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Topological gauging ofNÄ16 supergravity in three dimensions
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We present a topologically nontrivial generalization of gaugedN516 supergravity on the coset
E8(18) /SO(16) in three dimensions. This formulation is based on a combination of aBF term and a Chern-
Simons term for anSO(16) gauge fieldAm

IJ . The fact that an additional vector fieldBm
IJ is physical and

propagating with couplings tos-model fields makes our new gauging nontrivial and different from the con-
ventional one. Even though the field strength of theAm

IJ field vanishes on shell, the action is topologically
nontrivial due to a nonvanishingp3 homotopy. We also present additional modifications by an extra Chern-
Simons term. As by-products, we give also an application toN59 supergravity coupled to as model on the
cosetF4(220) /SO(9), and a newBF-Chern-Simons theory coupled to;N extended supergravity.
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I. INTRODUCTION

Recently, there has been considerable development
N516 maximally gauged supergravity in three dimensio
~3D! on the cosetE8(18) /SO(16) @1,2#. This is due to the
unexpectedly rich structure of the gauged theory on suc
huge cosetE8(18) /SO(16), which cannot be easily ex
plained by conventional dimensional reductions@3# from
11D supergravity@4#. In fact, new generalizations of simpl
dimensional reduction by Scherk and Schwarz@3# have been
recently discovered@5#, leading to various mass paramete
presumably corresponding to distinct gauging schemes in
@2#. Such relationships with 11D by dimensional reductio
provide one important motivation of the study ofN516 su-
pergravity in 3D, since 11D supergravity is regarded as
low energy limit of M theory@6#. An additional motivation
for the study ofN516 supergravity in 3D is the link betwee
1D supersymmetric matrix model@7# and M theory, because
the former may be further promoted to a supersymmetric
model @8,9#.

As suggested in@2#, another important aspect is that th
rich structures of gaugedN516 supergravity in 3D indicate
the existence of supergravity theories even in dimensi
higher than 11D, such asF theory in 12D@10# or S theory in
13D @11#. From these viewpoints, it is natural to expect t
existence of some higher-dimensional supergravity even
yond 11D @12,13#, which can be studied by investigatin
gaugedN516 supergravity in 3D@2#, or its other possible
generalizations.

On the other hand, there has been an independent d
opment related to supersymmetric Chern-Simons theorie
3D @14#, in which it has been shown that certain Cher
Simons theories in 3D can exist for an arbitrary number
supersymmetries up to infinity@15#. Even though these theo
ries are constructed in the absence ofs models on such a
coset asE8(18) /SO(16), these results indicate that the
may still exist many other overlooked nontrivial gauge the
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ries in 3D, even for maximally extended supergravity in t
presence ofs models. The importance of Chern-Simon
theory in 3D has been stressed also in different conte
such as the conjectural relationship betweenSU(N) Chern-
Simons theory onS3 and topological string with a noncom
pact Calabi-Yau threefold as the target space@16#.

Considering these developments in extended supergra
in 3D, it seems important to address a question whether th
is any other generalization of gauging maximal1 supergravity
in 3D, related to possible Chern-Simons terms. In this pa
we show such an alternative way of gauging ofN516 su-
pergravity in 3D. We introduce the minimal gauge coupli
to an independentSO(16) gauge fieldAm , distinct from
Bm

IJ used in the conventional gauging@2#, together with a
BF term and a Chern-Simons term in the Lagrangian. Ev
though the former forces the field strength ofAm to vanish,
due to the nontrivial feature of the Chern-Simons term in
with p3„SO(16)…5Z, the system has topologically non
trivial configurations. We also show that we can add an
dependentSO(16) gauge field that can form an addition
nontrivial Chern-Simons term. As an application, we show
similar mechanism in the case ofN59 supergravity with the
cosetF4(220) /SO(9).

This paper is organized as follows. We start with the
pological gauging as described, with the two new terms
BF-type and a Chern-Simons type in the next section. In S
III, we apply a similar technique to the case ofN59 super-
gravity coupled to anF4(220) /SO(9) s model. As a by-
product, we also give a new supersymmetricSO(N) Chern-
Simons Lagrangian coupled to;N extended supergravity in
the absence of as model, that was not given before. Con
cluding remarks will be given in Sec. V. Appendix A is de
voted to G-matrix properties forSO(9) Clifford algebra,
while Appendix B is for Fierz identities forSO(9) Majorana
spinors.

1The word ‘‘maximal’’ here means the maximalN516 supergrav-
ity in the presence of as model. If there is nos model, there is no
limit for N, as indicated in@14#.
©2003 The American Physical Society09-1
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II. TOPOLOGICAL SO„16… GAUGING

We now consider a new gauging ofSO(16) in N516
supergravity in 3D coupled toE8(18) /SO(16) s model. Our
formulation of SO(16) gauging is a generalization of th
nongauged theory@1# by two important new terms: OneBF
term and one Chern-Simons term. We introduce two differ
vector fieldsAm

IJ andBm
IJ , but only the former is the gaug

field of SO(16), coupling minimally to the gravitino, while
02500
t

the latter appears only in theBF term. We also introduce an
extra gauge fieldCm

IJ of SO(16), with an extra Chern-
Simons term.

Our field content is (em
m ,cm

I ,x Ȧ ,wA ,Am
IJ ,Bm

IJ ,
Cm

IJ ,l I). The first four fields are the same as those in
nongauged case in@1,2#, while our new fields areAm

IJ ,
Cm

IJ , and l I . The field Bm
IJ has a similar supersymmetr

transformation rule to that in@2#, but its couplings to other
fields are different, as will be seen. Our total Lagrangian2
e21L1652
1

4
R1

1

2
e21emnr

„c̄m
IDn~v,Q!cr

I
…1

1

4
gmnPmAPnA2

i

2
„x̄ ȦgmDm~v,Q!x Ȧ…2

1

2
~G I !AḂ~ c̄m

Igngmx Ḃ!PnA

1
1

2
ge21emnrBm

IJFnr
IJ1

1

2
me21emnrS Fmn

IJAr
IJ1

2

3
gAm

IJAn
JKAr

KI D
1

1

2
m̃e21emnrS Hmn

IJCr
IJ1

2

3
gCm

IJCn
JKCr

KI D1
1

2
m̃~ l̄ Il I !2

1

8
~ c̄r

I grstcs
J!~ x̄gtG

IJx!

1
1

8
~ c̄m

I gncmJ!~ x̄gnG IJx!2
1

8
~ c̄m

Igngmcn
J!~ x̄x!1

1

8
~ x̄x!22

1

96
~ x̄gnG IJx!2. ~2.1!

Our actionI 16[*d3xL16 is invariant under supersymmetry

dQem
m51 i ~ ē Igmcm

I !, ~2.2a!

dQcm
I51Dm~v̂,Q!e I2

i

4
~gneJ!~ x̄G IJgmnx!2S IJcm

J 1ge21em
rseJĜrs

IJ1 iggneJĜmn
IJ1

i

2
ge21em

rsgreJP̂sAVA
IJ

1geJP̂mAVA
IJ1

1

2
ge21em

rsgreJ~ x̄gsG IJx!2
i

4
geJ~ x̄G IJgmx!12im~gneJ!Fmn

IJ12me21em
nreJFnr

IJ[D̂me I ,

~2.2b!

dQx Ȧ51
i

2
~G I !BȦ~gme I !P̂mB2

1

4
~G IJx!ȦS IJ, ~2.2c!

dQw51
F

sinhF
~ē IG Ix![S F

sinhF DS,
1

2
S IJXIJ[S tanh

F

2 DS, ~2.2d!

dQAm
IJ51 i ~ ē [ I ugnR̂mn

uJ] !1e21em
rs~ ē [ IR̂rs

J] !1 ie21em
rs~ ē [ IGJ]grx!P̂sA , ~2.2e!

dQBm
IJ51

1

2
~ ēKcm

L!V KL,IJ2
i

2
~ ēKGKgmx!AVA

IJ , ~2.2f!

dQCm
IJ51 i ~ ē [ IgmlJ] !, ~2.2g!

dQl I51gmneJHmn
IJ2

i

2
~ ēJgmcm

J!l I , ~2.2h!

2Our notation is such as (hmn)5diag ~2, 1, 1!, e012511, gmnr52 i emnr, gmn52 i emnrg r , 2gm51 i emnrgnr . The m,n,...
5(0),(1),(2) are thelocal Lorentz, whilem,n,...50,1,2 are curved indices. These are essentially the same as@2#, except that we always
use subscripts for the spinorial indicesA,B,. .. for the128, or the dotted onesȦ,Ḃ,. .. for the128of SO(16), and upper case for the16 indices

I ,J,. .. . Note also that our gauged group isSO(16) instead of an arbitrary subgroup ofE8(18) as in @2#.
9-2
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where we use the operator symbolF defined by Fa
[@w,a# for an arbitraryE8 generator-valued fielda with
w[wAYA for the generatorsYA on the cosetE8(18) /SO(16)
@1,2#. Our covariant derivatives are

D[m~v̂,Q!cm]
I[D [m~v̂!cn]

I1Q[m
IJcn]

J ,

V21DmV[V21]mV1
1

2
gAm

IJV21XIJV

[PmAYA1
1

2
Qm

IJXIJ, ~2.3!

with the generatorsXIJ of SO(16) and YA on the coset
E8(18) /SO(16), satisfying

@XIJ,XKL#52d I [KXL]J22dJ[KXL] I ,

@XIJ,YA#52
1

2
~G IJ!ABYB ,

@YA ,YB#5
1

4
~G IJ!ABXIJ. ~2.4!

Accordingly, the gravitino field strength is

Rmn
I[Dm~v̂,Q!cn

I2Dn~v̂,Q!cm
I . ~2.5!

Other field strengths are defined by

Fmn
IJ[2] [mAn]

IJ12gA[m
[ I uKAn]

KuJ] ,

Gmn
IJ[2] [mBn]

IJ14gA[m
[ I uKBn]

KuJ] ,

Hmn
IJ[] [mCn]

IJ12gC[m
IKCn]

KJ . ~2.6!

As usual in supergravity@17#, we use the ‘‘hat’’ symbols for
supercovariantized field strengths

R̂mn
I[D̂mcn

I2D̂ncm
I ,

P̂m,A[PmA2~G I !AḂ~ c̄m
Ix Ḃ![PmA2~ c̄m

I G Ix!A ,

F̂mn
IJ[Fmn

IJ22i ~ c̄ [m
[ I ugrR̂n]r

uJ] !

12e21e [m
rs~c̄n]

[ I uR̂rs
uJ] !

12ie21e [m
rs~c̄n]

[ IGJ]grx!P̂sA ,

Ĝmn
IJ[Gmn

IJ2
1

2
~ c̄m

Kcn
L!V KL,IJ

1 i ~ c̄ [m
KGKgn]x!AVA

IJ ,

Ĥmn
IJ[Hmn

IJ22i ~ c̄ [m
[ Ign]l

J] !, ~2.7!

whereD̂m is defined by Eq.~2.2b!.
As Eq. ~2.6! indicates, under the localSO(16) gauge

symmetry, those vector fields transform as
02500
daAm
IJ51]ma IJ1gAm

IKaKJ1gAm
JKa IK ,

daBm
IJ51Bm

IKaKJ1Bm
JKa IK ,

daCm
IJ51]ma IJ1gCm

IKaKJ1gCm
JKa IK .

~2.8!

Even thoughBm
IJ is a vector, it doesnot gaugeSO(16), but

just transforms homogeneously.
There some important geometrical relationships relate

our cosetE8(18) /SO(16), such as the integrability cond
tions

Qmn
IJ1

1

2
~G IJ!ABPmAPnB5gFmn

IJ ,

DmPnA2DnPmA5gFmn
IJVA

IJ , ~2.9!

where

Qmn
IJ[2] [mQn]

IJ12Q[m
IKQn]

KJ ,

DmPnA[]mPnA1
1

4
Qm

IJ~G IJ!ABPnB . ~2.10!

Some remarks are now in order. First, theBF term in our
Lagrangian~2.1! forces the field strengthFmn

IJ to vanish.

This is equivalent to forcing the gauge fieldAm
IJ to be ‘‘pure

gauge,’’ which seems to lead to a trivial system. Howev
since this system is in 3D, and moreover due to the hom
topy mappingp3„SO(16)…5Z, there are some topologicall
nontrivial configurations possible at the action level,via the
explicit A3 term in Eq.~2.1!.

Second, the gauge fieldCm
IJ can be added as an extr

gauge field, transforming differently fromAm
IJ , but it has no

direct interactions with other fields. Its associated Che
Simons term HC% C3 will also be nontrivial due to
p3„SO(16)…5Z.

Third, theAm
IJ-field equation3

e21em
rsĜrs

IJ82VA
IJP̂mA1

i

4
~ x̄gmG IJx!, ~2.11!

3Because of theBm-field equation Fmn
IJ80, there arises no

Fmn-dependent terms in here.
9-3
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HITOSHI NISHINO AND SUBHASH RAJPOOT PHYSICAL REVIEW D67, 025009 ~2003!
is exactly the same as theBm
IJ-field equation~duality equa-

tion! in @2#, up to an unessential overall factor. Note that
the gravitino-dependent terms are absorbed into the supe
variantized field strengthsĜmn

IJ and P̂mA . This also indi-
cates the internal consistency of our theory. As in@2#, Eq.
~2.11! implies that the vector fieldBm

IJ is defined as nonloca
and nonlinear functions of the 248 scalar coordinates
E8(18) . Due to this duality, the vector fieldBm

IJ is as physi-
cal and propagating as the coset coordinates
E8(18) /SO(16). Moreover, as in@2#, if we multiply both
sides of Eq.~2.11! by etml]l, making use of the integrability
condition ~2.9!, we get

]nGmnIJ5
1

4
e21emnrQnr

IJ1~ fermionic terms!.

~2.12!

This implies that our extra vector fieldBm
IJ is physical and

propagating in our system. Since this propagating fieldBm
IJ

has couplings to thes fields as source terms as in Eq.~2.12!,
our gaugedN516 supergravity is equally important as th
in @2# with nontrivial difference.

Fourth, the closure onBm
IJ at the linear order needs sp

cial care. This is because when we apply@dQ(e1),dQ(e2)#
on Bm

IJ , we also need the on-shell duality~2.11! leading to
jnGnm

IJ with jm[ i ( ē2gme1) at the linear order. In this pro
cess, all theg-linear terms indQcm cancel themselves due t
Eq. ~2.11!, and do not contribute to this order. Additionally,
by-product term likezABPmAVB

IJ in the closure can be re
garded as a gauge transformation at the linear order.
closure onBm

IJ provides another nontrivial consistency che
on our total system.

Fifth, there are three relatively independent parameterg,
m, and m̃ in our theory. Due to the homotopy mappin
p3„SO(16)…5Z, m andm̃ should be quantized as4

m5
n

16p
, m̃5

ñ

16p
~n,ñPZ!. ~2.13!

Sixth, we can in principle gauge the entireE8(18) group
in E8(18) /SO(16) by Am . However, since the noncompa
gauge groups do not have nontrivialp3-homotopy mapping,
we have gauged only the maximal compact subgro
SO(16) of E8(18) . This is because if thep3-homotopy map-
ping is trivial, the vanishing field strengthFmn

IJ gives only
topologically trivial configurations. Needless to say, we c
also gauge any compact subgroup ofSO(16) itself, whose
p3-homotopy mapping is nontrivial.

Seventh, even though the field strengthFmn
IJ in the grav-

itino transformation rule in Eq.~2.2b! is not supercovarian-
tized, this does not pose any problem. The difference fr
the covariantized one is always proportional to thel field

4The factor 1/2 in front of the Chern-Simons termmFA1... in
the Lagrangian is the normalization forSO(16) generators, so tha
we have 16p in the denominators in Eq.~2.13!.
02500
l
co-

r

f

is

p

n

which is vanishing by its field equation, so that the on-sh
closure of supersymmetry will not be affected. On the oth
hand, the nonsupercovariant field strength is easy to ha
for the action invariance confirmation.

Eighth, compared with a model presented in@15#, the
similarity is that theSO(N) gauge fieldAm

IJ is minimally
coupled to the gravitino, while its field strength is vanishi
by theBF term. The difference is that the present system
more nontrivial, because of thes-model physical fields on
E8(18) /SO(16) in addition to other nonpropagating fields

III. APPLICATION TO SO„9… GAUGING FOR NÄ9
SUPERGRAVITY

We can rather easily see that a similar mechanism wo
just fine for other extended supergravity theories with low
N,16. In this paper, we give the example ofN59 super-
gravity coupled to theF4(220) /SO(9) s model with an
SO(9) gauging. ThisN59 supergravity theory is relatively
unique, in the sense that it has a simple irreducible struc
with the odd number of supersymmetries, with very fe
analogous examples in any other dimensions. Note also
N59 supergravity in 3D corresponds toN.4 supergravity
in 4D upon simple dimensional reduction@3#. Since only
local supersymmetry can exist consistently forN.4 in 4D
@18#, N59 supersymmetry in 3D is to be intrinsicallylocal.
In other words,N59 supergravity is the simplest example
intrinsically local supersymmetry in 3D.

Corresponding to the case ofE8(18) /SO(16), our
F4(220) /SO(9) has the generatorsXIJ (I ,J,...51,2,...,9) of
SO(9), and thecoset generatorsYA (A,B,...51,2,...,16),
satisfying

@XIJ,XKL#52d I [KXL]J22dJ[KXL] I ,

@XIJ,YA#52
1

2
~G IJ!ABYB ,

@YA ,YB#5
1

4
~G IJ!ABXIJ, ~3.1!

which is just parallel to theSO(16) case@2#, except that we
need onlyundottedspinorial indicesA, B, ... .

Our field content is (em
m ,cm

I ,xA ,wA ,Am
IJ ,Bm

IJ ,
Cm

IJ ,l I). Here we have the indicesA,B...51,2,...,16 for
the 16-spinorial representation, whileI ,J,...51,2,...,9 for
the 9-vectorial representation both ofSO(9). Due to the
different chiral spinor structure forSO(9) compared with
SO(16), the s-model fermionxA has a nondotted index
Since the gauging mechanism is parallel to theN516 case,
we show the total results here: Our Lagrangian5

5For the property of theG matrices forSO(9) Clifford algebra,
see Appendix A.
9-4
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e21L952
1

4
R1

1

2
e21emnr

„c̄m
IDn~v,Q,A!cr

I
…1

1

4
gmnPmAPnA

2
i

2
„x̄AgmDm~v,Q,A!xA…2

1

2
~ c̄m

IG Igngmx!APnA

1
1

2
ge21emnrBm

IJFnr
IJ1

1

2
me21emnrS Fmn

IJAr
IJ1

2

3
gAm

IJAn
JKAr

KI D
1

1

2
m̃e21emnrS Hmn

IJCr
IJ1

2

3
gCm

IJCn
JKCr

KI D1
1

2
m̃~ l̄ Il I !

2
1

8
~ c̄r

Igrstcs
J!~ x̄gtG

IJx!1
1

8
~ c̄m

IgncmJ!~ x̄gnG IJx!

2
1

8
~ c̄m

Igngmcn
J!~ x̄x!1

1

16
~ x̄x!22

1

96
~ x̄G IJgmx!2, ~3.2!
y

l-

.

ty
whose actionI 9[*d3xL9 is invariant under supersymmetr

dQem
m51 i ~ ē Igmcm

I !, ~3.3a!

dQcm
I51Dm~v,Q,A!e I2

i

4
~gneJ!

3~ x̄G IJgmnx!2S IJcm
J

1ge21em
rsĜrs

IJ1 iggneJĜmn
IJ

1
i

2
ge21em

rsgreJP̂sAVA
IJ

1geJP̂mAVA
IJ

1
1

2
ge21em

rsgreJ~ x̄gsG IJx!

2
i

4
geJ~ x̄G IJgmx!, ~3.3b!

dQxA51
i

2
~G I !AB~gme I !P̂mB

2
1

4
~G IJ!ABxBS IJ, ~3.3c!

dQw51
F

sinhF
~ē IG Ix![

F

sinhF
S,

~3.3d!

dQAm
IJ51 i ~ ē [ I ugnR̂mn

uJ] !

1e21em
rs~ ē [ IR̂rs

uJ] !

1 ie21em
rs~ ē [ IGJ]grx!P̂sA , ~3.3e!
02500
dQBm
IJ51

1

2
~ ēKcm

L!V KL,IJ

2
i

2
~ ēKGKgmx!AVA

IJ , ~3.3f!

dQCm
IJ51 i ~ ē [ IgmlJ] !, ~3.3g!

dQl I51gmneJHmn
IJ 2

i

2
~ ēJgmcm

J !l I .

~3.3h!

Since the geometrical structures for the cosetF4(220) /SO(9)
are parallel toE8(18) /SO(16), we do not repeat other re
evant equations here.

When the quartic terms in Eq.~3.1! are compared with the
N516 case, only the term (x̄x)2 has a different coefficient
Note also that we do not have the term (x̄G [4]x)2, due to the
identities~B2! similar to theN516 case@1#.

One crucial identity related to the cancellation ofx3P
term in dQL is

~ j̄G IJgmnx!~ x̄G IJgnx!

[26~ j̄gmx!~ x̄x!12~ j̄G IJx!~x̄G IJgmx!, ~3.4!

with j̄[ēKGK, which can be confirmed by the Fierz identi
~B2! in Appendix B.

As in the case ofE8(18) /SO(16) in Eq. ~2.13!, there is
nontrivial p3-cohomologyp3„SO(9)…5Z, so that we have
the quantizations

m5
n

16p
, m̃5

ñ

16p
~n,ñPZ!. ~3.5!
9-5
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IV. YANG-MILLS CHERN-SIMONS COUPLED TO ;N
EXTENDED SUPERGRAVITY

As careful readers may have noticed, our vector multip
(Cm

IJ ,l I) can be coupled to arbitrarily large extended sup
gravities called:0 supergravity @15#, in the absence o
s-model supermultiplets. As a matter of fact, similar mod
have been given in@15#. However, the field content for a
vector multiplet in@15# has both fields in the same adjoi
representation of a given groupG like (Am

I ,l I). The differ-
ence here is thatCm

IJ is in the adjoint representation o
SO(N), while l I is in the vector representation. Since w
also want to makeSO(N) local, this system is intrinsically
locally supersymmetric. This is because the parametere I of
supersymmetry is also in the vectorial representation
SO(N), so that we cannot impose the global supersymme
condition such as]me I50, maintaining also the localSO(N)
covariance.

Even though this feature sounds rather trivial at fi
glance, it provides a new concept. Namely, this ‘‘superm
tiplet’’ ( Cm

IJ ,l I) has different ‘‘on-shell’’ degrees of free
dom for bosons and fermions, asN(N21)/2 andN, respec-
tively. This is possible due to the special feature of a Che
Simons Lagrangian yielding the field strength to vanish,
well as the property of 3D itself where Chern-Simons the
is possible first of all.

We present here such a system of an extra vector mult
(Cm

IJ ,l I) coupled to:0 extended supergravity plusSO(N)
gauge and vector fields: (em

m ,cm
I ,Am

IJ ,Bm
IJ), as

e21L:0
52

1

4
R1

1

2
e21emnr

„c̄m
IDn~v,A!cr

I
…

1
1

2
ge21emnrBm

IJFnr
IJ1

1

2
me21emnrS Fmn

IJAr
IJ

1
2

3
gAm

IJAn
JKAr

KI D
1

1

2
m̃e21emnrS Hmn

IJCr
IJ1

2

3
gCm

IJCn
JKCr

KI D
1

1

2
m̃~ l̄ Il I !. ~4.1!

Needless to say, there is no composite connection in the
variant derivative, such as inDn(v,A) by definition. Note
also that we do not need the quartic terms independentl
N, because all the fermions are now only in the vector r
resentations, with no spinorial index forSO(N). In fact, all
the explicit quartic terms in Eq.~2.1! vanish when the
s-model fermionx is absent, like the present case.

The corresponding actionI :0
[*d3xL:0

is invariant un-

der supersymmetry
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dQem
m51 i ~ ē Igmcm

I !,

dQcm
I51Dm~v,A!e I1ge21em

rsĜrs
IJ

1 iggneJĜmn
IJ

12im~gneJ!Fmn
IJ

12me21em
nreJFmr

IJ ,

dQAm
IJ51 i ~ ē [ I ugnR̂mn

uJ] !

1e21em
rs~ ē [ I uR̂rs

uJ] !,

dQBm
IJ51~ ē [ Icm

J] !,

dQCm
IJ51 i ~ ē [ IgmlJ] !,

dQl I51gmneJHmn
IJ2

i

2
~ ēJgmcm

J!l I .

~4.2!

Even though we have added theSO(N) gauge fieldAm
IJ

with the coupling constantg, or the mass parameterm, in
order to make the result as general as possible, we can d
them by simply settingg50 and/orm50.

Note that this system can have an arbitrarily large num
N of supersymmetries called:0 supersymmetries@15#. The
important aspect here is that such a system is associated
the recent conjecture that a Chern-Simons theory with a
tain level onS3 is equivalent to topological string in 2D@16#,
much like the correspondence between AdS3 and conformal
field theory in 4D. In other words, even though the Che
Simons theory introduced here has vanishing field strengt
the ‘‘bulk’’ of 3D, it has important physical significance a
the 2D boundary, similar to the AdS-CFT corresponden
@19,9#.

V. CONCLUDING REMARKS

In this paper, we have presented a topologically nontriv
modification of N516 supergravity in 3D. We have intro
duced a minimal coupling of anSO(16) gauge fieldAm

IJ to
the E8(18) /SO(16) s model, together with an additiona
vector field Bm

IJ , in a combination of aBF theory and
Chern-Simons theory. Even though the field strength of
Am field vanishes on-shell, the action is topologically no
trivial due to the homotopy mappingp3„SO(16)…5Z and
the Chern-Simons term. We have also added an additio
Chern-Simons term of an extra gauge fieldCm

IJ with an
extra topological effects. As an application, we have p
sented the similar case ofN59 supergravity with thes
model cosetF4(220) /SO(9). As another application, we
have presented a new:0 Chern-Simons theory coupled t
extended supergravity with;N, which was not presented in
@15,14#.

There are some similarities as well as differences betw
our gauged system and that in@2#. One important similarity
is that the duality relationship~2.11! is exactly the same as in
@2#, namely, the vector fieldBm

IJ is dual to the scalar field
9-6
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strength PmA . Therefore, thisBm
IJ field is physical and

propagating, so that our gauged system is as nontrivial as
gauging in@2#. The difference is that our system does n
have a cosmological constant or the gravitino mass te
while that in @2# does. Instead of a cosmological consta
our system has a topological Chern-Simons term, wh
leads to nontrivial vacuum configurations. Another diffe
ence is that even though the duality relationship is forma
the same, our vectorBm

IJ is not a gauge field ofSO(16), but
its role is played instead byAm

IJ as an independent field
Moreover, this physically propagatingBm

IJ field has non-
trivial couplings to other physicals-model fields in its field
equation. Due to this nontrivial difference with respect
physical fields, ourN516 gauged supergravity is equal
important as that in@2#.

We have presented in this paper Chern-Simons terms
particular, for the gauge fieldAm

IJ coupling to theN516
gravitino. The supersymmetric partnerl I of Am

IJ is in the
vectorial representation ofSO(16). To our knowledge, this
is a new supersymmetric Chern-Simons form that has
been covered in the exhaustive studies in Refs.@14,15#. Rel-
evantly, if we switch off thes-model part for the cose
E8(18) /SO(16), we can formulate such a supersymmet
Chern-Simons term for an arbitrarily largeN with no restric-
tion. This is another by-product of our topological gauging
N516 supergravity in 3D.

The nontrivial feature of the gauge fieldAm
IJ with van-

ishing field strength is very peculiar to 3D, because of
nontrivial Chern-Simons term. It is due to the nontrivialp3
homotopy ofSO(16) orSO(9) that the newly-added Chern
Simons terms with extended supergravity in 3D make str
ger sense. However, paradoxically speaking, our results
indicate the possibility that there are some other extens
of 11D supergravity, when topological effects are taken i
account. As a matter of fact, such a trial has been prese
since the 1980s as extra Chern-Simons terms added to
@20,21,22#. However, any modification to 11D supergravit
such as higher-order terms, should also be consistent
local supersymmetry. In fact, there has been such a tria
supermembrane corrections to 11D supergravity@23,24,25#.

Even though Yang-Mills Chern-Simons theories in 3
look ‘‘trivial,’’ due to their vanishing field strengths in the
‘‘bulk’’ of 3D, there are lots of nontrivial quantum behavior
as well as classical topological features. For example, it
been explicitly confirmed thatN51 supersymmetric Chern
Simons theory is finite to all orders in a nontrivial way@26#.
Moreover, it has been found that there are nontrivial fin
quantum corrections to the Chern-Simons coefficients@27#.
From these developments, the model in this paper may
provide a new, unique and nontrivial link between Che
Simons theories andN516 maximally extended supergrav
ity in 3D. Also from this viewpoint, our new Chern-Simon
model coupled to:0 extended supergravity will be of impor
tance, considering the possible link between Chern-Sim
in 3D with topological string in 2D@16#.

In this paper, we have also provided the case ofN59
supergravity with thes-model cosetF4(220) /SO(9) with
nontrivial Clifford algebras. Some of these algebras are v
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powerful, when dealing with quartic terms, which will be o
extra help in the future studies of nonmaximal extended
pergravities. The case ofN59 extended supergravity is pe
culiar for two reasons: First,N59 is the smallestN in 3D
corresponding toN>5 supersymmetry in 4D which isintrin-
sically local. Therefore,N59 is the simplest system with
intrinsic local supersymmetry in 3D. Second, the odd dim
sionality of orthogonal groupSO(9) has very few analogou
examples in other higher dimensions.

The importance of the cosetF4(220) /SO(9) comes also
from the recent observation thatSO(9) might be playing an
important role in M theory@28#. This is because of an inter
esting analogy betweenE8→SO(16) andF4→SO(9), due
to the coset coordinates ofE8(18) /SO(16) and
F4(220) /SO(9) in the spinorial representations ofSO(16) or
SO(9), respectively, whileSO(9) plays a crucial role as the
little group for 11D supergravity as the low energy limit o
M theory @6,9,28#.

Our result in this paper has three major important ing
dients to be summarized here. First, it is in 3D or low
dimensions, where the generalizations of maximal sup
gravity by topological terms make stronger sense, due to
nontrivial p3 homotopy. Since such modification of maxim
supergravity is difficult inD>4, it is worthwhile to study
possible effects on maximal supergravity in 3D. Second
put this first point differently, our formulation provides
system that can be a good working ground on the effec
supergravity on non-Abelian Chern-Simons theory, in p
ticular, with the maximalN516 supersymmetry. The ex
ample of N59 we presented gives a supplementary no
maximal case. Third, our result strongly indicates cert
higher-dimensional origin of our new gauging mechanis
For example, M theory and dualities@6# have lead us to
many different generalizations of higher-dimensional orig
of certain mechanisms in maximally extended supergrav
such as the Killing vector generalization for 11D mass
supergravity@29#, generalized dimensional reductions@5#, or
higher-dimensional supergravity theories@12,13#. It will be
interesting to see if this leads to new higher dimensio
theories inD<11 or evenD>12 @10,11,12#.

APPENDIX A: G-MATRIX PROPERTIES FOR SO„9…
CLIFFORD ALGEBRA

In this appendix, we list some practically usefulG-matrix
properties forSO(9) Clifford algebra forN59 supergravity.
In this appendix, the indicesI ,J,...51,2,...,9 are for the9 of
SO(9), while A,B,...51,2,...,16 are for the16 of SO(9).
The symmetry property of theG matrices for the Clifford
algebra forSO(9) is similar to that forSO(16) except for
the dottedness for the latter:

~G I !AB51~G I !BA , ~G IJ!AB52~G IJ!BA ,

~G@3#!AB52~G@3#!BA ,

~G@n#!AB51~21!n~n21!/2~G@n#!BA ~0<n<9!,
~A1!
9-7
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which are confirmed by@30#. Since the charge conjugation matrix can be chosen to be the Kronecker’s delta,CAB5dAB @30#,
we do not have to distinguish raising or lowering the indicesA,B,... . Forexample, (x̄G IJgmx)[(G IJ)AB(x̄AgmxB).

Typical G algebras are

GJG IGJ527G I , GKG IJGK515G IJ, GLG IJKGL523G IJK, ~A2a!

G IG@4#G I51G@4#, G IG@5#G I51G@5#, G IG@n#G I5~21!n~922n!G@n#, ~A2b!

G@m#51
1

n!
e@m#@n#G@n# ~m,n50,1,...,9!, ~A2c!

G@2#G IG@2#5240G I , G@2#8G@2#G@2#85216G@2#, G@2#G@3#G@2#50, ~A2d!

G@2#G@4#G@2#518G@4#, G@3#G IG@3#51168G I , G@3#G@2#G@3#50, ~A2e!

G@3#8G@3#G@3#85248G@3#, G@3#G@4#G@3#5124G@4#, G@4#G IG@4#51336G I , ~A2f!

G@4#G@2#G@4#52336G@2#, G@4#G@3#G@4#52144G@3#, G@4#8G@4#G@4#851144G@4#. ~A2g!
su

l
o

e
g
m-

-

As has been mentioned in the text, the symbols such as@3#
stand for the totally antisymmetricIJK indices, and the re-
peated pairs, such as the@4#’s on G@4#G@3#G@4# should be
contracted as dummy indices.

Note also that these results are also valid as the u
g-matrix algebra in 9D@31,32#, because of their ‘‘formal’’
equivalence, independent of the metric signatureexcept for
Eq. ~A2c!.

APPENDIX B: FIERZ IDENTITIES FOR SO„9…
MAJORANA SPINORS

We list here important relationships associated withG ma-
trices for the Clifford algebra ofSO(9), satisfying$G I ,GJ%
52d IJI 16, whereI 16 is 16316 unit matrix. The most crucia
relationships are the Fierz identities for quartic terms: F
lowing @1#, suppose we use the symbolsTi ( i 50,...,4) for

T0[~j̄AxA!~xBxB![~j̄x!~ x̄x!, ~B1!

T1[„j̄A~G I !ABxB…„x̄C~G I !CDXD…[~j̄G Ix!~x̄G Ix!,

T2[
1

2!
„j̄Agm~G@2#!ABxB…„x̄Cgm~G@2#!CDxD…

[
1

2!
~ j̄gmG@2#x!~ x̄gmG@2#x!,

T3[
1

3!
„j̄Agm~G@3#!ABxB…„x̄Cgm~G@3#!CDxD…

[
1

3!
~ j̄gmG@3#x!~ x̄gmG@3#x!,
02500
al

l-

T4[
1

4!
„j̄A~G@4#!ABxB…„x̄C~G@4#!CDxD…

[
1

4!
~ j̄G@4#x!~ x̄G@4#x!,

where jA and xA are arbitrary Majorana spinors with th
16-index A. There are only three Fierz identities amon
them, namely, there are only two independent quartic co
binations amongT0 ,...,T4 :

T1[23T01
1

3
T2 , ~B2a!

T3[124T02T2 , ~B2b!

T4[26T02
1

3
T2 . ~B2c!

This implies that there are only two independentT ’s out of
the five quartic combinations:T0 ,...,T4 . This statement can
be confirmed by a method similar to that in@1#, namely, we
first perform the Fierzing of eachTi into the linear combina-
tions of all theTi ’s, getting five relationships. Then we sym
bolize these relations as

T5MT, ~B3!

with
9-8
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T[S T0

T1

T2

T3

T4

D ,

M[
1

32S 21 21 11 11 21

29 17 15 23 21

1108 160 18 0 212

1252 284 0 18 212

2126 214 214 26 26

D .

~B4!

Consider next the eigenvalue equation

det~M2xI16!52
1

8
~2x11!3~x21!2, ~B5!

which means that there are three eigenvectors ofM for the
eigenvalue21/2, in addition to two others for the eigenvalu
11. Let A( i ) ( i 51,2,3) be three such eigenvectors ofMT:

MTA~ i !52
1

2
A~ i ! ~ i 51,2,3!. ~B6!

SinceTTMT5TT, we have

T•A~ i !5TTA~ i !5TTMTA~ i !52
1

2
TTA~ i !5

1

2
T•A~ i !.

~B7!
v.

n
m

y

r.

-
in

02500
This implies that the inner productT•A( i ) is zero:

T•A~ i ![0 ~ i 51,2,3!. ~B8!

Therefore, finding all the relationships among theT ’s is
equivalent to finding the eigenvectorsA( i ). Following the
usual linear algebra technique, we can find that example
these independent eigenvectors are

A~1!5S 42
0
0

21
3

D , A~2!5S 0
14
0
3
5

D ,

A~3!5S 0
0
7
3
12

D . ~B9!

Accordingly, the equationT•A( i ) for each i 51, 2, 3 gives
the relationships~B2!.

Fierz identities~B2! explain the absence of the (xG@4#x)2

term in the Lagrangian~3.2!.
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