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Domain bubbles of extra dimensions

J. R. Morris*
Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408

~Received 9 September 2002; published 16 January 2003!

‘‘Dimension bubbles’’ of the type previously studied by Blau and Guendelman@S.K. Blau and E.I. Guen-
delman, Phys. Rev. D40, 1909~1989!#, which effectively enclose a region of 5D spacetime and are surrounded
by a region of 4D spacetime, can arise in a 5D theory with a compact extra dimension that is dimensionally
reduced to give an effective 4D theory. These bubbles with thin domain walls can be stabilized against total
collapse in a rather natural way by a scalar field which, as in the case with ‘‘ordinary’’ nontopological solitons,
traps light scalar particles inside the bubble.

DOI: 10.1103/PhysRevD.67.025005 PACS number~s!: 11.27.1d, 04.50.1h, 98.80.Cq
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I. INTRODUCTION

Blau and Guendelman@1# have investigated the interes
ing case of an inhomogeneous spacetime formed by sew
together regions having different numbers of macrosco
spatial dimensions. From a four dimensional~4D! point of
view the scale factor of a fifth~compact! dimension can be
treated as a scalar field which is allowed to vary rapidly in
localized region of the 4D spacetime, forming a domain w
The domain wall can thereby interpolate between two
gions differing in the number of macroscopic space dim
sions. Closed domain walls can form ‘‘dimension bubble
with different numbers of macroscopic space dimensions
the interior and exterior of the bubble wall. As example
Blau and Guendelman@1# have used the low temperatu
Rubin-Roth 4D effective potential, generated by includi
one-loop corrections due to quantum fluctuations from f
mions and bosons@2#. Fermions, which can have Casim
energies of opposite sign from bosonic ones, can act tow
stabilizing a compact extra dimension@2# from collapsing
due to the gravitational Casimir effect@3#. From a 4D point
of view, the domain wall arises from the scalar dilaton fie
w associated with the scale factor of the extra dimension,
the Rubin-Roth potential becomes a function of this field

There is a range of parameters for which the 4D effect
potential U(w) exhibits one local minimum, at say,w
5wmin , separated by a potential barrier from another mi
mum approached asymptotically asw→`. This type of po-
tential gives rise to what will be referred to here as a ‘‘semi-
vacuumless’’ domain wall, since it seems to be a hybri
between an ordinary domain wall and a ‘‘vacuumless’’ d
main wall of the type originally described by Vilenkin an
Cho @4# and further studied by Bazeia@5#. The scalar fieldw
interpolates between the vacuum domain (w5wmin) and the
‘‘vacuumless’’ domain (w→`). If the values of the effective
potentialU(w) differ at all on the two different sides of th
wall, the wall will generally be unstable against bending.
a result, a network of closed domain bubbles can form. S
a bubble, however, will be unstable against collapse with
a mechanism to balance the inward pressure due to the
sion in the bubble wall.

*Email address: jmorris@iun.edu
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A simple mechanism proposed here to stabilize one
these ‘‘semi-vacuumless’’ bubbles consists of the inclus
of a fundamental scalar fieldx in the original 5D action.
Upon dimensional reduction to the effective 4D~Einstein
frame! theory, this fieldx is seen to have a mass whic
depends uponw, so that lower massx bosons in the interior
of the bubble can be effectively trapped, as is the case w
an ‘‘ordinary’’ nontopological soliton~NTS!, as previously
studied by Frieman, Gleiser, Gelmini and Kolb@6#. The
trappedx particles give rise to an outward pressure that c
stabilize the bubble from total collapse. We specifically co
sider bubbles, in the thin wall approximation, withw5wmin
outside the bubble andw5w1@wmin inside the bubble. The
scale factorB of the extra dimension is related to the scalarw
by B5eA2/3kw, with k5A8pG, so that forw1→` the extra
dimension becomes macroscopic in the bubble’s inter
even if the bubble has a small size in the surrounding
space. This object is then a ‘‘dimension bubble’’ embedd
in an effective 4D spacetime with an effective 5D interi
~for a macroscopic bubble!. ~A microscopic bubble would
have only one macroscopically large space dimension
side.! As with ordinary NTSs, these bubbles, if physical
realized, could contribute to the dark matter content of o
universe.

The rest of the paper is organized in the following wa
The dimensional reduction of the 5D action is presented
Sec. II, allowing an extraction of the basic form of the 4
effective potential. The 4D effective potential is written
terms of the Rubin-Roth potential and a 5D cosmologi
constant. The contributions to the low temperature Rub
Roth potential are listed, which describe contributions fro
quantum fluctuations for bosons and fermions. Se
vacuumless domain walls arising from the 4D effective p
tential along with the instability of dimension bubbles a
considered in Sec. III. The stabilization mechanism is p
sented in Sec. IV, describingx-boson stabilized NTS bags
Some properties of these NTS bags, such as the bag m
and limits on the bag charge and radius, are investigate
brief summary forms Sec. V.

II. DIMENSIONAL REDUCTION OF THE
FIVE-DIMENSIONAL ACTION

A. Metric ansatz

We begin by considering a five-dimensional spacetime
scribed by a metricg̃MN :
©2003 The American Physical Society05-1
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ds25g̃MNdxMdxN5g̃mndxmdxn1g̃55dy2 ~1!

where xM5(xm,y), with M,N50, . . .,3,5 and m,n
50, . . . ,3. Wedenoteg̃5detg̃mn , andg̃55detg̃MN , so that
Aug̃5u5A2g̃Aug̃55u. The extra dimension will be assume
to be toroidally compact, so that the 5D spacetime has to
ogy of M43S1.

We assume an ansatz where the metricg̃MN is indepen-
dent of the extra dimensiony, i.e., gMN5gMN(xm), ]5gMN
50, and the metric factorizes withgmn50. The extra di-
mension is described by a linear coordinatey lying in the
range 0<y<2pR and can be assigned a~dimensionless!
scale factorB(xm) with g̃5552B2. A scalar fieldw can be
defined by

w5
1

k
A3

2
ln B, ~2!

where k is related to the 4D Planck massM P by k
5A8pG5A8pM P

21 , so that the scale factor can be writte
asB5eA2/3kw.

B. The 5D action and dimensional reduction

We take the 5-dimensional action to include the 5D E
stein action, cosmological constantL, and a source Lagrang
ian L5:

S55
1

2k5
2E d5xAg̃5$R̃522L12k5

2L5%

5
Vy

2k5
2E d4xA2g̃~B!$R̃522L12k5

2L5% ~3!

5
1

2k2E d4xA2g̃~B!$R̃522L12k2L%

where we have used the definitionsVy5*dy5(2pR), k5
2

58pG55Vyk
2, andL5VyL55(2pR)L5. In addition,R̃5

5g̃MNR̃MN denotes the 5-dimensional Ricci scalar built fro
g̃MN . Note that the 4D Jordan frame metric isg̃mn , the mn

part of g̃MN . A 4D Einstein frame metricgmn can be defined
by gmn5Bg̃mn5eA2/3kwg̃mn , in which case the line elemen
in Eq. ~1! takes the Kaluza-Klein form

ds25B21gmndxmdxn2B2dy2

5e2A2/3kwgmndxmdxn2e2A2/3kwdy2 ~4!

Using Eqs.~3! and ~4!, the 5D action is dimensionally
reduced to the effective 4D Einstein frame action

S5E d4xA2gH 1

2k2
R1

1

2
~¹w!21e2A2/3kwFL2

1

k2
LG J

~5!
02500
l-

-

whereR5gmnRmn is the 4D Ricci scalar built from the 4D
Einstein frame metricgmn and g5detgmn . @We use a 4D
metric with signature (1,2,2,2).#

C. The form of the 4D effective potential

In order to investigate the effects of Casimir-like one lo
quantum corrections on the size of the extra dimension,
follow Blau and Guendelman@1# and use the low tempera
ture limit of the finite-temperature Rubin-Roth potentialVRR
for bosons and fermions@2#. From this potential, along with
a cosmological constant term, a 4D effective potentialU can
be constructed. The part of the original action containing
potential terms, from Eq.~3!, is

S5,pot52E d5xAg̃5H V51
L

k5
2J

52E d4xA2g̃4E dyug̃55u1/2H V51
L

k5
2J ~6!

whereV5 is the potential appearing inL55L/(2pR). Using
Eq. ~5!, we identify the 4D Einstein frame effective potenti
U as

U5
1

B FV1
L

k2G5e2A2/3kwFV1
L

k2G ~7!

where V5V5(2pR) is the potential term appearing inL.
Identifying the Rubin-Roth potential through the relation

VRR}E dyug̃55u1/2V55BV ~8!

so thatV}VRR/B, allows the 4D effective potential to b
written in terms ofVRR as1

U}
1

B FVRR

B
1

L

k2G5e2A2/3kwFe2A2/3kwVRR1
L

k2G . ~9!

D. Low temperature Rubin-Roth potential „per degree
of freedom…

Following the example of Blau and Guendelman, we co
sider a potential with an interesting structure generated
Casimir contributions from the graviton and additional fe
mionic matter fields@1#. We are interested in the limit o
negligible temperature, i.e., the highb51/T limit. The
asymptotic behaviors of bosonic and fermionic contributio
to the Rubin-Roth potential~per degree of freedom! are
listed in Table 1 of Ref.@2#. The results for massless boso
and massive fermions are listed here for convenience.

1The Rubin-Roth potentialVRR is calculated in the Jordan fram
with a Minkowski background in Ref.@2#. A factor of B225exp
(22A2/3kw) then accompaniesVRR in the expression for the Ein
stein frame effective potentialU. See Ref.@1# for a basic description
of the effective potential and its dependence upon parameters.
5-2
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potential terms can be written in terms of the circumferen
of the extra dimension,L55(2pR)B.

Massless bosons. For massless bosons, we have~for all
L5),

VRR
(b);2

3z~5!

4p2

b

L5
4

, ~10!

where the scale factorB is related toL5 by

S L5

2pRD5ug̃55u1/25B5eA2/3kw. ~11!

Fermions(M>0). We can consider the low temperatu
~high b) limit with L5!b andb@1/M ~i.e., T!M , for M
.0) and the two cases of~1! small L5 (L5!1/M ) and ~2!
largeL5 (L5@1/M ):

VRR
( f );5

3z~5!

4p2

b

L5
4 , L5!

1

M
, M>0,

M2

4p2

b

L5
2e2ML5, L5@

1

M
, M.0.

~12!

Assume now that there areNb massless bosonic degre
of freedom with Nb>5 ~5 graviton degrees of freedom!
since, at least the graviton, contributes andNf fermionic de-
grees of freedom, withNf.Nb ~as in Ref. @1#!. We then
write the net Rubin-Roth potential as
02500
e VRR5NbVRR
(b)1NfVRR

( f ) ~13!

so that, with the help of Eqs.~10! and ~12!, we have

VRR;5 ~Nf2Nb!
3z~5!

4p2

b

L5
4 , L5!

1

M
,

2Nb

3z~5!

4p2

b

L5
4 1Nf

M2

4p2

b

L5
2 e2ML5, L5@

1

M
.

~14!

Note: For fermions with different masses, we can ma
the replacement

Nf

M2

4p2

b

L5
2

e2ML5→(
i

H Nf
( i )

Mi
2

4p2

b

L5
2

e2MiL5J ~15!

with the indexi running over the different fermionic specie

E. The four dimensional effective potential

Using Eqs.~9! and ~11! the 4D Einstein frame effective
potentialU can be written in terms of the circumference
the extra dimension,L5, as

U5c18
VRR

L5
2

1
c2

L5

L

k2
, ~16!

wherec18 andc2 are positive constants. Using the asympto
forms of Eq.~14! the effective potential takes the form
U;5 c1~Nf2Nb!
3z~5!

4p2

b

L5
61c2

L

k2L5
, L5!

1

M
,

2c1Nb

3z~5!

4p2

b

L5
6 1c1Nf

M2

4p2

b

L5
4e2ML51c2

L

k2L5
, L5@

1

M
.

~17!

Again, for the case of nondegenerate fermions, one can make the replacement given in Eq.~15!.
Equivalently, by Eq.~11!, the effective potential can be written in terms of the scalar fieldw,

U;

¦

C1~Nf2Nb!
3z~5!

4p2 be26A2/3kw1C2

L

k2 e2A2/3kw,

L5!
1

M
, or

eA2/3kw!
1

2pRM
,

2C1Nb

3z~5!

4p2 be26A2/3kw

1C̃1Nf

M2

4p2be[ 2M (2pR)exp(A2/3kw)]1C2

L

k2 e2A2/3kw,

L5@
1

M
, or

eA2/3kw@
1

2pRM
,

~18!
5-3
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with the replacement~15! for nondegenerate fermions

NfM
2e2M (2pR)exp(A2/3kw)

→(
i

$Nf
( i )Mi

2e2Mi (2pR)exp(A2/3kw)%. ~19!

III. ‘‘SEMI-VACUUMLESS’’ DOMAIN WALLS AND
BUBBLES

A. The assumed form of the effective potentialU

In what follows we assume that the potential parame
allow the low temperature 4D effective potential to take
form ~see @1#! such thatU has a local minimum at som
finite valueL5,min ~corresponding tow5wmin), a local maxi-
mum at some finiteL5,max.L5,min ~corresponding tow
5wmax.wmin), and asymptotically,U→0 as L5→` (w
→`). Therefore, there is a vacuum state atw5wmin where
U5U(wmin) and another low energy state asw→`, where
U→0. These two low energy states are separated by a
tential barrier atw5wmax whereU5U(wmax). We can think
of this type of system as being ‘‘semi-vacuumless,’’ since
is a hybrid of a ‘‘vacuumless’’ system~see, e.g.,@4,5#! and a
system with an ordinary vacuum state.

B. The ‘‘semi-vacuumless’’ domain wall

The potential described above allows the formation o
domain wall that interpolates between the vacuum dom
(w5wmin) and the ‘‘vacuumless’’ domain (w→`). We will
refer to this type of domain wall as a ‘‘semi-vacuumles
domain wall. This type of domain wall differs from the o
dinaryw4 ‘‘kink’’ type @and from a symmetric ‘‘vacuumless
type ~see, e.g.,@4,5#!# in that there is no discrete symmet
associated with the potential, i.e., the potential and the
main wall are asymmetric. Furthermore, assuming that in
‘‘vacuumless’’ domain the scalar field assumes a finite va
w1 with U(w1).0, it is most likely that the two low energy
states are nondegenerate, withU(wmin)ÞU(w1).

Let us consider a static, planar domain wall lying in t
y2z plane described byw5w(x). The 4D Einstein frame
effective Lagrangian forw is Lw5 1

2 (]w)22U(w) and the
associated energy-momentum tensor isTmn5]mw]nw

2hmn@ 1
2 (]w)22U#. This gives energy density and stre

componentsT005
1
2 w821U, T115

1
2 w822U, and T225T33

52T0052( 1
2 w821U), where w85]w/]x. In a flat

Minkowski background the equation of motion give
1
2 w825U1K, whereK is a constant of integration. The en
ergy density and stress components of the domain wall c
figuration can then be written as

T115K, T225T3352T0052~2U1K !. ~20!

C. Unstable domain bubbles of extra dimensions

With the assumption that the domain wall connects t
different spatial regions wherew'wmin on one side of the
wall andw'w1 on the other side, withU(wmin)ÞU(w1), Eq.
~20! shows that the tangential stressesT22 and T33 will be
02500
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different on the two different sides of the wall, indicating th
the static, planar domain wall solution is unstable agai
bending. The wall will tend to bend toward the higher ener
density ~i.e., higher uT22u5uT33u) side, and one expects
network of bubbles to form. A bubble is surrounded by
lower energy density region and encloses a higher ene
density one. We are interested in the case wherew1@wmin ,
that is, in the case wherewmin takes on a small value, giving
rise to a small scale factorBmin5eA2/3kwmin, andw1 takes on a
very large value so that the scale factorB15eA2/3kw1 be-
comes large enough so that the size of the extra dimens
characterized by the circumferenceL55(2pR)B(x), be-
comes macroscopic. In this case, the ‘‘semi-vacuumless’’
main bubble encloses a region that is effectively five dim
sional and is surrounded by a region that is effectively fo
dimensional, or vice versa. Here, attention is focused on
case whereU(w1).U(wmin)'0 ~which can be achieved by
tuning the cosmological constant, for instance!, so that, ef-
fectively, the bubble encloses a 5D spacetime and is
rounded by a 4D spacetime. Such a bubble, however, is
stable, since there is no mechanism to balance the inw
pressure caused by the bubble’s surface energy~and an as-
sumed negligibly small volume energy!, and the bubble
therefore collapses.

IV. A STABILIZATION MECHANISM FOR A 4D
DIMENSION BUBBLE ENCLOSING 5D

A. The dimension bubble as a nontopological soliton
entrapping bosons

The ‘‘dimension bubble’’ described above, which is effe
tively surrounded by a 4D spacetime and encloses a
spacetime, can be stabilized by a gas of particles trap
within the bubble. This mechanism can arise quite natura
if the LagrangianL contains a complex scalar fieldx with
Lagrangian

Lx5~2pR!L5 ,x5g̃MN~]Mx!* ~]Nx!2V

5eA2/3kwgmn~]mx!* ~]nx!2V ~21!

where V5V(uxu) and we have used, from Eq.~4!, g̃mn

5eA2/3kwgmn, along with the assumption]5x50. From Eq.
~5!, the associated 4D Einstein frame action is

Sx5E d4xA2ge2A2/3kwLx5E d4xA2gLx,e f f ~22!

from which we identify an effective 4Dx Lagrangian

Lx,e f f5u]xu22e2A2/3kwV~ uxu! ~23!

and an effectivex potential

Ux5e2A2/3kwV~ uxu!. ~24!

The x boson mass obtained from the effective poten
Ux is
5-4
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mx
25e2A2/3kwS ]2V

]x* ]x
D

vac

5m2e2A2/3kw, ~25!

where m25(]2V/]x* ]x)uvacuum is the mass parameter i
the 5D theory.

For our dimension bubble enclosing a 5D spacetime~with
largew inside the bubble! and surrounded by a 4D spacetim
~with relatively smallw outside the bubble!, if the condition
exp@k(wout2win)#5exp@k(w12wmin)#!1, then the x boson
masses inside and outside the bubble differ dramatically w

mx,out
2

mx,in
2

5e2A2/3k(wout2w in)@1. ~26!

The result is thatx bosons get trapped inside the bubble,
with the case of nontopological soliton~NTS! bags studied
previously@6#. The trappedx bosons exert an outward pre
sure that, at equilibrium, can counterbalance the inward p
sure of the bubble wall.

B. x-boson stabilized solitons

Let us consider the case where thex boson has a massm
outside the bag and is effectively massless inside the
The ground state boson kinetic energy inside the bag ca
estimated by setting the de Broglie wavelength of a sin
boson equal to the diameter of the bag that confines it:KE
'p5\k52p/l;p/R. For Q bosons inside the bag, th
kinetic energy is then estimated to beEx;Qp/R, which
agrees with the results obtained from use of a trial funct
by Friemanet al. ~see Ref.@6#!. We shall verify this result by
obtaining the solution forx in the w background and calcu
lating explicitly the energyEx .

For definiteness, we take the effective potential of E
~24! to be given byUx5mx

2x* x, wheremx5m outside the
soliton andmx50 inside. For the background solution w
assumew to take on constant valuesw in and wout on the
inside and outside of the soliton, with a jump at the bub
wall ~i.e., the thin wall approximation!. The effective La-
grangianLx5u]xu22Ux then gives an associated ener
densityT00

x 5u]0xu21u] rxu21Ux for a spherically symmet-
ric soliton. The energyE5Ex1Ewall of the soliton is then
E54p*T00

x r 2dr14pR2S, whereR is the soliton radius and
S is the surface energy density of the bubble wall. To eva
ateE, we first need to obtain the solution forx.

We takex(r ,t)5F(r )eivt. The field equation forx gives

d2F

dr2
1

2

r

dF

dr
1~v22mx

2!F50 ~27!

and the conserved charge ofQ bosons trapped inside th
soliton is

Q58pvE
0

`

F2r 2dr. ~28!
02500
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For a finite energy solution, we requireF to vanish outside
the bubble for the case that (v22m2)<0, while for (v2

2m2).0 we have

F}
e2(m22v2)1/2r

~m22v2!1/2r
~29!

so thatF rapidly approaches zero outside the soliton. W
therefore takeF50 as an approximate solution forr .R.
The regular solution for F inside the soliton is F
5F0sin(vr)/vr. The approximate solution is therefore

F5H F0

sin~vr !

vr
~r ,R!,

0 ~r .R!.

~30!

For continuity of the solution at the bubble wallr 5R, we set

vR5p. ~31!

The solution~30! and the boundary condition~31! give
the energy Ex54p2F0

2/v and boson charge Q
54p2F0

2/v2, or

Ex5vQ5
Qp

R
~32!

as obtained in the quick estimate above.
We have assumed the vacuum energy density to va

inside the soliton, so that~neglecting gravitational effects!
the energy of the NTS is determined by the contributio
from the domain wall surface energy and the energy of
entrapped bosons,

E5
Qp

R
14pSR2 ~33!

whereS is the surface energy density of the wall. Minim
zation of this energy gives the NTS equilibrium radius

R5
1

2 S Q

S D 1/3

. ~34!

From Eqs.~33! and~34! the equilibrium energy, or mass, o
the bubble is

E53p~Q2S!1/3. ~35!

We can obtain approximate stability conditions for t
bosonic chargeQ and the bubble radiusR by requiring thex
bosons to remain trapped inside the bubble rather than es
ing to the outside. ForQ free bosons of massm outside the
bag, the minimal energy isEQ f ree5Qm. Therefore, for the
NTS bubble stability we require the equilibrium bubble e
ergy E,EQ f ree which, by Eq.~35!, implies that

Q1/3.3p
S1/3

m
. ~36!
5-5



le

v

ve
tr
ll
th
o
c

in
s
io

k
m
ns
s

a
s of
of

oss
ble
ith

ffec-

ard
se,
ate
‘or-

les
ith

oll,

h a
xtra
tial
s

s

es,
ur

J. R. MORRIS PHYSICAL REVIEW D 67, 025005 ~2003!
By Eq. ~34! this translates into the condition for the bubb
radius that

R.
3p

2m
~37!

for a stable bubble.

V. SUMMARY

We have considered a type of case similar to that pre
ously studied by Blau and Guendelman@1# wherein a scalar
field ~appearing within a dimensionally reduced 4D effecti
theory!—that is associated with the scale factor of an ex
~compact! dimension in a 5D theory—forms a domain wa
interpolating between two different spatial regions. When
scalar field takes on radically different values in the tw
different domains, the effective dimensionality of the spa
also becomes different in these different domains.@As an
example, we have followed@1# in constructing a form of 4D
effective potential arising from the low temperature Rub
Roth potential@2# ~due to one loop quantum contribution
from massless bosons and massive or massless ferm!
along with a cosmological constant.# Domain walls which
are unstable against bending can give rise to a networ
closed ‘‘dimension bubbles,’’ where the effective spaceti
dimensionality is different in the interior and exterior regio
of a bubble. Without a stabilization mechanism, the
bubbles collapse due to the tension in the bubble walls.

However, the inclusion of a scalar fieldx in the original
02500
i-

a

e

e

-

ns

of
e

e

5D theory can give rise to a stabilization mechanism in
rather natural way. In essence, due to the different value
the conformal factor in the interior and exterior regions
the bubble, thex boson mass can change drastically acr
the bubble wall. We have considered the case of a bub
surrounded by a 4D region and enclosing a 5D region, w
x bosons that are massive outside the bubble, but are e
tively massless inside the bubble. Therefore, thex particles
are effectively trapped inside the bubble, exerting an outw
pressure which can stabilize the bubble from total collap
provided that certain model parameters lie within appropri
ranges. This resembles the stabilization mechanism for ‘
dinary’’ 4D nontopological solitons~NTSs! studied previ-
ously by Frieman, Gleiser, Gelmini and Kolb@6#.

Semi-vacuumless domain walls and dimension bubb
can also arise from the 4D effective potential associated w
the model of aclassicalstabilization oftwo extra dimensions
in a spherically reduced 6D model described by Carr
Geddes, Hoffman and Wald@7# ~see Sec. III of that paper!. In
that model, an extra dimensional magnetic field, along wit
cosmological constant and the curvature term of the e
dimensional two-sphere, give rise to a 4D effective poten
@given by Eq.~36! of Ref. @7## with the same basic shape a
the effective potentialU arising from quantum fluctuation
considered here@see Eq.~9! above#. These bubbles could
also be stabilized by the same mechanism ofx boson entrap-
ment.

As in the case of the ordinary NTSs, dimension bubbl
if they exist, could contribute to the dark matter of o
~mostly! 4D universe.
s.
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