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Domain bubbles of extra dimensions
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“Dimension bubbles” of the type previously studied by Blau and Guendelp$al{. Blau and E.l. Guen-
delman, Phys. Rev. B0, 1909(1989], which effectively enclose a region of 5D spacetime and are surrounded
by a region of 4D spacetime, can arise in a 5D theory with a compact extra dimension that is dimensionally
reduced to give an effective 4D theory. These bubbles with thin domain walls can be stabilized against total
collapse in a rather natural way by a scalar field which, as in the case with “ordinary” nontopological solitons,
traps light scalar particles inside the bubble.
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I. INTRODUCTION A simple mechanism proposed here to stabilize one of
these “semi-vacuumless” bubbles consists of the inclusion
Blau and Guendelmafi] have investigated the interest- of a fundamental scalar fielg in the original 5D action.
ing case of an inhomogeneous spacetime formed by sewiridpon dimensional reduction to the effective 4Binstein
together regions having different numbers of macroscopidrame theory, this fieldy is seen to have a mass which
spatial dimensions. From a four dimensiotdD) point of ~ depends upow, so that lower masg bosons in the interior
view the scale factor of a fifticompact dimension can be ©f the bubble can be effectively trapped, as is the case with
treated as a scalar field which is allowed to vary rapidly in @ “ordinary” nontopological soliton(NTS), as previously

localized region of the 4D spacetime, forming a domain wall. Studied by Frieman, Gleiser, Gelmini and Kol6]. The

The domain wall can thereby interpolate between two reif@PPedy particles give rise to an outward pressure that can

gions differing in the number of macroscopic space dimen—SFabilize the bu_bble fror_n total °°”aps?- We spec_:ifically con-
sions. Closed domain walls can form “dimension bubbles"Slder bubbles, in the thin wall approximation, With= omin

o . . . utside the bubble and= ¢> ¢, inside the bubble. The
W|th_d|ffe_rent numbers_ of macroscopic space dimensions O'gcale factoB of the extra dimension is related to the scagar
the interior and exterior of the bubble wall. As examples,

= e'2Bxe i =/
Blau and Guendelmafl] have used the low temperature byB=e » With «=v87G, S0 that forp, - the extra

Rubin-Roth 4D effective potential, generated by includingd'menS'on becomes macroscopic in the bubble’s interior,

| ) q f . f f even if the bubble has a small size in the surrounding 3D
one-loop corrections due to quantum fluctuations from fer,, .o This object is then a “dimension bubble” embedded

mions and boson§2]. Fermions, which can have Casimir j, 41 effective 4D spacetime with an effective 5D interior
energies of opposite sign from_ boso_mc ones, can act_ towar(:,or a macroscopic bubble (A microscopic bubble would
stabilizing a compact extra dimensi¢@] from collapsing  have only one macroscopically large space dimension in-
due to the gravitational Casimir effef]. From a 4D point  sjde) As with ordinary NTSs, these bubbles, if physically
of view, the domain wall arises from the scalar dilaton fieldrealized, could contribute to the dark matter content of our
¢ associated with the scale factor of the extra dimension, andniverse.
the Rubin-Roth potential becomes a function of this field. The rest of the paper is organized in the following way:
There is a range of parameters for which the 4D effectiveThe dimensional reduction of the 5D action is presented in
potential U(¢) exhibits one local minimum, at sayy  Sec. Il, allowing an extraction of the basic form of the 4D
= omin, Separated by a potential barrier from another mini-effective potential. The 4D effective potential is written in
mum approached asymptotically as-«. This type of po- terms of the Rubin-Roth potential and a 5D cosmological
tential gives rise to what will be referred to here assarhi- ~ constant. The contributions to the low temperature Rubin-
vacuumless domain wall, since it seems to be a hybrid Roth potential are listed, which describe contributions from
between an ordinary domain wall and a “vacuumless” do-duantum fluctuations for bosons and fermions. Semi-
main wall of the type originally described by Vilenkin and Yacuumless domain walls arising from the 4D effective po-
Cho[4] and further studied by Bazef&]. The scalar fieldy tential along with the instability of dimension bubbles are

interpolates between the vacuum domain=(e,) and the considered in Sec. lll. The stabilization mechanism is pre-
“vacﬁumless" domain (—0). If the values (;fc”t‘g‘za effective sented in Sec. IV, describing-boson stabilized NTS bags.

. . X ; Some properties of these NTS bags, such as the bag mass
potentialU(¢) differ at all on the two different sides of the and IimFi)ts F())n the bag charge and r%dius are investigagt]ed. A
wall, the wall will generally be unstable against bending. As '

: rief summary forms Sec. V.

a result, a network of closed domain bubbles can form. Sucﬁ y

a bubble, however, will be unstable against collapse without Il. DIMENSIONAL REDUCTION OF THE
a mechanism to balance the inward pressure due to the ten- FIVE-DIMENSIONAL ACTION

sion in the bubble wall. .
A. Metric ansatz

We begin by considering a five-dimensional spacetime de-
*Email address: jmorris@iun.edu scribed by a metrigyy:
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d2=gundxMdxN=T,,,dx“dx” + gsedy? (1) whereR=g*"R,,, is the 4D Ricci scalar built from the 4D
r Einstein frame metrig,,, and g=detg,,. [We use a 4D
where sM=(x*y), with MN=0,...3,5 and w,» Metric with signature ¢,—,—,—).]
3. Wedenoteg dEtg’“‘”’ andgs detgu . o that C. The form of the 4D effective potential
\/ gs \/ 9V[0ss. The extra dimension will be assumed
to be tor0|dally compact, so that the 5D spacetime has topol- In order to investigate the effects of Casimir-like one loop
ogy of M ,x St. guantum corrections on the size of the extra dimension, we

follow Blau and Guendelmafil] and use the low tempera-
ture limit of the finite-temperature Rubin-Roth potentiglg

for bosons and fermion]. From this potential, along with

a cosmological constant term, a 4D effective poteritialan

be constructed. The part of the original action containing the
potential terms, from Eq.3), is

SS,pot:_f dSX\/Q_S

We assume an ansatz where the megijg, is indepen-
dent of the extra dimensiow, i.e., gun=9Iun(X*), I5Oun
=0, and the metric factorizes witg,,=0. The extra di-
mension is described by a linear coordingtéying in the
range O<y<2«R and can be assigned (@imensionless

scale factorB(x*) with gss= —B2. A scalar fielde can be

defined by
1\F
= E“’IB, 2

where k is related to the 4D Planck madel, by «
=\87G=87My!, so that the scale factor can be written

A
Vs+ —

_f d4X\/_EJ4f dy|§55|1/2

A
Vgt —2] ©)
Ks

whereVs is the potential appearing iis= £/(27R). Using

— V213 . . X . . .
asB=e""™. Eq. (5), we identify the 4D Einstein frame effective potential
U as
B. The 5D action and dimensional reduction
We take the 5-dimensional action to include the 5D Ein- U=—|V+ A = V2Bke V+£ 7)
stein action, cosmological constakt and a source Lagrang- B K K?

ian Ls:
° whereV=V;g(27R) is the potential term appearing if.
Identifying the Rubin-Roth potential through the relation

1 -
ss=ﬁf 5% \/3siRs— 2 + 242Ls)
5
VRROCJ dy|gss YV5=BV (8
V = -
=2—Ksz' d4xx/—g(B){R5—2A+2K§£5} 3
5

so thatV«Vgxg/B, allows the 4D effective potential to be
written in terms ofVrg as

1 f = ~
= d*xV—9(B){Rs— 2A +2«%L 1|V A ‘ ‘
ZZ g { > } U E %?4‘? =e 2Bk e V‘?715”«’9\/RR‘*' -y (9)
where we have used the definitiokg=[dy=(27R), x5
=877G5=Vy:<2, and L=V, Ls=(27R) Ls. In addition, Rg D. Low temperature Rubin-Roth potential (per degree
=g"NR,,y denotes the 5-dimensional Ricci scalar built from of freedom)
gun - Note that the 4D Jordan frame metricﬁﬁy, the wv Following the example of Blau and Guendelman, we con-

part ongN A 4D Einstein frame metrig,, can be defined sider a potential with an interesting structure generated by
by g,, Bg _e\m,«pg in which casg the line element Casimir contributions from the graviton and additional fer-

mionic matter fieldg1]. We are interested in the limit of
in Eq @ takes the Kaluza Klein form negligible temperature, i.e., the higB=21/T limit. The

_p-1 LAY B2\ 2 asymptotic behaviors of bosonic and fermionic contributions
ds’=B g,,dX"dx" =B dy to the Rubin-Roth potentialper degree of freedomare
= "m"“’gwdxf‘dx”—ez\m’“”dyz (4) listed in Table 1 of Reff2]. The results for massless bosons

and massive fermions are listed here for convenience. The

Using Egs.(3) and (4), the 5D action is dimensionally
reduced to the effective 4D Einstein frame action
The Rubin-Roth potentiaVry is calculated in the Jordan frame

1 1 1 with a Minkowski background in Ref.2]. A factor of B ?2=exp
S= f d“x«/—g —R+—(V<p)2+ e V2ke| p_ A (—2y2/3k¢) then accompanie¥ry in the expression for the Ein-
2k 2 K2 stein frame effective potentiél. See Ref[1] for a basic description

(5) of the effective potential and its dependence upon parameters.
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potential terms can be written in terms of the circumference

of the extra dimension, 5= (27R)B.
Massless bosong-or massless bosons, we haver all

Ls),

3{(5) B
v~ — , (10)
RRO g2 L2
where the scale factds is related toL 5 by
L5 ) | |1/2: B= e@?w (11)
2R 055 .

Fermions(M=0). We can consider the low temperature

(high B) limit with Ls<B and 8>1/M (i.e., T<M, for M
>0) and the two cases d@f) smallLs (L5<1/M) and(2)
largeLs (Ls>1/M):

3¢(5) B 1
WF, L5<M, M=0,

(f)

ViR M2 ,8 ) 1 (12
. 2L 5, L5>M, M>0.

Assume now that there afé, massless bosonic degrees
of freedom withN,=5 (5 graviton degrees of freedom
since, at least the graviton, contributes éhdfermionic de-
grees of freedom, witiN;>N, (as in Ref.[1]). We then

write the net Rubin-Roth potential as

PHYSICAL REVIEW D67, 025005 (2003

Vrr=NpVRE+ NiVik (13)
so that, with the help of Eq$10) and(12), we have

3¢(5) B 1
(Nf_Nb)WL_ga Ls<yp
Vrr™
3¢(5) B 2B L 1
_ [ — 5 > —
No g7 2t f4 a2t by
(14)

Note For fermions with different masses, we can make
the replacement

M2 3 S M2
N Ze ML >IN — e Mibsh (1
"4m? 2 El[ " am? L2 19

with the indexi running over the different fermionic species.

E. The four dimensional effective potential

Using Egs.(9) and (11) the 4D Einstein frame effective
potentialU can be written in terms of the circumference of
the extra dimensior, 5, as

=c/—4+ = —
wherec; andc, are positive constants. Using the asymptotic
forms of Eq.(14) the effective potential takes the form

3¢(5) B A 1
Cl(Nf_Nb) 471_2 L_S+C2K2L51 L5 <M1
U~ 1
1N 2 Lg 1 f4772L‘5‘ 2K2L5' Ve
Again, for the case of nondegenerate fermions, one can make the replacement givel(lis).Eq.
Equivalently, by Eq(11), the effective potential can be written in terms of the scalar figld
( e
<—, or
(5) —6\23k e A — 2Bk ¢ ° M
1(Nt—=Np) 2.2 Be +Cyz€ :
e'2Rre<
27RM’
U~ -C Nbgj(sz)ﬁ —6V23kp (18
1
2 A L5>M, or
+C Nf ZBe[ M(277R)exp(\7§;<<p)]+c e \mkcp
v“ml\’@>
\ © 27RM’
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with the replacemenl5) for nondegenerate fermions different on the two different sides of the wall, indicating that
the static, planar domain wall solution is unstable against
bending. The wall will tend to bend toward the higher energy
density (i.e., higher|T,,=|Ts4) side, and one expects a
— > {N{IMm2e~Mi2mRiexp(ZB3e)y ~ (19)  network of bubbles to form. A bubble is surrounded by a
i lower energy density region and encloses a higher energy
density one. We are interested in the case whaee ¢,

N ‘ M 2e— M (27R)exp(v2/3k @)

. “SEMI-VACUUMLESS” DOMAIN WALLS AND that is, in the case wherg,,;, takes on a small value, giving
BUBBLES rise to a small scale fact@;,,=e'?>¢min, ande, takes on a
. ) very large value so that the scale fac®y=e?73¢1 be-
A. The assumed form of the effective potential) comes large enough so that the size of the extra dimension,

In what follows we assume that the potential parametersharacterized by the circumferende=(27R)B(x), be-
allow the low temperature 4D effective potential to take acomes macroscopic. In this case, the “semi-vacuumless” do-
form (see[1]) such thatU has a local minimum at some main bubble encloses a region that is effectively five dimen-
finite valueLs i, (corresponding ta= ¢,i,), @ local maxi- ~ sional and is surrounded by a region that is effectively four
mum at some finiteLg mae>Ls min (COrresponding toe  dimensional, or vice versa. Here, attention is focused on the
= QPmax Pmin), and asymptotically,U—0 as Lg—x> (¢ case wherdJ(¢1)>U(@min)=~0 (which can be achieved by
—o). Therefore, there is a vacuum stategat ¢, where  tuning the cosmological constant, for instanceo that, ef-
U=U(¢y,,) and another low energy state as-, where fectively, the bubble encloses a 5D spacetime and is sur-
U—0. These two low energy states are separated by a péounded _by a 4D spacetime. Such_ a bubble, however,_ is not
tential barrier atp= @2 WhereU =U(¢,). We can think ~ stable, since there is no mechanism to balance the inward
of this type of system as being “semi-vacuumless,” since itPressure caused by the bubble’s surface eneagyl an as-
is a hybrid of a “vacuumless” systerfsee, e.g.[4,5]) and a  sumed negligibly small volume energyand the bubble
system with an ordinary vacuum state. therefore collapses.

B. The “semi-vacuumless” domain wall IV. A STABILIZATION MECHANISM FOR A 4D

. . . DIMENSION BUBBLE ENCLOSING 5D
The potential described above allows the formation of a

domain wall that interpolates between the vacuum domain  A. The dimension bubble as a nontopological soliton
(¢=@min) and the “vacuumless” domaing— o). We will entrapping bosons

refer to this type of domain wall as a “semi-vacuumless” e “dimension bubble” described above, which is effec-

domain Xval_l. This type of domain wall differs from the or- {jyely surrounded by a 4D spacetime and encloses a 5D
dinary ¢” "kink” type [and from a symmetric “vacuumless” gpacetime, can be stabilized by a gas of particles trapped
type (see, e.g.[4,5)] in that there is no discrete symmetry yithin the bubble. This mechanism can arise quite naturally

associated with the potential, i.e., the potential and the dog the Lagrangianl contains a complex scalar fiejd with
main wall are asymmetric. Furthermore, assuming that in th‘i’_agrangian

“vacuumless” domain the scalar field assumes a finite value

@1 With U(¢4)>0, it is most I_ikely that the two low energy EX:(ZWR)LSU(:EJMN(‘?MX)*(‘?NX)_V
states are nondegenerate, Witlio i) #U(¢1).- ‘
Let us consider a static, planar domain wall lying in the =e\’m“*°gw(a#x)*(ayx)—v (21

y—2z plane described by= ¢(x). The 4D Einstein frame

effective Lagrangian forp is £,=3(d¢)*~U(¢) and the  \here V=V(|x|]) and we have used, from Eq4), g~”
associated energy-momentum tensor ,,=d,¢d,¢ =eZegur along with the assumption,y=0. From Eq.
- nw[%(acp)z—u]. This gives energy density and stress (5), the associated 4D Einstein frame action is
componentsToo=3¢'%2+U, T1;=3¢'2—U, and Ty,=Ts;

= —To=—(L¢'2+U), where ¢'=d¢lox. In a flat _J by [T 2k _f 4y =

Minkowski background the equation of motion gives S=)d xV-ge Ly=]d X\/_gﬁx'e” 22
1¢'?=U+K, whereK is a constant of integration. The en-

ergy density and stress components of the domain wall corfrom which we identify an effective 40y Lagrangian
figuration can then be written as

=|9x|?— e Zey 23
T1=K, Tp=Tas=—Too=—(2U+K). (20) L eff lox|*—e (Ix (23

and an effectivey potential
C. Unstable domain bubbles of extra dimensions

With the assumption that the domain wall connects two U,=e ZBey(|x|). (24)
different spatial regions where~ ¢, on one side of the
wall and ¢~ ¢4 on the other side, withJ (¢ i) #U(¢1), EQ. The y boson mass obtained from the effective potential

(20) shows that the tangential stresses and T4 will be U, is

X
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2 For a finite energy solution, we requifeto vanish outside
2_ A~ \2T3 v 24— V273 2 i 2
mi=e el — = e Ve, (25 the bubble for the case thatof—m?)<0, while for (w
IX*IX] ac —m?)>0 we have

2__ 2 * . . _(mZ_wZ)l/Zr
where u?=(9°VIdx* dx)|pacuum iS the mass parameter in o € 29

the 5D theory. (m2— w?) Y2

For our dimension bubble enclosing a 5D spacetimi¢h
large ¢ inside the bubbleand surrounded by a 4D spacetime so thatF rapidly approaches zero outside the soliton. We
(with reIativer Smallgo outside the bUbb}e if the condition therefore takeF=0 as an approxima[e solution for>R.

exf «(eour— ¢in)|=€XH k(¢1~ ¢emin) |<1, then the x boson The regular solution forF inside the soliton isF
masses inside and outside the bubble differ dramatlca"y withe Fosin(wr)/wr_ The approximate solution is therefore

2 sin(wr)

my, PRk o r<r),

mXTém:e VA gourein)s> 1 (26) 0 R (=R (30)
i 0 (r>R).

The result is thay bosons get trapped inside the bubble, asqq continuity of the solution at the bubble wak R, we set
with the case of nontopological solitgiNTS) bags studied

previously[6]. The trappedy bosons exert an outward pres- wR= . (32)
sure that, at equilibrium, can counterbalance the inward pres-
sure of the bubble wall. The solution(30) and the boundary conditio(81) give
the energy EX=4772F3/w and boson charge Q
B. x-boson stabilized solitons =47?Fj/w?, or
Let us consider the case where thdoson has a mass Qw
outside the bag and is effectively massless inside the bag. E,=0wQ= R (32

The ground state boson kinetic energy inside the bag can be
estimated by setting the de Broglie wavelength of a single

. ) . 2 as obtained in the quick estimate above.
ioszr;iiiu;:ﬂtiihi /gargg:e(rgog;:gnza% st?daef (t:r?gﬂt;]aegmt.he We have assumed the vacuum energy density to vanish

o . . 4 inside the soliton, so thaineglecting gravitational effects
agrees wilh o result obtained from se of  tal functorl1® €NeraY of the NTS is determined by the contrbutions
by Friemanet al. (see Ref[6]). We shall verify this result by rom the domain wall surface energy and the energy of the

obtaining the solution fog in the ¢ background and calcu- entrapped bosons,
lating explicitly the energye, . Qm
For definiteness, we take the effective potential of Eq. E= ?+4772R2 (33
(24) to be given byU, =m’y* x, wherem, =m outside the
soliton andm, =0 inside. For the background solution We \ neres is the surface energy density of the wall. Minimi-

assumey to take on constant values, and ¢out ON the  ,a4ian of this energy gives the NTS equilibrium radius
inside and outside of the soliton, with a jump at the bubble a¥d q

wall (i.e., the thin wall approximation The effective La- 1/Q\¥3
grangian£X=|aX|2—UX then gives an associated energy R=§(§ (39
density T3,=|dox|?+|d,x|>+U, for a spherically symmet-
ric soliton. The energfE =E, +Eyqy of the soliton is then o0 £q5(33) and (34) the equilibrium energy, or mass, of
E=4n[TYy2dr+47R%3, whereR s the soliton radius and the bubble is

2, is the surface energy density of the bubble wall. To evalu-

ate E, we first need to obtain the solution fgt E=3m(Q%2)¥3. (35)

We takey(r,t)=F(r)e'“!. The field equation fox gives

We can obtain approximate stability conditions for the
d°F N 2 dF (o BE =0 ) bosonic charg®) and the bubble radiug by requiring they
F rdr (@7—my)F= @7 bosons to remain trapped inside the bubble rather than escap-
ing to the outside. Fo@ free bosons of mas® outside the
bag, the minimal energy iEq ee=Qm. Therefore, for the
NTS bubble stability we require the equilibrium bubble en-
ergy E<Eg free Which, by Eq.(35), implies that

and the conserved charge @ bosons trapped inside the
soliton is

Q=87TwJO F2r2dr. (28) Q1/3>377?. (36)
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By Eqg. (34) this translates into the condition for the bubble 5D theory can give rise to a stabilization mechanism in a
radius that rather natural way. In essence, due to the different values of
the conformal factor in the interior and exterior regions of
3m the bubble, they boson mass can change drastically across
R>ﬁ (37 the bubble wall. We have considered the case of a bubble
surrounded by a 4D region and enclosing a 5D region, with
for a stable bubble. x bosons that are massive outside the bubble, but are effec-
tively massless inside the bubble. Therefore, yhparticles
V. SUMMARY are effectively trapped inside the bubble, exerting an outward
pressure which can stabilize the bubble from total collapse,
We have considered a type of case similar to that previprovided that certain model parameters lie within appropriate
ously studied by Blau and Guendelmfl] wherein a scalar ranges. This resembles the stabilization mechanism for “or-
field (appearing within a dimensionally reduced 4D effectivedinary” 4D nontopological solitongNTS9 studied previ-
theory—that is associated with the scale factor of an extraously by Frieman, Gleiser, Gelmini and KdB].
(compact dimension in a 5D theory—forms a domain wall ~ Semi-vacuumless domain walls and dimension bubbles
interpolating between two different spatial regions. When thecan also arise from the 4D effective potential associated with
scalar field takes on radically different values in the twothe model of alassicalstabilization oftwo extra dimensions
different domains, the effective dimensionality of the spacein a spherically reduced 6D model described by Carroll,
also becomes different in these different domai#ss an  Geddes, Hoffman and Wa|d] (see Sec. Il of that papenn
example, we have followeld ] in constructing a form of 4D  that model, an extra dimensional magnetic field, along with a
effective potential arising from the low temperature Rubin-cosmological constant and the curvature term of the extra
Roth potential[2] (due to one loop quantum contributions dimensional two-sphere, give rise to a 4D effective potential
from massless bosons and massive or massless fermiorigiven by Eq.(36) of Ref.[7]] with the same basic shape as
along with a cosmological constahDomain walls which the effective potentiaU arising from quantum fluctuations
are unstable against bending can give rise to a network afonsidered hergsee Eq.(9) abovd. These bubbles could
closed “dimension bubbles,” where the effective spacetimealso be stabilized by the same mechanisny tson entrap-
dimensionality is different in the interior and exterior regions ment.
of a bubble. Without a stabilization mechanism, these As in the case of the ordinary NTSs, dimension bubbles,
bubbles collapse due to the tension in the bubble walls. if they exist, could contribute to the dark matter of our
However, the inclusion of a scalar fiejdin the original  (mostly) 4D universe.
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