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Weisskopf-Wigner decay theory for the energy-driven stochastic Schro¨dinger equation

Stephen L. Adler*
Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

~Received 1 October 2002; published 17 January 2003!

We generalize the Weisskopf-Wigner theory for the line shape and transition rates of decaying states to the
case of the energy-driven stochastic Schro¨dinger equation that has been used as a phenomenology for state
vector reduction. Within the standard approximations used in the Weisskopf-Wigner analysis, and assuming
that the perturbing potential inducing the decay has vanishing matrix elements within the degenerate manifold
containing the decaying state, the stochastic Schro¨dinger equation linearizes. Solving the linearized equations,
we find no change from the standard analysis in the line shape or the transition rate per unit time. The only
effect of the stochastic terms is to alter the early time transient behavior of the decay, in a way that eliminates
the quantum Zeno effect. We apply our results to estimate experimental bounds on the parameter governing the
stochastic effects. In addition, elegant stochastic-theoretic methods suggested by Dio´si are used to rederive the
principal results, without the assumptions needed to linearize the stochastic equation, and to give analogous
results for the Rabi oscillations of a two-level system.
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I. INTRODUCTION

There has recently been considerable interest in the
sibility that quantum mechanics, and the Schro¨dinger equa-
tion, may be modified at a very low level by effects arisi
from Planck scale physics. Such speculations have been
tivated on the one hand by considerations from string the
@1# and quantum gravity@2#, and on the other hand by effort
@2–4# to achieve an objective equation describing state v
tor reduction. The majority of the objective reduction discu
sions fall into two classes: those that postulate a stocha
process producing spatial localization@3#, and those that pos
tulate an analogous stochastic process leading to localiza
in energy @4# ~the so-called ‘‘energy-driven’’ stochasti
Schrödinger equation.! Both the spatial localization and th
energy localization stochastic Schro¨dinger equations avoid
problems with superluminal signal propagation that char
terize attempts at deterministic nonlinear modifications of
Schrödinger equation@5#. We find the energy-driven ap
proach particularly appealing because it is energy cons
ing, leads with no approximations to Born rule probabiliti
and to the Lu¨ders projection postulate, has sensible clus
ing properties, and when environmental interactions
taken into account explains state vector reduction with
single Planck scale stochastic parameter@4,6#.

Although physical prejudices might suggest a Plan
scale magnitude for the stochastic parameter in the ene
driven equation, one can instead take the point of view t
the stochastic parameter can havea priori any value, and use
current experimental information to place bounds on it. T
approach has been pursued@7# in the context of particle
physics systems that exhibit oscillations between differ
mass eigenstates~the K-meson,B-meson, and neutrino sys
tems!, with results that are summarized in the final section
this paper. An alternative source of bounds on the stocha
parameter could come from experiments observing dec
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and line shapes in atomic and particle systems, since if
stochastic terms in the Schro¨dinger equation were to chang
the standard Weisskopf-Wigner analysis of decay proce
in a significant way, then observable effects could res
Thus, to pursue phenomenological studies of the ene
driven equation, it is important to generalize the stand
Weisskopf-Wigner decay theory@8# to include effects of the
energy-driven stochastic terms. This is the problem tha
analyzed in this paper.

II. THE ENERGY-DRIVEN STOCHASTIC SCHRO¨ DINGER
EQUATION AND PROPERTIES OF THE ITOˆ

STOCHASTIC CALCULUS

Letting uc& denote a unit normalized Schro¨dinger picture
state vector, the standard form@3,4,6# of the energy-driven
stochastic Schro¨dinger equation is~with \51)

duc&52 iH uc&dt2
1

8
s2~H2^H&!2uc&dt1

1

2
s~H

2^H&!uc&dWt . ~1a!

HereH is the Hamiltonian,̂ H&5^cuHuc& is the expectation
of the Hamiltonian in the stateuc&, s is a numerical param-
eter governing the strength of the stochasticity, anddWt is an
Itô stochastic differential that, together withdt, obeys the
standard Itoˆ calculus rules@9#

dWt
25dt, dWtdt5dt250. ~1b!

By construction, the nonlinear evolution of Eq.~1a! guaran-
tees the preservation in time of the unit normalization of
state vectoruc&.

In the following sections, we shall need a number of pro
erties of the Itoˆ calculus that we summarize here. First of a
in the Itô calculus the Leibnitz chain rule generalizes to

d~AB!5~A1dA!~B1dB!2AB5~dA!B1AdB1dAdB,
~2a!
©2003 The American Physical Society07-1
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with the final termdAdB contributing a term proportional to
dt when thedWt contributions to bothdA anddB are non-
zero. LettingWt be the Brownian motion

Wt5E
0

t

dWu , ~2b!

we see in particular that

d exp~aWt!5exp~aWt!@exp~adWt!21#

5exp~aWt!FadWt1
1

2
a2dtG . ~2c!

Letting E@ . . . # denote the stochastic expectation of its
gument, and lettingA(t) denote any function of the stocha
tic process up to timet, we have

E@dWtA~ t !#50, ~3a!

since the Itoˆ differential refers to the time interval fromt to
t1dt, and hence is statistically independent of the proc
up to timet. Thus, taking the expectation of Eq.~2c!, we get
the differential equation

dE@exp~aWt!#5E@exp~aWt!#
1

2
a2dt, ~3b!

which can be immediately integrated to give

E@exp~aWt!#5expS 1

2
a2t D , ~3c!

a result that will be needed later on.
Let us make an elementary application of the Itoˆ formal-

ism, to write the stochastic Schro¨dinger equation of Eq.~1a!
in an equivalent form. First of all, forming the density matr

r5uc&^cu, ~4a!

we have from Eq.~2a!,

dr5~duc&)^cu1uc&d^cu1duc&d^cu, ~4b!

which on substitution of Eq.~1a! and use of the Itoˆ calculus
rules of Eq.~1b! gives the evolution equation for the densi
matrix,

dr5 i @r,H#dt2
1

8
s2@H,@H,r##dt1

1

2
s@r,@r,H##dWt .

~4c!

Taking the stochastic expectation of this equation, using
~3a!, gives a differential equation of the Lindblad type@10#
for E@r#,

dE@r#

dt
5 i @E@r#,H#2

1

8
s2@H,@H,E@r###. ~5!

The fact that this equation is linear@in contrast to Eq.~4c!,
which is nonlinear# is the fundamental reason@5# why Eq.
~1a! does not give rise to superluminal signal propagatio
02500
-

s

q.

III. INITIAL FORMULATION OF THE DECAY PROBLEM

Let us now formulate the decay problem for the stocha
Schrödinger equation of Eq.~1a!, following the standard pro-
cedure for the usual Schro¨dinger equation without stochasti
terms. We suppose that for timest<0 the HamiltonianH is
given by an unperturbed HamiltonianH0, with eigenstates
un& and eigenvaluesEn ,

H0un&5Enun&, ~6a!

and that the system under consideration is in an eigens
usA& with eigenvalueEs , which is one of a set of degenera
energy eigenstatesusa&, a51, . . . ,D. Because Eq.~1a! acts
as an ordinary Schro¨dinger evolution on a stateuc& that is an
energy eigenstate, the system remains in the stateusA& as
long as the Hamiltonian remains equal toH0. Hence the
starting point for the standard decay analysis@11# is also a
consistent starting point for its stochastic extension under
~1a!. As in the standard procedure, we assume that att50 a
time-independent perturbationV is switched on, so that for
times t.0 the Hamiltonian isH5H01V. The initial state
usA& is then no longer an energy eigenstate, and so will de
into various other statesum&; our problem, as in the usua
case, is to find the partial transition rates for this decay a
the probability amplitude for the system to remain in t
initial degenerate group of states.

In formulating this problem, it is convenient to expand t
stateuc& over the basisun& and, as in the standard case,
remove the Schro¨dinger time evolution associated with th
unperturbed HamiltonianH0, by writing

uc~ t !&5(
n

un&exp~2 iEnt !Cn~ t !. ~6b!

Substituting Eq.~6b! into Eq. ~1a!, and projecting on̂mu, it
is a matter of straightforward but somewhat tedious alge
to compute the stochastic evolution equation forCm(t), with
the result

dCm~ t !5amCm~ t !1(
n

bmnCn~ t !,

am52
1

8
s2~Em2^H&!2dt1

1

2
s~Em

2^H&!dWt ,

bmn52 iVmnexp@ i ~Em2En!t#dt

2
1

8
s2@~Em1En22^H&!Vmn

1~V2!mn#exp@ i ~Em2En!t#dt

1
1

2
sVmnexp@ i ~Em2En!t#dWt . ~7a!

The corresponding expression for^H& is
7-2
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^H&5(
n

EnuCn~ t !u21(
mn

Vmnexp@ i ~Em

2En!t#Cm* ~ t !Cn~ t !. ~7b!

In these equationsVmn and (V2)mn denote the respectiv
matrix elements

Vmn5^muVun&,~V2!mn5^muV2un&. ~7c!

IV. APPROXIMATION TO LEADING ORDER IN V

Equations~7a!–~7c! are a complicated, nonlinear set
stochastic differential equations, and so to solve them
proximations will be needed. Following the Weisskop
Wigner analysis, we shall make the approximation of rega
ing V as a small perturbation. The coefficientsCm , m¹$sa%
for states not in the initial degenerate manifold will then
of orderO(V), and we neglectO(V2) and higher contribu-
tions to them~except those arising implicitly through ou
solution for theCsa

). On the other hand, the coefficientsCsa

of states in the degenerate manifold can be of order un
and we calculate these coefficients to orderV2 accuracy, ne-
glecting corrections of orderV3 and higher. In a similar fash
ion, in expressions involving the stochasticity parameters,
we shall retain terms of ordersV and its powers (sV)2, etc.,
but shall neglect terms of ordersV2 and higher that involve
extra factors ofV relative to the terms that we are retainin
Finally, although we shall see thatEm2Es is effectively
small, we shall retain all terms of orders(Em2Es),
s2(Em2Es), @s(Em2Es)#2, etc., but shall drop terms
s(Em2Es)sO(V2) that are smaller than these by a factor
ordersV2 or V2.

Making use of the perturbative ordering of the coefficie
Cn , we begin by simplifying and approximating the expre
sion in Eq. ~7b! for ^H&. Separating off the states in th
initial degenerate manifold, the sum in Eq.~7b! becomes

^H&5Es(
a

uCsa
u21(

ab
Vsasb

Csa
* Csb

1O~V2!. ~8a!

However, since the state vectoruc& remains unit normalized
we have

(
a

uCs
a
u2512 (

mP” $sa%
uCmu2511O~V2!, ~8b!

and so we have

^H&5Es1(
ab

Vsasb
Csa

* Csb
1O~V2!. ~8c!

If we substitute Eq.~8c! back into Eq.~7a!, we are still
left with a nonlinear set of equations. Therefore we shall a
introduce the simplifying assumption that the perturbing p
tential has vanishing matrix elements within the degene
manifold containing the initial state, so that
02500
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50, a,b51, . . . ,D. ~9a!

There are important, physically relevant cases in which
~9a! is obeyed as a result of selection rules. For example,
radiative decays treated in the electric dipole approximati
with H0 taken as the atomic Hamiltonian plus the free rad
tion Hamiltonian, and withV taken as the atomic coupling t
the transverse electromagnetic modes, Eq.~9a! is obeyed as a
result of parity invariance when the states in the initial d
generate manifold all have the same parity.@We caution,
however, that Eq.~9a! is not valid for the analysis ofK ~or
B) meson systems whenH0 is taken as the strong interactio
Hamiltonian. Thus here either one has to employ the non
ear equations following from Eq.~8c!, or one has to redefine
H0 so as to impose Eq.~9a! by including in H0 the uDSu
52 ~or uDCu52) weak interaction effective Hamiltonia
terms, withV defined to contain only theuDSu51 ~or uDCu
51) weak interaction terms responsible forK ~or B) meson
decays. Such a redefinition is consistent in the vacuum s
ration approximation for theuDSu52 ~or uDCu52) terms.#

With the simplifying assumption of Eq.~9a!, Eq. ~8c! be-
comes simply

^H&5Es1O~V2!. ~9b!

Substituting this into Eq.~7a!, and dropping terms that ar
not of leading order inV in the sense defined above, Eq
~7a!,~7b! simplify to the following set of linear equations:

dCm~ t !5~am
(1)dWt1am

(2)dt!Cm~ t !1(
n

exp@ i ~Em2En!t#

3~gmn
(1)dWt1gmn

(2)dt!Cn~ t !,

am
(1)5

1

2
s~Em2Es!,

am
(2)52

1

8
s2~Em2Es!

252
1

2
~am

(1)!2,

gmn
(1)5

1

2
sVmn ,

gmn
(2)52 iVmn2

1

8
s2@~Em1En22Es!Vmn1~V2!mn#.

~10a!

Corresponding to the magnitude ordering of the coefficie
Cm introduced above, it is convenient to rewrite Eq.~10a! as
separate equations for the two cases,mP$sa% andm¹$sa%.
For mP$sa% the coefficientsas

(1,2) vanish; separating the
sum overn into terms wherenP$sa% andnP” $sa%, using the
assumption of Eq.~9a!, and dropping terms of nonleadin
order inV, we get
7-3



if-
se

th
e

ro
o
b

ea

c

a

o

the

ons

m.

STEPHEN L. ADLER PHYSICAL REVIEW D67, 025007 ~2003!
dCs
a
~ t !52

1

8
s2dt(

b
~V2!s

a
s
b
Cs

b
~ t !1 (

nP” $sa%
exp@ i ~Es

2En!t#~gs
a
n

(1)dWt1gs
a
n

(2)dt!Cn~ t !,

gsan
(1) 5

1

2
sVsan , gsan

(2) .2 iVsanf n , ~10b!

where we have introduced the definition

f n512
i

8
s2~En2Es!. ~10c!

For mP” $sa% the coefficientsam
(1,2) are nonzero, but only the

terms withnP$sa% have to be retained in the sum overn,
and so we similarly get

dCm~ t !5~am
(1)dWt1am

(2)dt!Cm~ t !1exp@ i ~Em

2Es!t#(
a

~gmsa
(1) dWt1gmsa

(2) dt!Csa
~ t !,

gmsa
(1) 5

1

2
sVmsa

, gmsa
(2) .2 iVmsa

f m . ~10d!

Equations~10a!–~10d! are the basic system of stochastic d
ferential equations that we shall solve in the subsequent
tions.

V. EQUATIONS FOR EXPECTATIONS
OF THE COEFFICIENTS

The principal quantities that we wish to calculate are
expectationsE@ uCm(t)u2# of the squared magnitudes of th
coefficients, since these give the expectations of the p
abilities for the various states to be occupied. We shall sh
in this section that, within our approximations, these can
directly related to the expectationsE@Cm(t)# of the coeffi-
cients themselves, for which we shall derive a closed, lin
set of ordinary differential equations.

Again, we consider separately the casesmP$sa% and
m¹$sa%. For Csa

, we write

Csa
~ t !5E@Csa

~ t !#1Da~ t !, ~11a!

with E@Da(t)#50, and withDa(0)50 since the stochasti
terms in the differential equation act only aftert50. How-
ever, referring to Eq.~10b! we see thatdCsa

is of orderV2,

and soDa(t) must also be of orderV2. Therefore

E@ uCsa
~ t !u2#5uE@Csa

~ t !#u21O~V4!, ~11b!

and so to the accuracy to which we are working, we c
computeE@ uCsa

(t)u2# from the expectationE@Csa
(t)#, ig-

noring the effects of fluctuations.
We consider nextE@ uCm(t)u2# for mP” $sa%. Applying the

Itô rule of Eq.~2a!, we have
02500
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dE@ uCm~ t !u2#5E@„dCm* ~ t !…Cm~ t !1Cm* ~ t !dCm~ t !

1dCm* ~ t !dCm~ t !#. ~12a!

Substituting Eq.~10d! for dCm(t) and using Eq.~3a!, which
eliminates thedWt contributions, and using the fact that t
leading order inV we can replaceCsa

(t) by its expectation,
we get after some algebraic simplification the formula

d

dt
E@ uCm~ t !u2#5exp@2 i ~Em2Es!t# i f mE@Cm~ t !#

3(
a

Vmsa
* E@Csa

* ~ t !#

2exp@ i ~Em2Es!t# i f m* E@Cm* ~ t !#

3(
a

Vmsa
E@Csa

~ t !#

1
1

4
s2U(

a
Vmsa

E@Csa
~ t !#U2

, ~12b!

which can be integrated to giveE@ uCm(t)u2# once the expec-
tationsE@Cm(t)# andE@Csa

(t)# are known.
To get a closed set of equations for the expectations of

coefficients, we simply take the expectations of Eqs.~10b!
and~10d!, and use Eq.~3a!, which again eliminates thedWt
contributions. ForE@Csa

# we thus get

d

dt
E@Cs

a
~ t !#52

1

8
s2(

b
~V2!s

a
s
b
E@Cs

b
~ t !#

1 (
nP” $sa%

exp@ i ~Es2En!t#

3~2 i !Vs
a
nf nE@Cn~ t !#, ~13a!

while for E@Cm(t)# with mP” $sa% we find

d

dt
E@Cm~ t !#52

1

8
s2~Em2Es!

2E@Cm~ t !#1exp@ i ~Em

2Es!t#(
b

~2 i !Vmsb
f mE@Csb

~ t !#. ~13b!

VI. SOLUTIONS FOR EXPECTATIONS
OF THE COEFFICIENTS

We proceed now to solve the linear system of equati
for the expectations of the coefficients given in Eqs.~13a!,
~13b!. Since the problem is defined on the half linet.0, the
natural way to do this is by using the Laplace transfor
Defining

gm~p!5E
0

`

dt exp~2pt!E@Cm~ t !#, ~14a!

we have, by an integration by parts,
7-4
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E
0

`

dt exp~2pt!
dE@Cm~ t !#

dt
5pgm~p!2E@Cm~0!#,

~14b!

and also

E
0

`

dt exp~2pt!exp@ i ~Em2En!t#E@Cn~ t !#

5gn~p2 iEm1 iEn!, ~14c!

with the integrals in Eqs.~14a!–~14c! defining analytic func-
tions ofp in the right hand half plane Rep.0. The inversion
of the Laplace transform is given by the formula

E@Cm~ t !#5
1

2p i Ee2 i`

e1 i`

dp exp~pt!gm~p!, ~14d!

with e.0 an infinitesimal positive constant.
Taking the Laplace transform of Eqs.~13a!, ~13b!, and

using the initial conditionsE@Csa
(0)#5Csa

(0)5daA and
E@Cm(0)#5Cm(0)50, mP” $sa%, we get

pgsa
~p!2daA52

1

8
s2(

b
~V2!sasb

gsb
~p!

1 (
nP” $sa%

~2 i !Vsanf ngn~p1 iEn2 iEs!,

~15a!

and formP” $sa%,

pgm~p!52
1

8
s2~Em2Es!

2gm~p!

1(
b

~2 i !Vmsb
f mgsb

~p1 iEs2 iEm!.

~15b!

Solving Eq. ~15b! for gm(p), mP” $sa%, and shiftingp
→p1 iEm in the solution, we get

gm~p1 iEm!5Fp1 iEm1
1

8
s2~Em2Es!

2G21

3(
b

~2 i !Vmsb
f mgsb

~p1 iEs!. ~16a!

Shifting p→p1 iEs in Eq. ~15a!, and then substituting Eq
~16a!, we get an algebraic equation for the set of quantit
gsb

(p1 iEs),

(
b

Kabgsb
~p1 iEs!5daA ,

Kab5~p1 iEs!dab1
1

8
s2~V2!s

a
s
b

1 (
mP” $sa%

f m
2 Vs

a
mVms

b

p1 iEs1 i ~Em2Es! f m

. ~16b!
02500
s

In physically interpreting these equations, we must
member that the Laplace transform variablep is related to
the usual energy variableE by p52 iE. Making this substi-
tution in Eqs.~16a!,~16b! we have, respectively,

gm~2 iE1 iEm!5F2 iE1 iEm1
1

8
s2~Em2Es!

2G21

3(
b

~2 i !Vmsb
f mgsb

~2 iE1 iEs!,

~17a!

and

(
b

Kabgsb
~2 iE1 iEs!5daA ,

Kab5~2 iE1 iEs!dab1
1

8
s2~V2!s

a
s
b

1 (
mP” $sa%

f m
2 Vs

a
mVms

b

2 iE1 iEs1 i ~Em2Es! f m

. ~17b!

Corresponding to the changes of variable that have b
made, the inversion formulas become

E@Csa
~ t !#5

1

2p
exp~ iEst !E

i e2`

i e1`

dE exp~2 iEt !

3gsa
~2 iE1 iEs!,

E@CmP” $sa%~ t !#5
1

2p
exp~ iEmt !E

i e2`

i e1`

dE exp~2 iEt !

3gm~2 iE1 iEm!. ~17c!

Inspecting the equation for the kernelKab , we see that
apart from orderV2 terms it is a diagonal matrix (2 iE
1 iEs)dab . Hence the solutiongsb

(2 iE1 iEs), on the inver-
sion contour of integration, will be appreciable only in th
vicinity of E5 i e1Es , that is, only near energy shell. Thi
motivates the Weisskopf-Wigner approximation of replaci
E in the denominator of the final term inKab by i e1Es ,
with the result thatKab then becomes a linear function ofE.
Before making this approximation, the kernelKab has a non-
trivial dependence on the stochasticity parameters. How-
ever, after making the Weisskopf-Wigner approximation, t
s dependence completely cancels:
7-5
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1

8
s2~V2!s

a
s
b
1 (

mP” $sa%

f m
2 Vs

a
mVms

b

2 iE1 iEs1 i ~Em2Es! f m

→
1

8
s2~V2!s

a
s
b
1 (

mP” $sa%

f m
2 Vs

a
mVms

b

e1 i ~Em2Es! f m

5
1

8
s2~V2!s

a
s
b
1 (

mP” $sa%

f mVs
a
mVms

b

e1 i ~Em2Es!

5
1

8
s2~V2!s

a
s
b
1 (

mP” $sa%

@12~ i /8!s2~Em2Es!#Vs
a
mVms

b

e1 i ~Em2Es!

5 (
mP” $sa%

2 iVs
a
mVms

b

Em2Es2 i e
, ~18a!
n
e

rn

th
f-
ra

et
e.
e

of
e

f

where in the final step we have made use of the conditio
Eq. ~9a!. Thus in the Weisskopf-Wigner approximation, th
kernelKab appearing in Eq.~17b! simplifies to

Kab5~2 iE1 iEs!dab1 (
mP” $sa%

2 iVs
a
mVms

b

Em2Es2 i e

5~2 iE1 iEs!dab1 iM ab1
1

2
Gab ,

Mab5 (
mP” $sa%

P
Vs

a
mVms

b

Es2Em

,

Gab52p (
mP” $sa%

Vs
a
mVms

b
d~Em2Es!, ~18b!

with P in the definition of the ‘‘mass matrix’’Mab the prin-
cipal value. These are the same as the formulas for the ke
in the absence of the stochastic terms in the Schro¨dinger
equation. Thus, in the Weisskopf-Wigner approximation,
solution for E@Csa

(t)# is unmodified by the stochastic e
fects, and hence the Lorentzian line profile and the decay
of the state are unaffected by thes terms.

The solution forE@Cm(t)# with mP” $sa% does retain a
dependence on the stochastic parameter. To study this, l
specialize to the caseD51 of a non-degenerate initial stat
The expression in Eq.~18b! for the kernel now becomes th
131 matrix

K~E!52 iE1 iEs1 iM 1
1

2
G, ~19a!

with M andG real numbers given by

M5 (
mÞs

P
VsmVms

Es2Em
,

02500
of

el

e

te

us

G52p (
mÞs

VsmVmsd~Em2Es!. ~19b!

Thus, Eq.~17b! has the immediate solution

gs~2 iE1 iEs!5K~E!21, ~19c!

which when substituted into Eq.~17a! yields

gm~2 iE1 iEm!5F2 iE1 iEm1
1

8
s2~Em

2Es!
2G21

Vmsf mS E2Es2M1
i

2
G D 21

.

~19d!

Substituting these equations into the inversion formulas
Eqs. ~17c!, and doing elementary contour integrations, w
find

E@Cs~ t !#5expS 2 iMt 2
1

2
Gt D , ~20a!

E@CmÞs~ t !#5
Vms

Es2Em1M2
i

2
G

S expF i ~Em

2Es2M !t2
1

2
Gt G

2expF2
1

8
s2~Em2Es!

2t G D .

From Eq.~11b! we thus get

E@ uCs~ t !u2#5exp~2Gt !, ~20b!

which identifiesG as the transition rate per unit time out o
the initial state. Finally, substituting Eq.~20a! into Eq.~12b!,
simplifying to leading order inV, and integrating with re-
spect tot, we get
7-6
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E@ uCmÞs~ t !u2#5
uVmsu2

~Es2Em1M !21
1

4
G2

S exp~2Gt !11

22 expF2
1

8
s2~Em2Es!

2t

2
1

2
Gt Gcos@~Es2Em1M !t# D . ~20c!

This completes our solution for the expectations of the co
ficients, and their squared magnitudes, in the case of a
degenerate initial state. We see that after a timet large com-
pared with the lifetimeG21, we obtain

E@ uCmÞs~`!u2#5
uVmsu2

~Es2Em1M !21
1

4
G2

, ~20d!

exhibiting the standard Lorentzian profile with no depe
dence on the stochasticity parameters.

VII. SMALL TIME AND GOLDEN RULE
APPROXIMATIONS

Let us now study the behavior of Eq.~20c! for small and
large values of the timet. Since within our approximations
we haves2(Em2Es)

2.s2@(Es2Em1M )21 1
4 G2#, we can

rewrite Eq.~20c! as
02500
f-
n-

-

E@ uCmÞs~ t !u2#5
uVmsu2

~Es2Em1M !21
1

4
G2

S exp~2Gt !11

22 expF2
1

8
s2S ~Es2Em1M !21

1

4
G2D t

2
1

2
Gt Gcos@~Es2Em1M !t# D . ~21a!

In the limit as t→0, we can develop the exponential an
cosine functions in power series expansions, giving

E@ uCmÞs~ t !u2#.uVmsu2S 1

4
s2t1t21O„t2s4~Es2Em!2

…

1O~ t3! D . ~21b!

Thus the leading small time behavior of the summed
pected probability in the decay channels is

(
mÞs

uVmsu2
1

4
s2t5~V2!ss

1

4
s2t, ~21c!

where in evaluating the sum we have employed the condi
of Eq. ~9a!. We shall verify this result by another method
Sec. IX, where we discuss its implications for the quant
Zeno effect, and in Sec. X shall apply it to estimating boun
on s.

Let us next consider the large time behavior implied
Eq. ~21a!. Oncet is large enough so thatu(Em2Es)tu is large
for all energiesEm not infinitesimally close toEs , we can
evaluate the summed expected probability in the decay ch
nels by making the ‘‘golden rule’’ approximation@12#. This
approximation treats the factors multiplyinguVmsu2 in Eq.
~21a!, which are sharply peaked aroundEm5Es , as if they
were equal to a Dirac delta function of strength given by
integral of these factors over energy. We then have
(
mÞs

E@ uCmÞs~ t !u2#5 (
mÞs

uVmsu2

~Es2Em1M !21
1

4
G2

S exp~2Gt !1122 expF2
1

8
s2S ~Es2Em1M !21

1

4
G2D t

2
1

2
Gt Gcos@~Es2Em1M !t# D

. (
mÞs

uVmsu2d~Em2Es!

3E
2`

`

d~DE!

exp~2Gt !1122 expF2
1

8
s2S ~DE!21

1

4
G2D t2

1

2
Gt Gcos@~DE!t#

~DE!21
1

4
G2

5 (
mÞs

uVmsu2d~Em2Es!tF@s2/~8t !,t#

5
Gt

2p
F@s2/~8t !,t#, ~22a!
7-7
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with G as given in Eq.~19b! and with the functionF@A,t# defined by

F@A,t#5E
2`

`

du

exp~2Gt !1122 expF2AS u21
1

4
G2t2D2

1

2
Gt Gcosu

u21
1

4
G2t2

. ~22b!

To evaluateF@A,t# we note that@13#

F@0,t#5E
2`

`

du

exp~2Gt !1122 expS 2
1

2
Gt D cosu

u21
1

4
G2t2

5
2p

Gt
@12exp~2Gt !#, ~23a!
w

-

a

re

s
if-

a

and @13#

]F@A,t#

]A
5E

2`

`

du2 expF2AS u21
1

4
G2t2D2

1

2
Gt Gcosu

52p1/2expS 2
1

2
Gt2

1

4
AG2t2DA21/2

3exp@21/~4A!#. ~23b!

Thus, integrating Eq.~23b! with respect toA we get

F@A,t#5
2p

Gt
@12exp~2Gt !#1C@A,t#, ~23c!

with the correction termC@A,t# given by

C@A,t#54p1/2expS 2
1

2
Gt D E

0

A1/2

dv expF2
1

4
~v2G2t2

11/v2!G . ~24a!

Since the exponentials of negative arguments in Eq.~24a! are
bounded by their maxima over the range of integration,
have

uC@A,t#u,4p1/2A1/2exp@21/~4A!#

52sS p

2t D
1/2

exp~22t/s2!. ~24b!

So whenGt is of order unity, the contribution of the correc
tion term C@A,t# is of order csG1/2exp@22/(s2G)#
;c8sV exp@2c9/(sV)2#, with c,c8,c9 constants, which is
exponentially small and can be neglected in our approxim
tion scheme. Thus we are justified in approximating

F@A,t#.F@0,t#5
2p

Gt
@12exp~2Gt !#, ~24c!

which when substituted back into Eq.~22a! gives
02500
e

-

(
mÞs

E@ uCmÞs~ t !u2#512exp~2Gt !512uCs~ t !u2,

~24d!

verifying that the approximations used in our calculation a
consistent with maintenance of the unitarity sum rule~the
unit state vector normalization condition!.

VIII. SOLUTION TO THE STOCHASTIC EQUATION
FOR CmÅs

Since we see from Eqs.~20a! and ~20c! that
E@ uCmÞs(t)#u2 differs from uE@CmÞs(t)#u2, the stochastic
fluctuations inCmÞs(t) are evidently playing a role. Let u
now demonstrate this directly by solving the stochastic d
ferential equation forCmÞs(t). Specializing to the case of
non-degenerate initial state, approximatingCs(t)
.E@Cs(t)#, and using Eq.~20a! for E@Cs(t)#, Eq. ~10d!
becomes

dCm~ t !5~am
(1)dWt1am

(2)dt!Cm~ t !1expF i ~Em2Es2M !t

2
1

2
Gt G~gms

(1)dWt1gms
(2)dt!,

am
(1)5

1

2
s~Em2Es!,

am
(2)52

1

8
s2~Em2Es!

252
1

2
~am

(1)!2,

gms
(1)5

1

2
sVms, gms

(2).2 iVmsf m . ~25a!

For general values of the coefficientsam
(1,2) and gms

(1,2) , Eq.
~25a! can be integrated by using Eqs.~2a!–~2c! to find a
stochastic integrating factor for theCm terms~see the Appen-
dix!, with the result
7-8
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Cm~ t !5exp@am
(1)Wt2~am

(1)!2t#E
0

t

expF i ~Em2Es2M !u

2
1

2
Gu2am

(1)Wu1~am
(1)!2uG@gms

(1)dWu1~gms
(2)

2am
(1)gms

(1)!du#. ~25b!

Using Eqs.~2a!–~2c!, it is easy to verify directly that Eq
~25b! solves Eq.~25a!. If we now examine Eq.~25b! more
closely, using the specific expressions for the coefficie

am
(1,2) and gms

(1,2) given in Eq.~25a!, we find that within the
approximation of neglecting terms of relative ordersV2, the
integrand in Eq.~25b! is an exact stochastic differentia
Thus the integration can be carried out explicitly~see the
Appendix!, with the result

CmÞs~ t !5
Vms

Es2Em1M2
i

2
G

S expF i ~Em2Es2M !t2
1

2
Gt G

2expF1

2
s~Em2Es!Wt2

1

4
s2~Em2Es!

2t G D .

~25c!

This expression can be easily verified, by use of Eqs.~2a!–
~2c!, to be the solution to Eq.~25a! ~up to a residual error o
relative ordersV2). Using Eq.~3c! to take the expectation
of Eq. ~25c!, we recover the result of Eq.~20a!. From Eq.
~25c! we find an explicit formula foruCmÞs(t)u2,

uCmÞs~ t !u25
uVmsu2

~Es2Em1M !21
1

4
G2

3S exp~2Gt !1expFs~Em2Es!Wt2
1

2
s2~Em

2Es!
2t G22 expF1

2
s~Em2Es!Wt2

1

4
s2~Em

2Es!
2t2

1

2
Gt Gcos~Em2Es2M !t D . ~25d!

Again using Eq.~3c! to take the expectation of this formula
we recover the result of Eq.~20c!.

IX. STOCHASTIC SUPPRESSION OF THE QUANTUM
ZENO EFFECT

In Eqs. ~21b!,~21c! we saw that the leading small tim
behavior of the summed expected probability in the de
channels is

~V2!ss

1

4
s2t, ~26!

rather than the result (V2)sst
2 that would hold for vanishing

s. As a result,E@ uCs(t)u2#21 vanishes linearly int for non-
02500
ts

y

zero s, rather than quadratically int as for the unmodified
Schrödinger equation. Since the quadratic vanishing
uCs(t)u221 in standard quantum mechanics is the origin
the quantum Zeno effect@14#, we conclude that in the energ
driven stochastic Schro¨dinger equation, the quantum Zen
effect is suppressed.

Let us verify this directly from the stochastic differenti
equation of Eq.~1a!, in analogy with the direct calculation
@15# of uCs(t)u221 for small times for the ordinary Schro¨-
dinger equation. Applying the Itoˆ rule of Eq.~2a!, we have

du^s~0!us~ t !&u2u t50

5^s~0!udus~ t !&u t501^s~0!udus~ t !&* u t50

1^s~0!udus~ t !&u t50^s~0!udus~ t !&* u t50 . ~27a!

From Eq.~1a! we have

dus~ t !&52 iH us~ t !&dt2
1

8
s2

„H2^s~ t !uHus~ t !&…2us~ t !&dt

1
1

2
s„H2^s~ t !uHus~ t !&…us~ t !&dWt , ~27b!

and so settingt50 and projecting on̂s(0)u gives

^s~0!udus~ t !&u t5052 i ^H&sdt2
1

8
s2^~H2^H&s!

2&sdt,

~27c!

with ^Hn&s5^s(0)uHnus(0)&. Substituting Eq.~27c! into Eq.
~27a!, we thus get the first term in the smallt expansion of
u^s(0)us(t)&u221,

u^s~0!us~ t !&u2512
1

4
s2^~H2^H&s!

2&st1O~ t2!.

~28a!

This equation gives a general formula for the stochastic s
pression of the quantum Zeno effect, independent of
assumptions about the potential. When the general form@15#
of the ordert2 term coming from the standard Schro¨dinger
evolution is included, Eq.~28a! becomes

u^s~0!us~ t !&u2512^~H2^H&s!
2&sS 1

4
s2t1t2D1O~s4t2!

1O~ t3!; ~28b!

in other words, the first two terms in the smallt expansion
are governed to leading order ins by the initial state energy
variance. When the potential is assumed to obey Eq.~9a!, we
have

^H&s5Es1Vss5Es ,

^H2&s5Es
212EsVss1~V2!ss,

^~H2^H&s!
2&s5^H2&s2^H&s

25~V2!ss,
~28c!
7-9
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and so Eq.~28b! becomes

u^s~0!us~ t !&u2512~V2!ssS 1

4
s2t1t2D1O~s4t2!1O~ t3!,

~28d!

in agreement with the result of Eqs.~21a!,~21b! and the uni-
tarity sum rule.

X. DISCUSSION AND ESTIMATES OF BOUNDS ON s

We have seen that to leading order in the perturbing
tential, the stochastic terms governed bys do not affect ei-
ther the Lorentzian line profile or the transition rate per u
time as evaluated in the Weisskopf-Wigner approximati
but only produce a change in the short time transient beh
ior of the transition probabilities from the initial state. This
a direct result of the fact that the energy-driven stocha
Schrödinger equation is energy conserving. On dimensio
grounds, the transition rate per unit timeG could contain, in
addition to the usual terms of the formd(Es2Em)uVmsu2, a
term of the forms2(V2)ss. However, this additional term is
not energy conserving, and as a result we have seen th
coefficient precisely cancels to zero in the Weisskopf-Wig
approximation.

Because the transition rate per unit time and Lorentz
line shape are unaffected bys, bounds ons from particle
decays result only from experiments in which a metasta
system is monitored as function of time from a known tim
~or vertex location! of formation. According to Eqs.~28a!–
~28d!, for small times the effective transition rate per un
time is

GR5
1

4
s2~DE!25

1

4
s2~V2!ss, ~29a!

with (DE)25^(H2^H&s)
2&s the initial state energy vari

ance. This can be interpreted as an early time decay
coming from spontaneous reduction induced by the stoc
tic fluctuation terms, in agreement with the estimateGR
;s2(DE)2 used in earlier discussions@4,6#. In order for the
rate of Eq.~29a! to not lead to pronounced early time devi
tions from the observed decay rateG, we must have

GR,G, ~29b!

which writing s25Ms
21 implies the bound

Ms.
~V2!ss

4G
5

(
mÞs

uVsmu2

8p (
mÞs

uVsmu2d~Em2Es!

[
ED

8p
, ~30!

with ED defining an energy characteristic of the decay p
cess. In a particle physics context, a first guess would b
estimateED as being of order the mass of the decaying p
ticle. The most massive decays for whichG has been mea
sured by tracking a metastable system from the point of
mation appear to bep0→gg decay, with an initial mass
02500
-

t
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of 140 MeV, and charmed meson decays, with an initial m
of around 2 GeV. EstimatingED in Eq. ~30! as the decaying
particle mass, these give respective bounds onMs of order 6
MeV and 80 MeV, respectively. IfMs were significantly
larger than these bounds, one would have observed ano
lous accumulations of decay events close to the produc
vertex, as a result of decays induced by spontaneous re
tion. For comparison, the observation of coherent superp
tions of energy eigenstates in the neutrino,K-meson and
B-meson systems gives bounds@16#, respectively, ofMs

.10220 GeV, Ms.2310215 GeV, and Ms.2
310213 GeV.

Thus the charmed meson decay bound onMs represents a
significant improvement over the coherent oscillati
bounds. However, it is still smaller than the Planck ma
which is very likely the expected value ofMs , by a factor of
1020. We conclude that the theory of decaying states in
energy-driven stochastic Schro¨dinger equation places onl
very weak empirical bounds on the magnitude of the stoch
ticity parameters.

We leave for future study two issues that can be addres
within the general framework established here. The first is
analysis of the nature of the transition between the short-t
regime with decay rateGR , and the exponential decay re
gime with decay rateG. This is governed by the solution o
Eqs. ~17a!,~17b! before making the Weisskopf-Wigner ap
proximation of replacingE in the denominator of the fina
term in Kab by Es . The second is an analysis of the magn
tude of the energyED defined by Eq.~30!, for various dy-
namical models of the decay process, as reflected in the
ergy spectrum of the unperturbed statesum& and in the
magnitudes of the decay-inducing matrix elementsVsm.

Note added.Lajos Diósi @17# has pointed out an elegan
stochastic-theoretic technique that allows the main phys
results of this paper to be derived in a few lines, start
from the standard quantum mechanical results that h
when the stochasticity parameters is zero. Diósi makes
three principal observations. The first is that the quantities
direct physical interest, as pointed out in Sec. V, are
expectationsE@ uCm(t)u2# of the squared magnitudes of th
perturbation coefficients. Since according to Eq.~6b! we
have

uCm~ t !u25u^muc~ t !&u25^muc~ t !&^c~ t !um&5^mur~ t !um&,

~31a!

with r(t) the density matrix

r~ t !5uc~ t !&^c~ t !u, ~31b!

to calculateE@ uCm(t)u2 it suffices to knowE@r(t)#, in other
words

E@ uCm~ t !u2#5^muE@r~ t !#um&5Tr~ um&^mu!E@r~ t !#.
~31c!

Since the dynamics ofE@r(t)# is governed by the Lindblad
type equation of Eq.~5!, to calculate the physically relevan
expectations it thus suffices to solve the dynamical prob
specified by Eq.~5!, supplemented by the initial condition
7-10
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E@r~0!#5r~0!5usA&^sAu. ~31d!

Diósi’s second observation is that the dynamical probl
specified by Eq.~5!, with the initial condition of Eq.~31d!,
can be compactly solved by a simple stochastic trick. T
trick uses the fact@18# that there is a second stochas
Schrödinger equation, simpler in structure than that of E
~1a!, which also leads to Eq.~5! as the equation for the
evolution of the stochastic expectation of its density mat
To see this, consider the stochastic Schro¨dinger equation

duc&52 iH uc&dt2
1

8
s2H2uc&dt1

1

2
isHuc&dWt .

~32a!

This equation differs from that of Eq.~1a! in having an
imaginary noise term, with operator coefficientH, instead of
a real noise term with operator coefficientH2^H&. A simple
calculation, using the Itoˆ calculus rules of Eq.~1b!, shows
that Eq.~32a! also leads to preservation of the norm of t
stateuc&, and leads to the density matrix evolution equati

dr5 i @r,H#dt2
1

8
s2@H,@H,r##dt1

1

2
is@H,r#dWt ,

~32b!

which has the stochastic expectation

dE@r#5 i @E@r#,H#dt2
1

8
s2@H,@H,E@r###dt, ~32c!

which is identical to Eq.~5!. Hence the imaginary nois
equation of Eq.~32a! will lead to the same results for th
physical quantitiesE@ uCm(t)u2# as the real noise equation o
Eq. ~1a!, even though the stochastic details of the two p
cesses differ.

Diósi’s third observation is the fact that Eq.~32a! can be
immediately formally integrated to give

uc~ t !&5expF2 iH S t2
1

2
sWtD G uc~0&, ~33a!

as can be readily ascertained by use of Eq.~2c! with the
choice

a5
1

2
isH. ~33b!

Combining this observation with the first two, then leads t
very simple rule for calculating the stochastic modificatio
of decay processes governed by Eq.~1a!. Let E@ uCm

s (t)u2# be
the quantities of physical interest, viewed as functions os
as well as oft, so thatE@ uCm

0 (t)u2#5uCm
0 (t)u2 are their val-

ues as calculated from the standard Schro¨dinger evolution
with no stochasticity. Then Eqs.~31a! through ~33b! imply
the simple relation

E@ uCm
s ~ t !u2#5EFUCm

0 S t2
1

sWtD U2G , ~34a!

2

02500
e

.

.

-

a
s

between the probabilities calculated in the standard Sc¨-
dinger analysis, and the stochastic expectations of the p
abilities as calculated from Eq.~1a!. The recipe is simply
this: take the known expressions for the probabilities cal
lated in standard quantum mechanics, replacet by t
2 1

2 sWt , and take the stochastic expectation. The nee
stochastic expectations of powers ofWt can all be read off
from the expansion of Eq.~3c! in powers ofa,

E@Wt#50, E@Wt
2#5t, E@Wt

3#50, E@Wt
4#53t2, . . . .

~34b!

Let us now apply Dio´si’s observations to rederive th
principal results found above for the stochastic analog of
Weisskopf-Wigner analysis. First, let us consider the sh
time behavior of the survival probability given in Eq.~28b!.
The standard answer whens50, which gives the quantum
Zeno effect, is

u^s~0!us~ t !&u2512^~H2^H&s!
2&st

21O~ t3!. ~35a!

Following the recipe, we have

EF S t2
1

2
sWtD 2G5EF t22tsWt1

1

4
s2Wt

2G5t21
1

4
s2t.

~35b!

On substitution into Eq.~35a! this gives for generals

u^s~0!us~ t !&u2512^~H2^H&s!
2&sS t21

1

4
s2t D1•••,

~35c!

in agreement with the result for the stochastic modificat
of the quantum Zeno effect given in Eq.~28b!.

Next let us apply the recipe to the formula for the initi
state survival probability obtained using the Weissko
Wigner approximation, which is valid for timest that are not
too small ~and also not too large!. The standard analysi
gives

uCs
0~ t !u25exp~2Gt !, ~36a!

with G the golden rule decay rate of Eq.~19b!. Replacingt
by t2 1

2 sWt and using Eq.~3c! to take the stochastic expec
tation, we get as the exact formula for the stochastic mo
fication of the Weisskopf-Wigner approximation

E@ uCs
s~ t !u2#5expF2GS 12

1

8
s2G D t G , ~36b!

which reduces, when the correction term of relative ord
s2G is neglected, to the answer found in Eq.~20b!. Since
s2G;O(s2V2), we see that the calculation of Secs. IV–V
above did not succeed in keeping all terms of orders2V2,
and in fact there is a small stochastic correction to the de
rate, with the corrected decay rate given by

Gs5GS 12
1

8
s2G D . ~36c!
7-11
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However, writing s25Ms
21 as in Sec. X, as long asMs

.Es this correction is not significant within the Weisskop
Wigner approximation scheme, which treats the line widthG
as a small quantity relative toEs .

Finally, let us apply the recipe to the formula giving th
probability for a transition to the stateum&. The standard
Weisskopf-Wigner approximation result for this is given
Eq. ~20c! with s50,

uCmÞs
0 ~ t !u25

uVmsu2

~Es2Em1M !21
1

4
G2

S exp~2Gt !11

22 expF2
1

2
Gt Gcos@~Es2Em1M !t# D .

~37a!

Applying the recipe, and again using Eq.~3c! to evaluate the
needed expectations, we get the exact stochastic extensi
Eq. ~37a!,

E@ uCmÞs
s ~ t !u2#5

uVmsu2

~Es2Em1M !21
1

4
G2

H expF2GS 1

2
1

8
s2G D t G1122 expF2

1

2
GS 1

2
1

16
s2G D t2

1

8
s2~Es2Em1M !2t G

3cosF ~Es2Em1M !S 12
1

8
s2G D t G J .

~37b!

Again, when simplified to leading order inV, this gives the
result of Eq.~20c! above. However, even before droppin
nonleading terms inV, we see that Eq.~37b! implies the
Lorentzian formula of Eq.~20d! in the large time limit.

From the above exposition, we see that Dio´si’s observa-
tions not only greatly simplify the calculation of the phys
cally relevant quantities, but also give results that are co
pletely independent of the assumption of Eq.~9a! that was
used to linearize the stochastic equation.@This is something
that one might have already suspected from the fact that
~28b! is more general than Eq.~28d!.# Thus, the only ap-
proximations that are needed to get stochastic results
those that are used in the standard, non-stochastic qua
mechanical analysis. Moreover, the ‘‘miraculous’’ cancel
tion of thes2 terms in the Weisskopf-Wigner approximatio
to the mass and decay matrices, exhibited above in Eq.~18a!,
is given a deeper explanation. There is an extensive litera
@19# discussing the decay problem without making t
Weisskopf-Wigner approximation~i.e., without replacingE
by Es in the orderV2 terms of the Laplace transform kern
Kab), and these discussions can all be converted to res
for E@ uCm

s (t)u2# in the stochastic case, by using the recipe
02500
of

-

q.

re
um
-

re

lts
f

replacing t by t2 1
2 sWt in the corresponding formula fo

uCm
0 (t)u2 and taking a stochastic average overWt .
The relation of Eq.~34a! between stochastic and standa

quantum mechanical probabilities can be applied to ot
problems as well. For example, the density matrix of a tw
level system can be represented in the form

r5
1

2
~12RW •tW !, ~38a!

with tW5(t1 ,t2 ,t3) the standard Pauli matrices, and withRW
5(R1 ,R2 ,R3) a vector summarizing the structure of th
traceless part of the density matrix. The standard,s50
Schrödinger equation describing Rabi oscillations of the tw
level system under the influence of an applied field oscil
ing at the frequency of the level separation~in co-rotating
coordinates, neglecting the counter-rotating field compone!

gives for the equation of motion@20# of the vectorRW us50

[RW 0,

dRW 0

dt
5vW 3RW 0, ~38b!

with uvW u5V the angular frequency of precession ofRW 0. The
probabilities for finding the system in the upper and low
levels are given, as a function of time, by

P6
0 ~ t !5

1

2
@16R3

0~ t !#. ~38c!

Since the general solution of Eq.~38b! has the form

RW 0~ t !5VW 1cosVt1VW 2sinVt, ~39a!

with VW 1,2 fixed vectors that depend on the initial state and
structure of the Hamiltonian, and since

EFcosVS t2
1

2
sWtD G5expS 2

1

8
V2s2t D cosVt,

EFsinVS t2
1

2
sWtD G5expS 2

1

8
V2s2t D sinVt,

~39b!

we have under the stochastic evolution of Eq.~1a!

E@RW s~ t !#5expS 2
1

8
V2s2t DRW 0~ t !. ~39c!

By Eq. ~38c!, this gives for the expected probabilities whe
the system evolves under the stochastic Schro¨dinger equa-
tion,

1

2
2E@P6

s ~ t !#5expS 2
1

8
V2s2t D F1

2
2P6

0 ~ t !G . ~39d!

This can be applied, for example, to the quantum Zeno ef
experiment of Itano et al.@21#, who carry out a proposal o
Cook @22# to make repeated measurements of a two-le
7-12
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system while the vectorRW is precessing for a time interva
t5p/V, for which the exponential damping factor in E
~39c! becomes exp(21

8pVs2). Corresponding to the exper
mental valueV5320.7 MHz and the fact that probabilitie
were observed to an accuracy of about .02 in this exp
ment, and were found to agree with the standard Schro¨dinger
theory, we get a bound onMs51/s2 of Ms.2
310215 GeV, comparable to that obtained from oscillatio
in the K-meson system.
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APPENDIX

We give here the details of the integration of the stoch
tic differential equation that appears in Sec. VIII. Consid
the linear stochastic differential equation

dCt5~AtdWt1Btdt!Ct1PtdWt1Qtdt, ~A1!

which is to be solved for the unknown stochastic functionCt
given the known functionsAt , Bt , Pt , andQt . Although we
shall proceed as if these known functions were determinis
in fact all our manipulations and the final solution are u
changed@23# if the input functions are themselves stochas
To solve Eq.~A1!, we transpose theCt term on the right to
the left and multiply by a factorFt , which is to be deter-
mined, giving

Ft@dCt2~AtdWt1Btdt!Ct#5Ft@PtdWt1Qtdt#.
~A2!

We now look for anFt which makes the left-hand side of Eq
~A2! a total differential, up to terms independent ofCt that
are of the same form as the terms on the right-hand s
Making the ansatz

Ft5expF E
0

t

~audWu1budu!G , ~A3!

we find by use of Eqs.~2a! and ~2c! of the text that

d~FtCt!5FtFdCt1a tdWtCt1S b t1
1

2
a t

2DdtCt

1a tdWtdCtG , ~A4!

which on substituting Eq.~A1! for the finaldCt on the right,
and using Eq.~1b! of the text, gives
02500
i-

f

s,
I

,
s

-
o
t-
s-

-
r

c,
-
.

e.

d~FtCt!5FtFdCt1a tdWtCt1S b t1
1

2
a t

21a tAtDdtCt

1a tPtdtG . ~A5a!

Hence if we choose

a t52At , b t52Bt1
1

2
At

2 , ~A5b!

then Eq.~A5a! takes the form

d~FtCt!5Ft@dCt2~AtdWt1Btdt!Ct2AtPtdt#,
~A6!

which by use of Eq.~A2! becomes

d~FtCt!5Ft@PtdWt1~Qt2AtPt!dt#. ~A7!

The dependence on the unknown functionCt is now entirely
in the form of an exact differential, and so Eq.~A7! can be
immediately integrated to give

Ct5Ft
21FC01E

0

t

duFu„PudWu1~Qu2AuPu!du…G
5expH E

0

tFAudWu1S Bu2
1

2
Au

2DduG J XC0

1E
0

t

du expH 2E
0

uFAvdWv1S Bv2
1

2
Av

2DdvG J
3@PudWu1~Qu2AuPu!du# C, ~A8!

which is the general solution of Eq.~A1!.
In Sec. VIII, we need only the case of Eq.~A1! in which

At5A, Bt5B, Pt5P ft , andQt5Q ft , with A,B,P,Q con-
stants and withf t of the form f t5exp(Kt), and so the solu-
tion of Eq. ~A8! then becomes

Ct5expS AWt1S B2
1

2
A2D t D H C01E

0

t

du expF2AWu

1S K2B1
1

2
A2DuG@PdWu1~Q2AP!du#J . ~A9!

Using the identity~proved by the same methods used to fi
the integrating factorFt),

exp„aWu1~b1K !u…@PdWu1~Q1aP!du#

5
P

a
d exp„aWu1~b1K !u…2

P

a S b1K2
Q

P
a

2
1

2
a2Dexp„aWu1~b1K !u…du, ~A10!

and takinga52A and b52B1A2/2, the PdWu term in
Eq. ~A9! can be eliminated. This gives an alternate form
the solutionCt ,
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Ct5expFAWt1S B2
1

2
A2D t G XC02

P

A H expF2AWt

1S K2B1
1

2
A2D t G21J 1FP

A
~K2B!1QG

3E
0

t

du expF2AWu1S K2B1
1

2
A2DuG C. ~A11!

Taking

A5am
(1)5

1

2
s~Em2Es!,

B52
1

2
~am

(1)!252
1

8
s2~Em2Es!

2,
ki

l

-

le

-

.
i,

rd

y

s

02500
P5
1

2
sVms,

Q52 iVmsf m , f m512
i

8
s2~Em2Es!,

K5 i ~Em2Es2M !2
1

2
G, ~A12!

in Eqs.~A9! and~A11! gives the results quoted respective
in Eqs.~25b! and ~25c! of the text.
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