(920  BPS configuration and it turns out that it is described by the

wheres;=(B/€?)q; .
Let us consider the total energy of the above string con-
figuration, which is the sum of the energy, that is, the tensio
times the length, of the individual string segments. The tota
string energy is then

E=(s;—So)T(D—L)+ yg?+s:T

ST

cosfo same type of nonlineas-model Lagrangian with 1/4 BPS
This can be written as dyons. But the potential term is more complicated because of
the existence oP* and QM.
E=gTL(tan#;+tan6dy) +(s;—Sp)TD (93 There are several directions for further study. First, it

o ~would be interesting to understand thet0 case from the
which is what we expect for the BPS energy from field o\, energy dynamics viewpoint. We argued that it is related
theory since we can identify the string theory parametergy the center of mass motion of the low energy Lagrangian.
with the field theory ones asTD=7, BTLtano, Second, it would be interesting to study the quantum
=2mp; (i=0,1). The critical charge appears wher D or  gpectrum of this configuration. After quantization the trans-
BT lational generator along the* direction takes discrete inte-

gD, (94) ger values. However, the moment?f can take a fractional

chE(sl_SO)czz . . . . . .
1Mo value. Thus, it would be interesting to elucidate this point.

which is identical with link_...(q;— o) 8/€? from the field
theory result(89). ACKNOWLEDGMENT
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