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We present a topologically nontrivial generalization of gaudeer16 supergravity on the coset
Eg(+g)/SQ(16) in three dimensions. This formulation is based on a combinationBf term and a Chern-
Simons term for ar8O(16) gauge fieldA " . The fact that an additional vector fiel," is physical and
propagating with couplings to-model fields makes our new gauging nontrivial and different from the con-
ventional one. Even though the field strength of A}éj field vanishes on shell, the action is topologically
nontrivial due to a nonvanishing; homotopy. We also present additional modifications by an extra Chern-
Simons term. As by-products, we give also an applicatioN+09 supergravity coupled to @ model on the
cosetF ;0 /SO(9), and a newBF-Chern-Simons theory coupled N extended supergravity.
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[. INTRODUCTION ries in 3D, even for maximally extended supergravity in the
presence ofoc models. The importance of Chern-Simons
Recently, there has been considerable development faheory in 3D has been stressed also in different contexts,
N=16 maximally gauged supergravity in_ th_ree dimensionssuch as the conjectural relationship betw&i(N) Chern-
(3D) on the coseEg(,g)/SO(16) [1,2]. This is due to the Simons theory or8® and topological string with a noncom-
unexpectedly rich structure of the gauged theory on such gact Calabi-Yau threefold as the target spgbs.
huge cosetEg(,5)/SO(16), which cannot be easily ex-  Considering these developments in extended supergravity
plained by conventional dimensional reductiof from  jn 3D it seems important to address a question whether there
1;D supergraV|t3[4]_. In fact, new generalizations of simple g any other generalization of gauging maxifeiipergravity
dimensional reduction by Scherk and Schwazhave been  j, 3p related to possible Chern-Simons terms. In this paper
recently discovere¢], leading to various mass parameters,,,  <how such an alternative way of gauginghok 16 su-
presumably co_rresppndm_g to distinct gauging schemes n 3 ergravity in 3D. We introduce the minimal gauge coupling
[2]. Such relationships with 11D by dimensional reductions . . .
) ) L to an independen§O(16) gauge fieldA ,, distinct from
provide one important motivation of the study =16 su- 3 . . ity .
B, used in the conventional gauging], together with a

pergravity in 3D, since 11D supergravity is regarded as th . . .
low energy limit of M theory[6]. An additional motivation BF t€rm and a Chern-Simons term in the Lagrangian. Even

for the study ofN =16 supergravity in 3D is the link between though the former forces the field strengthAf to vanish,
1D supersymmetric matrix modgf] and M theory, because due to the nontrivial feature of the Chern-Simons term in 3D
the former may be further promoted to a supersymmetric 3DVith m3(SO(16))=Z%, the system has topologically non-
model[8,9]. trivial configurations. We also show that we can add an in-
As suggested ii2], another important aspect is that the dependenSO(16) gauge field that can form an additional
rich structures of gaugel =16 supergravity in 3D indicate nontrivial Chern-Simons term. As an application, we show a
the existence of supergravity theories even in dimensionsimilar mechanism in the case Wf=9 supergravity with the
higher than 11D, such dtheory in 12D[10] or Stheory in  cosetF 4 0/SO(9).
13D [11]. From these viewpoints, it is natural to expect the This paper is organized as follows. We start with the to-
existence of some higher-dimensional supergravity even begsological gauging as described, with the two new terms of
yond 11D[12,13, which can be studied by investigating BF-type and a Chern-Simons type in the next section. In Sec.
gaugedN=16 supergravity in 302], or its other possible IlIl, we apply a similar technique to the caseN£9 super-
generalizations. gravity coupled to anF,_,0/SQ(9) o model. As a by-
On the other hand, there has been an independent devglroduct, we also give a new supersymme8i©(N) Chern-
opment related to supersymmetric Chern-Simons theories i8imons Lagrangian coupled ttN extended supergravity in
3D [14], in which it has been shown that certain Chern-the absence of a model, that was not given before. Con-
Simons theories in 3D can exist for an arbitrary number ofcluding remarks will be given in Sec. V. Appendix A is de-
supersymmetries up to infinifl.5]. Even though these theo- voted to I'-matrix properties forSQ(9) Clifford algebra,
ries are constructed in the absencecofmodels on such a while Appendix B is for Fierz identities fo8O(9) Majorana
coset askEg 44 /SO(16), these results indicate that there spinors.
may still exist many other overlooked nontrivial gauge theo-

The word “maximal” here means the maximisl= 16 supergrav-
*Email address: hnishino@csulb.edu ity in the presence of & model. If there is nar model, there is no

TEmail address: rajpoot@csulb.edu limit for N, as indicated if14].
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Il. TOPOLOGICAL SO(16) GAUGING the latter appears only in tH&F term. We also introduce an
extra gauge fieldC,"” of SO(16), with an extra Chern-
We now consider a new gauging &Q(16) in N=16  Simons term.
supergravity in 3D coupled tBg,; g)/SO(16) o model. Our Our field content is €,".4,' xa.ea.A,"”.B,",
formulation of SO(16) gauging is a generalization of the C " \'). The first four fields are the same as those in the
nongauged theorjl] by two important new terms: Or8F  nongauged case ifil,2], while our new fields areA,",
term and one Chern-Simons term. We introduce two different;#'i' , and\'. The fieldB " has a similar supersymmetry
vector fieldsA ¥ andB,"”, but only the former is the gauge transformation rule to that if2], but its couplings to other
field of SO(16), coupling minimally to the gravitino, while fields are different, as will be seen. Our total Lagrangian is

1 1 — 1 [ 1 —
e Ly6= — 7R+ 5 e 1 (1, Dy (0,Q)8,)+ 70" PuaPun 5 WA D@, Qx5 (Mas(4,' Y ¥x8) Pun

2
I I 1IJp JKA KI
Fl A0+ 59A,0A A,

1 1
+ Egeflef‘””BM”FwIJ +5 me lervr

g 1
+ SO = 5 (4770, ) (v I x)

1 2
Fa— 1 _ur 1J 1J U~ JK~ KI
+5Me e H,,°C,V+ zgC,C % C,

1 _ 1 _ 1_ 1
+ 5 (D)0 = 5 (Y Y ) 000 + 5 (007 = gg(xn T n)%. (2.9
Our actionl ;= [d3xL ¢ is invariant under supersymmetry

dgen=+i(e'y™y,), (2.23
. i IR o a i .
iy =+ Du(,Q)€' = 7 (7€) ATy, x0) — 30+ ge e, 76 M +igy e’G M+ S gete, Ty, e P a1,

R 1 _ i . L .
+geJ77,LAVA”+ Egefleﬂp”ypej()(y,,r”)()— de‘](ﬂ”'yﬂ)()-i-2|m(y”eJ)FW”+2me leﬂ peJFVp'JEDMe',

(2.2b
. I | . yr| T 1 1J NN

5QXA:+§(F )BA(Y G)PMB_Z(F XA, (2.20
Sop=+ (€T'y)= S Ez”x”z tanh9 S (2.20

Q sinh® sinh®d /™ 2 2> ‘
SoA,=+i (Ef'lnyzW'J]) +e te7(e' R, +ie te, P Ty, x) Pya, (2.28

1J 1 —K L KL,IJ I —K 1K 1J
6B, =+ 5 (M, )V = S (€1 yux)aVa ™ (2.2f)
8oC, "= +i(el'y, A7), (2.29
i

5Q)\'=+y“”6JHM,,IJ—E(?VM'J/#J))\I, (2.2h
20ur notation is such asz,)=diag (=, +, +), €PP=+1, y™=—ie™ HM=—i™"y,  2y"=+ie™y,,. The m,n,...

=(0),(1),(2) are thdocal Lorentz, whileu,»,...=0,1,2 are curved indices. These are essentially the saif®j, axcept that we always
use subscripts for the spinorial indicgs ... for the128 or the dotted oneg g ... for the128of SO(16), and upper case for th& indices
1,4,--- - Note also that our gauged groupS€X(16) instead of an arbitrary subgroup B§ s as in[2].
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where we use the operator symbdl defined by ®«
=[¢,a] for an arbitraryEg generator-valued field with
¢=paY, for the generator¥ , on the coseEg, g)/SO(16)
[1,2]. Our covariant derivatives are

Dpu(@,Q)¢,y' =Du(@) ¢,y + Q. vy
“1p p=pL 1 A Fp-1x1d
VD, Y=V13, v+ S gA, VXY

1 INAVAN|
=PuaYat 5Q,X", (2.3

with the generators<'? of SO(16) andY, on the coset
Eg(+8)/SO(16), satisfying

[ X1, XKL= 26 KXLI— 2 sKx LT,

13 1o
[X vYA]:_E(F )aeYB,

1
[Ya.Ye]l= Z(F”)ABX”- (2.4

Accordingly, the gravitino field strength is
R =Du(® Q' ~D(&.Qy, . (25
Other field strengths are defined by
Fo. =2d,A,,7+2gA KA KT
G,,"=24,,B,"+4gA "B <,
H,,"=a,C,"+29C,"“C,". (2.6

As usual in supergravitjl7], we use the “hat” symbols for
supercovariantized field strengths

R’U_VIE'ZA)MI/IVl —i)vlﬂMI ,
Pua=Pua~ (T as(¥, x8)=Pua— (#, I ),
'A:,uvlJE F,uvu —2i (E[Mmypﬁv}pm)

+ 2e—1e[ﬂ”"(%]“'7”zpa“])

+2ie” e, (' Ty, ) Poa,

1 —
1J— 1J K, L KL,1J
6,,7=6,," = 5 (1, v,V

"

H,,P=H,, "= 2i (g My, N ), 2.7

whereD, is defined by Eq(2.2b.
As Eq. (2.6) indicates, under the locabO(16) gauge
symmetry, those vector fields transform as
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13_ 13 IK _KJ JK 1K
O A, " =t+d,a”+gA, "a +gA, e,

_ IK KJ JK 1K
0,B,"=+B,"a™"+B, Ta",

8,C,V=+0d,a"+gC," X +gC N a'X.
(2.9

Even thougtB " is a vector, it doesiot gaugeS O(16), but
just transforms homogeneously.

There some important geometrical relationships related to
our cosetEg(,5)/SO(16), such as the integrability condi-
tions

1
Q,WU ) (I'")AgP,aPe=0 F,u.VIJ ,
D,P,a—D,Pua=0F,, " Va"”, (2.9

where

QMVIJEZ(?[#QV]IJ+ ZQ[MIKQV]KJ ,

1
’D}LPVAE &MPVA_’_ Z QMIJ(FIJ)ABPVB . (21@

Some remarks are now in order. First, 8E term in our
Lagrangian(2.1) forces the field strengti,,"” to vanish.

This is equivalent to forcing the gauge figdd," to be “pure
gauge,” which seems to lead to a trivial system. However,
since this system is in 3D, and moreover due to the homo-
topy mappingm3(SO(16))=7, there are some topologically
nontrivial configurations possible at the action leweg the
explicit A3 term in Eq.(2.2).

Second, the gauge field,~ can be added as an extra
gauge field, transforming differently from," , but it has no
direct interactions with other fields. Its associated Chern-
Simons term HC®C? will also be nontrivial due to
m3(SO(16))="7.

Third, theA ,"”-field equatior

1J

. A [
e e, "G, ==V Pt 7 (v x), (21D)

*Because of theB,-field equationF,,”=0, there arises no
F.,~dependent terms in here.
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is exactly the same as trBeM”—fieId equation(duality equa-  which is vanishing by its field equation, so that the on-shell
tion) in [2], up to an unessential overall factor. Note that allclosure of supersymmetry will not be affected. On the other
the gravitino-dependent terms are absorbed into the supercband, the nonsupercovariant field strength is easy to handle

variantized field strength&,,” and ?,,. This also indi- for the action invariance confirmation.
cates the internal consistency of our theory. A2h Eq. Eighth, compared with a model presented[Irp], the

(2.11) implies that the vector fielB " is defined as nonlocal Similarity is that theSO(N) gauge _ﬁeIdAulJ is minimally
5 goupled to the gravitino, while its field strength is vanishing

and nonlinear functions of the 248 scalar coordinates fo : _ :
by the BF term. The difference is that the present system is

E . Due to this duality, the vector field " is as physi- -1 ool
caBI(+8<2;md propagating yas the coset” coordiga%/es ofnore nontrivial, because of the-model physical fields on

Es(.s)/SO(16). Moreover, as if2], if we multiply both g(+8)/SO(16) in addition to other nonpropagating fields.
sides of Eq(2.11) by emxah, making use of the integrability

condition (2.9), we get Il APPLICATION TO  SO(9) GAUGING FOR N=9
SUPERGRAVITY
1
&VGWU:Ze LerQ, M+ (fermionic terms. We can rather easily see that a similar mechanism works
(2.12  Jjust fine for other extended supergravity theories with lower
N<16. In this paper, we give the example =9 super-
This implies that our extra vector fiel," is physical and  gravity coupled to theF,_,0/SO(9) o model with an
propagating in our system. Since this propagating st/LH] SO(9) gauging. ThilN=9 supergravity theory is relatively
has couplings to the fields as source terms as in £§.12), unigue, in the sense that it has a simple irreducible structure
our gauged\ =16 supergravity is equally important as that with the odd number of supersymmetries, with very few
in [2] with nontrivial difference. analogous examples in any other dimensions. Note also that
Fourth, the closure oBMIJ at the linear order needs spe- N=9 supergravity in 3D corresponds k>4 supergravity
cial care. This is because when we apps(e;),do(€2)] in 4D upon simple dimensional reductidB]. Since only
onB ", we also need the on-shell dualit®.11) leading to  local supersymmetry can e_xist cc_)nsisten.tly WP4 in 4D
§VGW” with é“=i(e,y"e,) at the linear order. In this pro- [18], N=9 supersymmetry in 3D is to be intrinsicallycal.
cess, all the-linear terms inso,, cancel themselves due to !N Other wordsN=29 supergravity is the simplest example of
Eg.(2.11, and do not contribute to this order. Additionally, a Intrinsically local supersymmetry in 3D.
by-product term likeZABP, V5" in the closure can be re- _ €orresponding to the case OFg(.5)/SO(16), our
ded 5 : : E4(-20/SO(9) has the generatods” (1,J,...=1,2,...,9) of
garded as a gauge transformation at the linear order. This4(-20)
closure onB}; provides another nontrivial consistency check>9), and thecoset generator¥, (AB,...=1.2....,16),
on our total system. satisfying
Fifth, there are three relatively independent paramegers
m, and M in our theory. Due to the homotopy mapping [XV, XKL =28 [KXHI— 2 SIIK LT
m3(SO(16))=7, m andf should be quantized &s

1
n [ [X",Yal= = 5(I'") Y5,
= M=— Te” 2
m 167" m 16 (nReZ). (2.13

Sixth, we can in principle gauge the entig . g group 1., 5
in Eg(1+8/SO(16) by A, . However, since the noncompact [Ya.Ye]= 7 (1) asX", (3.9
gauge groups do not have nontriviai-homotopy mapping,
we have gauged only the maximal compact subgroup
SQ(16) of Eg(yg). This is because if the3-homotopy map- ~ which is just parallel to th& ((16) casq?2], except that we
ping is trivial, the vanishing field strength,,"”’ gives only ~ need onlyundottedspinorial indicesA, B, ...
topologically trivial configurations. Needless to say, we can Our field content is €,".4,' . xa.¢a.A,"” B,",
also gauge any compact subgroupS(16) itself, whose CM'J "), Here we have the indices,B...=1,2,...,16 for
m3-homotopy mapping is nontrivial. the 16-spinorial representation, whilg,J,...=1,2,...,.9 for
Seventh, even though the field strength,"” in the grav-  the 9-vectorial representation both &O(9). Due to the
itino transformation rule in Eg(2.2b is not supercovarian-  different chiral spinor structure fo80(9) compared with
tized, this does not pose any problem. The difference fron5O(16), the o-model fermiony, has a nondotted index.
the covariantized one is always proportional to théield  Since the gauging mechanism is parallel to Mve 16 case,
we show the total results here: Our Lagrangian is

“The factor 1/2 in front of the Chern-Simons temFA+... in
the Lagrangian is the normalization f81O(16) generators, so that  °For the property of thd” matrices forSQ(9) Clifford algebra,
we have 16 in the denominators in Ed2.13). see Appendix A.
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-1 1 1 =1 _uvp(, | | 1 nv
€ ‘CQZ_ZR_l—Ee € (lﬁﬂ 'D,,(w,Q,A)lﬂp)-f'Zg P;LAPVA
i 1— Il v
5 WY Du(@, QA XA~ 5 (4, Ty ¥*X) aPua
+E efl KvpB |JF |J+ Emefl = |JA |J+E A |JAJKA Kl
2 ge “e w T T € v Dp 3g w Do Py

A
2

N -

2
+ZTnelenve leJCle+ §gCMIJCVJKCPKI
1_l or,. N[ 1J 1_| NN a7 nlN]
—5 W YT Xy L0+ g (b v ) (X' THX)

1— v, I 1 _ 2 1 13 2
5 W YY) 000+ 75(x0) —%(ﬂ“ YuX)%s (3.2

whose actiorl o= [d3xL, is invariant under supersymmetry 1
5QB#|J: 4 E(EKI//#L)VKLYIJ

5o, M= +i(e'y"yp,, (3.33 _
|
i — 5 (€T v, 0", (3.3
Sqh,'=+D,(0,Q.A) €'~ Z(«yV.sJ)

_ i ]
X(YFUYWX)_EUG”,LJ 0gC, ~=+i(ey,\7), (3.39

+ge‘1eﬂ”"épg”+ig y"eJéW'J | o i ﬁ o
O\ =+ y*'e HMV_E(E YEPIN

! -1_ po JT 1J
+ Ege €, V€ 7)(rAVA (33h)
JT 1J . .
+9e P, aVa Since the geometrical structures for the cdsgt ,0)/SO(9)
1 are parallel toEg,gy/SO(16), we do not repeat other rel-
+ Egeflfﬂpﬂypg(yyorux) evant equations here.

When the quartic terms in E3.1) are compared with the
i N=16 case, only the termyfy)? has a different coefficient.
- dej(ﬂ_‘”'yﬂ)(), (3.39  Note also that we do not have the tergd(*!x)?, due to the
identities(B2) similar to theN=16 casd1].
One crucial identity related to the cancellation ptP
i term in 6oL is

Soxa=t 5 (") gl 7”€|)7A7,LB

1 g (&7, 0T y"x)
_Z(F )aBXB (3.39 _ o — .
=—6(&y, ) (X)) 20 ) (XTyux), (3.4
o @ _
%=+ gna €L X =gnng S with é&=€XI'K, which can be confirmed by the Fierz identity

(3.30 (B2) in Appendix B.
' As in the case 0Eg(; 5 /SO(16) in Eq.(2.13, there is
nontrivial 7r3-cohomologyw3(SQ(9))=7, so that we have

5QAM|J: +i (;myvszIJ]) the quantizations
+efleﬂp”(?'f€pg|3])
~ _ n ~ ﬁ ~
+ieflEMp0'(E[“IFJ] 7pX)PaAv (339 m—ﬁ, m—ﬁ (n,neZ). (35)
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IV. YANG-MILLS CHERN-SIMONS COUPLED TO "N S~e M= +-(—f m l)
Q%u ey (/l,u !
EXTENDED SUPERGRAVITY
Sot,'=+D,(w,A)e +ge e, G,
As careful readers may have noticed, our vector multiplet

] ’ +i v _JA 1J
(CMIJ ,\') can be coupled to arbitrarily large extended super- '197"€ Gy,

gravities calledX, supergravity[15], in the absence of +2im(y"e)F "
o-model supermultiplets. As a matter of fact, similar models 1w e 13
have been given if15]. However, the field content for a t2me e e F T,
vector multiplet in[15] has both fields in the same adjoint . s 1]
representation of a given gro@like (A,',\"). The differ- SoAL = Hi(eY"R,,™)
ence here is thaCM” is in the adjoint representation of te el My
SO(N), while \' is in the vector representation. Since we " pe
also want to maké&Q(N) local, this system is intrinsically 5B Vo 4 (elly My,

locally supersymmetric. This is because the parameterf a g
supersymmetry is also in the vectorial representation of 5QCM”:+i(Ef'7#)\J]),

SO(N), so that we cannot impose the global supersymmetry
condition such ag,e' =0, maintaining also the loc&O(N) | [
1 ' — uv J 1 A
covariance. dQh = F ¥y e, = S (€ P, N
Even though this feature sounds rather trivial at first (4.2

glance, it provides a new concept. Namely, this “supermul- , 13
tiplet” (C Y ,\") has different “on-shell” degrees of free- . Even though we have added tB&N) gauge fieldA,,
© with the coupling constang, or the mass parameten, in

d_om for k_)o_sons ar_nd fermions, BN — 1.)/2 andN, respec- order to make the result as general as possible, we can delete
tively. This is possible due to the special feature of a Chemfhem by simply setting=0 and/orm=0

Simons Lagrangian yielding the field strength to vanish, as  ngte that this system can have an arbitrarily large number
yvell as_the property of 3D itself where Chern-Simons theoryy; ¢ supersymmetries called, supersymmetriegl5]. The
is possible first of all. _important aspect here is that such a system is associated with
We present here such a system of an extra vector multiplghe recent conjecture that a Chern-Simons theory with a cer-
(C,"”.\'") coupled toN, extended supergravity phi&O(N)  tain level onS? is equivalent to topological string in 216,
gauge and vector fieldse(™,y,' A" ,B,"), as much like the correspondence between Ad8d conformal
field theory in 4D. In other words, even though the Chern-
Simons theory introduced here has vanishing field strength in

1 1 1, — | the “bulk” of 3D, it has important physical significance at
e "Ly, =~ zRT5e 7€y, Dy(w,A)Y,) the 2D boundary, similar to the AdS-CFT correspondence
[19,9].
1 -1 _pvp 1J 1J 1 —1_uv 1Ja 1J
+t59e "e"B,CF, T ome tet T F A, V. CONCLUDING REMARKS

2 In this paper, we have presented a topologically nontrivial
+ _gAﬂ'JAJVKApK') modification of N=16 supergravity in 3D. We have intro-
3 duced a minimal coupling of aBO(16) gauge fieldA " to
1 2 the Eg(;)/SO(16) o model, together with an additional
+§ﬁ1ele””P(HW”Cp”+ §gCM”CVJKCpK') vector fieldB,"”, in a combination of aBF theory and
Chern-Simons theory. Even though the field strength of the
_ A, field vanishes on-shell, the action is topologically non-
MmN, (4.1)  trivial due to the homotopy mapping3(SQ(16))=7 and
the Chern-Simons term. We have also added an additional
Chern-Simons term of an extra gauge figlg” with an

Needless to say, there is no composite connection in the Céa_xtra topological effects. As an application, we have pre-

variant derivative, such as iB,(w,A) by definition. Note sented the similar case d=9 supergravity with theo

. . odel cosetF,(_,0/SO(9). As another application, we
also that we do not need the quartic terms independently qf_ presente‘:j( azoaew?(C)hern-Simons the?)pr)y coupled to

N, becal_Jse all _the ferm|_ons_ are now only in the vector P extended supergravity witfiN, which was not presented in
resentations, with no spinorial index f&QO(N). In fact, all [15,14)

the explicit quartic terms in Eq(2.1) vanish when the

N| =

+

There are some similarities as well as differences between

o-model fermiony is absent, like the present case. our gauged system and that[i2]. One important similarity
The corresponding actioh, =/ d°xLy is invariant un- s that the duality relationshi®.11) is exactly the same as in
der supersymmetry [2], namely, the vector field," is dual to the scalar field
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strength 5. Therefore, thisBM'J field is physical and powerful, when dealing with quartic terms, which will be of
propagating, so that our gauged system is as nontrivial as tHfxtra help in the future studies of nonmaximal extended su-
gauging in[2]. The difference is that our system does notPergravities. The case ®f=9 extended supergravity is pe-
have a cosmological constant or the gravitino mass terrrfuliar for two reasons: Firsty=9 is the smallesN in 3D
while that in[2] does. Instead of a cosmological constant,corrésponding t&=5 supersymmetry in 4D which istrin-

our system has a topological Chern-Simons term, Whicﬁlcqlly_local. Therefore N=9 is the simplest system vylth
leads to nontrivial vacuum configurations. Another differ- intrinsic local supersymmetry in 3D. Second, the odd dimen-
ence is that even though the duality relationship is l‘ormallySIOnaIIty of orthogonal grou@ Q(9) has very few analogous

13 ) examples in other higher dimensions.
the same, our vectd,,™ is not e gauge field B O(16), but The importance of the cos@l(,0)/SO(9) comes also
its role is played instead b\, as an independent field. ., the recent observation tha(9) might be playing an

Moreover, this physically propagating," field has non- important role in M theory28]. This is because of an inter-
trivial .couplings to ther phy_si_cai-—r_nodel fields_, in its field esting analogy betweeig— SO(16) andF,—SO(9), due
equation. Due to this nontrivial difference with respect totg the coset coordinates 0fEg(+5)/SO(16) and
physical fields, ouN=16 gauged supergravity is equally F, _,,/SO(9) in the spinorial representations $0(16) or
important as that if2]. _ SO(9), respectively, whileSO(9) plays a crucial role as the
We have presented in this paper Chern-Simons terms, ifttle group for 11D supergravity as the low energy limit of
particular, for the gauge field," coupling to theN=16 M theory[6,9,28.
gravitino. The supersymmetric partnkl of AMIJ is in the Our result in this paper has three major important ingre-
vectorial representation &O(16). To our knowledge, this dients to be summarized here. First, it is in 3D or lower
is a new supersymmetric Chern-Simons form that has nalimensions, where the generalizations of maximal super-
been covered in the exhaustive studies in Rgf4,15. Rel-  gravity by topological terms make stronger sense, due to the
evantly, if we switch off thec-model part for the coset nontrivial w3 homotopy. Since such modification of maximal
Eg(+8)/SO(16), we can formulate such a supersymmetricsupergravity is difficult inD=4, it is worthwhile to study
Chern-Simons term for an arbitrarily largewith no restric-  possible effects on maximal supergravity in 3D. Second, to
tion. This is another by-product of our topological gauging ofput this first point differently, our formulation provides a
N=16 supergravity in 3D. system that can be a good working ground on the effect of
The nontrivial feature of the gauge fieJ!td#IJ with van-  supergravity on non-Abelian Chern-Simons theory, in par-
ishing field strength is very peculiar to 3D, because of theicular, with the maximalN=16 supersymmetry. The ex-
nontrivial Chern-Simons term. It is due to the nontriviaj  ample of N=9 we presented gives a supplementary non-
homotopy ofSO(16) orSQ(9) that the newly-added Chern- maximal case. Third, our result strongly indicates certain
Simons terms with extended supergravity in 3D make stronhigher-dimensional origin of our new gauging mechanism.
ger sense. However, paradoxically speaking, our results aldeor example, M theory and dualitig$] have lead us to
indicate the possibility that there are some other extensionsany different generalizations of higher-dimensional origins
of 11D supergravity, when topological effects are taken intoof certain mechanisms in maximally extended supergravity,
account. As a matter of fact, such a trial has been presentesich as the Killing vector generalization for 11D massive
since the 1980s as extra Chern-Simons terms added to 11$upergravity 29], generalized dimensional reductidrig, or
[20,21,23. However, any modification to 11D supergravity, higher-dimensional supergravity theorig2,13. It will be
such as higher-order terms, should also be consistent witinteresting to see if this leads to new higher dimensional
local supersymmetry. In fact, there has been such a trial otheories inD<11 or evenD=12[10,11,13.
supermembrane corrections to 11D supergraj\d;24,23.
Even though Yang-Mills Chern-Simons theories in 3D
look “trivial,” due to their vanishing field strengths in the
“bulk” of 3D, there are lots of nontrivial quantum behaviors,
as well as classical topological features. For example, it has In this appendix, we list some practically useftimatrix
been explicitly confirmed thal=1 supersymmetric Chern- properties forlSQ(9) Clifford algebra folN=9 supergravity.
Simons theory is finite to all orders in a nontrivial wgg6]. In this appendix, the indicdsJ,...=1,2,...,9 are for thé of
Moreover, it has been found that there are nontrivial finiteSQ(9), while A,B,...=1,2,...,16 are for thd6 of SO(9).
quantum corrections to the Chern-Simons coeffici¢B®.  The symmetry property of th&€ matrices for the Clifford
From these developments, the model in this paper may welligebra forSQ(9) is similar to that forSO(16) except for
provide a new, unique and nontrivial link between Chern-the dottedness for the latter:
Simons theories anll=16 maximally extended supergrav-
ity in 3D. Also from this viewpoint, our new Chern-Simons (T ag=+(Tga, (I')ag=—(T")ga,
model coupled t&X, extended supergravity will be of impor-
tance, considering the possible link between Chern-Simons

APPENDIX A: T-MATRIX PROPERTIES FOR SO(9)
CLIFFORD ALGEBRA

in 3D with to i ing i (M3 g=—(I*ga,
pological string in 20016]. AB BA
In this paper, we have also provided the case\ef9
supergravity with thes-model cosetF 4(_ 50 /SO(9) with (T pg=+ (= )N DIy (0=n=<9),
nontrivial Clifford algebras. Some of these algebras are very (A1)
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which are confirmed bj30]. Since the charge conjugation matrix can be chosen to be the Kronecker'sGjgltadag [30],
we do not have to distinguish raising or lowering the indi#eB, ... . Forexample, §T'" y*x)=(I'") as(xa¥*x8)-
Typical I" algebras are

r'ri=—7r', r&rrk=+sr, rtrkrt=—-3rik (A2a)
r'rr'= 4+ pirBipt= 41 piriip'=(—1)"9-2n)rM, (A2b)
r[m1=+%e["ﬂ[“1r[”1 (m,n=0,1,...,9, (A2c)
ri2piri2l= —gor', rt'rlap2l’= —1ert2,  rl2ipikipi2l=g, (A2d)
ri2iririzl=ygri4l, rBEIrrtdl=41eg!, rrri=og, (A2e)
[ERITERIPEY = —ggr3],  pBIPMAILEI= 4 2404 AP = 4 334, (A2f)
riar2irial= —33gri2l,  rlarEiridl= — 14431, T T4 — £ 1440041 (A2g)

As has been mentioned in the text, the symbols sudi8hs 1

stand for the totally antisymmetridK indices, and the re- Ts4= E(§A(T[4])ABXB)(Yc(F[4])CDXD)
peated pairs, such as tfid]'s on I'"'*ITBIT14] should be '

contracted as dummy indices. 1 —

Note also that these results are also valid as the usual ﬂ(frm]){)(?ﬂﬂ){),
y-matrix algebra in 90/31,32, because of their “formal”
equivalence, independent of the metric signatxeept for

Eqg. (A20). where £, and y, are arbitrary Majorana spinors with the

16-index A. There are only three Fierz identities among
them, namely, there are only two independent quartic com-

APPENDIX B: FIERZ IDENTITIES FOR SO(9) binations among T,
Os1--=1lg-

MAJORANA SPINORS

We list here important relationships associated Witima-

trices for the Clifford algebra 08Q(9), satisfying{I"',I'"} B 1
=261,4, Wherel ;5 is 16X 16 unit matrix. The most crucial T1==3To+ §T2' (B2a)
relationships are the Fierz identities for quartic terms: Fol-
lowing [1], suppose we use the symbdls(i=0,...,4) for
Taz +24T0_T2, (sz)
To=(£axa) (Xaxs) =(£X) (XX), (B1)
1
— | | — | T4E - 6T0_ _T2 . (BZC)
T1=(Ea(I) asxe) (xc(I') cpXp)=(ET" ) (XTI x), 3

1 2] 2] This implies that there are only two independdri out of
To= E(fﬂu(r )asxe)(xc v (I coxo) the five quartic combinationg,, ..., T,. This statement can
be confirmed by a method similar to that[ib], namely, we
first perform the Fierzing of each; into the linear combina-
tions of all theT;’s, getting five relationships. Then we sym-
bolize these relations as

1 — _
= 57 (£, P00 Oy THy),

_ 1 — [3] [3]
T3=§(§A7#(F )asXe)(xcY“(I'*) cpxp) T=MT (B3)

1 _
- [31,) (s3]
37 (€7, X0 Oy T, with

025009-8



TOPOLOGICAL GAUGING OFN=16 SUPERGRAVITY IN . ..

To
Ty
=| T2 |,
Ts
Ty
-1 -1 +1 +1 -1
-9 +7 +5 -3 -1
Mzsiz +108 +60 +8 0 —12
+252 -84 0 +8 -—12
-126 —-14 —-14 -6 -6
(B4)
Consider next the eigenvalue equation
dawrmhaz—%ax+n%x—n% (B5)

which means that there are three eigenvectordbfor the
eigenvalue-1/2, in addition to two others for the eigenvalue
+1. Let AD (i=1,2,3) be three such eigenvectors./of':

. 1 .
AFAW=—§AW (i=1,2,3. (B6)
SinceT'M"=T', we have
. . . 1 1 .
TAV=TAV=TMAV == 5T AV=5T A",
(B7)

PHYSICAL REVIEW D67, 025009 (2003

This implies that the inner produ6t A" is zero:

T AV=0 (i=1,2,3. (B8)

Therefore, finding all the relationships among thé& is
equivalent to finding the eigenvecto"). Following the
usual linear algebra technique, we can find that examples of
these independent eigenvectors are

42 0
0 14
AV=| 0 |, 4@=| 0],
-1 3
3 5
0
0
A®=| 7 (B9)
3
12

Accordingly, the equatior’- A" for eachi=1, 2, 3 gives
the relationshipgB2).

Fierz identitiesB2) explain the absence of thg'l*1y)?
term in the Lagrangia3.2).
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