PHYSICAL REVIEW D 67, 025006 (2003

Complex singularities of the critical potential in the large-N limit
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We show with two numerical examples that the conventional expansion in powers of the field for the critical
potential of 3-dimensionaD(N) models in the largé¥ limit does not converge for values @f? larger than
some critical value. This can be explained by the existence of conjugated branch points in the cpfmplex
plane. Padepproximantg L+ 3/L] for the critical potential apparently converge at largé This allows
high-precision calculation of the fixed point in a more suitable set of coordinates. We argue that the singulari-
ties are generic and not an artifact of the laMydimit. We show that ignoring these singularities may lead to
inaccurate approximations.
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[. INTRODUCTION Gaussian fixed point and in particular near nontrivial fixed
points.
Since the early days of the renormalization grdi®R$s) In the following, we concentrate on the nontrivial fixed

method[1], 3-dimensional scalar models have been identipoint found numerically in the casd=1 by Wilson [1].
fied as an important laboratory to discuss the existence ofhis fixed point is located on a hypersurface of second order
nontrivial fixed points and the large cutafor small lattice  phase transition which separates the symmetric phase from
spacing limit of field theory models. In the case of the broken symmetry phase. In the following we call this
N-component models with a®(N) invariant Lagrangian, fixed point the Heisenberg fixed poittiFP) as in Ref[10].
the RG transformation becomes particularly simple in thelt should not be confused with the fixed point relevant for the
largeN limit [2]. The construction of the effective potential BMB mechanism, which is not studied in detail here. The
for these models is discussed in R¢&-5|. Later, motivated main result of the article is that the bare potential corre-
by perturbative results indicating the existence of an UVsponding to the HFP has singularities in the complex plane
stable tricritical fixed point folN large enougH6], a new and that ignoring these singularities may lead to inaccurate
mechanism allowing spontaneous breakdown of scale invarapproximations. These claims are based on explicit calcula-
ance and dynamical mass generation was found in the largéons performed in the largi-limit for two O(N) invariant
N limit [7]. In the following, we call this mechanism the models reviewed in Sec. Il. These two models é&tg a
Bardeen-Moshe-BanddBMB) mechanism. It was argued model with ak? kinetic term together with a sharp cutoff, the
[8] that the BMB mechanism is compatible with a zerosharp cutoff mode[(SCM); (2) Dyson’s hierarchical model
vacuum energy and a better understanding of this questiofHM) [12,13.
might suggest a solution to the cosmological constant prob- Before entering into technical details, three points should
lem. Spontaneous breaking of scale invariance is also dide clear. First, all the results presented here are based on the
cussed 9] with related methods in four-dimensional models analysis of long numerical series and no attempt is made to
of clear interest in the context of particle physics. Howevergive rigorous proofs. Second, in order to understand some of
doubts were cadtl0] about the fact that the BMB mecha- the statements made below, the reader should be aware that
nism is generic and it is commonly believed that it disap-even though, at leading order in the lafgeapproximation,
pears at finiteN. the critical exponents takBl-independent values, the same
In this article we report results which force us to recon-approximation provides finité approximate HFP’s which
sider the way we think about nontrivial fixed points. We are N dependent. A more precise formulation of this state-
usually think of the RG flows as taking place in a space ofment can be found in Secs. Il and VI. Third, we only work in
bare couplings or more generally in a space of functions. Th& dimensions. The precise meaning of this statement for the
necessity for this more general point of view appears quitdierarchical model is explained at the end of Sec. II.
clearly in exact renormalization group equati¢ths]. Unfor- In Sec. lll, we review the basic equatiofs10] defining
tunately, it seems impossible to decideriori which space the HFP for the SCM. We then show that the definition can
of functions should be considered to study the RG flows. It ide extended naturally for the HM. The correctness of this
clear from perturbation theory that near the Gaussian fixedefinition is verified later in the paper. In Sec. IV, we present
point, low dimensional polynomial approximations of the lo- the methods used to calculate the critical potential expanded
cal potential should be adequate. However, it is not clear thads a Taylor series ig?. The coefficients of this expansion
this kind of approximation should be valid far away from the are called the critical couplings. The main conclusion that we
can infer from our numerical results is that the Taylor series
is inadequate for large values @f. First of all, one-half of
*Email address: yannick-meurice@uiowa.edu the critical couplings are negative. If we truncate the Taylor
"Permanent address. series at an order such that the coefficient of the highest
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Vo(x) = NUO

order is negative, we obtain an ill-defined functional integral.will assume that=,A,,=0. If it is not the case, one can
In addition, the absolute value of the critical couplings growsalways subtract the zero mode from and compensate it
exponentially with the order and the expansion has a finitavith a new term inVv.

radius of convergence. Consequently, the idea that the criti- Defining the rescaled potential

cal potential associated with the HFP can be approximated

by polynomials should be reconsidered. i) 3)

It is nevertheless possible to define the critical theory by N/’
using Padepproximants for the critical potential. In Sec. V,
we show that sequences of approximants converge towarahd performing a Legendre transform from the soufde
the expected function in a way very reminiscent of the casgne external classical field. , one can show that in the large
of the anharmonic oscillator where the convergence can bgy |imit [10] M2=20V,( /342 obeys the self-consistent
proven rigorously[14]. In addition, the zeros and the poles quation ¢
of these approximants are located far away from the rea?
positive axis and follow patterns that strongly suggest the 2U6[¢§+fA(|\/|2)]:|\/|2, (4)
existence of two complex conjugated branch points.

The complex singularities of the critical potential should wheref ,(M?) is the one-loop integral corresponding to the
not be interpreted as a failure of the RG approach but rathejuadratic formA and a mass terrM?. The prime denotes
as an artifact of the system of coordinates used. In Sec. Vihe derivative with respect to th®(N) invariant argument.
we present consistent arguments showing that in a differenthe explicit forms off for the two models discussed in the
system of coordinatefl5,16, the function associated with following are given in Eqs(6), (7). Precise definitions o&ﬁ
the HFP is free of singularities. In this system of coordinatesand the effective potential,s are given in[10].
finite dimensional truncation is a meaningful procedure Up to now, all the quantities introduced are dimension-
which, in the case of the HM, allows comparison with inde-|ess. They can be interpreted as dimensionful quantities ex-
pendent numerical calculations at finite An example of pressed in cutoff units. Let us consider two models, the first
such a calculation is presented in the chise5. one with a rescaled potentily, a UV cutoff A and a qua-

In Sec. VII, we discuss the errors associated with twogratic formA and a second model with a rescaled potential
approximate procedures that can be used to deal with thg . a UV cutoff A/S and a quadratic form\s. For D
singularities. The first procedure which is justified in the con-— 3 and in the largeN limit, the two models have the same
text of perturbation theory and does not require an undergimensionful zero-momentum Green's functions provided
standing of the singularities, consists in truncating the poteng ¢
tial at order @2)°. The second procedure consists in

restricting the range of integration @? to the radius of Uos(9%)=SUg([¢°— s (2Ug5(47)1/S
convergence of the critical potential. If the range of integra-
tion is large enough, this second procedure generates small +fA[(2/SZ)U(’)YS( »4)]). 5)

errors[17]. As far as the calculation of the HFP in the system
of coordinates of Sec. VI is concerned, both procedures havi# two special cases, the dimensionless expression for the
a low accuracy for both models considered. In the concluone-loop diagram is independent of the cutoff. In other
sions, we explain why we believe that the singularities perwords, fy,=f, =f and the fixed point equation becomes
sist at finiteN and we discuss implications of the existence ofvery simple[2,10].
these singularities for other problems. We now discuss the two models where this simplification
occurs. In the SCMA becomesk? in the momentum repre-
sentation(Fourier modes The momentum cutoff is sharp:
k?<1 (in cutoff units. This is why we call this model the
We consider lattice models defined by the partition func-sharp cutoff model. The nonrenormalization of the kinetic
tion term is justified in the larg& limit [10]. For this model,

Il. MODELS

- B k1
z(3)=11 de¢xe_S+§X: Ixdx, (1) fSCM(Z)_ijIWm. (6)

X

By construction13], the kinetic term of Dyson’s hierar-
with chical model is not renormalized and we have

1 . . B o 2—n—1
S=-5 2 $buydyt 2 Vo4, @ (@)= 2 e "

o with c=21"2P andb=Bc/(2—c). The inverse temperature
We use the notationjbiz@- ¢y and A, is a symmetric B and the parameter appear in the Hamiltonian of the HM
matrix with negative eigenvalues, such as discrete versionis a way that is explained in Sec. Il of R¢f.8]. The param-
of the Laplacian. For the simplicity of the presentation, weeterc is related to the dimensioD by considering the scal-
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ing of a massless Gaussian field. In the following we will analytic continuation foz<<0 is possible. Its exact value can
consider the case=2'3 (D =23) exclusively. In addition  be calculated10] by decomposingscy into a regular part
will be set to 1 as in other fixed point calculations8]. fsemreg @nd a singular parfscysing: Using elementary
Different values of3 can be introduced by a trivial rescaling. trigonometric identities, one finds

Note also that the cutoff cannot be changed continuously for

the HM, because the invariance fofs only valid when we 1

integrate the degrees of freedom of the largest momentum fscmreq(2)= ﬁ[1+zl’2arctamzl’2)], (13

shell (corresponding to the hierarchically nested blocks in

configuration spageall at the same time. For the HM, the and

density of sites is reduced by a factor 2 at each RG transfor-

mation. The linear dimensiofflattice spacing”) is thus in- 1,

creased by a factor'® and the cutoff decreased by the same fscmsing(2) == 72" (14

factor. Consequently, for the HM, E@b) should be under-

stood only withS=2%P =293 andq integer. Consequently, if we choose= 1/4m, F reduces td sy, reg-
A more detailed analysid.0] shows that this value df is

Ill. THE HFP the only positive value oK for which U’ can be defined for

any real positivap?. On the other hand, for negati¥g one
optains a line of fixed points endiri@r K=0) at the fixed
int relevant for the BMB mechanism. Given the isolation

of the fixed point withK =1/4, it is easy to identify it with

the HFP. We denote the corresponding inverse function by
FSem(2) =fscmreg(2). As promised this function is analyti-
F(2UY( )= ¢? (8  calin a neighborhood of the origin and has a Taylor expan-

sion

In this section, we review the construction of the HFP for
the SCM, and we show that the construction can be extend
in a natural(but nontrivia) way for the HM. The first step
consists in finding all the fixed points of the RG E®).
Following Refs.[2,10], we introduce the inverse function

and the functionH(z)=F(z)—f(z), where the one-loop , 3
function f has been defined in the previous section for the F2o(2)= 1 147— L L (15
two models considered. With these notations, the fixed point SCM 272 3 5 '
equation corresponding to E¢(p) is simply
5 This expansion has a radius of convergence equal to 1 due to
H(z)=SH(Z/S"). 9 alogarithmic singularity az= — 1. However, as we will see
in Sec. IV, this expansion allows us to construct an inverse
power series antll.
In the case of the HM, the decomposition into a regular
F(z)=fscm(z) + Kz¥2 (100  and singular part is more tedious. Fortunately, this problem is
a particular case of a problem solved in Sec. V of R&€]
For the HM, S can only be an integer power of'2and the ~where Eq.(5.6) with A=c?, B=c™ ! and f(z)=G(z/b)
general solution has an infinite number of free parameters:yields

For the SCMSis allowed to vary continuously in E¢9)
and the general solution is

(Zlb)1/2+lqw

— + 1/2+iqw _ i
F(2)=fuu(2) % Koz : (11) fum,sing(2) =~ 7p Zq ST iq0)]" (16)
with with b andc defined in Sec. Il.
3 If we compare this expression with the general solution of
w=—=13.6, (120  the fixed point equatiofil1), we see that in both expressions,
In2 the powerz!/2"19 appears for all positive and negative inte-

and g runs over positive and negative integers. The only9S" values ofy. There exists a unique choice of tg in Eq.

11) which cancels exactly the singular partfef, . We call

restriction on the constants andK is thatF should have a ( : i . M-

well defined inverse which is real whét( = ¢?) is real and the porrespondmg f|?<ed point the HFP. of the H.M' The nu-

positive. menpal closene_ssf with the finité HFP dlsc_u_s_sed in Sec. VI
It is clear from Eqs(6) and(7) that for both models(2) confirms the validity of this analogical definition. We call the

has singularities along the negative real axis and that, i orresponding inverse functidty, . Using Eq.(5.5) of Ref.

generalF(z) cannot be defined farreal and negative. This 19], we find
imposes restrictions on the choice of the constinasdK, .
For instance, in the case of the SCM, whenakes a large
positive value, it is impossible to reach small valuesFof
= ¢2 whenz=0 and the fixed point has no obvious physical
interpretation. However, there is a special positive valuié of This expansion has a radius of convergente?
for which the singularity off -\ is exactly canceled and an =2.7024 - - for the choice of parameters used here.

-z\' 1
Fﬁm(z):fHM,rebe (T) 1o 1T (17)
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FIG. 2. Natural logarithm of the absolute value of the coeffi-
cientsu, of the critical potentialuy defined in Eq.(20) for the
CM (filled squaresand the HM(empty circles.

FIG. 1. F}y(2) versusz

It is possible to check the accuracy of the expansion givenS
in Eq. (17) by using the identity F}}\(2)=fum(2) w
—fim,sing- Note that the two terms of the right-hand side U*(h2) = Un( b2\
r.h.s. cannot be defined separately on the negative real axis. o(¢7) ngo (@97
On the real positive axisfyy sing is dominated by they
=0 term. Numerically,

(20

The precise determination of the zero Bfis obtained by
Newton’s method with a large order polynomial expansion.
3 This expansion is then reexpanded about the zero and the
Ko= 1532 = 1530339 . (18)  large order coefficients in the original expansion have an
effect on the low order coefficients of the reexpanded series.
The terms withq=*+1 produce log-periodic oscillations of We have checked that the order was sufficiently large to
amplitude 1.%107 '8, The terms with largefq| have a Stabilize the results presented hereafter.
much smaller amplitude. These findings are consistent with The absolute values of the first 50 coefficients of both
the log-periodic oscillations found numerically in high tem- models are shown in Fig. 2. In both cases, it appears clearly
perature(HT) expansiong20,19. The oscillatory terms are that the apsolute vaIue_ grows at an expo_nen'ual rate. Linear
very small along the positive real axis. However, in the comfits of the right part of Fig. 2 suggest a radius of convergence
plex plane, if we writez=re'?, the amplitude is multiplied ~©f order 011 for the SCM _an(_j 2.5 for the HM. The signs of
by e~ ¢ which compensates the suppression of the denomiPoth series follow the periodic pattera— — ++ —+ + —
nators in Eq.16), if 6— + @(— ) wheng<0 (q>0). In  — for the SCM and+ + —— for the HM. This suggests

conclusion, along the real positive axis, we can use the apsingularities in the complex plane at an angie/S with
proximation respect to the positive real axik<1,3,7,9) for the SCM

and along the imaginary axis for the HM. This analysis is
confirmed by an analysis of the poles of Paggroximants
presented in the next section.

with an accuracy of 18 significant digits, but this approxima-
tion is certainly not valid near the negative real axis.

Fim(2)=fum(2) + Koz, (19

V. PADE APPROXIMANTS OF U;

At this point, our series expansion of the critical potential
does not allow us to define the critical theory as a functional

integral. As ¢? exceeds the critical values estimated in the

In the previous section, we have provided power series foprevious section, the power series is unable to reproduce the
the inverse functio(z) corresponding to the HFP's of the oy pected functiorU. The situation is illustrated in Fig. 3
SCM and the HM. We can use these series to ddfif® on for the HM.

the negative real axis. In both cases, as we move towar The numerical values d&fj in Fig. 3 have been calculated

of convergence of e expansion. The stuatin is fustratedfSI"d 3 ParaMetic represeniatonih 2 as the parameter
9 P ' e have calculated pairs of values

in Fig. 1 for the HM.

Numerically, we have F},(—1.5107--)=0 and
F&cm(—0.6948 - -)=0. We then reexpand the series about
that value ofz (which corresponds t& = ¢?=0) and invert

it. The resulting series is an expansion mg’ in ¢2. After
integration, and up to an arbitrary constagt we obtain a
Taylor series for the critical potentid; corresponding to
the HFP. We denote the expansion as

IV. CALCULATION OF THE CRITICAL POTENTIAL  Uj§

1 z
(F*(z)i(zF*(z)—J' dz’F*(z’))) (21
0
for various real positive values af. A simple graphical
analysis performed by representibg as a surface on Fig. 1
shows that each pair of values in E§1) corresponds to a
pair (¢2,U5(¢?)) with the arbitrary constant ij fixed in
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FIG. 5. Real and imaginary parts of the roots of the denominator
FIG. 3. Uj(¢?) for the HM with a parametric plofiled  (filled squaresand numeratotcrosses of a [26/23 Padeapproxi-

squarey the series truncated at order @bick solid ling and Pade ~Mant for the SCM. The solid circle has a radius 0.11 and the two

approximantg4/1] (thin line slightly above the squaneand[5/2] so!id lines make angles 37/5 with respect to the positive real

(thin line closer to the squares he constant has been fixed in such XIS

a way that the value at the minimum is zero.

ground state of the anharmonic oscillatsee Fig. 1 of Ref.

such a way that)} vanishes at its minimum. We have cal- [17]), where the convergence can be proven rigoro{s#y.

culated F* by using the independent but approximate Eq_Note that the slow convergence at larg@ is not a serious
(19). As explained in Sec. Ill, the approximate expression isProblem, since the contributions for largé are exponen-
only valid for z real and positive and should give 18 correcttially suppressed in the functional integral. The choice of
significant digits. In Fig. 3, we have used the values [L+3/L] approximants is d_|scussed in more deta|l_below.
—2U}=0,0.25,0.5,- -. This is why the filled squares only Up to now, we have only discussed the HM. Following the

N . s . dure for the SCM, we obtain very similar figures
appear when the derivative bfj is positive. Unlike Eq(17) Same proce 5 o ;
which has a radius of convergence 1, the approximate ex(—W'th a different” scalg which we have not displayed.

. oy * - 2
pression Eq(19) remains valid for large positive valuesof | The singularities Ol,JO in the complex¢™ plane can pe
It is thus possible to check if Padgproximants can be used inferred from the location of the zeroes and poles of the Pade

to represent the critical potential beyond the radius of con@PProximants. Ad. becomes large, regular patterns appear.

vergence of its Taylor expansion. Figure 3 shows that lowEX@mples are shown in Fig. 5 for the SCM and Fig. 6 for the
order approximants are close to the parametric curve. As thg M- In both cases, the zeros and poles approximately alter-

order increases, the curves coalesce with the parametrf@t€ @long two lines ending where singularities were ex-
curve and a more refined description is necessary. pected from the analysis of coefficients in Sec. IV. This pat-

In Fig. 4, we give the accuracy reached by various ap_tern suggest$21] the existence of two complex conjugated

proximants for the HM with a broad range @€ (more than ~ Pranch points at the end of these lines. o
4 times the radius of convergencés the order of the ap- _ 1he choice of L +3/L] approximants is easily justified

proximants increases the accuracy increases but at a ra@ the SCM. At large |z], fscm(z)>1/z and F5cu(2)
which is slower for larger values ap?. The figure is very

similar to sequences of Pad@proximants obtained for the 10~ T T T T
HM
14 L . T L) T L) 5 | i
EM ]
12} » *  [21/18]] [
A A 17/14
3 10f*, [7/141; g O
! N s [13/10}]
A 8F, fu T . 9/6]
a ®e ‘AAA ******* : ] ] -5¢ e den.]]
g'\ 6 Tea, has "%\ + num,
- 4_--.__ ...“:N - . ) + ) )
« - llll.-r‘\ 10_10 _5 O 5 10
2 [ 'l L L 'l Re
2 4 6 ¢2 8 10 FIG. 6. Real and imaginary parts of the roots of the denominator

(filled circles and numeratotcrosses of a [26/23] Padeapproxi-
FIG. 4. Number of correct significant digits obtained with Pade mant for the HM. The solid circle has a radius 2.5. Two roots farther
approximantg§9/6], [13/10], [17/14] and[21/18] for various values away on the imaginary axis and one root farther away near the
of ¢? for the HM. negative real axis are not displayed.
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order n

FIG. 7. LodE_| versusL.
FIG. 8. Ratios of successive coefficients for the HM, using the

=(1/4m)zY2 For large |¢?|, Uy =8m?(¢?)? and U; leading order Eq(24) (starg, the asymptotic formula Eq27) (con-
=(872%13)(¢?)%. Consequently a[L+3/L] approximant tinuous ling and the numerical fixed poirempty circles. Same
should have the correct asymptotic behavior. More preciselyesults for the SCM: leading ordéfilled squaresand asymptotic
if a,.5 andb, are the leading coefficients of the numerator (dashed ling In all casesN=>5.
and denominator of a Padle + 3/L] respectively, we expect
that whenL is large

0

R (K)=1+ 2 aq(k)", (25)
a 8m? =1
L+3 O 22) _ _
by 3 and consider tha,, as our new set of coordinates. The ad-
o ) vantage of this representation is that it is possible to make
Defining a quantity very accurate calculations by using polynomial approxima-
tions[15,16,18 of the infinite sum in Eq(25). In this section
E =1— 3aL 3 (23) and the next section, we discuss the details of the calcula-
L 877sz tions for the HM. The case of the SCM shares many simi-

larities with the HM and is discussed briefly at the end of
that measures the departure from the expected asymptotich section.
behavior, we see from Flg 7 that lasincreases, the discrep- We have performed a numerical calculation of ﬁheof
ancy diminishes exponentially. the HM using Eq.(24) in the particular casél=5. A study
In the case of the HM, the situation is more intricate. of the ratios of successive coefficients displayed in Fig. 8
From Eq.(19), we may be tempted to conclude that the tWojpgicates that théa,| decay faster than &l and thatR* (k)
cases are similar. Unfortunately, EQ9) is a real equation, ;s ananvtical over the entire complds plane in contrast to

not a comple>.< one. In the complex plane, the te”‘.“s with Us(#%) which has a finite radius of convergence in the com-
#0 become important near the negative real axis and nBIex #2 plane

simple simple limit as in Eq(22) applies. However, if we o )

needU}, only along the real positive axis, Fig. 4 justifies the 1 ne good convergence & (k) can be explained by an

use of the[ L+ 3/L] sequence of approximants. approxmate calculation. The mtegral_that is perfc_;rmed in
the calculation of the,, has a positive integrand with a peak

moving to larger values of¢| whenn increases. For suffi-

ciently large values ofn, we can replaceUy by its

As explained in the Introduction we can think that the RGasymptotic behavior on the positive reaf axis which can
flows move in a space of functions. The system of coordibe derived from the approximate Ed.9) for the HM:
nates for this space can be chosen in a way that is convenient
to make approximations. A particularly convenient system of (I N ;- [1/(6N2K2)](9?)3+iK- b

. L N . R*(k)~ | dV¢e 0 . (26)
coordinates for the HM consists in considering the Fourier
transform of the local measure of integratidrb,16. In this

system of coordinates and at leading order in tié @tpan-  With this approximation, the,, can be expressed exactly in
sion, the HFP for a givell reads terms of gamma functions and a simple calculation yields

VI. THE HFP IN A CONVENIENT SET OF COORDINATES

a, (6N2K3)Y3I' (N +2n)/6)
T a,, An(n—1+N2)T(N+2(n—-1))/6)°

R*(K)ex f dNge~ GRS NUSN K (o4 (27)

The quadratic term proportional tois due to the fact that Note that there are no free parameters in this formula. Figure
the quadratic form\ for the HM has a zero mode. We then 8 shows that Eq(27) is a very good approximation of the
Taylor expand ratios obtained numerically from E¢R4).
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We have also calculated tlag corresponding to the HFP 15F" ' i
for N=5 using the numerical method developed in the case P M N=5 —e— 14/11;20 ]
N=1 in Ref.[18] and which can be extended easily for [ %, — 26/23;4.4]
arbitraryN. In brief, it consists of finding the stable manifold 8 10} i = O ’
by fine-tuning the temperature and then iterating the RG ‘o - ﬁ‘*\wﬁ,\:“*wm
transformation in order to get rid of the irrelevant directions. | 5[ T, 1
This procedure is very accurate and completely independent . F o : 50/0;3.54]
of the approximations made in this article. Remarkably, we & Lt T 0000, ]
found that even thougN =5 is not a large number, the first < ol \"H-.a.:H:.:2?;3;3;3;8;8;2;3;3 ]
coefficients obtained in the leading order in thsl Hpproxi- [ 6 ]
mation coincide with about two significant digits with the L num L. upto ¢.
accurate values found numerically with=5. As the order 0 5 10 15 20
increases, the accuracy degrades slowly. This is explained in order n

more detail below. However, the ratios of successive coeffi- o o .
cients still follows closely the asymptotic prediction obtained ~ FIG. 9. Number of significant digits common with our best es-
from Eq. (27). This strongly suggests that the¢>?()3 timate for thea, obtained for the HM from Eq(24) with n (the

asymptotic behavior of the critical potential persists at finite®de? going from213to 20. The alternative procedures are the trun-
N. cation at order ¢°)° (filled circles, the N=5 accurate numerical

result(filled squarg, no Padeapproximants but a truncation of the

Except for the comparison with independent numerica ; ; :
b b b range of integration close to the radius of convergetempty

calculations at finiteN, the same calculations can be per- " L ; .
. . <4,
formed for the SCM with minor changes{0 and K, circles, a restriction 'of the range of integration fgh<<4.4 (stars,
e and a[14/11] Pade(diamonds.
—K). The results are also shown in Fig. 8 where one can see

that the agreement with the asymptotic formula is very good ., = . . . .
even at low order. sible in the expansiofup to 50 in our calculationbut re-

stricting the range of integration in such way that we stay
within the radius of convergence. Given the rescaling of Eq.
(3) this means that foN=5, we need to restrict the integra-
In Sec. V, we have shown that the Paﬂlpproximants tion to |¢p|<5Xx2.5=3.54 which is substantially smaller
provide accurate values (bjs far beyond its radius of con- than the acceptable field cutoff 4.9 mentioned above. As one
vergence. In order to estimate the error on the new coordican see from Fig. 9, this creates errors that are between one
the range of integration and change the approximants. FJ{ons- This is better but it compares poorly with what can be
instance the values @, of the HM used in Fig. 8 have been r¢ached with Padapproximants. o
calculated using a range of integratiap <20 and §26/23| Again, except for the comparison with independent nu-
Pade approximant. For the values af considered here merical calculations at finitdl, the same calculations can be
changing the range of integration has effects smaller than thgerformed for the SCM with minor changes. Results very

errors due to numerical integratiéwhich has an accuracy of Similar to those shown in Fig. 9 for the HM can be produced.
about 11 significant digits in our calculatipprovided that Since it contains essentially the same information, it has not
we include values up thp|=4.9. Restricting the range of been displayed. It should however be noted that the number
integration to smaller values produces sizable effects. As afff Significant digits obtained with the two alternative proce-
example, the small effects due a restriction| #9<4.4 are dures are lower than in the case of the HM. In the case of the

shown in Fig. 9. Similarly, the values af, are not very truncation of the range of integr_ation, we need to res'Frict
sensitive to small changes in the Pagoroximants. Sizable Values to] ¢| < y5x0.11=0.74 while a range of about 2 is
effects are obtained by changing the order of the numeratdduired in order to obtain an accuracy consistent with the
and denominator by approximately 10. For instance, the efM&thod of numerical integration.
fects of using §14/11] approximant are shown in Fig. 9.

Having demonstrated that we can calculate the first 20 VIIl. CONCLUSIONS
coefficientsa,,, at leading order in the W expansion, with
at least 10 significant digits, we can now discuss the errors We have shown in two differents models where the criti-
associated with other procedures mentioned in the Introducsal potential can be calculated at leading order in thé 1/
tion. The first procedure consists in truncatiug keeping expansion that .these .p'otehtials have finite radii of conver-
only the terms up to orderg®)®. This procedure inspired by gence due to singularities in the complex plane. Do such a
perturbation theory amounts to keep only the relevant an@esults persist at finithi? In the case of the HM, the behavior
marginal directions near the Gaussian fixed point. From Fig0f the ratios at finiteN shown in Fig. 8 strongly suggests that
9, we see that this procedure generates errors which are 8f large real positives®, the critical potential still grows like
the same order as the errors due to the use of the leading 1A#%)°. Can an infinite sum converging over the entire com-
approximation. Consequently, this procedure is quite unsuitPlex plane have this kind of behavior? This is certainly not
able to study the correction to this approximation. Slightlyimpossible[e.g., (2)3+e~#’]; however it requires cancel-
better results are obtained by keeping as many terms as pdstions that we judge unlikely to happen. Consequently, we

VII. DISCUSSION OF ALTERNATE PROCEDURES
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conjecture that the singularities observed are generic rathéorce us to look at the RG transformations in a more open-
than being an artifact of the largeimit. minded way. We are plannirf@3] to compare in more detail
We have observed that in a system of coordinates wherthe leading order results presented here with fiNiteesults,
the HFP can be approximated by polynomials, the proceduras suggested in Reff24] for the local potential approxima-
which consists in considering the bare potential truncated aton. Another issue regarding th@(N) models and which
order (¢?)2 describes the HFP with a low accuracy. We arewould deserve a more detailed investigation is the question
planning to investigate if similar problems appear near tric-of first order phase transitiod25,26].
ritical fixed points. In particular, reconsidering the RG flows
in a larger space of bare parameters may affect the generic
dimension of the intersections of hypersurface of various
codimensions and help us find a more general realization of We thank the Theory Group of Fermilab for its hospitality
spontaneous breaking of scale invariance with dynamicalvhile this work was completed and especially B. Bardeen for
generation of mass. conversations about dynamical mass generation. This re-
Our results have qualitative similarities common with search was supported in part by the Department of Energy
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