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Complex singularities of the critical potential in the large-N limit

Y. Meurice*
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242†

and Fermilab, P.O. Box 500, Batavia, Illinois 60510-0500
~Received 6 September 2002; published 16 January 2003!

We show with two numerical examples that the conventional expansion in powers of the field for the critical
potential of 3-dimensionalO(N) models in the large-N limit does not converge for values off2 larger than
some critical value. This can be explained by the existence of conjugated branch points in the complexf2

plane. Pade´ approximants@L13/L# for the critical potential apparently converge at largef2. This allows
high-precision calculation of the fixed point in a more suitable set of coordinates. We argue that the singulari-
ties are generic and not an artifact of the large-N limit. We show that ignoring these singularities may lead to
inaccurate approximations.
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nt

f

th
al

V

a
rg
e
d
ro
ti
o
d
ls
e
-
p

n
e
o

Th
uit

t i
xe
o-
th
he

ed

d

der
from
is

he
he
re-
ne

rate
ula-

e
l

uld
n the
e to
e of
that

e

te-
in
the

an
his
nt
ded
n
we
ies

lor
est
I. INTRODUCTION

Since the early days of the renormalization group~RG!
method@1#, 3-dimensional scalar models have been ide
fied as an important laboratory to discuss the existence
nontrivial fixed points and the large cutoff~or small lattice
spacing! limit of field theory models. In the case o
N-component models with anO(N) invariant Lagrangian,
the RG transformation becomes particularly simple in
large-N limit @2#. The construction of the effective potenti
for these models is discussed in Refs.@3–5#. Later, motivated
by perturbative results indicating the existence of an U
stable tricritical fixed point forN large enough@6#, a new
mechanism allowing spontaneous breakdown of scale inv
ance and dynamical mass generation was found in the la
N limit @7#. In the following, we call this mechanism th
Bardeen-Moshe-Bander~BMB! mechanism. It was argue
@8# that the BMB mechanism is compatible with a ze
vacuum energy and a better understanding of this ques
might suggest a solution to the cosmological constant pr
lem. Spontaneous breaking of scale invariance is also
cussed@9# with related methods in four-dimensional mode
of clear interest in the context of particle physics. Howev
doubts were cast@10# about the fact that the BMB mecha
nism is generic and it is commonly believed that it disa
pears at finiteN.

In this article we report results which force us to reco
sider the way we think about nontrivial fixed points. W
usually think of the RG flows as taking place in a space
bare couplings or more generally in a space of functions.
necessity for this more general point of view appears q
clearly in exact renormalization group equations@11#. Unfor-
tunately, it seems impossible to decidea priori which space
of functions should be considered to study the RG flows. I
clear from perturbation theory that near the Gaussian fi
point, low dimensional polynomial approximations of the l
cal potential should be adequate. However, it is not clear
this kind of approximation should be valid far away from t
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Gaussian fixed point and in particular near nontrivial fix
points.

In the following, we concentrate on the nontrivial fixe
point found numerically in the caseN51 by Wilson @1#.
This fixed point is located on a hypersurface of second or
phase transition which separates the symmetric phase
the broken symmetry phase. In the following we call th
fixed point the Heisenberg fixed point~HFP! as in Ref.@10#.
It should not be confused with the fixed point relevant for t
BMB mechanism, which is not studied in detail here. T
main result of the article is that the bare potential cor
sponding to the HFP has singularities in the complex pla
and that ignoring these singularities may lead to inaccu
approximations. These claims are based on explicit calc
tions performed in the large-N limit for two O(N) invariant
models reviewed in Sec. II. These two models are~1! a
model with ak2 kinetic term together with a sharp cutoff, th
sharp cutoff model~SCM!; ~2! Dyson’s hierarchical mode
~HM! @12,13#.

Before entering into technical details, three points sho
be clear. First, all the results presented here are based o
analysis of long numerical series and no attempt is mad
give rigorous proofs. Second, in order to understand som
the statements made below, the reader should be aware
even though, at leading order in the large-N approximation,
the critical exponents takeN-independent values, the sam
approximation provides finiteN approximate HFP’s which
are N dependent. A more precise formulation of this sta
ment can be found in Secs. II and VI. Third, we only work
3 dimensions. The precise meaning of this statement for
hierarchical model is explained at the end of Sec. II.

In Sec. III, we review the basic equations@2,10# defining
the HFP for the SCM. We then show that the definition c
be extended naturally for the HM. The correctness of t
definition is verified later in the paper. In Sec. IV, we prese
the methods used to calculate the critical potential expan
as a Taylor series inf2. The coefficients of this expansio
are called the critical couplings. The main conclusion that
can infer from our numerical results is that the Taylor ser
is inadequate for large values off2. First of all, one-half of
the critical couplings are negative. If we truncate the Tay
series at an order such that the coefficient of the high
©2003 The American Physical Society06-1
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order is negative, we obtain an ill-defined functional integr
In addition, the absolute value of the critical couplings gro
exponentially with the order and the expansion has a fi
radius of convergence. Consequently, the idea that the c
cal potential associated with the HFP can be approxima
by polynomials should be reconsidered.

It is nevertheless possible to define the critical theory
using Pade´ approximants for the critical potential. In Sec.
we show that sequences of approximants converge tow
the expected function in a way very reminiscent of the c
of the anharmonic oscillator where the convergence can
proven rigorously@14#. In addition, the zeros and the pole
of these approximants are located far away from the
positive axis and follow patterns that strongly suggest
existence of two complex conjugated branch points.

The complex singularities of the critical potential shou
not be interpreted as a failure of the RG approach but ra
as an artifact of the system of coordinates used. In Sec.
we present consistent arguments showing that in a diffe
system of coordinates@15,16#, the function associated with
the HFP is free of singularities. In this system of coordinat
finite dimensional truncation is a meaningful procedu
which, in the case of the HM, allows comparison with ind
pendent numerical calculations at finiteN. An example of
such a calculation is presented in the caseN55.

In Sec. VII, we discuss the errors associated with t
approximate procedures that can be used to deal with
singularities. The first procedure which is justified in the co
text of perturbation theory and does not require an und
standing of the singularities, consists in truncating the pot
tial at order (f2)3. The second procedure consists
restricting the range of integration off2 to the radius of
convergence of the critical potential. If the range of integ
tion is large enough, this second procedure generates s
errors@17#. As far as the calculation of the HFP in the syste
of coordinates of Sec. VI is concerned, both procedures h
a low accuracy for both models considered. In the conc
sions, we explain why we believe that the singularities p
sist at finiteN and we discuss implications of the existence
these singularities for other problems.

II. MODELS

We consider lattice models defined by the partition fun
tion

Z~JW !5)
x
E dNfxe

2S1(
x

JWxfW x, ~1!

with

S52
1

2 (
xy

fW xDxyfW y1(
x

Vo~fx
2!. ~2!

We use the notationfx
2[fW x•fW x and Dxy is a symmetric

matrix with negative eigenvalues, such as discrete vers
of the Laplacian. For the simplicity of the presentation,
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will assume that(xDxy50. If it is not the case, one ca
always subtract the zero mode fromD and compensate i
with a new term inV.

Defining the rescaled potential

V0~X!5NU0S X

ND , ~3!

and performing a Legendre transform from the sourceJW to
the external classical fieldfW c , one can show that in the larg
N limit @10# M2[2]Ve f f /]fc

2 obeys the self-consisten
equation

2U08@fc
21 f D~M2!#5M2, ~4!

where f D(M2) is the one-loop integral corresponding to th
quadratic formD and a mass termM2. The prime denotes
the derivative with respect to theO(N) invariant argument.
The explicit forms off for the two models discussed in th
following are given in Eqs.~6!, ~7!. Precise definitions offc

2

and the effective potentialVe f f are given in@10#.
Up to now, all the quantities introduced are dimensio

less. They can be interpreted as dimensionful quantities
pressed in cutoff units. Let us consider two models, the fi
one with a rescaled potentialU0, a UV cutoff L and a qua-
dratic formD and a second model with a rescaled poten
U0,S , a UV cutoff L/S and a quadratic formDS . For D
53 and in the large-N limit, the two models have the sam
dimensionful zero-momentum Green’s functions provid
that

U0,S8 ~f2!5S2U08~@f22 f DS
~2U0,S8 ~f2!#/S

1 f D@~2/S2!U0,S8 ~f2!# !. ~5!

In two special cases, the dimensionless expression for
one-loop diagram is independent of the cutoff. In oth
words, f D5 f DS

[ f and the fixed point equation become
very simple@2,10#.

We now discuss the two models where this simplificati
occurs. In the SCM,D becomesk2 in the momentum repre
sentation~Fourier modes!. The momentum cutoff is sharp
k2<1 ~in cutoff units!. This is why we call this model the
sharp cutoff model. The nonrenormalization of the kine
term is justified in the large-N limit @10#. For this model,

f SCM~z!5E
uku<1

d3k

~2p!3

1

k21z
. ~6!

By construction@13#, the kinetic term of Dyson’s hierar
chical model is not renormalized and we have

f HM~z!5 (
n50

`
22n21

b~c/2!n1z
, ~7!

with c52122/D andb5bc/(22c). The inverse temperatur
b and the parameterc appear in the Hamiltonian of the HM
in a way that is explained in Sec. II of Ref.@18#. The param-
eterc is related to the dimensionD by considering the scal
6-2
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COMPLEX SINGULARITIES OF THE CRITICAL . . . PHYSICAL REVIEW D 67, 025006 ~2003!
ing of a massless Gaussian field. In the following we w
consider the casec521/3 (D53) exclusively. In addition,b
will be set to 1 as in other fixed point calculations@18#.
Different values ofb can be introduced by a trivial rescaling
Note also that the cutoff cannot be changed continuously
the HM, because the invariance off is only valid when we
integrate the degrees of freedom of the largest momen
shell ~corresponding to the hierarchically nested blocks
configuration space! all at the same time. For the HM, th
density of sites is reduced by a factor 2 at each RG trans
mation. The linear dimension~‘‘lattice spacing’’! is thus in-
creased by a factor 21/D and the cutoff decreased by the sam
factor. Consequently, for the HM, Eq.~5! should be under-
stood only withS52q/D52q/3 andq integer.

III. THE HFP

In this section, we review the construction of the HFP
the SCM, and we show that the construction can be exten
in a natural~but nontrivial! way for the HM. The first step
consists in finding all the fixed points of the RG Eq.~5!.
Following Refs.@2,10#, we introduce the inverse function

F„2U08~f2!…5f2 ~8!

and the functionH(z)[F(z)2 f (z), where the one-loop
function f has been defined in the previous section for
two models considered. With these notations, the fixed p
equation corresponding to Eq.~5! is simply

H~z!5SH~z/S2!. ~9!

For the SCM,S is allowed to vary continuously in Eq.~9!
and the general solution is

F~z!5 f SCM~z!1Kz1/2. ~10!

For the HM,S can only be an integer power of 21/3 and the
general solution has an infinite number of free paramete

F~z!5 f HM~z!1(
q

Kqz1/21 iqv, ~11!

with

v[
3p

ln2
.13.6, ~12!

and q runs over positive and negative integers. The o
restriction on the constantsK andKq is thatF should have a
well defined inverse which is real whenF(5f2) is real and
positive.

It is clear from Eqs.~6! and~7! that for both modelsf (z)
has singularities along the negative real axis and that
general,F(z) cannot be defined forz real and negative. This
imposes restrictions on the choice of the constantsK andKq .
For instance, in the case of the SCM, whenK takes a large
positive value, it is impossible to reach small values ofF
5f2 whenz>0 and the fixed point has no obvious physic
interpretation. However, there is a special positive value oK
for which the singularity off SCM is exactly canceled and a
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analytic continuation forz,0 is possible. Its exact value ca
be calculated@10# by decomposingf SCM into a regular part
f SCM,reg and a singular partf SCM,sing . Using elementary
trigonometric identities, one finds

f SCM,reg~z!5
1

2p2 @11z1/2arctan~z1/2!#, ~13!

and

f SCM,sing~z!52
1

4p
z1/2. ~14!

Consequently, if we chooseK51/4p, F reduces tof SCM,reg .
A more detailed analysis@10# shows that this value ofK is

the only positive value ofK for which U8 can be defined for
any real positivef2. On the other hand, for negativeK, one
obtains a line of fixed points ending~for K50) at the fixed
point relevant for the BMB mechanism. Given the isolati
of the fixed point withK51/4p, it is easy to identify it with
the HFP. We denote the corresponding inverse function
FSCM

! (z)5 f SCM,reg(z). As promised this function is analyti
cal in a neighborhood of the origin and has a Taylor exp
sion

FSCM
! ~z!5

1

2p2 S 11z2
z2

3
1

z3

5
1••• D . ~15!

This expansion has a radius of convergence equal to 1 du
a logarithmic singularity atz521. However, as we will see
in Sec. IV, this expansion allows us to construct an inve
power series andU0.

In the case of the HM, the decomposition into a regu
and singular part is more tedious. Fortunately, this problem
a particular case of a problem solved in Sec. V of Ref.@19#
where Eq. ~5.6! with A5c2, B5c21 and f (z)5G(z/b)
yields

f HM ,sing~z!52
v

4b (
q

~z/b!1/21 iqv

sin@p~1/21 iqv!#
, ~16!

with b andc defined in Sec. II.
If we compare this expression with the general solution

the fixed point equation~11!, we see that in both expression
the powerz1/21 iqv appears for all positive and negative int
ger values ofq. There exists a unique choice of theKq in Eq.
~11! which cancels exactly the singular part off HM . We call
the corresponding fixed point the HFP of the HM. The n
merical closeness with the finiteN HFP discussed in Sec. V
confirms the validity of this analogical definition. We call th
corresponding inverse functionFHM

! . Using Eq.~5.5! of Ref.
@19#, we find

FHM
! ~z!5 f HM ,reg5

1

2b (
l 50

` S 2z

b D l 1

12c2l 21 . ~17!

This expansion has a radius of convergencebc2

52.7024••• for the choice of parameters used here.
6-3
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Y. MEURICE PHYSICAL REVIEW D 67, 025006 ~2003!
It is possible to check the accuracy of the expansion gi
in Eq. ~17! by using the identity FHM

! (z)5 f HM(z)
2 f HM ,sing . Note that the two terms of the right-hand sid
r.h.s. cannot be defined separately on the negative real
On the real positive axis,f HM ,sing is dominated by theq
50 term. Numerically,

K05
3p

4b3/2ln2
51.530339•••. ~18!

The terms withq561 produce log-periodic oscillations o
amplitude 1.7310218. The terms with largeruqu have a
much smaller amplitude. These findings are consistent w
the log-periodic oscillations found numerically in high tem
perature~HT! expansions@20,19#. The oscillatory terms are
very small along the positive real axis. However, in the co
plex plane, if we writez5reiu, the amplitude is multiplied
by e2qv u which compensates the suppression of the deno
nators in Eq.~16!, if u→1p(2p) when q,0 (q.0). In
conclusion, along the real positive axis, we can use the
proximation

FHM
! ~z!. f HM~z!1K0z1/2, ~19!

with an accuracy of 18 significant digits, but this approxim
tion is certainly not valid near the negative real axis.

IV. CALCULATION OF THE CRITICAL POTENTIAL U0
!

In the previous section, we have provided power series
the inverse functionF(z) corresponding to the HFP’s of th
SCM and the HM. We can use these series to defineF(z) on
the negative real axis. In both cases, as we move tow
more negative values ofz, F becomes zero within the radiu
of convergence of the expansion. The situation is illustra
in Fig. 1 for the HM.

Numerically, we have FHM
! (21.5107•••)50 and

FSCM
! (20.6948•••)50. We then reexpand the series abo

that value ofz ~which corresponds toF5f250) and invert

it. The resulting series is an expansion of 2U0
!8 in f2. After

integration, and up to an arbitrary constantu0, we obtain a
Taylor series for the critical potentialU0

! corresponding to
the HFP. We denote the expansion as

FIG. 1. FHM
! (z) versusz.
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!~f2!5 (

n50

`

un~f2!n. ~20!

The precise determination of the zero ofF is obtained by
Newton’s method with a large order polynomial expansio
This expansion is then reexpanded about the zero and
large order coefficients in the original expansion have
effect on the low order coefficients of the reexpanded ser
We have checked that the order was sufficiently large
stabilize the results presented hereafter.

The absolute values of the first 50 coefficients of bo
models are shown in Fig. 2. In both cases, it appears cle
that the absolute value grows at an exponential rate. Lin
fits of the right part of Fig. 2 suggest a radius of convergen
of order 0.11 for the SCM and 2.5 for the HM. The signs
both series follow the periodic pattern122112112
2 for the SCM and1122 for the HM. This suggests
singularities in the complex plane at an anglekp/5 with
respect to the positive real axis (k51,3,7,9) for the SCM
and along the imaginary axis for the HM. This analysis
confirmed by an analysis of the poles of Pade´ approximants
presented in the next section.

V. PADÉ APPROXIMANTS OF U0
!

At this point, our series expansion of the critical potent
does not allow us to define the critical theory as a functio
integral. Asf2 exceeds the critical values estimated in t
previous section, the power series is unable to reproduce
expected functionU0

!. The situation is illustrated in Fig. 3
for the HM.

The numerical values ofU0
! in Fig. 3 have been calculate

using a parametric representation~with z as the parameter!.
We have calculated pairs of values

XF!~z!,
1

2 S zF!~z!2E
0

z

dz8F!~z8! D C ~21!

for various real positive values ofz. A simple graphical
analysis performed by representingU0

! as a surface on Fig. 1
shows that each pair of values in Eq.~21! corresponds to a
pair „f2,U0

!(f2)… with the arbitrary constant inU0
! fixed in

FIG. 2. Natural logarithm of the absolute value of the coe
cients un of the critical potentialU0

! defined in Eq.~20! for the
SCM ~filled squares! and the HM~empty circles!.
6-4
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COMPLEX SINGULARITIES OF THE CRITICAL . . . PHYSICAL REVIEW D 67, 025006 ~2003!
such a way thatU0
! vanishes at its minimum. We have ca

culatedF! by using the independent but approximate E
~19!. As explained in Sec. III, the approximate expression
only valid for z real and positive and should give 18 corre
significant digits. In Fig. 3, we have used the valuesz
52U0850,0.25,0.5,•••. This is why the filled squares onl
appear when the derivative ofU0

! is positive. Unlike Eq.~17!
which has a radius of convergence 1, the approximate
pression Eq.~19! remains valid for large positive values ofz.
It is thus possible to check if Pade´ approximants can be use
to represent the critical potential beyond the radius of c
vergence of its Taylor expansion. Figure 3 shows that l
order approximants are close to the parametric curve. As
order increases, the curves coalesce with the param
curve and a more refined description is necessary.

In Fig. 4, we give the accuracy reached by various
proximants for the HM with a broad range off2 ~more than
4 times the radius of convergence!. As the order of the ap-
proximants increases the accuracy increases but at a
which is slower for larger values off2. The figure is very
similar to sequences of Pade´ approximants obtained for th

FIG. 3. U0
!(f2) for the HM with a parametric plot~filled

squares!, the series truncated at order 50~thick solid line! and Pade´
approximants@4/1# ~thin line slightly above the squares! and @5/2#
~thin line closer to the squares!. The constant has been fixed in su
a way that the value at the minimum is zero.

FIG. 4. Number of correct significant digits obtained with Pa´
approximants@9/6#, @13/10#, @17/14# and@21/18# for various values
of f2 for the HM.
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ground state of the anharmonic oscillator~see Fig. 1 of Ref.
@17#!, where the convergence can be proven rigorously@14#.
Note that the slow convergence at largef2 is not a serious
problem, since the contributions for largef2 are exponen-
tially suppressed in the functional integral. The choice
@L13/L# approximants is discussed in more detail belo
Up to now, we have only discussed the HM. Following t
same procedure for the SCM, we obtain very similar figu
~with a differentf2 scale! which we have not displayed.

The singularities ofU0
! in the complexf2 plane can be

inferred from the location of the zeroes and poles of the P´
approximants. AsL becomes large, regular patterns appe
Examples are shown in Fig. 5 for the SCM and Fig. 6 for t
HM. In both cases, the zeros and poles approximately a
nate along two lines ending where singularities were
pected from the analysis of coefficients in Sec. IV. This p
tern suggests@21# the existence of two complex conjugate
branch points at the end of these lines.

The choice of@L13/L# approximants is easily justified
for the SCM. At large uzu, f SCM(z)}1/z and FSCM

! (z)

FIG. 5. Real and imaginary parts of the roots of the denomina
~filled squares! and numerator~crosses! of a @26/23# Padéapproxi-
mant for the SCM. The solid circle has a radius 0.11 and the
solid lines make angles63p/5 with respect to the positive rea
axis.

FIG. 6. Real and imaginary parts of the roots of the denomina
~filled circles! and numerator~crosses! of a @26/23# Padéapproxi-
mant for the HM. The solid circle has a radius 2.5. Two roots fart
away on the imaginary axis and one root farther away near
negative real axis are not displayed.
6-5
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Y. MEURICE PHYSICAL REVIEW D 67, 025006 ~2003!
.(1/4p)z1/2. For large uf2u, U0
!’.8p2(f2)2 and U0

!

.(8p2/3)(f2)3. Consequently a@L13/L# approximant
should have the correct asymptotic behavior. More precis
if aL13 andbL are the leading coefficients of the numera
and denominator of a Pade´ @L13/L# respectively, we expec
that whenL is large

aL13

bL
→ 8p2

3
. ~22!

Defining a quantity

EL[12
3aL13

8p2bL
~23!

that measures the departure from the expected asymp
behavior, we see from Fig. 7 that asL increases, the discrep
ancy diminishes exponentially.

In the case of the HM, the situation is more intrica
From Eq.~19!, we may be tempted to conclude that the tw
cases are similar. Unfortunately, Eq.~19! is a real equation,
not a complex one. In the complex plane, the terms withq
Þ0 become important near the negative real axis and
simple simple limit as in Eq.~22! applies. However, if we
needU0

! only along the real positive axis, Fig. 4 justifies th
use of the@L13/L# sequence of approximants.

VI. THE HFP IN A CONVENIENT SET OF COORDINATES

As explained in the Introduction we can think that the R
flows move in a space of functions. The system of coor
nates for this space can be chosen in a way that is conve
to make approximations. A particularly convenient system
coordinates for the HM consists in considering the Fou
transform of the local measure of integration@15,16#. In this
system of coordinates and at leading order in the 1/N expan-
sion, the HFP for a givenN reads

R!~kW !}E dNfe2(b/2)f22NU0
!(f2/N)1 ikW•fW . ~24!

The quadratic term proportional tob is due to the fact tha
the quadratic formD for the HM has a zero mode. We the
Taylor expand

FIG. 7. LoguELu versusL.
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an~k2!n, ~25!

and consider thean as our new set of coordinates. The a
vantage of this representation is that it is possible to m
very accurate calculations by using polynomial approxim
tions@15,16,18# of the infinite sum in Eq.~25!. In this section
and the next section, we discuss the details of the calc
tions for the HM. The case of the SCM shares many sim
larities with the HM and is discussed briefly at the end
each section.

We have performed a numerical calculation of thean of
the HM using Eq.~24! in the particular caseN55. A study
of the ratios of successive coefficients displayed in Fig
indicates that theuanu decay faster than 1/n! and thatR!(kW )
is analytical over the entire complexk2 plane in contrast to
U0

!(f2) which has a finite radius of convergence in the co
plex f2 plane.

The good convergence ofR!(kW ) can be explained by an
approximate calculation. Thef integral that is performed in
the calculation of thean has a positive integrand with a pea
moving to larger values ofufu when n increases. For suffi-
ciently large values ofn, we can replaceU0

! by its
asymptotic behavior on the positive realf2 axis which can
be derived from the approximate Eq.~19! for the HM:

R!~kW !;E dNfe2[1/(6N2K0
2)](f2)31 ikW•fW . ~26!

With this approximation, thean can be expressed exactly i
terms of gamma functions and a simple calculation yield

2
an

an21
.

~6N2K0
2!1/3G„~N12n!/6…

4n~n211N/2!G„~N12~n21!!/6…
. ~27!

Note that there are no free parameters in this formula. Fig
8 shows that Eq.~27! is a very good approximation of th
ratios obtained numerically from Eq.~24!.

FIG. 8. Ratios of successive coefficients for the HM, using
leading order Eq.~24! ~stars!, the asymptotic formula Eq.~27! ~con-
tinuous line! and the numerical fixed point~empty circles!. Same
results for the SCM: leading order~filled squares! and asymptotic
~dashed line!. In all cases,N55.
6-6
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COMPLEX SINGULARITIES OF THE CRITICAL . . . PHYSICAL REVIEW D 67, 025006 ~2003!
We have also calculated thean corresponding to the HFP
for N55 using the numerical method developed in the c
N51 in Ref. @18# and which can be extended easily f
arbitraryN. In brief, it consists of finding the stable manifo
by fine-tuning the temperature and then iterating the
transformation in order to get rid of the irrelevant direction
This procedure is very accurate and completely indepen
of the approximations made in this article. Remarkably,
found that even thoughN55 is not a large number, the firs
coefficients obtained in the leading order in the 1/N approxi-
mation coincide with about two significant digits with th
accurate values found numerically withN55. As the order
increases, the accuracy degrades slowly. This is explaine
more detail below. However, the ratios of successive coe
cients still follows closely the asymptotic prediction obtain
from Eq. ~27!. This strongly suggests that the (f2)3

asymptotic behavior of the critical potential persists at fin
N.

Except for the comparison with independent numeri
calculations at finiteN, the same calculations can be pe
formed for the SCM with minor changes (b→0 and K0
→K). The results are also shown in Fig. 8 where one can
that the agreement with the asymptotic formula is very go
even at low order.

VII. DISCUSSION OF ALTERNATE PROCEDURES

In Sec. V, we have shown that the Pade´ approximants
provide accurate values ofU0

! far beyond its radius of con
vergence. In order to estimate the error on the new coo
natesan due to the use of approximants forU0

!, we can vary
the range of integration and change the approximants.
instance the values ofan of the HM used in Fig. 8 have bee
calculated using a range of integrationufu,20 and a@26/23#
Padé approximant. For the values ofn considered here
changing the range of integration has effects smaller than
errors due to numerical integration~which has an accuracy o
about 11 significant digits in our calculation! provided that
we include values up toufu.4.9. Restricting the range o
integration to smaller values produces sizable effects. As
example, the small effects due a restriction toufu,4.4 are
shown in Fig. 9. Similarly, the values ofan are not very
sensitive to small changes in the Pade´ approximants. Sizable
effects are obtained by changing the order of the numer
and denominator by approximately 10. For instance, the
fects of using a@14/11# approximant are shown in Fig. 9.

Having demonstrated that we can calculate the first
coefficientsan , at leading order in the 1/N expansion, with
at least 10 significant digits, we can now discuss the er
associated with other procedures mentioned in the Introd
tion. The first procedure consists in truncatingU0

! keeping
only the terms up to order (f2)3. This procedure inspired by
perturbation theory amounts to keep only the relevant
marginal directions near the Gaussian fixed point. From F
9, we see that this procedure generates errors which ar
the same order as the errors due to the use of the leadingN
approximation. Consequently, this procedure is quite uns
able to study the correction to this approximation. Sligh
better results are obtained by keeping as many terms as
02500
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sible in the expansion~up to 50 in our calculation! but re-
stricting the range of integration in such way that we s
within the radius of convergence. Given the rescaling of E
~3! this means that forN55, we need to restrict the integra
tion to ufu,A532.5.3.54 which is substantially smalle
than the acceptable field cutoff 4.9 mentioned above. As
can see from Fig. 9, this creates errors that are between
and two orders of magnitude smaller than the 1/N correc-
tions. This is better but it compares poorly with what can
reached with Pade´ approximants.

Again, except for the comparison with independent n
merical calculations at finiteN, the same calculations can b
performed for the SCM with minor changes. Results ve
similar to those shown in Fig. 9 for the HM can be produce
Since it contains essentially the same information, it has
been displayed. It should however be noted that the num
of significant digits obtained with the two alternative proc
dures are lower than in the case of the HM. In the case of
truncation of the range of integration, we need to rest
values toufu,A530.11.0.74 while a range of about 2 i
required in order to obtain an accuracy consistent with
method of numerical integration.

VIII. CONCLUSIONS

We have shown in two differents models where the cr
cal potential can be calculated at leading order in the 1N
expansion that these potentials have finite radii of conv
gence due to singularities in the complex plane. Do suc
results persist at finiteN? In the case of the HM, the behavio
of the ratios at finiteN shown in Fig. 8 strongly suggests th
at large real positivef2, the critical potential still grows like
(f2)3. Can an infinite sum converging over the entire co
plex plane have this kind of behavior? This is certainly n
impossible@e.g., (f2)31e2f2

]; however it requires cancel
lations that we judge unlikely to happen. Consequently,

FIG. 9. Number of significant digits common with our best e
timate for thean obtained for the HM from Eq.~24! with n ~the
order! going from 1 to 20. The alternative procedures are the tr
cation at order (f2)3 ~filled circles!, the N55 accurate numerica
result ~filled square!, no Pade´ approximants but a truncation of th
range of integration close to the radius of convergence~empty
circles!, a restriction of the range of integration forf,4.4 ~stars!,
and a@14/11# Padé~diamonds!.
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conjecture that the singularities observed are generic ra
than being an artifact of the large-N limit.

We have observed that in a system of coordinates wh
the HFP can be approximated by polynomials, the proced
which consists in considering the bare potential truncate
order (f2)3 describes the HFP with a low accuracy. We a
planning to investigate if similar problems appear near t
ritical fixed points. In particular, reconsidering the RG flow
in a larger space of bare parameters may affect the gen
dimension of the intersections of hypersurface of vario
codimensions and help us find a more general realizatio
spontaneous breaking of scale invariance with dynam
generation of mass.

Our results have qualitative similarities common w
those of Refs.@22#: we found some ‘‘pathologies’’ which
T,

o
an
,

tt.

02500
er

re
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ric
s
of
al

force us to look at the RG transformations in a more op
minded way. We are planning@23# to compare in more detai
the leading order results presented here with finiteN results,
as suggested in Ref.@24# for the local potential approxima
tion. Another issue regarding theO(N) models and which
would deserve a more detailed investigation is the ques
of first order phase transitions@25,26#.
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