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Weisskopf-Wigner decay theory for the energy-driven stochastic Schdinger equation
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We generalize the Weisskopf-Wigner theory for the line shape and transition rates of decaying states to the
case of the energy-driven stochastic Sclimger equation that has been used as a phenomenology for state
vector reduction. Within the standard approximations used in the Weisskopf-Wigner analysis, and assuming
that the perturbing potential inducing the decay has vanishing matrix elements within the degenerate manifold
containing the decaying state, the stochastic &tihger equation linearizes. Solving the linearized equations,
we find no change from the standard analysis in the line shape or the transition rate per unit time. The only
effect of the stochastic terms is to alter the early time transient behavior of the decay, in a way that eliminates
the quantum Zeno effect. We apply our results to estimate experimental bounds on the parameter governing the
stochastic effects. In addition, elegant stochastic-theoretic methods suggesteaibyr®issed to rederive the
principal results, without the assumptions needed to linearize the stochastic equation, and to give analogous
results for the Rabi oscillations of a two-level system.

DOI: 10.1103/PhysRevD.67.025007 PACS nuni§er05.10.Gg, 03.65.Ta

[. INTRODUCTION and line shapes in atomic and particle systems, since if the
stochastic terms in the Scliimger equation were to change

There has recently been considerable interest in the pothe standard Weisskopf-Wigner analysis of decay processes
sibility that quantum mechanics, and the Sclinger equa- in a significant way, then observable effects could result.
tion, may be modified at a very low level by effects arising Thus, to pursue phenomenological studies of the energy-
from Planck scale physics. Such speculations have been métiven equation, it is important to generalize the standard
tivated on the one hand by considerations from string theoryVeisskopf-Wigner decay theof$] to include effects of the
[1] and quantum gravit§2], and on the other hand by efforts €nergy-driven stochastic terms. This is the problem that is
[2—4] to achieve an objective equation describing state vecanalyzed in this paper.
tor reduction. The majority of the objective reduction discus- )
sions fall into two classes: those that postulate a stochastit. THE ENERGY-DRIVEN STOCHASTIC SCHRO DINGER
process producing spatial localizatif8], and those that pos- EQUATION AND PROPERTIES OF THE ITO
tulate an analogous stochastic process leading to localization STOCHASTIC CALCULUS
in energy [4] (the so-called “energy-driven” stochastic
Schralinger equation.Both the spatial localization and the
energy localization stochastic Schinger equations avoid
problems with superluminal signal propagation that charac
terize attempts at deterministic nonlinear modifications of the

Letting | ) denote a unit normalized Scltimger picture
state vector, the standard forf8,4,6] of the energy-driven
stochastic Schidinger equation igwith z2=1)

Schralinger equation[5]. We find the energy-driven ap- d|l,//>=—iH|l/I>dt—EO'Z(H—<H>)2|(//>dt+ Ea(H
proach particularly appealing because it is energy conserv- 8 2
ing, leads with no approximations to Born rule probabilities —(HY)| ) dW,. (13

and to the Luders projection postulate, has sensible cluster-

ing prgperties, and Whe_n environmental intera_ctions_ ar§ereH is the Hamiltonian{H)=(|H| ) is the expectation
taken into account explains state vector reduction with &y the Hamiltonian in the state)), o is a numerical param-
single Planck scale stochastic paraméte6]. eter governing the strength of the stochasticity, did is an

Although physical prejudices might suggest a Planckis siochastic differential that, together witht, obeys the
scale magnitude for the stochastic parameter in the energyiandard ftocalculus ruleg9]

driven equation, one can instead take the point of view that

the stochastic parameter can hawveriori any value, and use dW2=dt, dw,dt=dt?*=0. (1b)
current experimental information to place bounds on it. This

approach has been pursugt] in the context of particle By construction, the nonlinear evolution of Ed.a) guaran-
physics systems that exhibit oscillations between differentees the preservation in time of the unit normalization of the
mass eigenstateshe K-meson,B-meson, and neutrino sys- state vectot ).

tems, with results that are summarized in the final section of  |n the following sections, we shall need a number of prop-
this paper. An alternative source of bounds on the stochastigrties of the Itccalculus that we summarize here. First of alll,
parameter could come from experiments observing decay the 1o calculus the Leibnitz chain rule generalizes to

d(AB)=(A+dA)(B+dB)—AB=(dA)B+AdB+dAdB,
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with the final termd AdB contributing a term proportional to  1ll. INITIAL FORMULATION OF THE DECAY PROBLEM
dt when thedW; contributions to botldA anddB are non-

zero. LettingW, be the Brownian motion Let us now formulate the decay problem for the stochastic

Schralinger equation of Eq14), following the standard pro-
t cedure for the usual Schiimger equation without stochastic
Wtzf dw,, (2b)  terms. We suppose that for times 0 the HamiltoniarH is
0 given by an unperturbed Hamiltonia,, with eigenstates
we see in particular that [n) and eigenvaluek,,
d expl aW,) = exp( aW,)[ exp adW,) — 1] Holn)=Eq[n), (6a)

and that the system under consideration is in an eigenstate
|sa) with eigenvalueE, which is one of a set of degenerate
_ . _ . energy eigenstatgs,), a=1, ... D. Because Eq(la) acts
Letting E[ . . .] denote the stochastic expectation of its ar-as an ordinary Schdinger evolution on a stafe) that is an
gument, and Iett|ng\(t) denote any function of the stochas- energy eigenstate, the system remains in the $a\tﬁ as
tic process up to tim¢ we have long as the Hamiltonian remains equal . Hence the
_ starting point for the standard decay analydi$] is also a
E[dWA(1)]=0, (33 consistent starting point for its stochastic extension under Eq.
since the Itodifferential refers to the time interval fromto ~ (1a- As in the standard procedure, we assume that-&t a

t+dt, and hence is statistically independent of the procesime-independent perturbatiov is switched on, so that for

up to timet. Thus, taking the expectation of E@c), we get tlme§t>0 the Hamiltonian isH=|_—|0+V. The initial s_tate
the differential equation |sa) is then no longer an energy eigenstate, and so will decay

into various other statesn); our problem, as in the usual

=explaW,) . (29

1
adW,+ Eazdt

1, case, is to find the partial transition rates for this decay and
dE[explaW,)]=E[expaWy) |5 adt, (8D the probability amplitude for the system to remain in the
initial degenerate group of states.
which can be immediately integrated to give In formulating this problem, it is convenient to expand the

state|¢) over the basign) and, as in the standard case, to
E[exp( aW)]zexp{Eazt) 30 remove the Schdinger time evolution associated with the
t 2 ’ unperturbed Hamiltoniaky, by writing
a result that will be needed later on.
Let us make an elementary application of the fliomal- (1)) =2 Inyexp(—iEt)Cp(t). (6b)
ism, to write the stochastic Schtimger equation of Eq(1a) "
in an equivalent form. First of all, forming the density matrix

Substituting Eq(6b) into Eq.(1a), and projecting om|, it
p=|v){(y], (4a) is a matter of straightforward but somewhat tedious algebra
to compute the stochastic evolution equation@gy(t), with
we have from Eq(2a), the result

dp=(d[y)) (¢l + ) d{s| +d[g)d{u], (4b)

which on substitution of Eq(1a) and use of the ftaalculus
rules of Eq.(1b) gives the evolution equation for the density
matrix,

dCo() = anCrm()+ 2 BmrCa(l),

1 ) ) 1
am=—go (Em—(H))“dt+ EO'(Em

1 1
dp=i[p,H]dt— gUZ[H,[H,P]]dH' >0lp.Lp,H]JdW,. —(H)dW,,
(40

=—iV,exdi(E,—E,)t]dt
Taking the stochastic expectation of this equation, using Eq. Bmn mr@XAL (En=En)t]

(3a), gives a differential equation of the Lindblad typEQ] 1
for E[p], _gaz[(Em"' En—2(H))Vinn
dE[p] . 1 + (V) mnlexd i (Eq— Eqt]dt
S [E[p) HI- SO HIHEPIL. (6) Vel (EnEn]
1 .
The fact that this equation is linefin contrast to Eq(4c), T2 0V mneXHLi (B = Ep) AW, (78

which is nonlinea} is the fundamental reasd®]| why Eq.
(1a does not give rise to superluminal signal propagation. The corresponding expression fdd) is
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Vo, =0, ab=1,...D. 9
<H>:; En|Cn('t)|2+%1 Vmrexdi(Ep, SaSh (93
—E)t]CX(1)C (1) (7b) There are important, physically relevant cases in which Eqg.
n m n .

(9a) is obeyed as a result of selection rules. For example, for
radiative decays treated in the electric dipole approximation,
with Hg taken as the atomic Hamiltonian plus the free radia-
tion Hamiltonian, and with/ taken as the atomic coupling to
the transverse electromagnetic modes,(Hg).is obeyed as a
result of parity invariance when the states in the initial de-
generate manifold all have the same parftye caution,
IV. APPROXIMATION TO LEADING ORDER IN V however, that Eq(9a) is not valid for the analysis ok (or
. . , B) meson systems whéth, is taken as the strong interaction
Equations(7a—(7c) are a complicated, nonlinear set of | amiitonian. Thus here either one has to employ the nonlin-
stochastic differential equations, and so to solve them aPagr equations following from Ed80), or one has to redefine
proximations will be needed. Following the Weisskopf- H, so as to impose Eq9a by inciuding inH, the |AS|
Wigner analysis, we shall make the approximation of regard-_> (or |AC|=2) weak interaction effective Hamiltonian
ing V as a small perturbation. The coefficie@s, me{Sat  tarms withV defined to contain only theAS|=1 (or |AC]|
for states not in the initial degenegate manifold will then be _ 1) v’veak interaction terms responsible for(or B) meson
qf orderO(V), and we neglecO_(y ) _and_h_|gher contribu- decays. Such a redefinition is consistent in the vacuum satu-
tIOI’lS. to them(except those arising implicitly thrpggh our -iion approximation for théAS|=2 (or |AC|=2) terms]
solution for theCSa). On the other hand, the coefﬂuerﬁga With the simplifying assumption of Eq9a), Eq. (8¢) be-
of states in the degenerate manifold can be of order unitfgomes simply
and we calculate these coefficients to orstéraccuracy, ne-
glecting corrections of ordar® and higher. In a similar fash-
ion, in expressions involving the stochasticity parameter
we shall retain terms of orderV and its powers¢V)?, etc., o o )
but shall neglect terms of ordefv? and higher that involve Substituting this into Eq(7a), and dropping terms that are
extra factors ofV relative to the terms that we are retaining. Not of leading order inV in the sense defined above, Egs.
Finally, although we shall see th&,—E is effectively (7a),(7b) simplify to the following set of linear equations:
small, we shall retain all terms of ordew(E,—Ejy),
0?(Em—Egy), [0(En—EJ)]? etc., but shall drop terms
o(En— Eg) 0O(V?) that are smaller than these by a factor of
orderoV? or V2.
Making use of the perturbative ordering of the coefficients X (Yimd Wi+ ¥55d ) Cy(t),
C,, we begin by simplifying and approximating the expres-
sion in Eq.(7b) for (H). Separating off the states in the

In these equation¥,,, and (V?),,, denote the respective
matrix elements

an:<m|v|n>i(V2)mn:<m|V2|n>- (70

(H)=E¢+0(V?), (9b)

dC(t) = (MdW,+ aPdt)Con(t) + >, exdi(Em—Ept]

1
initial degenerate manifold, the sum in E@b) becomes V= 50(En—Ey),
(H)=Eo [Cq, [+ 2 Ve, C3Co +O(VY). (81 1 1
ad)=— 50X (En—Eg?=—5(al))?,
However, since the state vecta¥) remains unit normalized,
we have
(1) 1
Ymn™ Eo'vmna

> ICs [2=1— 2, [Cul?=1+0(V?), (8b)
a a mé{s,}

) 1
and so we have ’)’Sr%r)mz —1Vin— go'z[(Em"' En—2Es)Vimnt (Vz)mn]-
(109

H)=E¢+ >, Vs CECq +0O(V?). 8¢ . . . .
(H)=E, % 52%Cs,Coy T OV (89 Corresponding to the magnitude ordering of the coefficients

C,, introduced above, it is convenient to rewrite Ef0a as
If we substitute Eq(8c) back into Eq.(7a), we are still  separate equations for the two cases; {s,} andmé¢ {s,}.
left with a nonlinear set of equations. Therefore we shall alsd or me {s,} the coefficientsa{"? vanish; separating the
introduce the simplifying assumption that the perturbing po-sum ovem into terms wheren e {s,} andn & {s,}, using the
tential has vanishing matrix elements within the degeneratassumption of Eq(9a), and dropping terms of nonleading
manifold containing the initial state, so that order inV, we get
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1 dE[|Crn(t)|?]1=E[(dCX(1))Cp(t) + CX (1) dCry(t
4G, (D= —o2dtS (V3. . Co(+ S extli(Ew [[Cm(t)[“]1=E[(dCH(1))Cr(1) ()dCy(1)
a 8 b ab b ngfsy +dCE(1)dCr(D)]. (129

—Entl(y ddWet yZRdDCa(D), Substituting Eq(10d) for dC,,(t) and using Eq(3a), which
eliminates thedW, contributions, and using the fact that to

1 leading order inv we can replac€, (t) by its expectation,
O Py D~ _jv. f (10b) -
Ysn ™ 29Vsne Ysn Sah'n» we get after some algebraic simplification the formula
. —_— d ' .
where we have introduced the definition &E[|Cm(t)|2]:eXF[—l(Em— EOtif nE[Crr(t)]
i
fo=1— goz(En—Es). (100

X 2 Vi ELCE (1]

Formé{s,} the coefficientsx{:? are nonzero, but only the
terms withne{s,} have to be retained in the sum ower
and so we similarly get

—exdi(En— EQtlif 5E[CH(D)]

X 2 Vi E[Cq (1)]
dCn(t) = (aPdW,+ a{Pdt)Cp(t) + exd i (Ep, 2
2

, (12D

1
+ —_ 2
—EQUS (Rl dWer R dnce (), 2972 Vg ELC (1]

. which can be integrated to giE{ |C(t)|?] once the expec-
1 _ > Vs, Yﬁfga:—iVmsafm- (100 tationsE[C(t)] and E[Csa(t)] are known.

Y . .
M 2 To get a closed set of equations for the expectations of the

) ) .. coefficients, we simply take the expectations of E{€b)
Equationg108—(10d) are the basic system of stochastic dif- and(10d), and use Eq(3a), which again eliminates the\W,
ferential equations that we shall solve in the subsequent se¢y hiributions. FOE[C, ] we thus get

tions.
d 1 ) )
V. EQUATIONS FOR EXPECTATIONS aE[CSa(t)]: ~g” > (Vv )s s, ELCs (D]
OF THE COEFFICIENTS b

The principal quantities that we wish to calculate are the I exd i(E.—E.t
expectationsE[|C(t)|?] of the squared magnitudes of the néZ{sa} HI(Es—Ent]
coefficients, since these give the expectations of the prob- _
abilities for the various states to be occupied. We shall show X(= Vs afaE[Ca(D)], (139

in this section that, within our approximations, these can be
directly related to the expectatiol§ C,,(t)] of the coeffi-  while for E[C,(t)] with mé&{s,} we find
cients themselves, for which we shall derive a closed, linear
set of ordinary differential equations.

Again, we consider separately the case{s,} and
me{s,}. ForCs , we write

d 1, ) )
GELCn(0]=— 5 o%(En— E)E[Cr(1)]+ exili (En

~EJ2 (~)Vimg,fmE[Cq (D] (13D

Cs,(D=E[Cs (1) ]+ A4(1), (119
with E[A,(t)]=0, and withA,(0)=0 since the stochastic VI. SOLUTIONS FOR EXPECTATIONS
terms in the differential equation act only after0. How- OF THE COEFFICIENTS

ever, referring to Eq(10b) we see thatlC,_is of orderV?,

We proceed now to solve the linear system of equations
and soA,(t) must also be of ordev?. Therefore P 4 d

for the expectations of the coefficients given in EGk3a),
(13b). Since the problem is defined on the half line0, the
natural way to do this is by using the Laplace transform.
Defining

and so to the accuracy to which we are working, we can

E[|Cs,(D[?1=]E[C (DI[2+O(VY, (11b

computeE[|CSa(t)|2] from the expectatiorE[Cs (t)], ig- ("

noring the effects of fluctuations. 9m(P)= Jo dtexp(~pHE[Cr(D)], (143
We consider nexE[|C(t)|?] for mé {s,}. Applying the

Ito rule of Eq.(2a), we have we have, by an integration by parts,
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* dE[C(1)]
[ dtexs—py =g pgp) - ELCH0))
(14b)
and also
| dtexs—pyexi (e, E)uELC, 0]
0
:gn(p_iEm'HEn)r (14C)

with the integrals in Eq914a—(14¢) defining analytic func-
tions ofp in the right hand half plane Re>0. The inversion
of the Laplace transform is given by the formula

1 e+io
E[Cn(D]= ﬁL_iw dpexp(pt)gm(p), (140

with e>0 an infinitesimal positive constant.

Taking the Laplace transform of Eq&l3a), (13b), and
using the initial conditionsE[CSa(O)]zCsa(O)z6aA and
E[C(0)]=C,(0)=0, mé&{s,}, we get

1
pgsa(p) — 0ap= — 5022 (Vz)sasbgsb(p)
b

+ 2 (=1)Venfnn(p+iEa—iEy),

né{s,}
(153
and formé {s,},
1 2 2
PIn(P)=— §0' (Em—Es)“gm(p)
25 (=1)Ving T (p+Es—Ep).
(15b

Solving Eq.(15b) for gn(p), mé{s,}, and shiftingp
—p+iE,, in the solution, we get

. . 1 -t
On(P+iEn) =|p+iEn+ gUZ(Em_Es)z

X 2 (=)Vimg,fn0s,(P+iEs). (163

Shifting p—p+iEs in Eq. (158, and then substituting Eq.
(163, we get an algebraic equation for the set of quantities

9s,(PHIEy),

Eb: Kabgsb(p+ iEg) = dan.,

1
Kap=(PFiEs) dapt _UZ(VZ)S s
8 a’b

fﬁ1Vsamesb

+ > —— .
mé{sy} p+|Es+|(Em_ Es)fm

(16b

PHYSICAL REVIEW D 67, 025007 (2003

In physically interpreting these equations, we must re-
member that the Laplace transform variaplés related to
the usual energy variable by p= —iE. Making this substi-
tution in Egs.(1639,(16b) we have, respectively,

1 -1
gm(—IE+iIE,)= —iE+iEm+§(rz(Em—ES)2

X 2 (=)Vimg fms,(—IEFiE),

(179
and
% Kabgsb(_iE+iEs)=5aAv
1
Kap=(—IE+IEg) dapt 50_2(\/2)5 s,
frznvsamvmsD
+ . (@a7p

mé{s,} _iE"HEs'H(Em_Es)fm

Corresponding to the changes of variable that have been
made, the inversion formulas become

ietoo
dEexp —iEt)

€—

L
E[C, ()= 5 exniED |

X g, (—IE+IEy),

ietoo

E[Crmesy(D]= %ememt)f_ dE exp(—iEt)

€—®©

X gm( —IE+iE). (179

Inspecting the equation for the kern€l,, we see that
apart from orderV? terms it is a diagonal matrix iE
+iEs) dap - Hence the solutiogg (—IE+IEg), on the inver-

sion contour of integration, will be appreciable only in the
vicinity of E=ie+Eg, that is, only near energy shell. This
motivates the Weisskopf-Wigner approximation of replacing
E in the denominator of the final term iK,, by ie+Eg,
with the result thakK,, then becomes a linear function Bf
Before making this approximation, the ker&],, has a non-
trivial dependence on the stochasticity parameterHow-
ever, after making the Weisskopf-Wigner approximation, this
o dependence completely cancels:
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1 f %Vsamvm S 1 f rznvsamvm S,

_0'2(\/2)5 s T E - - - _’_Uz(vz)s s T 2 - - e

8 b mefs,) —IE+iEgt+i(En—Eg)fn, 8 b mefs,) e+i(En—Es)fm
fmvsamvmsb

1
- _ 2v2 + s
g7 Vs, méz{sa} e+i(Ep—Ey)

[1- (i/B)UZ(Em_ Es)]vsamvmsD

1

— 20\/2

= 0* (Vs g+ 2 _
8 %% mé {s,} et+i(En—Ey)

- iVsamesb
=> —, (183

a mé{s,} Em— Es_ le

where in the final step we have made use of the condition of
Eq. (9a. Thus in the Weisskopf-Wigner approximation, the I'=27 2 VsuVmsd(Em—Es). (19b
kernelK,, appearing in Eq(17b simplifies to mes
) Thus, Eq.(17b has the immediate solution
_|Vsamvmsb
Kap=(—IE+IEg)Sppt > ——— gs(—IE+IEg)=K(E) %, (199
mé {s,} Em— Es_ le
which when substituted into E¢173 yields

1
—(—iE+i i - o o 1
= (ZIE+IE) dap+iMap+ zrab’ gm(—|E+|Em)=[—|E+|Em+ ga-z(Em
-1 i -1
Vs mV, I
M= S P S m%’ —ES)Z} Vmsfm(E—ES—M+§F) .
mé(syy Es—Em (100
Substituting these equations into the inversion formulas of
Fab:zwmgs Vsamvmsb‘S(Em_ Es), (18D Egs. (1709, and doing elementary contour integrations, we
teal find

with P in the definition of the “mass matrixM ., the prin- 1
cipal value. These are the same as the formulas for the kernel E[C()]= ex;{ —iMt— El“t) , (203
in the absence of the stochastic terms in the Sdihger
equation. Thus, in the Weisskopf-Wigner approximation, the v
solution for E[Cs (t)] is unmodified by the stochastic ef- E[Chrss(t)]= ms (exr{i(Em
fects, and hence the Lorentzian line profile and the decay rate Ec—En,+M—=T
of the state are unaffected by theterms. 2

The solution forE[ C,,(t)] with mé{s,} does retain a 1
dependence on the stochastic parameter. To study this, let us —Es—M)t— —Ft}
specialize to the cade =1 of a non-degenerate initial state. 2
The expression in Eq18b) for the kernel now becomes the 1
1xX 1 matrix —ex;{— §0'2(Em— ES)ZtD.

1
K(E)=—iE+iES+iM+§F, (193 From Eq.(11b) we thus get

E[|C4(t)|?]=exp(—Tt), (20b)
with M and[" real numbers given by which identifiesI” as the transition rate per unit time out of
the initial state. Finally, substituting EROg into Eq.(12b),

M = 2 PVsmes simplifying to leading order inVv, and integrating with re-
mzs Es—Em’ spect tot, we get

025007-6



WEISSKOPF-WIGNER DECAY THEORY FOR TH. ..

PHYSICAL REVIEW D 67, 025007 (2003

29 _ |Vms|2 29 |Vms|2
E[|Cm#s(t)| ]_ exp(—Ft)+1 E[|Cm#s(t)| ]_ exp(—Ft)+1
(Es—Ept+M)2+ ZFZ (Es—Ep+M)2+ ZFZ
1, 2 L 2, Lo
—2exp — go¥(En—Ey*t —2exp — go?| (Es—EntM)?+ 212t
1 1
-5t cos{(Es—Em+M)t]>. (200 — 5 I't|cog (Es—Ent+M)t] . (219

In the limit ast—0, we can develop the exponential and
cosine functions in power series expansions, giving

This completes our solution for the expectations of the coef- ) L o ) 4 )
ficients, and their squared magnitudes, in the case of a non- E[|Cmxs(1)|“]=[Vind 2o tt +O0(t°0"(Es—Ep)?)
degenerate initial state. We see that after a tileege com-

pared with the lifetimd” %, we obtain 5
+0O(t%) |. (21b
Thus the leading small time behavior of the summed ex-
V. |2 pected probability in the decay channels is
2 | msl

EL|Cmes(=)[*]= 7+ (200 1 1
(Es—Epm+M)?+ -T2 > Vimd?= 0%t = (V2) o= ot (210

4 m=s 4 4

where in evaluating the sum we have employed the condition
of Eq. (98). We shall verify this result by another method in
exhibiting the standard Lorentzian profile with no depen-Sec. IX, where we discuss its implications for the quantum
dence on the stochasticity parameter Zeno effect, and in Sec. X shall apply it to estimating bounds
ono.
Let us next consider the large time behavior implied by
Eqg.(219. Oncet is large enough so thafE,,— EJ)t| is large
for all energiesk,, not infinitesimally close tdeg, we can
evaluate the summed expected probability in the decay chan-
nels by making the “golden rule” approximatidri2]. This
Let us now study the behavior of E€O¢) for small and  approximation treats the factors multiplyily 42 in Eq.
large values of the timé Since within our approximations (213, which are sharply peaked aroufg,=E,, as if they
we haveo?(E,,—Eg)?=c?(Es—En+M)?+3I'?], we can  were equal to a Dirac delta function of strength given by the
rewrite Eq.(200) as integral of these factors over energy. We then have

VII. SMALL TIME AND GOLDEN RULE
APPROXIMATIONS

[Vind®

* (Es—EmtM)2+ al?

1 1
(exp(—rt)+1—2 ex;{— —02<(Es— Em+M)2+ ZFZ t

>, EllCm.s(D*]= X 5
m#s m#

- %Ft co§ (Es—Eq+ M)t])

= |Vud?8(Em—Ey)
m#s

1 1 1
B exr(—l“t)+1—2exr{—gaz((AE)er Zrz)t—zl“t cog (AE)t]
xf d(AE)
—eo 1
(AE)*+ 2T
= > [Vind28(E— E9tF[0?/(81),1]
m#s
_ Ft 2
= ZF[" 1(8t),t], (223
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with T" as given in Eq(19b) and with the functior-[ A,t] defined by

exp—I't)y+1-2 ex;{—A

cosu

1 1
2, T2 T
u+4Ft> 2Ft

F[A,t]:j du (22b)
4
To evaluateF[ A,t] we note thaf13]
1
. exp—I't)+1-2 ex;{—zft)cosu -
F[O,t]:f du =—[1l-exp—Tt)], (239
. 2y Yoo I't
Uy
|
and[13]
2 El|Cm.s(0)[F]=1-exp~TD)=1-|Ci(D)?,
IF[AL] (= , 1o\ 1
= - - - 24
A fﬁdeZ exr{ Al u?+ ZT?? |- ST't|cosu (240

1.1
=2w1’2exp( —5Tt- ZAFZtZ)Al’Z

Xexd —1(4A)]. (23b
Thus, integrating Eq(23b) with respect toA we get
2
F[At]= F—t[l—exp(—l“t)]JrC[A,t], (230

with the correction ternC[ A,t] given by
1 112 1
C[A,t]=4w“2exp( - zn) fA do exp[ — (2
0

+1/?)|. (249

Since the exponentials of negative arguments in(E4g are

bounded by their maxima over the range of integration, we

have

|C[At]|<4mY?AY%exd — 1/(4A)]

T 1/2
= 20( —) exp(— 2t/ o?). (24b)

2t

So whenl't is of order unity, the contribution of the correc-

tion term C[A,t] is of order coTY%exd—2/(c?T)]
~c'oVexd—c'l(o0V)?], with c,c’,c” constants, which is

exponentially small and can be neglected in our approxima-

tion scheme. Thus we are justified in approximating
2
F[At]=F[0t]= F—t[l—exp(—l“t)], (240

which when substituted back into E@23 gives

verifying that the approximations used in our calculation are
consistent with maintenance of the unitarity sum r(tee
unit state vector normalization conditipn

VIIl. SOLUTION TO THE STOCHASTIC EQUATION
FOR Cyzs

Since we see from EQgs.(209 and (209 that
E[|Crms(t)]]|? differs from |E[Cpzs(t)]]? the stochastic
fluctuations inC,,.4(t) are evidently playing a role. Let us
now demonstrate this directly by solving the stochastic dif-
ferential equation foC,.<(t). Specializing to the case of a
non-degenerate initial  state, approximatingCq(t)
=E[C4(t)], and using Eq(209 for E[C4(t)], Eq. (10d
becomes

dCr(t) = (aMdW,+ a'Pdt)Cpr(t) + ex;{ i(Ep—Es— M)t

1
= STt (vldWe+ ¥y,
1
a%): E‘T(Em_ Es),
1 1
aft)=— 50X (En—Ey?=—5(al)?,

(1) — E

Yms 20'Vmsa 'yr(nzg:_ivmsfm- (253

For general values of the coefficieni>? and y{12), Eq.
(259 can be integrated by using Ega)—(2c) to find a
stochastic integrating factor for ti@&,, terms(see the Appen-
dix), with the result
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B 1) (2 [ ) zero o, rather than quadratically ihas for the unmodified
Crn(t) =exf an W, — (ary ) t]foex (Em—Es—M)u Schralinger equation. Since the quadratic vanishing of
|C4(t)|?—1 in standard quantum mechanics is the origin of
the quantum Zeno effe¢l4], we conclude that in the energy
driven stochastic Schdinger equation, the quantum Zeno
effect is suppressed.

— oMy dul. (25b Let us verify this directly from the stochastic differential
) o ) ) equation of Eq(1a), in analogy with the direct calculation
Using Egs.(28—(20), it is easy to verify directly that Eq. [15] of |C4(t)|?—1 for small times for the ordinary Schro
(25b) solves Eq.(253. If we now examine Eq(25b) more dinger equation. Applying the ltaule of Eq.(2a), we have
closely, using the specific expressions for the coefficients

a2 and y-2 given in Eq.(25a, we find that within the d|(s(0)[s(t))I?]i—o

=(s(0)|d|s(t))|¢=o+(s(0)|d|s(t))* |;=0

approximation of neglecting terms of relative ordev?, the
integrand in Eq.(25b) is an exact stochastic differential.

Thus the integration can be carried out explicitsee the +(s(0)|d|s(t))|;=o(s(0)|d|s(t))* |;=o. (278
Appendi¥, with the result

1
— 5 Tu= Wyt (af)2u [y d Wyt (732

From Eqg.(1a) we have

Crzs()= Vims | (exr{i(Em— ES—M)t—;rt} 1
Es—Em+M-3T dis(t))=—iH|s(t))dt— g o*(H —(s()|H|s(1)})*|s(t))dt
1 L2 2 £ 2 o(H—(s(DHIs(OYs(D))dW, (27b)
—exp) 5 o(En—EgWi— 0% (En—Egt| |. 5 b

(250  and so setting=0 and projecting or{s(0)| gives

This expression can be easily verified, by use of Egg— 1
(20), to be the solution to Eq25a (up to a residual error of  (s(0)|d|s(t))|—o=—i(H)sdt— 502<(H —(H)s)?)dt,

relative orderaVV?). Using Eq.(3c) to take the expectation (270
of Eq. (250, we recover the result of Eq20a. From Eq.
(250 we find an explicit formula fofCp,..(t)[?, with (H™¢=(s(0)|H"|s(0)). Substituting Eq(27¢) into Eq.
) (279, we thus get the first term in the smalexpansion of
2_ [Vimd (s(O)]s(0)[2-1,
|Cm#s(t)| -

(Es—Ep+M)2+ %FZ 1
[(s(0)|s(t))[*=1~ ZUZ<(H_<H>S)2>st+O(t2)-

(283

This equation gives a general formula for the stochastic sup-

5 1 1, pression of the quantum Zeno effect, independent of any
—Eyt|—2ex E‘T(Em_ Es)Wi— id (Em assumptions about the potential. When the general fagh
of the ordert? term coming from the standard S¢dinger

X

1
exp(—I't)+ exp[ o(Ep—Eg)W,— Eaz(Em

_E%— %Ft cos(E, ES—M)t). (250 evolution is included, Eq283 becomes
2 2 1 2 2 4:2
Again using Eq(30) to take the expectation of this formula, [(s(O)Is(O)*=1=((H=(H)5) >S(ZU t+17/+0(0"t)
we recover the result of E¢20c¢).
+0(t%); (280

IX. STOCHASTIC SUPPRESSION OF THE QUANTUM

ZENO EFFECT in other words, the first two terms in the smakxpansion

are governed to leading order énby the initial state energy
In Egs. (21b),(210 we saw that the leading small time variance. When the potential is assumed to obey(&a), we
behavior of the summed expected probability in the decayave

channels is
<H>s: Est+Vss=Es,
1
)
(v )3340 t, (26) (H2) = E2+ 2E Vot (Vs
rather than the resultv?).4? that would hold for vanishing (H=(H)9?)s=(H?)¢— (H)2=(V?),
o. As aresultE[|C4(t)|?]— 1 vanishes linearly in for non- (280
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and so Eq(28b) becomes of 140 MeV, and charmed meson decays, with an initial mass
L of around 2 GeV. Estimating in Eq. (30) as the decaying
2 2 2 142 4,2 3 particle mass, these give respective bound#gnof order 6
[(s(0)[s(t))[*=1—(V )SS(Z‘T trt )+O(U )0, MeV and 80 MeV, respectively. IM, were significantly
(280 larger than these bounds, one would have observed anoma-
lous accumulations of decay events close to the production
in agreement with the result of Eq214,(21b) and the uni-  vertex, as a result of decays induced by spontaneous reduc-

tarity sum rule. tion. For comparison, the observation of coherent superposi-
tions of energy eigenstates in the neutridémeson and
X. DISCUSSION AND ESTIMATES OF BOUNDS ON o B-meson systems gives bounfis6], respectively, ofM,
>10 °GeV, M,>2x10¥Gev, and M, >2

We have seen that to leading order in the perturbing po
tential, the stochastic terms governed &dydo not affect ei-
t_her the Lorentzian _I|ne proflle_ or the transition rate per L.m'tsignificant improvement over the coherent oscillation
time as evaluated in the Weisskopf-Wigner approximation

. ) . bounds. However, it is still smaller than the Planck mass,
but only produce a change in the short time transient beha\(fvhich is very likely the expected value bf,,, by a factor of
g

e e o e et o e ioaveand 0 We conclude ha the heory o decang states i e
9y nergy-driven stochastic Schiinger equation places only

Schralinger equatllo.n IS energy conserving. On dm_engmnaﬁew weak empirical bounds on the magnitude of the stochas-
grounds, the transition rate per unit tiecould contain, in

" ticity parametero.
addition to the usual terms of the ford{Es— E,,)|Vimd?, a .
term of the formo2(V?)... However, this additional term is We leave for future study two issues that can be addressed

. within the general framework established here. The first is an
not energy conserving, and as a result we have seen that i

coefficient precisely cancels to zero in the Weisskonf-Wianet %alysis of the nature of the transition between the short-time
entp y PEVIg regime with decay raté's, and the exponential decay re-
approximation. ; . P o .
- _ ._gime with decay ratd’. This is governed by the solution of
Because the transition rate per unit time and Lorentzia s. (17a,(17b before making the Weisskopf-Wigner ap-
line shape are unaffected ly, bounds ono from particle as- ' g PV b

decays result only from experiments in which a metastabl roximation of replacingt in the denominator of the final

system is monitored as function of time from a known time erm inKqp, by Es. The second is an analysis of the magni-
(or vertex location of formation. According to Eqs(28a9— tude of the energ¥p defined by Eq(30), for various dy-

(28d), for small times the effective transition rate per unit namical models of the decay process, as reflecteql in the en-
time is ergy spectrum of the unperturbed states) and in the

magnitudes of the decay-inducing matrix elemewts,.
1 1 Note addedLajos Dicsi [17] has pointed out an elegant
FRZZO'Z(AE)ZZZO'Z(VZ)SS, (298 stochastic-theoretic technique that allows the main physical
results of this paper to be derived in a few lines, starting
with (AE)2=((H—(H)J?) the initial state energy vari- from the standard quantum mechanical results that hold

ance. This can be interpreted as an early time decay rai%hen the stochasticity parameter is zero. Disi makes

coming from spontaneous reduction induced by the stocha d_i:eetpnr:\m?alloitr){:,errvattlons. Thiﬁtf':j‘c‘t 'S tthiﬁt tshe qliflm':'eihm
tic fluctuation terms, in agreement with the estimaig ect physica erest, as pointed ou ec. v, are the

~a?(AE)? used in earlier discussiofid,6]. In order for the expectationsE[ | C(1) ] of the squared magnitudes of the
rate of Eq.(299 to not lead to pronounced early time devia- perturbation coefficients. Since according to Eb) we

X103 GeV.
Thus the charmed meson decay boundvbprepresents a

tions from the observed decay rdie we must have have
Ig<T, (29b) |Cm(D]Z=[{m[ (1)) 2= (M| (1) ){r(t)[m) = (m[p(t)|m),

(319

which writing o?=M ! implies the bound with p(t) the density matrix
W) > Varl? p(t)=[y(t))(P(1)], (31b

m#s
M > 4FSS= = ﬁ, (30 to calculateE[|C(t)|? it suffices to knowE[ p(t)], in other
87 >, |Verl20(Ep—Esg) words
m#s

with Ep defining an energy characteristic of the decay pro-
cess. In a particle physics context, a first guess would be to
estimateE as being of order the mass of the decaying parSince the dynamics d&[ p(t)] is governed by the Lindblad-
ticle. The most massive decays for whiEhhas been mea- type equation of Eq(5), to calculate the physically relevant
sured by tracking a metastable system from the point of forexpectations it thus suffices to solve the dynamical problem
mation appear to ber’— yy decay, with an initial mass specified by Eq(5), supplemented by the initial condition

EL|Crm(1)[2]=(m[E[p(1)]]m) =Tr(|m){mD E[p(1)].
(319
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E[p(0)]=p(0)=]|sa){sp|. (310 between the probabilities calculated in the standard Schro
dinger analysis, and the stochastic expectations of the prob-
Diosi’s second observation is that the dynamical problenabilities as calculated from Ed1a). The recipe is simply
specified by Eq(5), with the initial condition of Eq(31d), this: take the known expressions for the probabilities calcu-
can be compactly solved by a simple stochastic trick. Théated in standard quantum mechanics, repldcdy t
trick uses the fac{18] that there is a second stochastic —3oW,, and take the stochastic expectation. The needed
Schralinger equation, simpler in structure than that of Eq.stochastic expectations of powers\af can all be read off
(1a), which also leads to Eq5) as the equation for the from the expansion of Eq3c) in powers ofe,
evolution of the stochastic expectation of its density matrix.
To see this, consider the stochastic Sdimger equation E[W]=0, E[W/]=t, E[W]]=0, E[W{]=3t?, ( :
34b)

1 1 .
d|¢>=—iH|zp)dt—502H2|¢)dt+ Eio-H|¢>th. Let us now apply Disi’s observations to rederive the
(32 principal results found above for the stochastic analog of the
Weisskopf-Wigner analysis. First, let us consider the short
This equation differs from that of Eqla in having an time behavior of the survival probability given in E@8b).
imaginary noise term, with operator coefficiétitinstead of 1 N€ standard answer when=0, which gives the quantum
a real noise term with operator coefficigtit-(H). Asimple ~ 2€n0 effect, is
calculation, using the Tt@alculus rules of Eq(1b), shows 24 _ 2\ 42 3
that Eq.(329 also leads to preservation of the norm of the (S(O)S(EN*=1=((H=(H)9)st*+O(t"). (353
state| ), and leads to the density matrix evolution equatiO”Following the recipe, we have

. 1 1 1 2 1 1
dp=ilp,H]dt- 5 o?[H,[H,p]ldt+ SioTH,pldW, . (t_ §UWt> =E[t2—taWt+ Zazwtz}:tz_,_ Lot
(32b) (35b)
which has the stochastic expectation On substitution into Eq(353 this gives for general
. 1 1
dE[p]=i[E[p],H]dt~ gUZ[H,[H,E[p]]]dt, (320) [(s(0)|s(t))]?=1—((H—(H)¢)?)4 t2+ Zazt T

35¢
which is identical to Eq.(5). Hence the imaginary noise (359
equation of Eq.32a will lead to the same results for the in agreement with the result for the stochastic modification
physical quantitie&€[ |C,,(t)|?] as the real noise equation of of the quantum Zeno effect given in E@8b).
Eq. (1a), even though the stochastic details of the two pro- Next let us apply the recipe to the formula for the initial

cesses differ. state survival probability obtained using the Weisskopf-
Diosi’s third observation is the fact that E®2a can be  Wigner approximation, which is valid for timeéghat are not

immediately formally integrated to give too small (and also not too large The standard analysis

gives
1
Iw(t)>=eXI{—IH t=5 oW | |[4(0), (333 |C(t)|>=exp(—T't), (363

as can be readily ascertained by use of Etp) with the with Flthe golden rule decay rate of E(.9b). Repl-acmgt

choice by t—30W, and using Eq(3c) to take the stochastic expec-
tation, we get as the exact formula for the stochastic modi-

1 fication of the Weisskopf-Wigner approximation
a= zi oH. (33b)

1

o _ E[|C‘S’(t)|2]=exp{—r(1——aZF)t , (36b
Combining this observation with the first two, then leads to a 8
very simple rule for calculating the stochastic modifications | . . .
of decay processes governed by Ei@. Let E[|Cﬁq(t)|2] be W?'Ch reduces, when the correction term of relat|\{e order
the quantities of physical interest, viewed as functiongrof UZF IS ”e%'efted’ to the answer found n HQoB. Since
as well as oft. so thatE[|C°(t)|2]=|C°(t)|2 are their val-  © I'~0(0o°V?), we see that the calculation of Secsé I\2/—VI

' m m i i i
ues as calculated from the standard Sdiwger evolution above did not succeed in keeping all terms of ordev/®,

: . : and in fact there is a small stochastic correction to the deca
with no stochasticity. Then Eq$31a through(33b) imply rate, with the corrected decay rate given by y
the simple relation ’

1
T”ZF(l——02T>. (360

E[|Ch(DI?1=E 8

1 2
‘cg(t——awt) } (343

2
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However, writing o>=M 1 as in Sec. X, as long abl, replacingt by t—30oW, in the corresponding formula for
>E this correction is not significant within the Weisskopf- |C%(t)|? and taking a stochastic average oVey.
ngner approximation scheme, which treats the line width The relation of Eq(348 between stochastic and standard
as a small quantity relative tB;. quantum mechanical probabilities can be applied to other

Finally, let us apply the recipe to the formula giving the problems as well. For example, the density matrix of a two-
probability for a transition to the staten). The standard level system can be represented in the form
Weisskopf-Wigner approximation result for this is given by
Eq. (200 with =0, 1 s

p=5(1-R-7), (38a

[Vind®

(Es—Ept+M)2+ Zrz

|C2 . (1)]?= (exp(—rt)+1 with 7=(r;,7,,73) the standard Pauli matrices, and wih
=(R;,R,,R3) a vector summarizing the structure of the

traceless part of the density matrix. The standares0

1 Schralinger equation describing Rabi oscillations of the two-
-2 ex;{ — —T't|co§(E<—E+ M)t]). level system under the influence of an applied field oscillat-
2 ing at the frequency of the level separatifn co-rotating

(373 coordinates, neglecting the counter-rotating field compognent

gives for the equation of motiof20] of the vectorR|,_,
Applying the recipe, and again using Egc) to evaluate the _— RO,
needed expectations, we get the exact stochastic extension of

Eq. (379, dR°
=wXRO, (38b)
, dt
E[|CZ.(1)]2]= [Vind exg —T[1 - -
#s 1 with |w| =€ the angular frequency of precessionR¥. The

(Es—EntM)*+ ZFZ probabilities for finding the system in the upper and lower

levels are given, as a function of time, by

1
— =Tt +1—2exr{——1"(1

8 2 P = —[1+R (D]. (380

1 2 1 2 2
~ 167 |t= g0 (Es—EntM)%t Since the general solution of E€88b) has the form

1 RO(t)=V,cosQt+V,sinOt, 39
xaos{(Es—Em+M) 1——02F)tH. (H=Va 2 (393
with \71'2fixed vectors that depend on the initial state and the
(370 structure of the Hamiltonian, and since

Again, when simplified to leading order M, this gives the

result of Eq.(200 above. However, even before dropping

nonleading terms iV, we see that Eq(37b implies the

Lorentzian formula of Eq(20d) in the large time limit. 1
From the above exposition, we see that §® observa- E sinQ(t— —UWt) =

tions not only greatly simplify the calculation of the physi- 2

cally relevant quantities, but also give results that are com- (39D

pletely independent of the assumption of E8d) that was |y have under the stochastic evolution of Ep

used to linearize the stochastic equatiprhis is something

that one might have already suspected from the fact that Eq. R 1 .

(28b) is more general than Eq28d).] Thus, the only ap- E[R”(t)]zeXF( - ngUzt)Ro(t)- (399

proximations that are needed to get stochastic results are

those that are used in the standard, non-stochastic quantusy gq. (38¢), this gives for the expected probabilities when

mechanical anaIyS|s Moreover, the “miraculous” cancella-the system evolves under the stochastic Sdinger equa-
tion of theo? terms in the Weisskopf-Wigner approximation tion,

to the mass and decay matrices, exhibited above if18g),

is given a deeper explanation. There is an extensive literature 1 ” 1.,

[19] discussing the decay problem without making the > "E[PZ(O]=exg — g Q%0

Weisskopf-Wigner approximatiofi.e., without replacinge

by E, in the orderV? terms of the Laplace transform kernel This can be applied, for example, to the quantum Zeno effect
Kap), and these discussions can all be converted to resulisxperiment of Itano et a[21], who carry out a proposal of

for E[|CZ(t)|?] in the stochastic case, by using the recipe ofCook [22] to make repeated measurements of a two-level

1 1
oW, | |=ex —gﬂzazt cosQt,

E cosQ(t— 5

1
exp{ - §Qzazt> sinQt,

1 0
>~ Px(D]. (390
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system while the vectoR is precessing for a time interval
t==/Q, for which the exponential damping factor in Eqg.
(390 becomes expfim(1d?). Corresponding to the experi-

1
d(FtC[) = Ft|:dct+ atthCt-l- ﬁ1+ Eaft2+ atAt) dtCt

mental valueQ)=320.7 MHz and the fact that probabilities 4 aP.dt (A53)
were observed to an accuracy of about .02 in this experi- vt

ment, and were found to agree with the standard Sbhger

theory, we get a bound onM,=1/0®> of M,>2  Hence if we choose

X 10 ® GeV, comparable to that obtained from oscillations 1

in the K-meson system. a=—A,, B=—B+=A?, (A5h)

2
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_rc-1
ticity parameter. Ce=F

t
co+f duF,(P,dW,+(Qu— A Py)du)
0

APPENDIX t
=exp{ f [Audwu+ ](CO
We give here the details of the integration of the stochas- 0
1
B,— —Aﬁ) dv

B —EAZ)du
u 2 u

tic differential equation that appears in Sec. VIIl. Consider ¢ "
the linear stochastic differential equation +f du exp| _J {Avdwu_l— >

dC,=(AdW,+B,dt)C,+ P, dW,+Qdt,  (AL) 0 0

]

which is to be solved for the unknown stochastic funcitign X[ P, dW,+ (Qu—AuPu)du]), (A8)
given the known functiong, B, P;, andQ;. Although we

shall proceed as if these known functions were deterministic, . . . .
in fact all our manipulations and the final solution are un—Wh;ghS':Cth\e/Iﬁecvirilezﬂu;'rﬂn fr:eEgaAsle).of Eh1) in which
changed?23] if the input functions are themselves stochastic.A _AB '—B ,P _pf and)(lg —Qf, . with A.B.P,Q con-
To solve Eq.(Al), we transpose th€, term on the right to 7t ‘> =t = T t0 = U U<t il

the left and multiply by a factoF;, which is to be deter- stants and witit, of the form f,=exp{K(), and so the solu-
mined, giving tion of Eq. (A8) then becomes

F{dC— (AdW,+Bdt)C,]=F [ P,dW,+ Qdt]. . ct:exp( AW+ B %Az)t) cos jtduexp{ Caw,
0
We now look for arF; which makes the left-hand side of Eq. 1,
(A2) a total differential, up to terms independent®f that +| K=B+ A% Ju|[PAW,+(Q—AP)du]. (A9)

are of the same form as the terms on the right-hand side.

Making the ansatz Using the identity(proved by the same methods used to find

t the integrating factoF,),
F.=ex j (a, dW,+ B,du) |, (A3)
0 explaW,+ (B+K)u)[PdW,+ (Q+ aP)du]
we find by use of Eqs(2a) and(2¢) of the text that P P Q
1 ZEdeXF{aWu'F(B'f‘K)U)—Z ,3+K—Ea
d(FtCt):F{dCt"' athVtCt-i— Bt+ Eatz)dtct 1
- zaz exp(aW,+ (B+K)u)du, (A10)
+ adW,d Ct} (A4)

and takinga=—A and B=—B+A?/2, the PdW, term in
which on substituting EqA1) for the finaldC, on the right, Eq. (A9) can be eliminated. This gives an alternate form for
and using Eq(1b) of the text, gives the solutionC;,
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1 P
Ci=exp AW, + B—EAzt Co— x| exq —AW,
+KB+1A2t1+PKB+
5 Al )+Q
t 1
xfduex —AW,+ K—B+§A2 u ) (A11)
0

Taking

1
A= o) =5 0(En—Ey),

1 1
B= -5 (an))?=~go*(En-Ed?

PHYSICAL REVIEW D67, 025007 (2003

P EUVmS!

i 2
1-50%(En—Ey),

Q=- 8

iVinsfm,  fm=

1
K=i(En—Es—M)- 3T,

(A12)

in Egs.(A9) and (A11) gives the results quoted respectively
in Egs.(25b and (250 of the text.
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